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In Business Statistics in Practice, Sixth Edition, we provide a modern, practical, and unique

framework for teaching the first course in business statistics. As in previous editions, this edition

uses real or realistic examples, continuing case studies, and a business improvement theme to

teach business statistics. Moreover, we believe this sixth edition features significantly simplified

explanations, an improved topic flow, and a judicious use of the best, most interesting examples.

We now discuss the attributes and new features that we think make this book an effective learn-

ing tool. Specifically, the book includes:

• Continuing case studies that tie together different statistical topics. These continuing

case studies span not only individual chapters but also groups of chapters. Students tell us

that when new statistical topics are developed using familiar data from previous examples,

their “fear factor” is reduced. For example, because the descriptive statistics chapters de-

scribe data sets associated with the marketing research, car mileage, payment time, and trash

bag case studies, students feel more comfortable when these same studies are used as part of

the initial discussions of sampling distributions, confidence intervals, and hypothesis testing.

Similarly, because the simple linear regression chapter employs a data set relating Tasty Sub

Shop restaurant revenue to population in the area, students feel more comfortable when the

multiple regression chapter extends this case study and relates Tasty Sub Shop revenue to

both population and business activity in the area. Of course, to keep the examples from

becoming tired and overused, we introduce new case studies throughout the book.

• Business improvement conclusions that explicitly show how statistical results lead to

practical business decisions. When appropriate, we conclude examples and case studies

with a practical business improvement conclusion. To emphasize the text’s theme of

business improvement, icons are placed in the page margins to identify when statistical

analysis has led to an important business conclusion. Each conclusion is also highlighted in

yellow for additional clarity.

• New chapter introductions that list learning objectives and preview the case study

analysis to be carried out in each chapter.

• A shorter and more intuitive introduction to business statistics in Chapter 1.

Chapter 1 introduces data (using a new home sales example that illustrates the value of

data), discusses data sources, and gives an intuitive presentation of sampling. The technical

discussion of how to select random and other types of samples has been moved to Chapter 7

(Sampling and Sampling Distributions), but the reader has the option of reading the sam-

pling discussion in Chapter 7 immediately after completing Chapter 1.

• A streamlined discussion of the graphical and numerical methods of descriptive statistics

in Chapters 2 and 3. The streamlining has been accomplished by rewriting some explana-

tions, using fewer examples, and focusing on the best, most interesting examples.

• An improved discussion of probability and probability distributions. In response to

reviewer requests, we have moved the discussion of Bayes’ Theorem (formerly in the

decision theory chapter) and counting rules (formerly in an appendix) to optional sections in

Chapter 4 (Probability). We have also moved the hypergeometric distribution (formerly in

an appendix) to an optional section in Chapter 5 (Discrete Probability Distributions). In

addition, we have simplified the overall discussions of discrete and continuous probability

distributions, introduced continuous probability distributions using a more intuitive

approach, and improved the explanation of the exponential distribution.

• A simplified, unique, and more inferentially oriented approach to sampling distribu-

tions. In previous editions, we have introduced sampling distributions by using the game

show and stock return cases. Although many reviewers liked this approach, others preferred

the introduction to sampling distributions to be more oriented toward statistical inference. In

this new edition, we begin with a unique and realistic example of estimating the mean
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mileage of a population of six preproduction cars. Because four of the six cars will be taken

to auto shows and not be subjected to testing (which could harm their appearance), the true

population mean mileage is not known and must be estimated by using a random sample of

two cars that will not be taken to auto shows. Expanding from this small example, we gener-

alize the discussion and show the sampling distribution of the sample mean when we select

a random sample of five cars from the first year’s production of cars. The effect of sample

size on the sampling distribution is then considered, as is the Central Limit Theorem.

• A simpler discussion of confidence intervals employing a more graphical approach.

We have completely rewritten and shortened the introduction to confidence intervals, using

a simpler, more graphical approach. We have also added other new graphics throughout the

chapter to help students more easily construct and interpret confidence intervals.

• A simpler and more streamlined discussion of hypothesis testing. This discussion

includes an improved explanation of how to formulate null and alternative hypotheses, new

graphics, and a shorter, five-step hypothesis testing procedure. This procedure shows how to

use the book’s hypothesis testing summary boxes to implement both the critical value and

p-value methods of hypothesis testing.

• A new and better flowing discussion of simple and multiple regression analysis.

Previous editions intertwined two case studies through the basic discussion of simple regres-

sion and intertwined two case studies through the basic discussion of multiple regression. The

book now employs a single new case, The Tasty Sub Shop Case, throughout the basic expla-

nation of each technique. Based partly on how the real Quiznos restaurant chain suggests that

business entrepreneurs evaluate potential sites for Quiznos restaurants, the Tasty Sub Shop

case considers an entrepreneur who is evaluating potential sites for a Tasty Sub Shop restau-

rant. In the simple regression chapter, the entrepreneur predicts Tasty Sub Shop revenue by

using population in the area. In the multiple regression chapter, the entrepreneur predicts

Tasty Sub Shop revenue by using population and business activity in the area. After the basic

explanations of simple regression and multiple regression are completed, a further example

illustrating each technique is presented. (The fuel consumption case of previous editions is

now an exercise.) All discussions have been simplified and improved, and there is a new

presentation of interaction in the model-building chapter.

• Increased emphasis on Excel (and to some extent, MINITAB) throughout the text.

Previous editions included approximately equal proportions of Excel, MINITAB, and

MegaStat (an Excel add-in) outputs throughout the main text. Because three different types

of output might seem overwhelming, we now include approximately equal proportions of

Excel and MINITAB outputs throughout the main text. (MegaStat outputs appear in the

main text only in advanced chapters where there is no viable way to use Excel.) There are

now many more Excel outputs (which often replace the former MegaStat outputs) in the

main text, and there are also more MINITAB outputs. The end-of-chapter appendices still

show how to use all three software packages, and there are MegaStat outputs included in the

end-of-chapter appendices that illustrate how to use MegaStat.

In conclusion, note that following this preface we give “A Tour of This Text’s Features.” This

tour gives specific examples of the continuing case studies, business improvement conclusions,

graphics, and other teaching pedagogies that we think make this text an effective learning tool.

Also note that we give a summary of the specific chapter-by-chapter changes in the text on

page xxii.

Bruce L. Bowerman

Richard T. O’Connell

Emily S. Murphree

AUTHORS



A TOUR OF THIS

Chapter Introductions

Each chapter begins with a list of the section topics that are covered in the chapter, along with chapter learning objectives

and a preview of the case study analysis to be carried out in the chapter.

Continuing Case Studies and Business Improvement Conclusions

The main chapter discussions feature real or realistic examples, continuing case studies, and a business improvement

theme. The continuing case studies span not only individual chapters but also groups of chapters and tie together different

statistical topics. To emphasize the text’s theme of business improvement, icons are placed in the page margins to

identify when statistical analysis has led to an important business improvement conclusion. Each conclusion is also

highlighted in yellow for additional clarity. For example, in Chapters 1 and 3 we consider The Cell Phone Case:

BI

that reveal consumer preferences. Production

supervisors use manufacturing data to evaluate,

control, and improve product quality. Politicians

rely on data from public opinion polls to

formulate legislation and to devise campaign

strategies. Physicians and hospitals use data on

the effectiveness of drugs and surgical procedures

to provide patients with the best possible

treatment.

In this chapter we begin to see how we collect

and analyze data. As we proceed through the

chapter, we introduce several case studies. These

case studies (and others to be introduced later) are

revisited throughout later chapters as we learn the

statistical methods needed to analyze them. Briefly,

we will begin to study three cases:

The Cell Phone Case. A bank estimates its

cellular phone costs and decides whether to

outsource management of its wireless resources

by studying the calling patterns of its employees.

The Marketing Research Case. A bottling

company investigates consumer reaction to a

new bottle design for one of its popular soft

drinks.

The Car Mileage Case. To determine if it qualifies

for a federal tax credit based on fuel economy, an

automaker studies the gas mileage of its new

midsize model.

C

1.1 Data 
Data sets, elements, and variables We have said that data are facts and figures from

which conclusions can be drawn. Together, the data that are collected for a particular study are

referred to as a data set. For example, Table 1.1 is a data set that gives information about the new

homes sold in a Florida luxury home development over a recent three-month period. Potential

buyers in this housing community could choose either the “Diamond” or the “Ruby” home model

design and could have the home built on either a lake lot or a treed lot (with no water access).

In order to understand the data in Table 1.1, note that any data set provides information about

some group of individual elements, which may be people, objects, events, or other entities. The

information that a data set provides about its elements usually describes one or more characteris-

tics of these elements.

Any characteristic of an element is called a variable.

For the data set in Table 1.1, each sold home is an element, and four variables are used to describe

the homes. These variables are (1) the home model design, (2) the list (asking) price, (3) the

(actual) selling price, and (4) the type of lot on which a home was built. Moreover, each home

model design came with “everything included”—specifically, a complete, luxury interior pack-

age and a choice of one of three different architectural exteriors. Therefore, because there were

no interior or exterior options to purchase, the (actual) selling price of a home depended solely

on the home model design and whatever price reduction (based partially on the lot type) that the

community developer (builder) was willing to give.

Explain
what a

variable is.

LO1

T A B L E 1 . 1 A Data Set Describing Five Home Sales HomeSalesDS

Home Model Design List Price Selling Price Lot Type

1 Diamond $494,000 $494,000 Lake

2 Ruby $447,000 $398,000 Treed

3 Diamond $494,000 $440,000 Treed

4 Diamond $494,000 $469,000 Treed

5 Ruby $447,000 $447,000 Lake

he subject of statistics involves the study

of how to collect, analyze, and interpret

data. Data are facts and figures from which

conclusions can be drawn. Such conclusions are

important to the decision making of many

professions and organizations. For example,

economists use conclusions drawn from the latest

data on unemployment and inflation to help the

government make policy decisions. Financial

planners use recent trends in stock market prices and

economic conditions to make investment decisions.

Accountants use sample data concerning a company’s

actual sales revenues to assess whether the company’s

claimed sales revenues are valid. Marketing

professionals help businesses decide which

products to develop and market by using data

T

TA B L E 1 . 4 A Sample of Cellular Usages (in minutes) for 100 Randomly Selected Employees

CellUseDS

75 485 37 547 753 93 897 694 797 477

654 578 504 670 490 225 509 247 597 173

496 553 0 198 507 157 672 296 774 479

0 822 705 814 20 513 546 801 721 273

879 433 420 521 648 41 528 359 367 948

511 704 535 585 341 530 216 512 491 0

542 562 49 505 461 496 241 624 885 259

571 338 503 529 737 444 372 555 290 830

719 120 468 730 853 18 479 144 24 513

482 683 212 418 399 376 323 173 669 611

BI

EXAMPLE 3.5 The Cell Phone Case 

Remember that if the cellular cost per minute for the random sample of 100 bank employees

is over 18 cents per minute, the bank will benefit from automated cellular management of its

calling plans. Last month’s cellular usages for the 100 randomly selected employees are given

in Table 1.4 (page 9), and a dot plot of these usages is given in the page margin. If we add

together the usages, we find that the 100 employees used a total of 46,625 minutes. Further-

more, the total cellular cost incurred by the 100 employees is found to be $9,317 (this total

includes base costs, overage costs, long distance, and roaming). This works out to an average

of $9,317兾46,625 ⫽ $.1998, or 19.98 cents per minute. Because this average cellular cost per

minute exceeds 18 cents per minute, the bank will hire the cellular management service to

manage its calling plans.

C
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1

1.1 Data

1.2 Data Sources

1.3 Populations and Samples

1.4 Three Case Studies That Illustrate Sampling
and Statistical Inference

1.5 Ratio, Interval, Ordinal, and Nominative
Scales of Measurement (Optional)

An

Introduction

to Business

Statistics

Chapter Outline

LO1 Explain what a variable is.

LO2 Describe the difference between a
quantitative variable and a qualitative
variable.

LO3 Describe the difference between cross-
sectional data and time series data.

LO4 Construct and interpret a time series (runs)
plot.

LO5 Identify the different types of data sources:
existing data sources, experimental studies,
and observational studies.

When you have mastered the material in this chapter, you will be able to:

LO6 Describe the difference between a
population and a sample.

LO7 Distinguish between descriptive statistics
and statistical inference.

LO8 Explain the importance of random
sampling.

LO9 Identify the ratio, interval, ordinal, and
nominative scales of measurement
(Optional).

Learning Objectives



TEXT’S FEATURES

Figures and Tables

Throughout the text, charts, graphs, tables, and Excel and MINITAB outputs are used to illustrate statistical concepts. For

example:

• In Chapter 3 (Descriptive Statistics: Numerical Methods), the following figures are used to help explain the

empirical rule. Moreover, in The Car Mileage Case an automaker uses the empirical rule to find estimates of the

“typical,” “lowest,” and “highest” mileage that a new midsize car should be expected to get in combined city and

highway driving. In actual practice, real automakers provide similar information broken down into separate

estimates for city and highway driving—see the Buick LaCrosse new car sticker in Figure 3.14.

• In chapter 7 (Sampling and Sampling Distributions), the following figures (and others) are used to help explain

the sampling distribution of the sample mean and the Central Limit Theorem. In addition, the figures describe

different applications of random sampling in The Car Mileage Case, and thus this case is used as an integrative

tool to help students understand sampling distributions.

F I G U R E 3 . 1 4 The Empirical Rule and Tolerance Intervals

68.26% of the population

measurements are within

(plus or minus) one standard

deviation of the mean

        

95.44% of the population

measurements are within

(plus or minus) two standard

deviations of the mean

     2    2  

99.73% of the population

measurements are within

(plus or minus) three standard

deviations of the mean

     3     3 

(a) The Empirical Rule (b) Tolerance intervals for the 2009 Buick LaCrosse

11

All mid-size cars

Your actual
mileage will vary

depending on how you
drive and maintain

your vehicle.

W2A

Expected range
for most drivers
23 to 33 MPG

Expected range
for most drivers
23 to 33 MPG

Expected range
for most drivers
14 to 20 MPG

Expected range
for most drivers
14 to 20 MPG

based on 15,000 miles
at $2.80 per gallon

See the Recent Fuel Economy Guide at dealers or www.fueleconomy.gov

Estimated
Annual Fuel Cost

$1,999

These estimates reflect new EPA methods beginning with 2008 models.

Combined Fuel Economy
This Vehicle

21
48

CITY MPG HIGHWAY MPG

2817

EPA Fuel Economy Estimates

F I G U R E 3 . 1 5 Estimated Tolerance Intervals in the Car Mileage Case

Estimated tolerance interval for
the mileages of 99.73 percent of
all individual cars

29.2 34.0

Estimated tolerance interval for
the mileages of 95.44 percent of
all individual cars

30.0 33.2

Estimated tolerance interval for
the mileages of 68.26 percent of
all individual cars

30.8 32.4

Histogram of the 50 Mileages
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0.20
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0.10

0.05

0.00

1/61/61/61/61/61/6

Sample Mean

343332.5 33.53231.53130.53029.5
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(a) A graph of the probability distribution describing the

population of six individual car mileages

(b) A graph of the probability distribution describing the

population of 15 sample means

F I G U R E 7 . 1 A Comparison of Individual Car

Mileages and Sample Means

x2 ⫽ 31.9
x3 ⫽ 30.3
x4 ⫽ 32.1

x1 ⫽ 30.8

x5 ⫽ 31.4



30.4 30.8 31.2 31.6 32.0 32.4 32.8

34.029.2

33.232.431.630.830.0

The normally distributed
population of all possible
sample means



The normally distributed
population of all individual
car mileages

Sample

mean

x ⫽ 31.3¯

x2 ⫽ 30.7
x3 ⫽ 31.8
x4 ⫽ 31.4

x1 ⫽ 32.3

x5 ⫽ 32.8

Sample

mean

x ⫽ 31.8¯

x2 ⫽ 31.7 
x3 ⫽ 33.4 
x4 ⫽ 32.4 

x1 ⫽ 33.8 

x5 ⫽ 32.7 

Sample

mean

x ⫽ 32.8¯

Scale of sample means, x̄

Scale of car

mileages

F I G U R E 7 . 2 The Normally Distributed Population of All Individual Car Mileages and the Normally Distributed 

Population of All Possible Sample Means

(b) Corresponding populations of all possible sample means for
     different sample sizes

x xx x

n = 2

n = 6

n = 2 n = 2 n = 2

x x x x

x x x x

x x x x

n = 30 n = 30 n = 30 n = 30

n = 6 n = 6 n = 6

(a) Several sampled populations

F I G U R E 7 . 5 The Central Limit Theorem Says that the Larger the Sample Size Is, the More

Nearly Normally Distributed Is the Population of All Possible Sample Means

Scale of sample means, x
 

(b) The sampling distribution of the sample mean x when n   5

The normal distribution describing the population 
of all possible sample means when the sample
size is 5, where  x     and  x       .358

 

n

.8

5

.8

50

Scale of gas mileages
 

The normal distribution describing the 
population of all individual car mileages, which
has mean   and standard deviation     .8

(a) The population of individual mileages

Scale of sample means, x

The normal distribution describing the population 
of all possible sample means when the sample size
is 50, where  x     and  x      .113

 

n

 

(c) The sampling distribution of the sample mean x when n   50

¯

¯

¯

¯¯

¯ ¯

¯

F I G U R E 7 . 3 A Comparison of (1) the Population of All Individual Car Mileages, (2) the Sampling Distribution 

of the Sample Mean When n  5, and (3) the Sampling Distribution of the Sample Mean 

When n  50

xx



• In Chapter 8 (Confidence Intervals), the following figure (and others) are used to help explain the meaning of a

95 percent confidence interval for the population mean. Furthermore, in The Car Mileage Case an automaker

uses a confidence interval procedure specified by the Environmental Protection Agency (EPA) to find the EPA

estimate of a new midsize model’s true mean mileage. This estimate shows that the new midsize model’s manufac-

turer deserves a federal tax credit.

• In Chapters 13 and 14 (Simple Linear and Multiple Regression), a substantial number of data plots, Excel and

MINITAB outputs, and other graphics are used to teach simple and multiple regression analysis. For example, in

The Tasty Sub Shop Case a business entrepreneur uses data plotted in Figures 14.1 and 14.2 and the Excel and

MINITAB outputs in Figure 14.4 to predict the yearly revenue of a potential Tasty Sub Shop restaurant site on the

basis of the population and business activity near the site. Using the 95 percent prediction interval on the

MINITAB output and projected restaurant operating costs, the entrepreneur decides whether to purchase a Tasty

Sub Shop franchise for the potential restaurant site.

F I G U R E 8 . 2 Three 95 Percent Confidence Intervals for M

x

The probability is .95 that

x will be within plus or minus

1.96
x
   .22 of 

Samples of n   50

car mileages

31.631.6   .22 31.6   .22

31.56

31.68

31.2

31.34 31.78

31.46 31.90

31.4230.98

 

.95Population of

all individual

car mileages



 n   50

x  31.56

n   50

x  31.68n   50

x  31.2

A t Test about a Population Mean: S Unknown

Define the test statistic 

and assume that the population sampled is normally distributed or the sample size is large (at least 30). We

can test H0: m⫽m0 versus a particular alternative hypothesis at level of significance a by using the appropri-

ate critical value rule, or, equivalently, the corresponding p-value.

t ⫽
x ⫺ m0

s兾1n

Alternative Critical Value Rule:
Hypothesis Reject H0 if p-Value (reject H0 if p-value ⬍ A)

Ha: m ⬎ m0 t ⬎ t
a

The area under the t distribution curve to the right of t

Ha: m ⬍ m0 t ⬍ ⫺t
a

The area under the t distribution curve to the left of t

Ha: m � m0 冷t 冷 ⬎ t
a兾2—that is, Twice the area under the t distribution curve to the

t ⬎ t
a兾2 or t ⬍ ⫺t

a兾2 right of 冷t 冷

Here t
a
, t

a兾2, and the p-values are based on n⫺1 degrees of freedom.

The Five Steps of Hypothesis Testing

1 State the null hypothesis H0 and the alternative hypothesis Ha.

2 Specify the level of significance .

3 Select the test statistic.

Using a critical value rule:

4 Use the summary box to find the critical value rule corresponding to the alternative hypothesis.

Use the specified value of A to find the critical value given in the critical value rule.

5 Collect the sample data, compute the value of the test statistic, and decide whether to reject H0. 

Interpret the statistical results.

Using a p-value:

4 Collect the sample data, compute the value of the test statistic, and compute the p-value.

(Use the summary box to find the p-value corresponding to the alternative hypothesis.)

5 Reject H0 at level of significance a if the p-value is less than a. Interpret the statistical results.

a

0

(a)  Setting ␣   .01

df t.01

12 2.681
13 2.650
14 2.624

(b)  The test statistic
 and p-value 

0

 t.01

 2.624

If t   2.624, reject H0:    1.5

p-value   .00348

14 degrees
of freedom

t

 3.1589

 

 

␣   .01

F I G U R E 9 . 6 Testing H0: M 1.5 versus Ha: M 1.5 by Using a Critical Value and the p-Value

Test of mu = 1.5 vs < 1.5    

95% Upper

Bound

1.4307

Variable   N     Mean   StDev  SE Mean                 T      P 

Ratio   15   1.3433  0.1921   0.0496             –3.16  0.003 

• In Chapter 9 (Hypothesis Testing), a five-step hypothesis testing procedure, hypothesis testing summary boxes, and

many graphics are used to show how to carry out hypothesis tests. For example, in The Debt-to-Equity Ratio Case

a bank uses a t-test and Figure 9.6 to conclude (at the .01 level of significance) that the mean debt-to-equity ratio

of its current commercial loan portfolio conforms to its new risk reduction policies.

A TOUR OF THIS



TEXT’S FEATURES

Exercises

Many of the exercises in the text use real data. Data sets are identified by an icon in the text and are included on the Online

Learning Center (OLC): www.mhhe.com/bowerman6e. Exercises in each section are broken into two parts—“Concepts”

and “Methods and Applications”—and there are supplementary and Internet exercises at the end of each chapter.

Chapter Ending Material and Excel/MINITAB/MegaStat® Tutorials

The end-of-chapter material includes a chapter summary, a glossary of terms, important formula references, and

comprehensive appendices that show students how to use Excel, MINITAB, and MegaStat.

F I G U R E 1 4 . 1 Plot of y (Yearly Revenue) versus

x1 (Population Size)
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F I G U R E 1 4 . 2 Plot of y (Yearly Revenue) versus 

x2 (Business Rating)

Business Rating

Y
e

a
rl

y
 R

e
v

e
n

u
e

500

600

700

800

900

1000

1100

1200

1300

98765432

x
2

y

F I G U R E 1 4 . 4 Excel and MINITAB Outputs of a Regression Analysis of the Tasty Sub Shop Revenue Data 

in Table 14.1 Using the Model y ⴝ B0 ⴙ B1x1 ⴙ B2x2 ⴙ E

Regression Statistics

Multiple R 0.9905

R Square 0.9810

Adjusted R Square 0.9756

Standard Error 36.6856

Observations 10

ANOVA
df SS MS F Significance F

Regression 2 486355.7 243177.8 180.689 9.46E-07

Residual 7 9420.8 1345.835

Total 9 495776.5

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 125.289 40.9333 3.06 0.0183 28.4969 222.0807 

population 14.1996 0.9100 15.60 1.07E-06 12.0478 16.3517

bus_ratio 22.8107 5.7692 3.95 0.0055 9.1686 36.4527

(b) The MINITAB output

(a) The Excel output

8

9

7

The regression equation is

revenue = 125 + 14.2 population + 22.8 bus_rating

Predictor Coef SE Coef T P

Constant 125.29 40.93 3.06 0.018

population 14.1996 0.91 15.6 0.000

bus_rating 22.811 5.769 3.95 0.006

S = 36.6856 R-Sq = 98.10% R-Sq(adj) = 97.6%

Analysis of Variance

Source DF SS MS F P

Regression 2 486356 243178 180.69 0.000

Residual Error 7 9421 1346

Total 9 495777

Predicted Values for New Observations

New Obs Fit SE Fit 95% CI 95% PI

1 956.6 15 (921.0,992.2) (862.8,8,1050.4)

Values of Predictors for New Observations

New Obs population bus_rating

1 47.3 7

171615
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b0 b1 b2 standard error of the estimate bj t statistics p-values for t statistics s standard error

R2 Adjusted R2 Explained variation SSE Unexplained variation Total variation F(model) statistic

p-value for F(model) point prediction when x1 40 and x2 10 standard error of the estimate 

95% confidence interval when x1 40 and x2 10 95% prediction interval when x1 40 and x2 10 95% confidence interval for bj19⫽⫽18⫽⫽17
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2.7 Below we give pizza restaurant preferences for 25 randomly selected college students.

PizzaPizza

Godfather’s Little Caesar’s Papa John’s Pizza Hut Domino’s Papa John’s

Papa John’s Papa John’s Pizza Hut Pizza Hut Papa John’s Domino’s

Little Caesar’s Domino’s Domino’s Godfather’s Pizza Hut Papa John’s

Pizza Hut Pizza Hut Papa John’s Papa John’s Godfather’s Papa John’s

Domino’s 

a Find the frequency distribution and relative frequency distribution for these data.

b Construct a percentage bar chart for these data.

c Construct a percentage pie chart for these data.

d Which restaurant is most popular with these students? Least popular?

DS

Construct a scatter plot of sales volume versus
advertising expenditure as in Figure 2.24 on page 67
(data file: SalesPlot.xlsx):

• Enter the advertising and sales data in Table 2.20
on page 67 into columns A and B—advertising 
expenditures in column A with label “Ad Exp”
and sales values in column B with label “Sales
Vol.” Note: The variable to be graphed on the
horizontal axis must be in the first column (that
is, the left-most column) and the variable to be
graphed on the vertical axis must be in the 
second column (that is, the rightmost column).

• Click in the range of data to be graphed, or 
select the entire range of the data to be graphed.

• Select Insert : Scatter : Scatter with only Markers

• The scatter plot will be displayed in a graphics
window. Move the plot to a chart sheet and edit
appropriately.

Chapter Summary

We began this chapter by presenting and comparing several mea-

sures of central tendency. We defined the population mean and

we saw how to estimate the population mean by using a sample

mean. We also defined the median and mode, and we compared

the mean, median, and mode for symmetrical distributions and

for distributions that are skewed to the right or left. We then stud-

ied measures of variation (or spread ). We defined the range,

variance, and standard deviation, and we saw how to estimate

a population variance and standard deviation by using a sample.

We learned that a good way to interpret the standard deviation

when a population is (approximately) normally distributed is

to use the empirical rule, and we studied Chebyshev’s Theorem,

which gives us intervals containing reasonably large fractions of

the population units no matter what the population’s shape might

be. We also saw that, when a data set is highly skewed, it is best

to use percentiles and quartiles to measure variation, and we

learned how to construct a box-and-whiskers plot by using the

quartiles.

After learning how to measure and depict central tendency

and variability, we presented several optional topics. First, we dis-

cussed several numerical measures of the relationship between two

variables. These included the covariance, the correlation coeffi-

cient, and the least squares line. We then introduced the concept

of a weighted mean and also explained how to compute descrip-

tive statistics for grouped data. Finally, we showed how to calcu-

late the geometric mean and demonstrated its interpretation.

Glossary of Terms

box-and-whiskers display (box plot): A graphical portrayal of

a data set that depicts both the central tendency and variability of

the data. It is constructed using Q1, Md, and Q3. (pages 123, 124)

central tendency: A term referring to the middle of a population

or sample of measurements. (page 101)

normal curve: A bell-shaped, symmetrical relative frequency

curve. We will present the exact equation that gives this curve in

Chapter 6. (page 113)

outer fences (in a box-and-whiskers display): Points located

below and above . (page 124)Q33 ⫻ IQRQ13 ⫻ IQR



WHAT TECHNOLOGY CONNECTS

McGraw-Hill Connect™ Business Statistics

Less Managing. More Teaching. Greater Learning. McGraw-Hill Connect Business

Statistics is an online assignment and assessment solution that connects students with the tools

and resources they’ll need to achieve success. McGraw-Hill Connect Business Statistics helps

prepare students for their future by enabling faster learning, more efficient studying, and higher

retention of knowledge.

Features. Connect Business Statistics offers a number of powerful tools and features to make

managing assignments easier, so faculty can spend more time teaching. With Connect Business

Statistics, students can engage with their coursework anytime and anywhere, making the learning

process more accessible and efficient. Connect Business Statistics offers you the features

described below.

Simple Assignment Management. With Connect Business

Statistics, creating assignments is easier than ever, so you

can spend more time teaching and less time managing.

The assignment management function enables you to:

• Create and deliver assignments easily with selectable

end-of-chapter questions and test bank items.

• Streamline lesson planning, student progress

reporting, and assignment grading to make classroom

management more efficient than ever.

• Go paperless with the eBook and online submission

and grading of student assignments.

Smart Grading. When it comes to studying, time is

precious. Connect Business Statistics helps students learn

more efficiently by providing feedback and practice material when they need it, where they need

it. When it comes to teaching, your time also is precious. The grading function enables you to:

• Have assignments scored 

automatically, giving students

immediate feedback on their

work and side-by-side com-

parisons with correct answers.

• Access and review each re-

sponse; manually change

grades or leave comments for

students to review.

• Reinforce classroom concepts

with practice tests and instant

quizzes.

Integration of Excel Data Sets. A

convenient feature is the inclusion

of an Excel data file link in many

problems using data sets in their calculation. This allows students to easily launch into Excel,

work the problem, and return to Connect to key in the answer.



STUDENTS TO BUSINESS STATISTICS?

Instructor Library. The Connect Business Statistics

Instructor Library is your repository for additional resources

to improve student engagement in and out of class. You can

select and use any asset that enhances your lecture. The

Connect Business Statistics Instructor Library includes:

• eBook

• PowerPoint presentations

• Test Bank

• Solutions Manual

• Digital Image Library

Student Study Center. The Connect Business Statistics Student Study Center is the place for students to access additional

resources. The Student Study Center:

• Offers students quick access to lectures, practice materials, eBooks, and more.

• Provides instant practice material and study questions, easily accessible on-the-go.

Student Progress Tracking. Connect Business Statistics keeps instructors informed about how each student, section, and

class is performing, allowing for more productive use of lecture and office hours. The progress-tracking function enables

you to:

• View scored work immediately and track individual or group performance with assignment and grade reports.

• Access an instant view of student or class performance relative to learning objectives.

• Collect data and generate reports required by many accreditation organizations, such as AACSB.



WHAT TECHNOLOGY CONNECTS

McGraw-Hill Connect Plus Business Statistics. McGraw-Hill reinvents the textbook learning

experience for the modern student with Connect Plus Business Statistics. A seamless integration

of an eBook and Connect Business Statistics, Connect Plus Business Statistics provides all of the

Connect Business Statistics features plus the following:

• An integrated eBook, allowing for anytime, anywhere access to the textbook.

• Dynamic links between the problems or questions you assign to your students and the loca-

tion in the eBook where that problem or question is covered.

• A powerful search function to pinpoint and connect key concepts in a snap.

In short, Connect Business Statistics offers you and your students powerful tools and features

that optimize your time and energy, enabling you to focus on course content, teaching, and

student learning. Connect Business Statistics also offers a wealth of content resources for both

instructors and students. This state-of-the-art, thoroughly tested system supports you in

preparing students for the world that awaits. For more information about Connect, go to

www.mcgrawhillconnect.com, or contact your local McGraw-Hill sales representative.

Tegrity Campus: Lectures 14/7

Tegrity Campus is a service that makes class time available 24/7 by automatically capturing

every lecture in a searchable format for students to review when they study and complete

assignments. With a simple one-click start-and-stop process, you capture all computer screens

and corresponding audio. Students can replay any part of any class with easy-to-use browser-

based viewing on a PC or Mac.

Educators know that the more students can see, hear, and experience class resources, the better

they learn. In fact, studies prove it. With Tegrity Campus, students quickly recall key moments

by using Tegrity Campus’s unique search feature. This search helps students efficiently find what

they need, when they need it, across an entire semester of class recordings. Help turn all your

students’ study time into learning moments immediately supported by your lecture.

To learn more about Tegrity, watch a 2-minute Flash demo at http://tegritycampus.mhhe.com.

Assurance-of-Learning Ready

Many educational institutions today are focused on the notion of assurance of learning, an

important element of some accreditation standards. Business Statistics in Practice is designed

specifically to support your assurance-of-learning initiatives with a simple, yet powerful,

solution.

Each test bank question for Business Statistics in Practice maps to a specific chapter learning

outcome/objective listed in the text. You can use our test bank software, EZ Test and EZ Test

Online, or Connect Business Statistics to easily query for learning outcomes/objectives that

directly relate to the learning objectives for your course. You can then use the reporting features

of EZ Test to aggregate student results in similar fashion, making the collection and presentation

of assurance of learning data simple and easy.



AACSB Statement

The McGraw-Hill Companies is a proud corporate member of AACSB international.

Understanding the importance and value of AACSB accreditation, Business Statistics in Practice

recognizes the curricula guidelines detailed in the AACSB standards for business accreditation

by connecting selected questions in the text and the test bank

to the six general knowledge and skill guidelines in the

AACSB standards.

The statements contained in Business Statistics in

Practice are provided only as a guide for the users of this

textbook. The AACSB leaves content coverage and

assessment within the purview of individual schools, the

mission of the school, and the faculty. While Business

Statistics in Practice and the teaching package make no

claim of any specific AACSB qualification or evaluation, we

have labeled within Business Statistics in Practice selected

questions according to the six general knowledge and skills

areas.

McGraw-Hill Customer Care Information

At McGraw-Hill, we understand that getting the most from new technology can be challenging.

That’s why our services don’t stop after you purchase our products. You can e-mail our Product

Specialists 24 hours a day to get product-training online. Or you can search our knowledge bank

of Frequently Asked Questions on our support website. For Customer Support, call 800-331-

5094, e-mail hmsupport@mcgraw-hill.com, or visit www.mhhe.com/support. One of our

Technical Support Analysts will be able to assist you in a timely fashion.

STUDENTS TO BUSINESS STATISTICS?



WHAT SOFTWARE IS AVAILABLE 

MegaStat® for Excel (ISBN: 0077395131)

MegaStat is a full-featured Excel add-in by J.B. Orris of Butler University that is available with this text. It performs

statistical analyses within an Excel workbook. It does basic functions such as descriptive statistics, frequency distributions,

and probability calculations, as well as hypothesis testing, ANOVA, and regression.

MegaStat output is carefully formatted. Ease-of-use features include Auto Expand for quick data selection and Auto

Label detect. Since MegaStat is easy to use, students can focus on learning statistics without being distracted by the

software. MegaStat is always available from Excel’s main menu. Selecting a menu item pops up a dialog box. A normal

distribution is shown here. MegaStat works with all recent versions of Excel, including Excel 2007.



FOR USE WITH THIS TEXT?

MINITAB®/SPSS®/JMP®

Minitab® Student Version 14, SPSS® Student Version 17.0, and JMP 8 Student Edition are

software tools that are available to help students solve the business statistics exercises in the text.

Each is available in the student version and can be packaged with any McGraw-Hill business

statistics text.



WHAT RESOURCES ARE 

As described earlier, McGraw-Hill Connect Business Statistics is an online assignment and assessment system

customized to the text and available as an option to help the instructor deliver assignments, quizzes, and tests online. The

system utilizes exercises from the text in both a static and algorithmic format. Connect Business Statistics Plus includes

an identical, online edition of the text.

ISBN: 0077334000 ISBN: 0077333985

Online Learning Center: www.mhhe.com/bowerman6e

The Online Learning Center (OLC) is the text website with online content for both students and instructors. It provides

the instructor with a complete Instructor’s Manual in Word format, the complete Test Bank in both Word files and

computerized EZ Test format, Instructor PowerPoint slides, text art files, an introduction to ALEKS®, an introduction to

McGraw-Hill Connect Business Statistics™, access to the eBook, and more. 

ALEKS is an assessment and learning system that provides

individualized instruction in Business Statistics. Available from

McGraw-Hill/Irwin over the World Wide Web, ALEKS

delivers precise assessments of students’ knowledge, guides

them in the selection of appropriate new study material, and

records their progress toward mastery of goals.

ALEKS interacts with students much as a skilled human

tutor would, moving between explanation and practice as

needed, correcting and analyzing errors, defining terms and

changing topics on request. By accurately assessing their

knowledge, ALEKS focuses precisely on what to learn next,

helping them master the course content more quickly and

easily.



Visual Statistics

www.mhhe.com/bowerman6e
Visual Statistics 2.2 by Doane, Mathieson, and Tracy is a software program for teaching and

learning statistics concepts. It is unique in that it allows students to learn the concepts through

interactive experimentation and visualization. The software and worktext promote active

learning through competency-building exercises, individual and team projects, and built-in data

bases. Over 400 data sets from business settings are included within the package as well as a

worktext in electronic format. This software is available on the Online Learning Center (OLC)

for Bowerman 6e.

WebCT/Blackboard/eCollege

All of the material in the Online Learning Center is also available in portable WebCT,

Blackboard, or e-College content “cartridges” provided free to adopters of this text.

All test bank questions are available in an EZ Test electronic format. Included are a number of

multiple-choice, true/false, and short-answer questions and problems. The answers to all

questions are given, along with a rating of the level of difficulty, Bloom’s taxonomy question

type, and AACSB knowledge category.

AVAILABLE FOR INSTRUCTORS?



WHAT RESOURCES ARE AVAILABLE FOR STUDENTS?

Business Statistics Center (BSC): www.mhhe.com/bstat/

The BSC contains links to statistical publications and resources, software downloads, learning

aids, statistical websites and databases, and McGraw-Hill/Irwin product websites, and online

courses.

CourseSmart 

CourseSmart is a new way to find and buy eTextbooks. CourseSmart has the largest selection of

eTextbooks available anywhere, offering thousands of the most commonly adopted textbooks

from a wide variety of higher education publishers. CourseSmart eTextbooks are available in one

standard online reader with full text search, notes and highlighting, and email tools for sharing

notes between classmates. Visit www.CourseSmart.com for more information on ordering.

Online Learning Center: www.mhhe.com/bowerman6e

The Online Learning Center (OLC) provides students with the following content:

• Quizzes

• Data sets

• PowerPoint slides (narrated)

• ScreenCam Tutorials

• Visual Statistics

Save money. Go Green. McGraw-Hill eBooks

Green . . . it’s on everybody’s mind these days. It’s not only about saving trees, it’s also about

saving money. At 55% of the bookstore price, McGraw-Hill eBooks are an eco-friendly and cost-

saving alternative to the traditional printed textbook. So, you do some good for the environment

and . . . you do some good for your wallet.
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that reveal consumer preferences. Production

supervisors use manufacturing data to evaluate,

control, and improve product quality. Politicians

rely on data from public opinion polls to

formulate legislation and to devise campaign

strategies. Physicians and hospitals use data on

the effectiveness of drugs and surgical procedures

to provide patients with the best possible

treatment.

In this chapter we begin to see how we collect

and analyze data. As we proceed through the

chapter, we introduce several case studies. These

case studies (and others to be introduced later) are

revisited throughout later chapters as we learn the

statistical methods needed to analyze them. Briefly,

we will begin to study three cases:

The Cell Phone Case. A bank estimates its

cellular phone costs and decides whether to

outsource management of its wireless resources

by studying the calling patterns of its employees.

The Marketing Research Case. A bottling

company investigates consumer reaction to a

new bottle design for one of its popular soft

drinks.

The Car Mileage Case. To determine if it qualifies

for a federal tax credit based on fuel economy, an

automaker studies the gas mileage of its new

midsize model.

C

1.1 Data 
Data sets, elements, and variables We have said that data are facts and figures from

which conclusions can be drawn. Together, the data that are collected for a particular study are

referred to as a data set. For example, Table 1.1 is a data set that gives information about the new

homes sold in a Florida luxury home development over a recent three-month period. Potential

buyers in this housing community could choose either the “Diamond” or the “Ruby” home model

design and could have the home built on either a lake lot or a treed lot (with no water access).

In order to understand the data in Table 1.1, note that any data set provides information about

some group of individual elements, which may be people, objects, events, or other entities. The

information that a data set provides about its elements usually describes one or more characteris-

tics of these elements.

Any characteristic of an element is called a variable.

For the data set in Table 1.1, each sold home is an element, and four variables are used to describe

the homes. These variables are (1) the home model design, (2) the list (asking) price, (3) the

(actual) selling price, and (4) the type of lot on which a home was built. Moreover, each home

model design came with “everything included”—specifically, a complete, luxury interior pack-

age and a choice of one of three different architectural exteriors. Therefore, because there were

no interior or exterior options to purchase, the (actual) selling price of a home depended solely

on the home model design and whatever price reduction (based partially on the lot type) that the

community developer (builder) was willing to give.

Explain
what a

variable is.

LO1

T A B L E 1 . 1 A Data Set Describing Five Home Sales HomeSalesDS

Home Model Design List Price Selling Price Lot Type

1 Diamond $494,000 $494,000 Lake

2 Ruby $447,000 $398,000 Treed

3 Diamond $494,000 $440,000 Treed

4 Diamond $494,000 $469,000 Treed

5 Ruby $447,000 $447,000 Lake

he subject of statistics involves the study

of how to collect, analyze, and interpret

data. Data are facts and figures from which

conclusions can be drawn. Such conclusions are

important to the decision making of many

professions and organizations. For example,

economists use conclusions drawn from the latest

data on unemployment and inflation to help the

government make policy decisions. Financial

planners use recent trends in stock market prices and

economic conditions to make investment decisions.

Accountants use sample data concerning a company’s

actual sales revenues to assess whether the company’s

claimed sales revenues are valid. Marketing

professionals help businesses decide which

products to develop and market by using data

T



The data in Table 1.1 are real (with some minor modifications to protect privacy) and were

provided by a business executive—a friend of the authors—who recently received a promotion

and needed to move to central Florida. While searching for a new home, the executive and his

family visited the luxury home community and decided they wanted to purchase a Diamond

model on a treed lot. The list price of this home was $494,000, but the developer offered to sell

it for an “incentive” price of $469,000. Intuitively, the incentive price’s $25,000 savings off

list price seemed like a good deal. However, the executive resisted making an immediate deci-

sion. Instead, he decided to collect data on the selling prices of new homes recently sold in the

community and use the data to assess whether the developer might be amenable to a lower offer.

In order to collect “relevant data,” the executive talked to local real estate professionals and

learned that new homes sold in the community during the previous three months were a good

indicator of current home value. Using real estate sales records, the executive also learned that

five of the community’s new homes had sold in the previous three months. The data given in

Table 1.1 are the data that the executive collected about these five homes.

In order to understand the conclusions the business executive reached using the data in

Table 1.1, we need to further discuss variables. For any variable describing an element in a data set,

we carry out a measurement to assign a value of the variable to the element. For example, in the

real estate example, real estate sales records gave the actual selling price of each home to the near-

est dollar. In another example, a credit card company might measure the time it takes for a card-

holder’s bill to be paid to the nearest day. Or, in a third example, an automaker might measure the

gasoline mileage obtained by a car in city driving to the nearest one-tenth of a mile per gallon by

conducting a mileage test on a driving course prescribed by the Environmental Protection Agency

(EPA). If the possible measurements of the values of a variable are numbers that represent quanti-

ties (that is, “how much” or “how many”), then the variable is said to be quantitative. For example,

the actual selling price of a home, the payment time of a bill, and the gasoline mileage of a car are

all quantitative. However, if we simply record into which of several categories an element falls,

then the variable is said to be qualitative or categorical. Examples of categorical variables in-

clude (1) a person’s gender, (2) the make of an automobile, (3) whether a person who purchases a

product is satisfied with the product, and (4) the type of lot on which a home is built.1

Of the four variables in Table 1.1, two variables—list price and selling price—are quantita-

tive, and two variables—model design and lot type—are qualitative. Furthermore, when the busi-

ness executive examined Table 1.1, he noted that homes on lake lots had sold at their list price,

but homes on treed lots had not. Because the executive and his family wished to purchase a

Diamond model on a treed lot, the executive also noted that two Diamond models on treed lots

had sold in the previous three months. One of these Diamond models had sold for the incentive

price of $469,000, but the other had sold for a lower price of $440,000. Hoping to pay the lower

price for his family’s new home, the executive offered $440,000 for the Diamond model on the

treed lot. Initially, the home builder turned down this offer, but two days later the builder called

back and accepted the offer. The executive had used data to buy the new home for $54,000 less

than the list price and $29,000 less than the incentive price!

Cross-sectional and time series data Some statistical techniques are used to analyze

cross-sectional data, while others are used to analyze time series data. Cross-sectional data are

data collected at the same or approximately the same point in time. For example, suppose that a

bank wishes to analyze last month’s cell phone bills for its employees. Then, because the cell

phone costs given by these bills are for different employees in the same month, the cell phone

costs are cross-sectional data. Time series data are data collected over different time periods. For

example, Table 1.2 presents the average basic cable television rate in the United States for each of

the years 1995 to 2005. Figure 1.1 is a time series plot—also called a runs plot—of these data.

Here we plot each television rate on the vertical scale versus its corresponding time index on the

horizontal scale. For instance, the first cable rate ($23.07) is plotted versus 1995, the second cable

rate (24.41) is plotted versus 1996, and so forth. Examining the time series plot, we see that the

cable rates increased substantially from 1995 to 2005. Finally, because the five homes in Table 1.1

were sold over a three-month period that represented a relatively stable real estate market, we can

consider the data in Table 1.1 to essentially be cross-sectional data.

4 Chapter 1 An Introduction to Business Statistics

Describe
the differ-

ence between a
quantitative vari-
able and a qualita-
tive variable.

LO2

1Optional Section 1.5 discusses two types of quantitative variables (ratio and interval) and two types of qualitative variables
(ordinal and nominative).

Describe
the differ-

ence between
cross-sectional data
and time series
data.

LO3

Construct
and inter-

pret a time series
(runs) plot.

LO4



1.2 Data Sources 5

1.2 Data Sources 
Data can be obtained from existing sources or from experimental and observational studies.

Existing sources Sometimes we can use data already gathered by public or private sources.

The Internet is an obvious place to search for electronic versions of government publications,

company reports, and business journals, but there is also a wealth of information available in the

reference section of a good library or in county courthouse records.

If a business needs information about incomes in the Northeastern states, a natural source is

the US Census Bureau’s website at http://www.census.gov. By following various links posted on

the homepage, you can find income and demographic data for specific regions of the country.

Other useful websites for economic and financial data are listed in Table 1.3. All of these are

trustworthy sources.

Identify the
different

types of data
sources: existing
data sources, exper-
imental studies,
and observational
studies.
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T A B L E 1 . 2 The Average Basic Cable Rates in the

U.S. from 1995 to 2005

BasicCableDS

Year Average Basic Cable Rate

1995 $ 23.07

1996 24.41

1997 26.48

1998 27.81

1999 28.92

2000 30.37

2001 32.87

2002 34.71

2003 36.59

2004 38.14

2005 39.63

Source: Kagan Research, LLC. From the Broadband Cable Financial
Databook 2004, 2005 (copyright). Cable Program Investor, Dec. 16,
2004, March 30, 2006, and other publications, http://www.census.
gov/compendia/statab/information_communications/
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F I G U R E 1 . 1 Time Series Plot of the Average Basic Cable

Rates in the U.S. from 1995 to 2005

BasicCableDS

T A B L E 1 . 3 Examples of Public Economic and Financial Data Sites

Title Website Data Type

Global Financial Data http://www.globalfindata.com/ Annual data on stock markets, inflation rates,
interest rates, exchange rates, etc.

National Bureau of http://www.nber.org/databases/ Historic data on production, construction, 
Economic Research macrohistory/contents/index.html employment, money, prices, asset market 
Macrohistory Database transactions, foreign trade, and government

activity

Federal Reserve http://www.stls.frb.org/fred/ Historical U.S. economic and financial data, 
Economic Data including daily U.S. interest rates, monetary

and business indicators, exchange rate, balance
of payments, and regional economic data

Bureau of Labor http://stats.bls.gov/ Data concerning employment, inflation, 
Statistics consumer spending, productivity, safety, 

labor demographics, and the like.

WebEc Economics Data http://netec.wustl.edu/WebEc/ One of the best complete economics data
links including both international and 
domestic data categorized by area and
country

Economic Statistics http://www.whitehouse.gov/fsbr/ Links to the most currently available 
Briefing Room esbr.html values of federal economic indicators 

on 8 categories

Source: Prepared by Lan Ma and Jeffrey S. Simonoff. The authors provide no warranty as to the accuracy of the information
provided.



However, given the ease with which anyone can post documents, pictures, weblogs, and video

on the World Wide Web, not all sites are equally reliable. If we were to use a search engine from

Google, Netscape, Yahoo, Ask.com, or AltaVista (just to name a few) to find information about the

price of a two-bedroom apartment in Manhattan, we would be inundated by millions of “hits.” (In

fact, a recent search on Google using the keywords “price 2 bedroom apartments Manhattan”

yielded 1,040,000 sites.) Some of the sources will be more useful, exhaustive, and error-free than

others. Fortunately, the search engines prioritize the lists and provide the most relevant and highly

used sites first.

Obviously, performing such web searches costs next to nothing and takes relatively little time,

but the tradeoff is that we are also limited in terms of the type of information we are able to find.

Another option may be to use a private data source. Most companies keep employee records, for

example, and retail establishments retain information about their customers, products, and ad-

vertising results. Manufacturing companies may collect information about their processes and

defect propagation in order to monitor quality. If we have no affiliation with these companies,

however, these data may be more difficult to obtain.

Another alternative would be to contact a data collection agency, which typically incurs some

kind of cost. You can either buy subscriptions or purchase individual company financial reports

from agencies like Dun & Bradstreet, Bloomberg, Dow Jones & Company, Travel Industry of

America, Graduate Management Admission Council, and the Educational Testing Service. If you

need to collect specific information, some companies, such as ACNielsen and Information

Resources, Inc., can be hired to collect the information for a fee.

Experimental and observational studies There are many instances when the data we need

are not readily available from a public or private source. The data might not have been collected

at all or they may have been collected in a statistically unsound manner. In cases like these, we

need to collect the data ourselves. Suppose we work for a soft drink producer and want to assess

consumer reactions to a new bottled water. Since the water has not been marketed yet, we may

choose to conduct taste tests, focus groups, or some other market research. Projecting political

election results also requires information that is not readily available. In this case, exit polls and

telephone surveys are commonly used to obtain the information needed to predict voting trends.

New drugs for fighting disease are tested by collecting data under carefully controlled and moni-

tored experimental conditions. In many marketing, political, and medical situations of these sorts,

companies hire outside consultants or statisticians to help them obtain appropriate data. Regard-

less of whether newly minted data are gathered in-house or by paid outsiders, this type of data

collection requires much more time, effort, and expense than are needed when data can be found

from public or private sources.

When initiating a study, we first define our variable of interest, or response variable. Other

variables, typically called factors, that may be related to the response variable of interest will

also be measured. When we are able to set or manipulate the values of these factors, we have

an experimental study. For example, a pharmaceutical company might wish to determine the

most appropriate daily dose of a cholesterol-lowering drug for patients having cholesterol

levels over 240 mg/dL, a level associated with a high risk of coronary disease. (http://www.

americanheart.org/presenter.jhtml?identifier⫽4500) The company can perform an experiment

in which one sample of patients receives a placebo; a second sample receives some low dose;

a third a higher dose; and so forth. This is an experiment because the company controls the

amount of drug each group receives. The optimal daily dose can be determined by analyzing

the patients’ responses to the different dosage levels given.

When analysts are unable to control the factors of interest, the study is observational. In

studies of diet and cholesterol, patients’ diets are not under the analyst’s control. Patients are

often unwilling or unable to follow prescribed diets; doctors might simply ask patients what

they eat and then look for associations between the factor diet and the response variable

cholesterol. 

Asking people what they eat is an example of performing a survey. In general, people in a

survey are asked questions about their behaviors, opinions, beliefs, and other characteristics.

For instance, shoppers at a mall might be asked to fill out a short questionnaire which seeks their

opinions about a new bottled water. In other observational studies, we might simply observe the

behavior of people. For example, we might observe the behavior of shoppers as they look at a

store display, or we might observe the interactions between students and teachers.

6 Chapter 1 An Introduction to Business Statistics



1.3 Populations and Samples 7

Exercises for Sections 1.1 and 1.2
CONCEPTS

1.1 Define what we mean by a variable, and explain the difference between a quantitative variable

and a qualitative (categorical) variable.

1.2 Below we list several variables. Which of these variables are quantitative and which are qualitative?

Explain.

a The dollar amount on an accounts receivable invoice.

b The net profit for a company in 2009.

c The stock exchange on which a company’s stock is traded.

d The national debt of the United States in 2009.

e The advertising medium (radio, television, or print) used to promote a product.

1.3 Discuss the difference between cross-sectional data and time series data. If we record the total

number of cars sold in 2009 by each of 10 car salespeople, are the data cross-sectional or time

series data? If we record the total number of cars sold by a particular car salesperson in each of the

years 2005, 2006, 2007, 2008, and 2009, are the data cross-sectional or time series data?

1.4 Consider a medical study that is being performed to test the effect of smoking on lung cancer. Two

groups of subjects are identified; one group has lung cancer and the other one doesn’t. Both are

asked to fill out a questionnaire containing questions about their age, sex, occupation, and number

of cigarettes smoked per day. What is the response variable? Which are the factors? What type of

study is this (experimental or observational)?

METHODS AND APPLICATIONS

1.5 Consider the five homes in Table 1.1 (page 3). What do you think you would have to pay for a Ruby

model on a treed lot?

1.6 Consider the five homes in Table 1.1 (page 3). What do you think you would have to pay for a

Diamond model on a lake lot? For a Ruby model on a lake lot?

1.7 The number of Bismark X-12 electronic calculators sold at Smith’s Department Stores over the past

24 months have been: 197, 211, 203, 247, 239, 269, 308, 262, 258, 256, 261, 288, 296, 276, 305,

308, 356, 393, 363, 386, 443, 308, 358, and 384. Make a time series plot of these data. That is, plot

197 versus month 1, 211 versus month 2, and so forth. What does the time series plot tell you?

1.3 Populations and Samples 
We often collect data in order to study a population.

A population is the set of all elements about which we wish to draw conclusions.

Examples of populations include (1) all of last year’s graduates of Dartmouth College’s Master

of Business Administration program, (2) all current MasterCard cardholders, and (3) all Buick

LaCrosses that have been or will be produced this year.

We usually focus on studying one or more variables describing the population elements. If we

carry out a measurement to assign a value of a variable to each and every population element, we

have a population of measurements (sometimes called observations). If the population is small, it

is reasonable to do this. For instance, if 150 students graduated last year from the Dartmouth Col-

lege MBA program, it might be feasible to survey the graduates and to record all of their starting

salaries. In general:

If we examine all of the population measurements, we say that we are conducting a census of the

population.

Often the population that we wish to study is very large, and it is too time-consuming or costly

to conduct a census. In such a situation, we select and analyze a subset (or portion) of the popu-

lation elements.

A sample is a subset of the elements of a population.

For example, suppose that 8,742 students graduated last year from a large state university. It would

probably be too time-consuming to take a census of the population of all of their starting salaries.

Therefore, we would select a sample of graduates, and we would obtain and record their starting

salaries. When we measure a characteristic of the elements in a sample, we have a sample of

measurements.

Describe
the differ-

ence between a
population and a
sample.
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We often wish to describe a population or sample.

Descriptive statistics is the science of describing the important aspects of a set of measurements.

As an example, if we are studying a set of starting salaries, we might wish to describe (1) how

large or small they tend to be, (2) what a typical salary might be, and (3) how much the salaries

differ from each other.

When the population of interest is small and we can conduct a census of the population, we

will be able to directly describe the important aspects of the population measurements. However,

if the population is large and we need to select a sample from it, then we use what we call statis-

tical inference.

Statistical inference is the science of using a sample of measurements to make generalizations

about the important aspects of a population of measurements.

For instance, we might use a sample of starting salaries to estimate the important aspects of a

population of starting salaries. In the next section, we begin to look at how statistical inference is

carried out.

1.4 Three Case Studies That Illustrate Sampling 
and Statistical Inference 

When we select a sample from a population, we hope that the information contained in the sample

reflects what is true about the population. One of the best ways to achieve this goal is to select a

random sample. In Section 7.1 we will define exactly what a random sample is. For now, it suffices

to know that a random sample is selected in such a way that every element in the population has the

same chance of being included in the sample. Most procedures for selecting a random sample from

a population begin by making or obtaining a list of the population elements and assigning a unique

number to each population element in the list. We then randomly select population elements from

the numbered list. One intuitive way to do this would be to place numbered slips of paper repre-

senting the population elements in a suitable container. We would thoroughly mix the slips of paper

and (blind folded) choose slips of paper from the container. The numbers on the chosen slips of

paper would identify the randomly selected population elements that make up the random sample.

Of course, numbering a large number of slips of paper can be very time consuming. Therefore, in

Section 7.1 we will discuss the more practical method of using a random number table or computer

generated random numbers to select a random sample. We will also see that, although in many

situations it is not possible to make or obtain a list of all of the population elements, we can some-

times select an “approximately” random sample of these elements.

We now introduce three case studies that illustrate the need for a random (or approximately

random) sample and the use of such a sample in making statistical inferences. After studying

these cases, the reader has the option of studying Section 7.1 (see page 275) and learning practi-

cal ways to select random and approximately random samples.

8 Chapter 1 An Introduction to Business Statistics

Distinguish
between

descriptive statistics
and statistical
inference.

LO7

Explain the
importance

of random sampling.
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EXAMPLE 1.1 The Cell Phone Case: Estimating Cell Phone Costs2

Part 1: The cost of company cell phone use Rising cell phone costs have forced com-

panies having large numbers of cellular users to hire services to manage their cellular and other

wireless resources. These cellular management services use sophisticated software and mathe-

matical models to choose cost efficient cell phone plans for their clients. One such firm, Mobile-

Sense Inc. of Westlake Village, California, specializes in automated wireless cost management.

According to Doug L. Stevens, Vice President of Sales and Marketing at MobileSense, cell phone

carriers count on overage—using more minutes than one’s plan allows—and underage—using

fewer minutes than those already paid for—to deliver almost half of their revenues. As a result, a

company’s typical cost of cell phone use can easily exceed 25 cents per minute. However, Mr.

Stevens explains that by using MobileSense automated cost management to select calling plans,

this cost can be reduced to 12 cents per minute or less.

C

2The authors would like to thank Mr. Doug L. Stevens, Vice President of Sales and Marketing, at MobileSense Inc., Westlake
Village, California, for his help in developing this case.
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In this case we consider a bank that wishes to decide whether to hire a cellular management

service to choose its employees’ calling plans. While the bank has over 10,000 employees on

many different types of calling plans, the cellular management service suggests that by studying

the calling patterns of cellular users on 500-minute-per-month plans, the bank can accurately as-

sess whether its cell phone costs can be substantially reduced.

The bank has 2,136 employees on a variety of 500-minute-per-month plans with different

basic monthly rates, different overage charges, and different additional charges for long distance

and roaming. It would be extremely time consuming to analyze in detail the cell phone bills of all

2,136 employees. Therefore, the bank will estimate its cellular costs for the 500-minute plans by

analyzing last month’s cell phone bills for a random sample of 100 employees on these plans. Ac-

cording to the cellular management service, if the cellular cost per minute for the random sample

of 100 employees is over 18 cents per minute, the bank should benefit from automated cellular

management of its calling plans.3

Part 2: A random sample Because the bank can list and number the 2,136 employees on the

500-minute plans, the bank can select a random sample of 100 of these employees. A practical

way to do this is discussed in Section 7.1. When the random sample of 100 employees is chosen,

the number of cellular minutes used by each sampled employee during last month (the employee’s

cellular usage) is found and recorded. The 100 cellular-usage figures are given in Table 1.4.

Looking at this table, we can see that there is substantial overage and underage—many employees

used far more than 500 minutes, while many others failed to use all of the 500 minutes allowed by

their plan. In Chapter 3 we will use these 100 usage figures to estimate the cellular cost per minute

for 500-minute plans.

T A B L E 1 . 4 A Sample of Cellular Usages (in minutes) for 100 Randomly Selected Employees

CellUseDS

75 485 37 547 753 93 897 694 797 477

654 578 504 670 490 225 509 247 597 173

496 553 0 198 507 157 672 296 774 479

0 822 705 814 20 513 546 801 721 273

879 433 420 521 648 41 528 359 367 948

511 704 535 585 341 530 216 512 491 0

542 562 49 505 461 496 241 624 885 259

571 338 503 529 737 444 372 555 290 830

719 120 468 730 853 18 479 144 24 513

482 683 212 418 399 376 323 173 669 611

3In Chapter 8 we will discuss how to plan the sample size—the number of elements (for example, 100) that should be included in
a sample. Throughout this book we will take large enough samples to allow us to make reasonably accurate statistical inferences.
4This case was motivated by an example in the book Essentials of Marketing Research by W. R. Dillon, T. J. Madden, and 
N. H. Firtle (Burr Ridge, IL: Richard D. Irwin, 1993). The authors also wish to thank Professor L. Unger of the Department of
Marketing at Miami University for helpful discussions concerning how this type of marketing study would be carried out.
5Theresa Howard, “Coke says earnings will come up short,” USA Today, September 16, 2004, p. 801.
6This is a commonly used research design. For example, see the Burke Marketing Research website at 
http://burke.com/about/inc_background.htm, Burke Marketing Research, March 26, 2005.

EXAMPLE 1.2 The Marketing Research Case: Rating a New Bottle Design4

Part 1: The importance of a bottle design The design of a package or bottle can have an

important effect on a company’s bottom line. For example, in September of 2004 Coca-Cola

reported substantial customer dissatisfaction with the size and shape of a new, contoured 1.5 liter

bottle for Coke products. This dissatisfaction was playing a major role in Coca-Cola’s projected

failure to meet third-quarter earnings forecasts in 2004.5

In this case a brand group is studying whether changes should be made in the bottle design for a

popular soft drink. To research consumer reaction to a new design, the brand group will use the

“mall intercept method’’6 in which shoppers at a large metropolitan shopping mall are intercepted

as they walk by and asked to participate in a consumer survey. Each shopper will be exposed to the

C



new bottle design and asked to rate the bottle image. Bottle image will be measured by combining

consumers’ responses to five items, with each response measured using a 7-point “Likert scale.”

The five items and the scale of possible responses are shown in Figure 1.2. Here, since we describe

the least favorable response and the most favorable response (and we do not describe the responses

between them), we say that the scale is “anchored” at its ends. Responses to the five items will be

summed to obtain a composite score for each respondent. It follows that the minimum composite

score possible is 5 and the maximum composite score possible is 35. Furthermore, experience has

shown that the smallest acceptable composite score for a successful bottle design is 25.

Part 2: An approximately random sample Suppose that the brand group has decided to

use the mall intercept method to interview a sample of 60 shoppers at the shopping mall on a

particular Saturday. Because it is not possible to list and number all of the shoppers who will be

at the mall on this Saturday, the brand group cannot obtain a random sample of these shoppers.

However, in Section 7.1 we will learn that the brand group can intercept shoppers in such a way

that it obtains an approximately random sample of these shoppers. When each shopper is cho-

sen, he or she is asked to rate the bottle design by responding to the five items in Figure 1.2, and

a composite score is calculated for the shopper. The 60 composite scores obtained are given in

Table 1.5. Since these scores vary from a minimum of 20 to a maximum of 35, we might infer

that most of the shoppers at the mall on the Saturday of the study would rate the new bottle de-

sign between 20 and 35. Furthermore, since 57 of the 60 composite scores are at least 25, we

might estimate that the proportion of all shoppers at the mall on the Saturday of the study who

would give the bottle design a composite score of at least 25 is 57兾60⫽ .95. That is, we estimate

that 95 percent of the shoppers would give the bottle design a composite score of at least 25. In

future chapters we will further analyze the composite scores.

In some situations, we need to decide whether a sample taken from one population can be em-

ployed to make statistical inferences about another, related population. Often logical reasoning is

used to do this. For instance, we might reason that the bottle design ratings given by shoppers at the

mall on the Saturday of the research study would be representative of the ratings given by (1) shop-

pers at the same mall at other times, (2) shoppers at other malls, and (3) consumers in general.

However, if we have no data or other information to back up this reasoning, making such general-

izations is dangerous. In practice, marketing research firms choose locations and sampling times

that data and experience indicate will produce a representative cross-section of consumers. To sim-

plify our presentation, we will assume that this has been done in the bottle design case. Therefore,

10 Chapter 1 An Introduction to Business Statistics

Strongly Strongly
Statement Disagree Agree

The size of this bottle is convenient. 1 2 3 4 5 6 7

The contoured shape of this bottle is easy to handle. 1 2 3 4 5 6 7

The label on this bottle is easy to read. 1 2 3 4 5 6 7

This bottle is easy to open. 1 2 3 4 5 6 7

Based on its overall appeal, I like this bottle design. 1 2 3 4 5 6 7

Please circle the response that most accurately describes whether you agree or disagree with each 
statement about the bottle you have examined.

F I G U R E 1 . 2 The Bottle Design Survey Instrument

T A B L E 1 . 5 A Sample of Bottle Design Ratings (Composite Scores for a Systematic Sample of 60 Shoppers)

DesignDS

34 33 33 29 26 33 28 25 32 33

32 25 27 33 22 27 32 33 32 29

24 30 20 34 31 32 30 35 33 31

32 28 30 31 31 33 29 27 34 31

31 28 33 31 32 28 26 29 32 34

32 30 34 32 30 30 32 31 29 33
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we will suppose that it is reasonable to use the 60 bottle design ratings in Table 1.5 to make statis-

tical inferences about all consumers.

Before presenting the next case, note that sometimes we are interested in studying the popu-

lation of all of the elements that will be or could potentially be produced by a process.

A process is a sequence of operations that takes inputs (labor, materials, methods, machines, and

so on) and turns them into outputs (products, services, and the like).

Processes produce output over time. For example, this year’s Buick LaCrosse manufacturing

process produces LaCrosses over time. Early in the model year, General Motors might wish to

study the population of the city driving mileages of all Buick LaCrosses that will be produced

during the model year. Or, even more hypothetically, General Motors might wish to study the pop-

ulation of the city driving mileages of all LaCrosses that could potentially be produced by this

model year’s manufacturing process. The first population is called a finite population because

only a finite number of cars will be produced during the year. The second population is called an

infinite population because the manufacturing process that produces this year’s model could in

theory always be used to build “one more car.” That is, theoretically there is no limit to the number

of cars that could be produced by this year’s process. There are a multitude of other examples of fi-

nite or infinite hypothetical populations. For instance, we might study the population of all wait-

ing times that will or could potentially be experienced by patients of a hospital emergency room.

Or we might study the population of all the amounts of grape jelly that will be or could potentially

be dispensed into 16-ounce jars by an automated filling machine. To study a population of poten-

tial process observations, we sample the process—often at equally spaced time points—over time.

This is illustrated in the following case.

EXAMPLE 1.3 The Car Mileage Case: Estimating Mileage

Part 1: The importance of auto fuel economy Personal budgets, national energy secu-

rity, and the global environment are all affected by our gasoline consumption. Filling up our car

eats away at our disposable income and shifts the trade balance in favor of petroleum-exporting

nations. Furthermore, even if a reliable, affordable supply of petroleum were not an issue, burn-

ing fossil fuels such as gasoline and diesel adds greenhouse gases, mostly carbon dioxide, to the

earth’s atmosphere. Large-scale increases in greenhouse gases in the Earth’s atmosphere can lead

to global warming.7 A car creates 20 pounds of carbon dioxide per gallon of gasoline it consumes.

However, the U.S. Department of Energy estimates that by choosing a car that gets an additional

5 miles per gallon, a person can prevent the release of about 17 tons of greenhouse gases over the

lifetime of his or her car.8

Hybrid and electric cars will be a vital part of a long-term strategy to reduce our nation’s gaso-

line consumption. However, these cars are still being developed, and the projected costs of electric

cars must be reduced before they will have a practical impact on reducing gasoline consumption.9

Moreover, because gasoline powered cars will probably remain on the road into the foreseeable

future, many experts believe that an important way to increase fuel economy is to improve existing

gasoline engines. In the short term, “that will give you the biggest bang for your buck,” says David

Friedman, research director of the Union of Concerned Scientists’ Clean Vehicle Program.10

In this case study we consider a tax credit offered by the federal government to automakers for

improving the fuel economy of gasoline powered midsize cars. According to The Fuel Economy

Guide—2009 Model Year, virtually every gasoline powered midsize car equipped with an auto-

matic transmission has an EPA combined city and highway mileage estimate of 26 miles per gal-

lon (mpg) or less.11 Furthermore, the EPA has concluded that a 5 mpg increase in fuel economy

is significant and feasible.12 Therefore, suppose that the government has decided to offer the tax

credit to any automaker selling a midsize model with an automatic transmission that achieves an

EPA combined city and highway mileage estimate of at least 31 mpg.

C

7, 8World Wide Web, http://www.fueleconomy.gov
9, 10Bryan Walsh, “Plugged In,” Time, September 29, 2008 (see page 56).
11The “26 miles per gallon (mpg) or less” figure relates to midsize cars with an automatic transmission and at least a 4 cylinder,
2.4 liter engine (such cars are the most popular midsize models). Therefore, when we refer to a midsize car with an automatic
transmission in future discussions, we are assuming that the midsize car also has at least a 4 cylinder, 2.4 liter engine.
12The authors wish to thank Jeff Alson of the EPA for this information.



Part 2: An approximately random sample Consider an automaker that has recently in-

troduced a new midsize model with an automatic transmission and wishes to demonstrate that

this new model qualifies for the tax credit. In order to study the population of all cars of this type

that will or could potentially be produced, the automaker will choose a sample of 50 of these cars.

Furthermore, because the midsize cars are produced over time on consecutive production shifts

(with 100 cars being produced on each shift), the automaker will choose the sample of 50 cars

from different production shifts. No cars will be chosen from the model year’s initial production

shifts so that any production start-up problems can be identified and corrected. When the midsize

car manufacturing process is operating consistently over time, the automaker will choose the

sample of 50 cars by randomly selecting one car from the 100 cars produced on each of 50 con-

secutive production shifts. How such random selections can be made will be discussed in

Section 7.1. Once selected, each car is to be subjected to an EPA test that determines the EPA

combined city and highway mileage of the car. This mileage is obtained by testing the car on a

device similar to a giant treadmill. The device is used to simulate a 7.5-mile city driving trip and

a 10-mile highway driving trip, and the resulting city and highway mileages are used to calculate

the EPA combined mileage for the car.13

Suppose that when the 50 cars are selected and tested, the sample of 50 EPA combined mileages

shown in Table 1.6 is obtained. A runs plot of the mileages is given in Figure 1.3. Examining this

plot, we see that, although the mileages vary over time, they do not seem to vary in any unusual

way. For example, the mileages do not tend to either decrease or increase (as did the basic cable

rates in Figure 1.1) over time. This intuitively verifies that the midsize car manufacturing process

is producing consistent car mileages over time, and thus we can regard the 50 mileages as an ap-

proximately random sample that can be used to make statistical inferences about the population

of all possible midsize car mileages. Therefore, since the 50 mileages vary from a minimum of

29.8 mpg to a maximum of 33.3 mpg, we might conclude that most midsize cars produced by the

manufacturing process will obtain between 29.8 mpg and 33.3 mpg. Moreover, because 38 out of

the 50 mileages—or 76 percent of the mileages—are greater than or equal to the tax credit standard

of 31 mpg, we have some evidence that the “typical car” produced by the process will meet or

exceed the tax credit standard. We will further evaluate this evidence in later chapters.
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Runs Plot of Mileage
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F I G U R E 1 . 3 A Runs Plot of the 50 MileagesT A B L E 1 . 6 A Sample of 50 Mileages GasMilesDS

30.8 30.8 32.1 32.3 32.7

31.7 30.4 31.4 32.7 31.4

30.1 32.5 30.8 31.2 31.8

31.6 30.3 32.8 30.7 31.9

32.1 31.3 31.9 31.7 33.0

33.3 32.1 31.4 31.4 31.5

31.3 32.5 32.4 32.2 31.6

31.0 31.8 31.0 31.5 30.6

32.0 30.5 29.8 31.7 32.3

32.4 30.5 31.1 30.7 31.4

Note: Time

Order Is Given

by Reading

Down the

Columns from

Left to Right.

13Since the EPA estimates that 55 percent of all driving is city driving, it calculates combined mileage by adding 55 percent of
the city mileage test result to 45 percent of the highway mileage test result.

Exercises for Sections 1.3 and 1.4
CONCEPTS

1.8 Define a population. Give an example of a population.

1.9 Explain the difference between a census and a sample. 

1.10 Explain the term descriptive statistics. Explain the term statistical inference.

1.11 Explain what a process is.



1.4 Three Case Studies That Illustrate Sampling and Statistical Inference 13

Strongly Strongly
Statement Disagree Agree

The game console of the XYZ-Box is well designed. 1 2 3 4 5 6 7

The game controller of the XYZ-Box is easy to handle. 1 2 3 4 5 6 7

The XYZ-Box has high quality graphics capabilities. 1 2 3 4 5 6 7

The XYZ-Box has high quality audio capabilities. 1 2 3 4 5 6 7

The XYZ-Box serves as a complete entertainment center. 1 2 3 4 5 6 7

There is a large selection of XYZ-Box games to choose from. 1 2 3 4 5 6 7

I am totally satisfied with my XYZ-Box game system. 1 2 3 4 5 6 7

F I G U R E 1 . 4 The Video Game Satisfaction Survey Instrument

T A B L E 1 . 7 Composite Scores for the Video Game

Satisfaction Rating Case VideoGameDS

39 44 46 44 44

45 42 45 44 42

38 46 45 45 47

42 40 46 44 43

42 47 43 46 45

41 44 47 48

38 43 43 44

42 45 41 41

46 45 40 45

44 40 43 44

40 46 44 44

39 41 41 44

40 43 38 46

42 39 43 39

45 43 36 41

T A B L E 1 . 8 Waiting Times (in Minutes) for the Bank

CustomerWaitingTime Case WaitTimeDS

1.6 6.2 3.2 5.6 7.9 6.1 7.2

6.6 5.4 6.5 4.4 1.1 3.8 7.3

5.6 4.9 2.3 4.5 7.2 10.7 4.1

5.1 5.4 8.7 6.7 2.9 7.5 6.7

3.9 .8 4.7 8.1 9.1 7.0 3.5

4.6 2.5 3.6 4.3 7.7 5.3 6.3

6.5 8.3 2.7 2.2 4.0 4.5 4.3

6.4 6.1 3.7 5.8 1.4 4.5 3.8

8.6 6.3 .4 8.6 7.8 1.8 5.1

4.2 6.8 10.2 2.0 5.2 3.7 5.5

5.8 9.8 2.8 8.0 8.4 4.0

3.4 2.9 11.6 9.5 6.3 5.7

9.3 10.9 4.3 1.3 4.4 2.4

7.4 4.7 3.1 4.8 5.2 9.2

1.8 3.9 5.8 9.9 7.4 5.0

METHODS AND APPLICATIONS

1.12 THE VIDEO GAME SATISFACTION RATING CASE VideoGame

A company that produces and markets video game systems wishes to assess its customer’s level of

satisfaction with a relatively new model, the XYZ-Box. In the six months since the introduction of

the model, the company has received 73,219 warranty registrations from purchasers. The company

will select a random sample of 65 of these registrations and will conduct telephone interviews with

the purchasers. Specifically, each purchaser will be asked to state his or her level of agreement with

each of the seven statements listed on the survey instrument given in Figure 1.4. Here, the level of

agreement for each statement is measured on a 7-point Likert scale. Purchaser satisfaction will be

measured by adding the purchaser’s responses to the seven statements. It follows that for each

consumer the minimum composite score possible is 7 and the maximum is 49. Furthermore, experi-

ence has shown that a purchaser of a video game system is “very satisfied” if his or her composite

score is at least 42. Suppose that when the 65 customers are interviewed, their composite scores are as

given in Table 1.7. Using the data, estimate limits between which most of the 73,219 composite scores

would fall. Also, estimate the proportion of the 73,219 composite scores that would be at least 42.

1.13 THE BANK CUSTOMER WAITING TIME CASE WaitTime

A bank manager has developed a new system to reduce the time customers spend waiting to be

served by tellers during peak business hours. Typical waiting times during peak business hours

under the current system are roughly 9 to 10 minutes. The bank manager hopes that the new

system will lower typical waiting times to less than six minutes and wishes to evaluate the new

system. When the new system is operating consistently over time, the bank manager decides to

select a sample of 100 customers that need teller service during peak business hours. Specifically,

for each of 100 peak business hours, the first customer that starts waiting for teller service at or

after a randomly selected time during the hour will be chosen. In Exercise 7.5 (see page 279)

we will discuss how to obtain a randomly selected time during an hour. When each customer is

chosen, the number of minutes the customer spends waiting for teller service is recorded. The

100 waiting times that are observed are given in Table 1.8. Using the data, estimate limits

DS

DS



between which the waiting times of most of the customers arriving during peak business hours

would be. Also, estimate the proportion of waiting times of customers arriving during peak

business hours that are less than six minutes.

1.14 THE TRASH BAG CASE14 TrashBag

A company that produces and markets trash bags has developed an improved 30-gallon

bag. The new bag is produced using a specially formulated plastic that is both stronger and more

biodegradable than previously used plastics, and the company wishes to evaluate the strength of

this bag. The breaking strength of a trash bag is considered to be the amount (in pounds) of a rep-

resentative trash mix that when loaded into a bag suspended in the air will cause the bag to sustain

significant damage (such as ripping or tearing). The company has decided to select a sample of 40

of the new trash bags. For each of 40 consecutive hours, the first trash bag produced at or after a

randomly selected time during the hour is chosen. The bag is then subjected to a breaking strength

test. The 40 breaking strengths obtained are given in Table 1.9. Estimate limits between which the

breaking strengths of most trash bags would fall. Assume that the trash bag manufacturing process

is operating consistently over time.

1.5 Ratio, Interval, Ordinal, and Nominative Scales
of Measurement (Optional) 

In Section 1.1 we said that a variable is quantitative if its possible values are numbers that repre-

sent quantities (that is, “how much” or “how many”). In general, a quantitative variable is mea-

sured on a scale having a fixed unit of measurement between its possible values. For example, if we

measure employees’ salaries to the nearest dollar, then one dollar is the fixed unit of measurement

between different employees’ salaries. There are two types of quantitative variables: ratio and

interval.Aratio variable is a quantitative variable measured on a scale such that ratios of its values

are meaningful and there is an inherently defined zero value. Variables such as salary, height,

weight, time, and distance are ratio variables. For example, a distance of zero miles is “no distance

at all,” and a town that is 30 miles away is “twice as far” as a town that is 15 miles away.

An interval variable is a quantitative variable where ratios of its values are not meaningful

and there is not an inherently defined zero value. Temperature (on the Fahrenheit scale) is an

interval variable. For example, zero degrees Fahrenheit does not represent “no heat at all,” just

that it is very cold. Thus, there is no inherently defined zero value. Furthermore, ratios of tem-

peratures are not meaningful. For example, it makes no sense to say that 60° is twice as warm as

30°. In practice, there are very few interval variables other than temperature. Almost all quanti-

tative variables are ratio variables.

In Section 1.1 we also said that if we simply record into which of several categories a popula-

tion (or sample) unit falls, then the variable is qualitative (or categorical). There are two types

of qualitative variables: ordinal and nominative. An ordinal variable is a qualitative variable

for which there is a meaningful ordering, or ranking, of the categories. The measurements of an

ordinal variable may be nonnumerical or numerical. For example, a student may be asked to rate

the teaching effectiveness of a college professor as excellent, good, average, poor, or unsatisfac-

tory. Here, one category is higher than the next one; that is, “excellent” is a higher rating than

“good,” “good” is a higher rating than “average,” and so on. Therefore, teaching effectiveness is

an ordinal variable having nonnumerical measurements. On the other hand, if (as is often done)

we substitute the numbers 4, 3, 2, 1, and 0 for the ratings excellent through unsatisfactory, then

teaching effectiveness is an ordinal variable having numerical measurements.

In practice, both numbers and associated words are often presented to respondents asked to rate

a person or item. When numbers are used, statisticians debate whether the ordinal variable is “some-

what quantitative.” For example, statisticians who claim that teaching effectiveness rated as 4, 3, 2,

1, or 0 is not somewhat quantitative argue that the difference between 4 (excellent) and 3 (good)

may not be the same as the difference between 3 (good) and 2 (average). Other statisticians argue

that as soon as respondents (students) see equally spaced numbers (even though the numbers are

described by words), their responses are affected enough to make the variable (teaching effective-

ness) somewhat quantitative. Generally speaking, the specific words associated with the numbers

DS
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T A B L E 1 . 9

Trash Bag

Breaking Strengths

TrashBagDS

48.5 50.7

52.3 48.2

53.5 51.5

50.5 49.0

50.3 51.7

49.6 53.2

51.0 51.1

48.3 52.6

50.6 51.2

50.2 49.5

52.5 49.4

47.5 51.9

50.9 52.0

49.8 48.8

50.0 46.8

50.8 51.3

53.0 49.3

50.9 54.0

49.9 49.2

50.1 51.4

14This case is based on conversations by the authors with several employees working for a leading producer of trash bags. For
purposes of confidentiality, we have withheld the company’s name.

Identify the
ratio,

interval, ordinal,
and nominative
scales of measure-
ment (Optional).
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Chapter Summary 15

probably substantially affect whether an ordinal variable may be considered somewhat quantita-

tive. It is important to note, however, that in practice numerical ordinal ratings are often analyzed as

though they are quantitative. Specifically, various arithmetic operations (as discussed in Chapters 2

through 17) are often performed on numerical ordinal ratings. For example, a professor’s teaching

effectiveness average and a student’s grade point average are calculated. In Chapter 18 we will

learn how to use nonparametric statistics to analyze an ordinal variable without considering the

variable to be somewhat quantitative and performing such arithmetic operations.

To conclude this section, we consider the second type of qualitative variable. A nominative

variable is a qualitative variable for which there is no meaningful ordering, or ranking, of the

categories. A person’s gender, the color of a car, and an employee’s state of residence are

nominative variables.

Exercises for Section 1.5
CONCEPTS

1.15 Discuss the difference between a ratio variable and an interval variable.

1.16 Discuss the difference between an ordinal variable and a nominative variable.

METHODS AND APPLICATIONS

1.17 Classify each of the following qualitative variables as ordinal or nominative. Explain your answers.

Qualitative Variable Categories

Statistics course letter grade A B C D F

Door choice on Let’s Make A Deal Door #1 Door #2

Television show classifications TV-G TV-PG TV-14 TV-MA

Personal computer ownership Yes No

Restaurant rating ***** **** *** ** *

Income tax filing status Married filing jointly Married filing separately
Single Head of household Qualifying widow(er)

1.18 Classify each of the following qualitative variables as ordinal or nominative. Explain your answers.

Qualitative Variable Categories

Personal computer operating system DOS Windows XP Windows Vista Windows 7

Motion picture classifications G PG PG-13 R NC-17 X

Level of education Elementary Middle school High school College
Graduate school

Rankings of the top 10 college 1 2 3 4 5 6 7 8 9 10
football teams

Exchange on which a stock is traded AMEX NYSE NASDAQ Other

Zip code 45056 90015 etc.

Chapter Summary

We began this chapter by discussing data. We learned that the data

that are collected for a particular study are referred to as a data set,

and we learned that elements are the entities described by a data

set. In order to determine what information we need about a group

of elements, we define important variables, or characteristics,

describing the elements. Quantitative variables are variables that

use numbers to measure quantities (that is, “how much” or “how

many”) and qualitative, or categorical, variables simply record

into which of several categories an element falls.

We next discussed the difference between cross-sectional data

and time series data. Cross-sectional data are data collected at the

same or approximately the same point in time. Time series data

are data collected over different time periods. There are various

sources of data. Specifically, we can obtain data from existing

sources or from experimental or observational studies done in-

house or by paid outsiders. 

We often collect data to study a population, which is the set of

all elements about which we wish to draw conclusions. We saw

that, since many populations are too large to examine in their

entirety, we frequently study a population by selecting a sample,

which is a subset of the population elements. Next we learned that,

if the information contained in a sample is to accurately represent

the population, then the sample should be randomly selected from

the population.

We concluded this chapter with optional Section 1.5, which

considered different types of quantitative and qualitative variables.

We learned that there are two types of quantitative variables—

ratio variables, which are measured on a scale such that ratios of

its values are meaningful and there is an inherently defined zero

value, and interval variables, for which ratios are not meaningful

and there is no inherently defined zero value. We also saw that there

are two types of qualitative variables—ordinal variables, for

which there is a meaningful ordering of the categories, and nomi-

native variables, for which there is no meaningful ordering of the

categories.
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Glossary of Terms

categorical (qualitative) variable: A variable having values that

indicate into which of several categories a population element

belongs. (pages 4, 14)

census: An examination of all the elements in a population. (page 7)

cross-sectional data: Data collected at the same or approxi-

mately the same point in time. (page 4)

data: Facts and figures from which conclusions can be drawn.

(page 3)

data set: Facts and figures, taken together, that are collected for

a statistical study. (page 3)

descriptive statistics: The science of describing the important

aspects of a set of measurements. (page 8)

element: A person, object, or other entity about which we wish to

draw a conclusion. (page 3)

experimental study: A statistical study in which the analyst is

able to set or manipulate the values of the factors. (page 6)

factor: A variable that may be related to the response variable.

(page 6)

finite population: A population that contains a finite number of

elements. (page 11)

infinite population: A population that is defined so that there is

no limit to the number of elements that could potentially belong to

the population. (page 11)

interval variable: A quantitative variable such that ratios of its

values are not meaningful and for which there is not an inherently

defined zero value. (page 14)

measurement: The process of assigning a value of a variable to

each of the elements in a population or sample. (page 4)

nominative variable: A qualitative variable for which there is no

meaningful ordering, or ranking, of the categories. (page 14)

observational study: Astatistical study in which the analyst is not

able to control the values of the factors. (page 6)

ordinal variable: A qualitative variable for which there is a

meaningful ordering or ranking of the categories. (page 14)

population: The set of all elements about which we wish to draw

conclusions. (page 7)

process: A sequence of operations that takes inputs and turns

them into outputs. (page 11)

qualitative (categorical) variable: A variable having values

that indicate into which of several categories a population ele-

ment belongs. (pages 4, 14)

quantitative variable: A variable having values that are num-

bers representing quantities. (pages 4, 14)

ratio variable: A quantitative variable such that ratios of its

values are meaningful and for which there is an inherently defined

zero value. (page 14)

response variable: A variable of interest that we wish to study.

(page 6)

sample: A subset of the elements in a population. (page 7)

statistical inference: The science of using a sample of measure-

ments to make generalizations about the important aspects of a

population. (page 8)

survey: An instrument employed to collect data. (page 6)

time series data: Data collected over different time periods.

(page 4)

time series plot (runs plot): A plot of time series data versus

time. (page 4)

variable: A characteristic of a population element. (page 3)

Supplementary Exercises

1.19 THE COFFEE TEMPERATURE CASE Coffee

According to the website of the Association of Trial Lawyers of America,15 Stella Liebeck of

Albuquerque, New Mexico, was severely burned by McDonald’s coffee in February 1992.

Liebeck, who received third-degree burns over 6 percent of her body, was awarded $160,000 in

compensatory damages and $480,000 in punitive damages. A postverdict investigation revealed

that the coffee temperature at the local Albuquerque McDonald’s had dropped from about 185°F

before the trial to about 158° after the trial.

This case concerns coffee temperatures at a fast-food restaurant. Because of the possibility of

future litigation and to possibly improve the coffee’s taste, the restaurant wishes to study the tempera-

ture of the coffee it serves. To do this, the restaurant personnel measure the temperature of the coffee

being dispensed (in degrees Fahrenheit) at a randomly selected time during each of the 24 half-hour

periods from 8 A.M. to 7:30 P.M. on a given day. The coffee temperatures given in Table 1.10 are

observed. Make a runs plot of the coffee temperatures, and assuming process consistency, estimate

limits between which most of the coffee temperatures at the restaurant would fall.

1.20 In the article “Accelerating Improvement” published in Quality Progress, Gaudard, Coates, and

Freeman describe a restaurant that caters to business travelers and has a self-service breakfast

buffet. Interested in customer satisfaction, the manager conducts a survey over a three-week

period and finds that the main customer complaint is having to wait too long to be seated.

On each day from September 11 to October 1, a problem-solving team records the percentage

of patrons who must wait more than one minute to be seated. A runs plot of the daily 

percentages is shown in Figure 1.5.16 What does the runs plot tell us about how to improve 

the waiting time situation?

DS

15http://www.atla.org, Association of Trial Lawyers of America, June 16, 2006.
16The source of Figure 1.5 is M. Gaudard, R. Coates, and L. Freeman, “Accelerating Improvement,” Quality Progress,

October 1991, pp. 81–88. © 1991 American Society for Quality Control. Used with permission.
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T A B L E 1 . 1 0 The Coffee Temperatures for

Exercise 1.19 CoffeeDS

163°F 159 158

169 154 170

156 167 155

152 161 162

165 152 156

158 165 167

157 161 155

162 154 164

Note: Time order is given by reading down the columns

from left to right.

F I G U R E 1 . 5 Runs Plot of Daily Percentages of

Customers Waiting More Than One

Minute to Be Seated (for Exercise 1.20)

Excel, MegaStat, and MINITAB for Statistics
In this book we use three types of software to carry out statistical analysis—Excel 2007, MegaStat, and MINITAB
15. Excel is, of course, a general purpose electronic spreadsheet program and analytical tool. The analysis Tool-
Pak in Excel includes many procedures for performing various kinds of basic statistical analyses. MegaStat is an
add-in package that is specifically designed for performing statistical analysis in the Excel spreadsheet environ-
ment. MINITAB is a computer package designed expressly for conducting statistical analysis. It is widely used at
many colleges and universities, and in a large number of business organizations. The principal advantage of Excel
is that, because of its broad acceptance among students and professionals as a multipurpose analytical tool, it is
both well known and widely available. The advantage of a special-purpose statistical software package like
MINITAB is that it provides a far wider range of statistical procedures and it offers the experienced analyst a
range of options to better control the analysis. The advantages of MegaStat include (1) its ability to perform a
number of statistical calculations that are not automatically done by the procedures in the Excel ToolPak, and
(2) features that make it easier to use than Excel for a wide variety of statistical analyses. In addition, the output
obtained by using MegaStat is automatically placed in a standard Excel spreadsheet and can be edited by using
any of the features in Excel. MegaStat can be copied from the book’s website. Excel, MegaStat, and MINITAB
through built-in functions, programming languages, and macros, offer almost limitless power. Here, we will limit
our attention to procedures that are easily accessible via menus without resort to any special programming or
advanced features.

Commonly used features of Excel 2007, MegaStat, and MINITAB 15 are presented in this chapter along with an
initial application—the construction of a time series plot of the gas mileages in Table 1.6. You will find that the lim-
ited instructions included here, along with the built-in help features of all three software packages, will serve as a
starting point from which you can discover a variety of other procedures and options. Much more detailed descrip-
tions of MINITAB 15 can be found in other sources, in particular in the manual Meet MINITAB 15 for Windows. This
manual is available in print and as a .pdf file, viewable using Adobe Acrobat Reader, on the MINITAB Inc. website
(http://www.minitab.com/support/docs/rel15/MeetMinitab.pdf). Similarly, there are a number of alternative refer-
ence materials for Microsoft Excel 2007. Of course, an understanding of the related statistical concepts is essential
to the effective use of any statistical software package.

The website maintained by the U.S. Census Bureau pro-
vides a multitude of social, economic, and government
data. In particular, this website houses selected data from
the most recent Statistical Abstract of the United States

(http://www.census.gov/compendia/statab/). Among these
selected features are “Frequently Requested Tables” that
can be accessed simply by clicking on the label. Go to the
U.S. Census Bureau website and open the “Frequently

requested tables” from the Statistical Abstract. Find the
table of “Consumer Price Indexes by Major Groups.”
(Note that in Section 16.8 we explain how price indexes
are constructed.) Construct runs plots of (1) the price
index for all items over time (years), (2) the price index for
food over time, (3) the price index for fuel oil over time,
and (4) the price index for electricity over time. For each
runs plot, describe apparent trends in the price index.

1.21 Internet Exercise
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Appendix 1.1 ■ Getting Started with Excel
Because Excel 2007 may be new to some readers, and because the Excel 2007 window looks quite different from
previous versions of Excel, we will begin by describing some characteristics of the Excel 2007 window. Previous ver-
sions of Excel employed many drop-down menus. This meant that many features were “hidden” from the user,
which resulted in a steep learning curve for beginners. In Excel 2007, Microsoft tried to reduce the number of fea-
tures that are hidden in drop-down menus. Therefore, Excel 2007 displays all of the applicable commands needed
for a particular type of task at the top of the Excel window. These commands are represented by a tab-and-group
arrangement called the ribbon—see the right side of the illustration of an Excel 2007 window below. The com-
mands displayed in the ribbon are regulated by a series of tabs located near the top of the ribbon. For example, in
the illustration below, the Home tab is selected. If we selected a different tab, say, for example, the Page Layout tab,
the commands displayed by the ribbon would be different. 

We now briefly describe some basic features of the Excel 2007 window:

1 Office button: By clicking on this button, the user obtains a menu of often used commands—for example,
Open, Save, Print, and so forth. This is very similar to the “File menu” in older versions of Excel. However,
some menu items are unique to Excel 2007. This menu also provides access to a large number of Excel 
options settings. 

2 Tabs: Clicking on a tab results in a ribbon display of features, commands, and options related to a particular
type of task. For example, when the Home tab is selected (as in the figure below), the features, commands,
and options displayed by the ribbon are all related to making entries into the Excel worksheet. As another
example, if the Formula tab is selected, all of the features, commands, and options displayed in the ribbon
relate to using formulas in the Excel worksheet.

3 Quick access toolbar: This toolbar displays buttons that provide shortcuts to often used commands. Initially,
this toolbar displays Save, Undo, and Redo buttons. The user can customize this toolbar by adding shortcut
buttons for other commands (such as, New, Open, Quick Print, and so forth). This can be done by clicking on
the arrow button directly to the right of the Quick access toolbar and by making selections from the 
“Customize” drop-down menu that appears.

18 Chapter 1 An Introduction to Business Statistics

Tabs (Home Tab Selected)

Office Button Quick Access Toolbar Title Bar Maximize, Minimize, and Close Buttons Ribbon

Sheet Tabs Formula Bar Tab Group Launcher Button Zoom Slider

其
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4 Title bar: This bar shows the name of the currently active workbook and contains the Quick Access Toolbar
as well as the Maximize, Minimize, and Close buttons.

5 Ribbon: A grouping of toolbars, tabs, commands, and features related to performing a particular kind of task—
for example, making entries into the Excel spreadsheet. The particular features displayed in the ribbon are con-
trolled by selecting a Tab. If the user is working in the spreadsheet workspace and wishes to reduce the number
of features displayed by the ribbon, this can be done by right-clicking on the ribbon and by selecting “Minimize
the Ribbon.” We will often Minimize the Ribbon in the Excel appendices of this book in order to focus attention
on operations being performed and results being displayed in the Excel spreadsheet.

6 Sheet tabs: These tabs show the name of each sheet in the Excel workbook. When the user clicks a sheet
tab, the selected sheet becomes active and is displayed in the Excel spreadsheet. The name of a sheet can be
changed by double-clicking on the appropriate sheet tab and by entering the new name.

7 Formula bar: When a worksheet cell is selected, the formula bar displays the current content of the cell. If
the cell content is defined by a formula, the defining formula is displayed in the formula bar.

8 Tab group: This is a labeled grouping of commands and features related to performing a particular type of
task.

9 Launcher button: Some of the tab groups have a launcher button—for example, the Clipboard, Font, Align-
ment, and Number tab groups each have such a button. Clicking on the launcher button opens a dialog box
or task pane related to performing operations in the tab group.

10 Zoom slider: By moving this slider right and left, the cells in the Excel spreadsheet can be enlarged or
reduced in size.

We now a look at some features of Excel that are common to many analyses. When the instructions call for a
sequence of selections, the sequence will be presented in the following form:

Select Home : Format : Row Height

This notation indicates that we first select the Home tab on the ribbon, then we select Format from the Cells Group
on the ribbon, and finally we select Row Height from the Format drop-down menu.

For many of the statistical and graphical procedures in Excel, it is necessary to provide a range of cells to specify
the location of data in the spreadsheet. Generally, the range may be specified either by typing the cell locations
directly into a dialog box or by dragging the selected range with the mouse. Though, for the experienced user, it is
usually easier to use the mouse to select a range, the instructions that follow will, for precision and clarity, specify
ranges by typing in cell locations. The selected range may include column or variable labels—labels at the tops of
columns that serve to identify variables. When the selected range includes such labels, it is important to select the
“Labels check box” in the analysis dialog box.

Starting Excel Procedures for starting Excel may vary
from one installation to the next. If you are using a pub-
lic computing laboratory, you may wish to consult local
documentation. For typical Excel installations, you will
generally be able to start Excel with a sequence of selec-
tions from the Microsoft Windows start menu some-
thing like the following:

Start : Microsoft Office XP : Microsoft Office Excel 2007

You can also start Excel with a previously saved Excel
spreadsheet (like GasMiles.xlsx or one of the other data
files that can be downloaded from this book’s website)
by double-clicking on the spreadsheet file’s icon in the
Windows Explorer.



Saving data (saving the gasoline mileage data): 

• To begin, click on the Office button.

• Select Save As : Excel Workbook

• In the “Save As” dialog box, use the “Save in” 
drop-down menu to select the destination drive
and folder. Here we have selected a folder called
Data Files on the Local C drive.

• Enter the desired file name in the “File name” 
box. Here we have chosen the name GasMiles. 
Excel will automatically add the extension .xlsx.

• Click the Save button in the “Save As” dialog
box.
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After starting Excel, the display will generally show a
blank Excel workbook.

Help resources Like most Windows programs, 
Excel includes on-line help via a Help Menu that 
includes search capability as well as a table of con-
tents. To display the Help Menu, click on the “Question
Mark” button in the upper-right corner of the
ribbon.

Entering data (entering the gas mileages in Table 1.6
on page 12) from the keyboard (data file:
GasMiles.xlsx):

• In a new Excel workbook, click on cell A1 in
Sheet1 and type a label—that is, a variable
name—say, Mileage, for the gasoline mileages.

• Beginning in cell A2 (directly under the column
label Mileage) type the mileages from Table 1.6
on page 12 down the column, pressing the Enter
key following each entry.
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Retrieving an Excel spreadsheet containing the
gasoline mileages in Table 1.6 on page 12 (data file:
GasMiles.xlsx):

• Select Office : Open
That is, click on the Office button and then 
select Open.

• In the Open dialog box, use the “Look in”
drop-down menu to select the source drive and
folder. Here we have selected a folder called
Data Files on the Local C drive.

• Enter the desired file name in the “File name”
box. Here we have chosen the Excel spread-
sheet GasMiles.xlsx.

• Click the Open button in the Open dialog box.

Creating a runs (time series) plot similar to Figure 1.3
on page 12 (data file: GasMiles.xlsx):

• Enter the gasoline mileage data into column A of
the worksheet with label Mileage in cell A1.

• Click on any cell in the column of mileages, or 
select the range of the data to be charted by
dragging with the mouse. Selecting the range of
the data is good practice because—if this is not
done—Excel will sometimes try to construct a
chart using all of the data in your worksheet.
The result of such a chart is often nonsensical.
Here, of course, we only have one column of
data—so there would be no problem. But, in
general, it is a good idea to select the data be-
fore constructing a graph.

• Select Insert : Line : 2-D Line : Line with Markers
Here select the Insert tab and then select Line
from the Charts group. When Line is selected, a
gallery of line charts will be displayed. From the
gallery, select the desired chart—in this case a 2-
D Line chart with markers. The proper chart can
be selected by looking at the sample pictures. As
an alternative, if the cursor is held over a picture,
a descriptive “tool tip” of the chart type will be
displayed. In this case, the “Line with Markers”
tool tip was obtained by holding the cursor over
the highlighted picture.

• When you click on the “2-D Line with Markers”
icon, the chart will appear in a graphics window
and the Chart Tools ribbon will be displayed.

• To prepare the chart for editing, it is best to
move the chart to a new worksheet called a
“chart sheet”. To do this, click on the Design tab
and select Move Chart.

• In the Move Chart dialog box, select the “New
sheet” option, enter a name for the new sheet—
here, “Runs Plot”—into the “New sheet” window,
and click OK.



• Here we show an edited runs plot. This revised
chart was constructed from the original runs plot
created by Excel using various options like those 
illustrated above. This chart can be copied di-
rectly from the worksheet (simply right click on
the graph and select Copy from the pop-up
menu) and can then be pasted into a word pro-
cessing document.

The chart can be printed from this worksheet as follows:

• Select Office : Print
That is, click on the Office button and then select
Print.

• Select the desired printer in the Printer Name 
window and click OK in the Print dialog box.

There are many print options available in Excel for
printing—a selected range, selected sheets, or an en-
tire workbook—making it possible to build and print
fairly sophisticated reports directly from Excel.
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• The Chart Tools ribbon will be displayed and the
chart will be placed in a chart sheet in a larger 
format that is more convenient for editing.

• In order to edit the chart, select the Layout tab
from the Chart Tools ribbon. By making selec-
tions from the ribbon, many chart attributes can
be edited. For instance, when you click on Axes
as shown, various options for formatting the 
horizontal and vertical axes can be selected.

• A chart can also be edited by right-clicking on
the portion of the chart that we wish to revise.
For instance, in the screen shown, we have right-
clicked on one of the plotted data points. When
this is done, we obtain a menu as shown. If we
select “Format Data Series”, we obtain a dialog
box that provides many options for editing the
data series (the plotted points and their connect-
ing lines). For example, if (as shown) we select 

Line Color : Solid Line

and then click on the Color arrow button, we 
obtain a drop-down menu that allows us to 
select a desired color for the connecting lines 
between the plotted points. We can edit other 
portions of the chart in the same way.
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Printing a spreadsheet with an embedded graph:

• Click outside the graph to print both the work-
sheet contents (here the mileage data) and the
graph. Click on the graph to print only the
graph.

• Select Office : Print 
That is, click on the Office button and then 
select Print.

• Select the desired printer in the Printer Name
window and click OK in the Print dialog box.

Including Excel output in reports The preceding example showed how to print selected analysis results from Excel.
Printing is a useful way to capture a quick hard-copy record of an analysis result, and Excel offers a variety of options
for building sophisticated reports. However, you may at times prefer to collect selected analysis results and arrange
them with related narrative in a word processing document that can be saved and printed as a unit. You can simply
copy Excel results—selected spreadsheet ranges and graphs—to the Windows clipboard. Then paste them into an
open word processing document. Once copied to a word processing document, Excel results can be documented,
edited, resized, and rearranged as desired into a cohesive record of your analysis. The cut and paste process is quite
similar to the MINITAB examples at the end of Appendix 1.3.

Appendix 1.2 ■ Getting Started with MegaStat
MegaStat, which was developed by Professor J. B. Orris of Butler University, is an Excel add-in that performs statis-
tical analyses within an Excel workbook. Instructions for installing MegaStat can be found on this book’s website.

• After installation, you can access MegaStat by 
clicking on the Add-Ins tab (on the ribbon) and by
then selecting MegaStat from the Add-Ins group of
Menu Commands. When you select MegaStat, the
MegaStat menu appears as shown in the screen.
Most of the menu options display sub-menus. If a
menu item is followed by an ellipsis (...) clicking it
will display a dialog box for that option.



Since the dialog box “pops-up” on the screen, it may block some of your data. You can move a dialog box
around on the screen by placing the mouse pointer over the title bar (colored area at the top), and by then
clicking and holding the left mouse button while dragging the dialog box to a new location. You can even
drag it partially off the screen.

You will also notice that when you start selecting data by dragging the mouse pointer, the dialog box will
collapse to a smaller size to help you see the underlying data. It will automatically return to full size when 
you release the mouse button. You can also collapse and uncollapse the dialog box manually by clicking the
collapse (-) button at the right end of the field. Clicking the button again will un-collapse the dialog box.
(Never use the X button to try to collapse or uncollapse a dialog box.)

2 Using MegaStat’s AutoExpand feature. Pointing and dragging to select data can be tedious if you have a lot
of data. When you drag the mouse down it is easy to overshoot the selection and then you have to drag the
mouse back until you get the area correctly selected. AutoExpand allows rapid data selection without having
to drag through the entire column of data. Here’s how it works:

• Make sure the input box has the focus (that is, click in it to make the input box active). An input box has
the focus when the insertion pointer is blinking in it.

• Click in one cell of the column you want. If more than one column is being selected, drag the mouse across
the columns.

• Right-click over the input field or left-click the label “Input Range” to the right of the input box. The data
range will expand to include all of the rows in the region where you selected one row.
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Before we look at specific dialog boxes, we will describe some features that are common to all of the options. Mega-
Stat use is intuitive and very much like other Excel operations; however, there are some features unique to MegaStat.

Data selection Most MegaStat dialog boxes have fields where you select input ranges that contain the data to
be used. Such a field is shown in the dialog box illustrated above—it is the long horizontal window with the label
“Input range” to its right. Input ranges can be selected using four methods:

1 Pointing and dragging with the mouse. Simply select the desired data by pointing to the data, by left-clicking
on the first data item, and dragging the cursor to select the rest of the data as illustrated below. 

• A dialog box allows you to specify the data to be
used and other inputs and options. A typical dialog
box is shown in the screen.

• After you have selected the needed data and
options, you click OK. The dialog box then
disappears and MegaStat performs the analysis.
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This procedure is illustrated below. In the left screen, we have left-clicked on one cell in the column of data 
labeled Mileage. In the right screen, we see the result after we right-click over the input field or left-click on
the label “Input range.”  Notice that the entire column of data has been selected in the right screen. This can
be seen by examining the input field or by looking at the column of data.

With a little practice you find this is a very efficient way to select data. The only time you cannot use it is
when you want to use a partial column of data. You should also be aware that the autoexpand stops when it
finds a blank cell; thus any summations or other calculations at the bottom of a column would be selected.

Note: When using the above methods of data selection you may select variables in an alternating sequence by
holding the CTRL key while making multiple selections.

3 Typing the name of a named range. If you have previously identified a range of cells using Excel’s name box,
you may use that name to specify a data range in a MegaStat dialog box. This method can be very useful if
you are using the same data for several different statistical procedures.

4 Typing a range address. You may type any valid Excel range address, for example, $A$1:$A$101, into the
input field. This is the most cumbersome way to specify data ranges, but it certainly works.

Data labels For most procedures, the first cell in each input range can be a label. If the first cell in a range is text,
it is considered a label; if the first cell is a numeric value, it is considered data. If you want to use numbers as vari-
able labels, you must enter the numbers as text by preceding them with a single quote mark—for instance, ‘2. Even
though Excel stores times and dates as numbers, MegaStat will recognize them as labels if they are formatted as
time/date values. If data labels are not part of the input range, the program automatically uses the cell immediately
above the data range as a label if it contains a text value. If an option can consider the entire first row (or column)
of an input range as labels, any numeric value in the row will cause the entire row to be treated as data. Finally, if
the program detects sequential integers (1,2,3...) in a location where you might want labels, it will display a warn-
ing message. Otherwise, the rule is: text cells are labels, numeric cells are data.

Output When you click OK on a MegaStat dialog box, it performs some statistical analysis and needs a place to
put its output. It looks for a worksheet named Output. If it finds one, it goes to the end of it and appends its out-
put; if it doesn’t find an Output worksheet, it creates one. MegaStat will never make any changes to the user’s work-
sheets, it only sends output to its Output sheet.

MegaStat makes a good attempt at formatting the output, but it is important to remember that the Output
sheet is just a standard Excel worksheet and can be modified in any way by the user. You can adjust column widths
and change any formatting that you think needs improvement. You can insert, delete, and modify cells. You can copy
all or part of the output to another worksheet or to another application such as a word processor.

When the program generates output, it adjusts column widths for the current output. If you have previous out-
put from a different option already in the Output sheet, the column widths for the previous output may be altered.
You can attempt to fix this by manually adjusting the column widths. Alternatively, you can make it a practice to al-
ways start a new output sheet. The Utilities menu has options for deleting the Output sheet, for making a copy of
it, and for starting a new one.



MegaStat places the resulting analysis (in this case the
runs plot) in an output worksheet. This is a standard
Excel worksheet, which can be edited using any of the
usual Excel features. For instance, by right-clicking on
various portions of the runs plot graphic, the plot can be
edited in many ways. Here we have right-clicked on the
plot area. By selecting Format Plot Area, we are able to
edit the graphic in a variety of ways.

An example We now give an example of using MegaStat to carry out statistical analysis. When the instructions
call for a sequence of selections, the sequence will be presented in the following form:

Add-Ins : MegaStat : Probability : Counting Rules  

This notation says that Add-Ins is the first selection (from the ribbon), MegaStat is the second selection from the
Add-Ins group of Menu Commands; next Probability is selected from the MegaStat drop-down menu; and finally
Counting Rules is selected from the Probability submenu.
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Creating a runs plot of gasoline mileages similar to
Figure 1.3 on page 12 (data file: GasMiles.xlsx):

• Enter the mileage data in Table 1.6 on page 12
into column A with the label Mileage in cell A1
and with the 50 mileages in cells A2 through
A51.

• Select Add-Ins : MegaStat : Descriptive Statistics

• In the Descriptive Statistics dialog box, enter the
range $A$1:$A$51 into the Input range box. The
easiest way to do this is to use the MegaStat 
autoExpand feature. Simply select one cell in
column A (say, cell A4, for instance) by clicking
on the cell. Then, either right-click in the Input
range box or left-click on the label “Input
range” to the right of the Input range box.

• Place a checkmark in the Runs Plot checkbox.

• Click OK in the Descriptive Statistics dialog box.
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In the Format Plot Area dialog box, we can add color to
the runs plot and edit the plot in many other ways.

Alternatively, we can edit the runs plot by selecting

Chart Tools : Layout

By making selections from the Labels, Axes, and Back-
ground groups, the plot can be edited in a variety of
ways. For example, in the screen shown we have se-
lected the Plot Area button in the Background group.
This gives us many options for editing the plot area of
the graphic.

Appendix 1.3 ■ Getting Started with MINITAB
We begin with a look at some features of MINITAB that are common to most analyses. When the instructions call
for a sequence of selections from a series of menus, the sequence will be presented in the following form:

Stat : Basic Statistics : Descriptive Statistics

This notation indicates that Stat is the first selection from the Minitab menu bar, next Basic Statistics is selected from
the Stat pull-down menu, and finally Descriptive Statistics is selected from the Basic Statistics pull-down menu.



Starting MINITAB Procedures for starting MINITAB
may vary from one installation to the next. If you are
using a public computing laboratory, you may have to
consult local documentation. For typical MINITAB instal-
lations, you will generally be able to start MINITAB with
a sequence of selections from the Microsoft Windows
Start menu something like the following: 

• Select Start : Programs : Minitab : Minitab 15 
Statistical Software English

You can also start MINITAB with a previously saved
MINITAB worksheet (like GasMiles.MTW or one of the
many other data files that can be downloaded from this
book’s website) by double-clicking on the worksheet’s
icon in the Windows Explorer.
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After you start MINITAB, the display is partitioned into
two working windows. These windows serve the follow-
ing functions:

• The “Session window” is the area where MINITAB
commands and basic output are displayed.

• The “Data window” is an Excel-like worksheet
where data can be entered and edited.

Help resources Like most Windows programs,
MINITAB includes on-line help via a Help Menu. The Help
feature includes standard Contents and Search entries
as well as Tutorials that introduce MINITAB concepts and
walk through some typical MINITAB sessions. Also
included is a StatGuide that provides guidance for
interpreting statistical tables and graphs in a practical,
easy-to-understand way.

Entering data (entering the gasoline mileage data in
Table 1.6 on page 12) from the keyboard:

• In the Data window, click on the cell directly below
C1 and type a name for the variable—say, Mpg—and
press the Enter key.

• Starting in row 1 under column C1, type the values
for the variable (gasoline mileages from Table 1.6
on page 12) down the column, pressing the Enter
key after each number is typed.



Saving data (saving the gasoline mileage data): 

• Select File : Save Current Worksheet As

• In the “Save Worksheet As” dialog box, use
the “Save in” drop-down menu to select the
destination drive and folder. (Here we have 
selected a folder named Data Files on the
Local C drive.)

• Enter the desired file name in the File name 
box. Here we have chosen the name GasMiles.
MINITAB will automatically add the extension
.MTW.

• Click the Save button in the “Save Worksheet
As” dialog box.
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Retrieving a MINITAB worksheet containing the
gasoline mileage data in Table 1.6 (data file: GasMiles
.MTW):

• Select File : Open Worksheet

• In the Open Worksheet dialog box, use the
“Look in” drop-down menu to select the source
drive and folder. (Here we have selected a folder
named Data Files on the Local C drive.)

• Enter the desired file name in the File name
box. (Here we have chosen the MINITAB
worksheet GasMiles.MTW.)

• Click the Open button in the Open Worksheet
dialog box.

• MINITAB may display a dialog box with the
message, “A copy of the content of this file will
be added to the current project.” If so, click OK.

Creating a runs (or time series) plot similar to Fig-
ure 1.3 on page 12 (data file: GasMiles.MTW):

• Select Graph : Time Series Plot

• In the Time Series Plots dialog box, select Simple,
which produces a time series plot of data that is
stored in a single column, and click OK.

• In the “Time Series Plot—Simple” dialog box,
enter the name of the variable, Mpg, into the
Series window. Do this either (1) by typing its
name, or (2) by double-clicking on its name in
the list of variables on the left side of the dialog
box. Here, this list consists of the single variable
Mpg in column C1.

• Click OK in the “Time Series Plot—Simple” dialog
box.



• The runs (or time series) plot will appear in a
graphics window.
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• The graph can be edited by right-clicking on the
portion you wish to edit. For instance, here we
have right-clicked on the data region. 

• Selecting “Edit Data Region” from the pop-up
window gives a dialog box that allows you to
edit this region. The x and y scales, x and y axis
labels, title, plot symbols, connecting lines, data
region, figure region, and so forth can all be
edited by right-clicking on that particular
portion of the graph

• For instance, after right-clicking on the data 
region and then selecting “Edit Data Region”
from the pop-up menu, the Edit Data Region
dialog box allows us to edit various attributes of
this region. As shown, selecting Custom and
clicking on the Background Color arrow allows
us to change the background color of the data
region.



Printing a high-resolution graph similar to Figure 1.3 on
page 12 (data file: GasMiles.MTW):

• Click in the graphics window to select it as the 
active window.

• Select File : Print Graph to print the graph.

• Select the appropriate printer and click OK in the
Print dialog box.
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Saving the high-resolution graph:

• Click on the graph to make the graphics window
the active window.

• Select File : Save Graph As

• In the “Save Graph As” dialog box, use the “Save
in” drop-down menu to select the destination
drive and folder (here we have selected the
DVD/CD-RW drive).

• Enter the desired file name in the File name box
(here we have chosen the name MileagePlot).
MINITAB will automatically add the file
extension.MGF.

• Click the Save button in the “Save Graph As”
dialog box.

Printing data from the Session window (shown) or
Data window (data file: GasMiles.MTW): 
To print selected output from the Session window:

• Use the mouse to select the desired output or 
text (selected output will be reverse-highlighted 
in black).

• Select File : Print Session Window

• In the Print dialog box, the Print range will be 
the “Selection” option. To print the entire 
session window, select the Print range to be 
“All.”

• Select the desired printer from the Printer Name
drop-down menu.

• Click OK in Print dialog box.



To print the contents of the Data window (that is, to
print the MINITAB worksheet):

• Click in the Data window to select it as active.

• Select File : Print Worksheet

• Make selections as desired in the Data Window
Print Options dialog box, add a title in the Title
window if desired, and click OK.

• Select the desired printer from the Printer Name
drop-down menu and click OK in the Print dialog
box.
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Including MINITAB output in reports The immediately preceding examples show how to print various types of
output directly from MINITAB. Printing is a useful way to capture a quick hard-copy record of an analysis result.
However, you may prefer at times to collect selected analysis results and arrange them with related narrative docu-
mentation in a report that can be saved and printed as a unit. This is easily accomplished by copying selected
MINITAB results to the Windows clipboard and by pasting them into your favorite word processor. Once copied to
a word processor document, MINITAB results can be documented, edited, resized, and rearranged as desired into a
cohesive record of your analysis. The following sequence of examples illustrates the process of copying MINITAB
output into a Microsoft Word document.

Copying session window output to a word processing
document:

• Be sure to have a word processing document open
to receive the results.

• Use the scroll bar on the right side of the Session
window to locate the results to be copied and drag
the mouse to select the desired output (selected
output will be reverse-highlighted in black).

• Copy the selected output to the Windows clipboard
by clicking the Copy icon on the MINITAB toolbar 
or by right-clicking on the selected text and then 
selecting Copy from the pop-up menu.

• Switch to your word processing document by 
clicking the button on the Windows task bar (here
labeled MS Word Report.doc).

• Click in your word processing document to position
the cursor at the desired insertion point.

• Click the Paste button on the word processing
power bar or right-click at the insertion point and
select Paste from the pop-up menu.

• Return to your MINITAB session by clicking the
MINITAB button on the Windows task bar.
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Copying high-resolution graphics output to a word 
processing document:

• Be sure to have a word processing document open
to receive the results.

• Copy the selected contents of the high-resolution
graphics window to the Windows clipboard by
right-clicking in the graphics window and by then
clicking Copy Graph on the pop-up menu.

• Switch to your word processing document by 
clicking the button on the Windows task bar
(here labeled MS Word Report.doc).

• Click in your word processing document to 
position the cursor at the desired insertion point.

• Click the Paste button on the word processor power
bar or right-click at the insertion point and select
Paste from the pop-up menu.

• Return to your MINITAB session by clicking the
MINITAB button on the Windows task bar.

Results Here is how the copied results might appear in
Microsoft Word. These results can be edited, resized,
repositioned, and combined with your own additional
documentation to create a cohesive record of your
analysis.



C
H

A
P

T
E

R
 2

2.1 Graphically Summarizing Qualitative Data

2.2 Graphically Summarizing Quantitative Data

2.3 Dot Plots

2.4 Stem-and-Leaf Displays

2.5 Cross-tabulation Tables (Optional)

2.6 Scatter Plots (Optional)

2.7 Misleading Graphs and Charts (Optional)

Descriptive
Statistics:
Tabular and
Graphical
Methods

Chapter Outline

LO1 Summarize qualitative data by using
frequency distributions, bar charts, and
pie charts.

LO2 Construct and interpret Pareto charts
(Optional).

LO3 Summarize quantitative data by using
frequency distributions, histograms,
frequency polygons, and ogives.

LO4 Construct and interpret dot plots.

LO5 Construct and interpret stem-and-leaf
displays.

LO6 Examine the relationships between
variables by using cross-tabulation tables
(Optional).

LO7 Examine the relationships between
variables by using scatter plots (Optional).

LO8 Recognize misleading graphs and charts
(Optional).

Learning Objectives

When you have mastered the material in this chapter, you will be able to:



n Chapter 1 we saw that although we 

can sometimes take a census of an entire

population, we often must randomly select

a sample from a population. When we have taken a

census or a sample, we typically wish to describe the

observed data set. In particular, we describe a sample

in order to make inferences about the sampled

population.

In this chapter we begin to study descriptive

statistics, which is the science of describing the

important characteristics of a data set. The

techniques of descriptive statistics include tabular

and graphical methods, which are discussed in this

chapter, and numerical methods, which are

discussed in Chapter 3. We will see that, in practice,

the methods of this chapter and the methods of

Chapter 3 are used together to describe data. We

will also see that the methods used to describe

quantitative data differ somewhat from the

methods used to describe qualitative data. Finally,

we will see that there are methods—both graphical

and numerical—for studying the relationships

between variables.

We will illustrate the methods of this chapter

by describing the cell phone usages, bottle design

ratings, and car mileages introduced in the cases

of Chapter 1. In addition, we introduce two new

cases:

I

The Payment Time Case: A management

consulting firm assesses how effectively a new

electronic billing system reduces bill payment

times. 

The Client Satisfaction Case: A financial

institution examines whether customer satis-

faction depends upon the type of investment

product purchased.

C

2.1 Graphically Summarizing Qualitative Data 
Frequency distributions When data are qualitative, we use names to identify the different

categories (or classes). Often we summarize qualitative data by using a frequency distribution.

A frequency distribution is a table that summarizes the number (or frequency) of items in each

of several nonoverlapping classes.

Summarize
qualitative

data by using
frequency distribu-
tions, bar charts,
and pie charts.

LO1

According to the sales managers at several Greater Cincinnati Jeep dealers, orders placed by a

dealership for vehicles in a new model year are largely based on sales patterns for the various Jeep

models in prior years. In order to study purchasing patterns of Jeep vehicles, the sales manager

for a Cincinnati Jeep dealership wishes to compare Jeep purchases made in 2006 with those in

2008. This comparison will help the manager to understand both the impact of the introduction of

several new Jeep models in 2007 and the effect of the worsening economic climate in 2008.

Part 1: Studying 2006 sales by using a frequency distribution To study purchasing

patterns in 2006, the sales manager compiles a list of all 251 vehicles sold by the dealership in

that year. Denoting the four Jeep models sold in 2006 (Commander, Grand Cherokee, Liberty,

and Wrangler) as C, G, L, and W, respectively, the data are shown in Table 2.1.

Unfortunately, the raw data in Table 2.1 do not reveal much useful information about the

pattern of Jeep sales in 2006. In order to summarize the data in a more useful way, we can con-

struct a frequency distribution. To do this we simply count the number of times each model

appears in Table 2.1. We find that Commander (C) appears 71 times, Grand Cherokee (G) appears

70 times, Liberty (L) appears 80 times, and Wrangler (W) appears 30 times. The frequency dis-

tribution for the Jeep sales data is given in Table 2.2—a list of each of the four models along with

their corresponding counts (or frequencies). The frequency distribution shows us how sales are

distributed among the four models. The purpose of the frequency distribution is to make the data

easier to understand. Certainly, looking at the frequency distribution in Table 2.2 is more infor-

mative than looking at the raw data in Table 2.1. We see that Jeep Liberty is the most popular

model, Jeep Commander and Jeep Grand Cherokee are both slightly less popular than Jeep

Liberty, and that Jeep Wrangler is (by far) the least popular model.

EXAMPLE 2.1 Describing 2006 Jeep Purchasing Patterns
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T A B L E 2 . 1 2006 Sales at a Greater Cincinnati Jeep Dealership JeepSalesDS

W L L W G C C L C L G W C

L L G L C C G C C G C L W

G L G C C C C C G G L G G

L G L L G L C W G L G L G

G L C L C L L L C G L C L

C G C C C C C C C G C C W

L L C G L C C L L G G L L

G G G L C L L G L C C L G

C L L G G L W W L C C C G

G W L L C G C C W C L L L

L L C C G L L W C G G C L

W G G W G C W W G L L G

L L L C C G C L G G G L

G G C G W G L L L C C L

W L W G W C W C W C L C

G C G L L C L L G G G L

L C G L C L W L L C G C

W W W C C C G G L G C G

W C C W L G W L L L G G

G G W L L C L G G W G G

T A B L E 2 . 2 A Frequency Distribution 

of Jeeps Sold at a Greater

Cincinnati Dealer in 2006

Jeep Model Frequency

Commander 71

Grand Cherokee 70

Liberty 80

Wrangler 30

251

T A B L E 2 . 3 Relative Frequency and Percent Frequency

Distributions for the 2006 Jeep Sales Data

JeepPercentsDS

Jeep Model Relative Frequency Percent Frequency

Commander 71兾251  .2829 28.29%

Grand Cherokee .2789 27.89%

Liberty .3187 31.87%

Wrangler .1195 11.95%

1.0 100% 

JeepTableDS

When we wish to summarize the proportion (or fraction) of items in each class, we employ the

relative frequency for each class. If the data set consists of n observations, we define the relative

frequency of a class as follows:

This quantity is simply the fraction of items in the class. Further, we can obtain the percent

frequency of a class by multiplying the relative frequency by 100.

Table 2.3 gives a relative frequency distribution and a percent frequency distribution of the

Jeep sales data. A relative frequency distribution is a table that lists the relative frequency for

each class, and a percent frequency distribution lists the percent frequency for each class.

Looking at Table 2.3, we see that the relative frequency for Jeep Commander is 

(rounded to four decimal places) and that (from the percent frequency distribution) 28.29%

of the Jeeps sold were Commanders. Similarly, the relative frequency for Jeep Wrangler is

and 11.95% of the Jeeps sold were Wranglers. Finally, the sum of the relative

frequencies in the relative frequency distribution equals 1.0, and the sum of the percent frequen-

cies in the percent frequency distribution equals 100%. These facts will be true for any relative

frequency and percent frequency distribution.

Part 2: Studying 2006 sales by using bar charts and pie charts A bar chart is a graphic

that depicts a frequency, relative frequency, or percent frequency distribution. For example,

Figure 2.1 gives an Excel bar chart of the Jeep sales data. On the horizontal axis we have placed

a label for each class (Jeep model), while the vertical axis measures frequencies. To construct the

bar chart, Excel draws a bar (of fixed width) corresponding to each class label. Each bar is drawn

so that its height equals the frequency corresponding to its label. Because the height of each bar

is a frequency, we refer to Figure 2.1 as a frequency bar chart. Notice that the bars have gaps

30兾251  .1195

71兾251  .2829

Relative frequency of a class  
frequency of the class

n
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F I G U R E 2 . 1 Excel Bar Chart of the 2006 Jeep Sales Data
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F I G U R E 2 . 2 MINITAB Percent Bar Chart of the 2006 Jeep Sales Data

between them. When data are qualitative, the bars should always be separated by gaps in

order to indicate that each class is separate from the others. The bar chart in Figure 2.1

clearly illustrates that, for example, the dealer sold more Jeep Libertys than any other

model and that the dealer sold far fewer Wranglers than any other model.

If desired, the bar heights can represent relative frequencies or percent frequencies.

For instance, Figure 2.2 is a MINITAB percent bar chart for the Jeep sales data. Here

the heights of the bars are the percentages given in the percent frequency distribution

of Table 2.3. Lastly, the bars in Figures 2.1 and 2.2 have been positioned vertically.

Because of this, these bar charts are called vertical bar charts. However, sometimes

bar charts are constructed with horizontal bars and are called horizontal bar charts.

Apie chart is another graphic that can be used to depict a frequency distribution.When

constructingapiechart,wefirstdrawacircle to represent theentiredataset.Wethendivide

thecircle intosectorsor“pieslices”basedon the relative frequenciesof theclasses.Forex-

ample, remembering that a circle consists of 360 degrees, the Jeep Liberty (which has

relative frequency .3187) is assigned a pie slice that consists of .3187(360) 115 degrees (rounded

to the nearest degree for convenience). Similarly, the Jeep Wrangler (with relative frequency .1195)

is assigned a pie slice having .1195(360) 43 degrees. Similarly, the Jeep Commander is assigned

a pie slice having 102 degrees and Jeep Grand Cherokee is assigned a pie slice having 100 degrees.

The resulting pie chart (constructed using Excel) is shown in Figure 2.3. Here we have labeled the

pie slices using the percent frequencies. The pie slices can also be labeled using frequencies or

relative frequencies.

Part 3: Comparing 2006 and 2008 sales To make this comparison, the sales manager con-

structs the frequency distribution of 2008 sales shown in the page margin (raw data not shown).

A Frequency Distribution

of Jeeps Sold at a Greater

Cincinnati Dealer in 2008

Jeep Model Frequency

Commander 10

Grand Cherokee 20

Liberty 24

Wrangler (2 door) 20

Wrangler (4 door) 40

Patriot 31

Compass 33

178



Notice that the three models introduced in 2007 (the Wrangler 4-door, Patriot, and Compass) out-

sold the older models. Also, sales of the Commander—the least fuel efficient model—decreased

substantially from 2006 to 2008. Finally, overall sales decreased almost 30 percent (from 251 to

178). This decrease was probably due to the downturn in the U.S. economy in 2008.

The Pareto chart (optional) Pareto charts are used to help identify important quality

problems and opportunities for process improvement. By using these charts we can prioritize

problem-solving activities. The Pareto chart is named for Vilfredo Pareto (1848–1923), an Italian

economist. Pareto suggested that, in many economies, most of the wealth is held by a small

minority of the population. It has been found that the “Pareto principle” often applies to defects.

That is, only a few defect types account for most of a product’s quality problems.

To illustrate the use of Pareto charts, suppose that a jelly producer wishes to evaluate the labels

being placed on 16-ounce jars of grape jelly. Every day for two weeks, all defective labels found

on inspection are classified by type of defect. If a label has more than one defect, the type of

defect that is most noticeable is recorded. The Excel output in Figure 2.4 presents the frequencies

and percentages of the types of defects observed over the two-week period.

In general, the first step in setting up a Pareto chart summarizing data concerning types of

defects (or categories) is to construct a frequency table like the one in Figure 2.4. Defects or

categories should be listed at the left of the table in decreasing order by frequencies—the defect with

the highest frequency will be at the top of the table, the defect with the second-highest frequency
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Construct
and inter-

pret Pareto charts
(Optional).

LO2
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F I G U R E 2 . 3 Excel Pie Chart of the 2006 Jeep Sales Data
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below the first, and so forth. If an “other” category is employed, it should be placed at the bottom of

the table. The “other” category should not make up 50 percent or more of the total of the frequencies,

and the frequency for the “other” category should not exceed the frequency for the defect at the top

of the table. If the frequency for the “other” category is too high, data should be collected so that the

“other” category can be broken down into new categories. Once the frequency and the percentage for

each category are determined, a cumulative percentage for each category is computed.As illustrated

in Figure 2.4, the cumulative percentage for a particular category is the sum of the percentages cor-

responding to the particular category and the categories that are above that category in the table.

A Pareto chart is simply a bar chart having the different kinds of defects or problems listed on

the horizontal scale. The heights of the bars on the vertical scale typically represent the frequency

of occurrence (or the percentage of occurrence) for each defect or problem. The bars are arranged

in decreasing height from left to right. Thus, the most frequent defect will be at the far left, the next

most frequent defect to its right, and so forth. If an “other” category is employed, its bar is placed

at the far right. The Pareto chart for the labeling defects data is given in Figure 2.4. Here the

heights of the bars represent the percentages of occurrences for the different labeling defects, and

the vertical scale on the far left corresponds to these percentages. The chart graphically illustrates

that crooked labels, missing labels, and printing errors are the most frequent labeling defects.

As is also illustrated in Figure 2.4, a Pareto chart is sometimes augmented by plotting a

cumulative percentage point for each bar in the Pareto chart. The vertical coordinate of this cu-

mulative percentage point equals the cumulative percentage in the frequency table corresponding

to the bar. The cumulative percentage points corresponding to the different bars are connected by

line segments, and a vertical scale corresponding to the cumulative percentages is placed on the

far right. Examining the cumulative percentage points in Figure 2.4, we see that crooked and

missing labels make up 58.3 percent of the labeling defects and that crooked labels, missing

labels, and printing errors make up 73.9 percent of the labeling defects.

Technical note The Pareto chart in Figure 2.4 illustrates using an “other” category which

combines defect types having low frequencies into a single class. In general, when we employ a

frequency distribution, a bar chart, or a pie chart and we encounter classes having small class fre-

quencies, it is common practice to combine the classes into a single “other” category. Classes

having frequencies of 5 percent or less are usually handled this way.

Exercises for Section 2.1
CONCEPTS

2.1 Explain the purpose behind constructing a frequency or relative frequency distribution.

2.2 Explain how to compute the relative frequency and percent frequency for each class if you are

given a frequency distribution.

2.3 Find an example of a pie chart or bar chart in a newspaper or magazine. Copy it, and hand it in with

a written analysis of the information conveyed by the chart.

METHODS AND APPLICATIONS

2.4 A multiple choice question on an exam has four possible responses—(a), (b), (c), and (d). When

250 students take the exam, 100 give response (a), 25 give response (b), 75 give response (c), and

50 give response (d).

a Write out the frequency distribution, relative frequency distribution, and percent frequency

distribution for these responses.

b Construct a bar chart for these data using frequencies.

2.5 Consider constructing a pie chart for the exam question responses in Exercise 2.4.

a How many degrees (out of 360) would be assigned to the “pie slice” for the response (a)?

b How many degrees would be assigned to the “pie slice” for response (b)?

c Construct the pie chart for the exam question responses. 

2.6 Consider the partial relative frequency distribution of consumer preferences for four 

products—W, X, Y, and Z that is shown in the page margin.

a Find the relative frequency for product X.

b If 500 consumers were surveyed, give the frequency distribution for these data.

c Construct a percent frequency bar chart for these data.

d If we wish to depict these data using a pie chart, find how many degrees (out of 360) should be

assigned to each of products W, X, Y, and Z. Then construct the pie chart.

Relative
Product Frequency

W .15

X —

Y .36

Z .28



2.7 Below we give pizza restaurant preferences for 25 randomly selected college students.

PizzaPizza

Godfather’s Little Caesar’s Papa John’s Pizza Hut Domino’s Papa John’s

Papa John’s Papa John’s Pizza Hut Pizza Hut Papa John’s Domino’s

Little Caesar’s Domino’s Domino’s Godfather’s Pizza Hut Papa John’s

Pizza Hut Pizza Hut Papa John’s Papa John’s Godfather’s Papa John’s

Domino’s 

a Find the frequency distribution and relative frequency distribution for these data.

b Construct a percentage bar chart for these data.

c Construct a percentage pie chart for these data.

d Which restaurant is most popular with these students? Least popular?

2.8 Fifty randomly selected adults who follow professional sports were asked to name their favorite

professional sports league. The results are as follows where MLB  Major League Baseball, 

MLS  Major League Soccer, NBA National Basketball Association, NFL National Football

League, and NHL National Hockey League. ProfSports

NFL NBA NFL MLB MLB NHL NFL NFL MLS MLB

MLB NFL MLB NBA NBA NFL NFL NFL NHL NBA

NBA NFL NHL NFL MLS NFL MLB NFL MLB NFL

NHL MLB NHL NFL NFL NFL MLB NFL NBA NFL

MLS NFL MLB NBA NFL NFL MLB NBA NFL NFL

a Find the frequency distribution, relative frequency distribution, and percent frequency 

distribution for these data.

b Construct a frequency bar chart for these data.

c Construct a pie chart for these data.

d Which professional sports league is most popular with these 50 adults? Which is least popular?

2.9 a On March 11, 2005, the Gallup Organization released the results of a CNN/USA Today/Gallup

national poll regarding Internet usage in the United States. Each of 1,008 randomly selected

adults was asked to respond to the following question:

As you may know, there are Web sites known as “blogs” or “Web logs,” where people

sometimes post their thoughts. How familiar are you with “blogs”—very familiar, some-

what familiar, not too familiar, or not at all familiar?

The poll’s results were as follows: Very familiar (7%); Somewhat familiar (19%); Not too

familiar (18%); Not at all familiar (56%).1 Use these data to construct a bar chart and a pie chart.

b On February 15, 2005, the Gallup Organization released the results of a Gallup UK poll

regarding Internet usage in Great Britain. Each of 1,009 randomly selected UK adults was

asked to respond to the following question: 

How much time, if at all, do you personally spend using the Internet—more than an hour

a day, up to one hour a day, a few times a week, a few times a month or less, or never?

The poll’s results were as follows: More than an hour a day (22%); Up to an hour a day (14%);

A few times a week (15%); A few times a month or less (10%); Never (39%).2 Use these data

to construct a bar chart and a pie chart.

2.10 The National Automobile Dealers Association (NADA) publishes AutoExec magazine, which

annually reports on new vehicle sales and market shares by manufacturer. As given on the 

AutoExec magazine website in May 2006, new vehicle market shares in the United States 

for 2005 were as follows3: Daimler-Chrysler 13.6%, Ford 18.3%, GM 26.3%, Japanese

(Toyota/Honda/Nissan) 28.3%, other imports 13.5%. AutoShares05

a Construct a percent frequency bar chart and a percentage pie chart for the 2005 auto market shares.

b Figure 2.5 gives a percentage bar chart of new vehicle market shares in the U.S. for 1997. Use

this bar chart and your results from part (a) to write an analysis explaining how new vehicle

market shares in the United States have changed from 1997 to 2005. AutoShares97

2.11 On January 11, 2005, the Gallup Organization released the results of a poll investigating how

many Americans have private health insurance. The results showed that among Americans making

less than $30,000 per year, 33% had private insurance, 50% were covered by Medicare/Medicaid,

and 17% had no health insurance, while among Americans making $75,000 or more per year,

DS

DS

DS

DS
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1Source: Copyright © 2005 Gallup Inc. used with permission, http://gallup.com/poll/content/default.aspx?ci=15217
2Source: Copyright © 2005 Gallup Inc. used with permission, http://gallup.com/poll/content/default.aspx?ci=14947
3Source: www.autoexecmag.com, May 15, 2006.
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87% had private insurance, 9% were covered by Medicare/Medicaid, and 4% had no health

insurance.4 Use bar and pie charts to compare health coverage of the two income groups.

2.12 In an article in Quality Progress, Barbara A. Cleary reports on improvements made in a software

supplier’s responses to customer calls. In this article, the author states:

In an effort to improve its response time for these important customer-support calls, an

inbound telephone inquiry team was formed at PQ Systems, Inc., a software and training

organization in Dayton, Ohio. The team found that 88 percent of the customers’ calls were

already being answered immediately by the technical support group, but those who had to be

called back had to wait an average of 56.6 minutes. No customer complaints had been

registered, but the team believed that this response rate could be improved.

As part of its improvement process, the company studied the disposition of complete and

incomplete calls to its technical support analysts. A call is considered complete if the customer’s

problem has been resolved; otherwise the call is incomplete. Figure 2.6 shows a Pareto chart

analysis for the incomplete customer calls.

a What percentage of incomplete calls required “more investigation” by the analyst or 

“administrative help”?

b What percentage of incomplete calls actually presented a “new problem”?

c In light of your answers to a and b, can you make a suggestion?

Other
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F I G U R E 2 . 5 An Excel Bar Chart of U.S. Automobile Sales in 1997 (for Exercise 2.10)

AutoShares97DS

Required customer to get more data

Required more investigation by us

Required development assistance

Required administrative help

Actually is a new problem

Callbacks

29.17%

28.12%

21.87%

12.50%

4.17%

4.17%

0 100

0% 100%

F I G U R E 2 . 6 A Pareto Chart for Incomplete Customer Calls (for Exercise 2.12)

Source: B. A. Cleary, “Company Cares about Customers’ Calls,” Quality Progress (November 1993), pp. 60–73. Copyright © 1993
American Society for Quality Control. Used with permission.

4Source: http://gallup.com/poll/content/default.aspx?ci=14581



2.2 Graphically Summarizing Quantitative Data 
Frequency distributions and histograms We often need to summarize and describe the

shape of the distribution of a population or sample of measurements. Such data are often summarized

by grouping the measurements into the classes of a frequency distribution and by displaying the

data in the form of a histogram. We explain how to construct a histogram in the following

example.
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Summarize
quantitative

data by using
frequency distribu-
tions, histograms,
frequency polygons,
and ogives.

LO3

EXAMPLE 2.2 The Payment Time Case: Reducing Payment Times5

Major consulting firms such as Accen
›
ture, Ernst & Young Consulting, and Deloitte & Touche

Consulting employ statistical analysis to assess the effectiveness of the systems they design for

their customers. In this case a consulting firm has developed an electronic billing system for a

Hamilton, Ohio, trucking company. The system sends invoices electronically to each customer’s

computer and allows customers to easily check and correct errors. It is hoped that the new billing

system will substantially reduce the amount of time it takes customers to make payments. Typical

payment times—measured from the date on an invoice to the date payment is received—using

the trucking company’s old billing system had been 39 days or more. This exceeded the industry

standard payment time of 30 days.

The new billing system does not automatically compute the payment time for each invoice

because there is no continuing need for this information. Therefore, in order to assess the system’s

effectiveness, the consulting firm selects a random sample of 65 invoices from the 7,823 invoices

processed during the first three months of the new system’s operation. The payment times for the

65 sample invoices are manually determined and are given in Table 2.4. If this sample can be

used to establish that the new billing system substantially reduces payment times, the consulting

firm plans to market the system to other trucking firms.

Looking at the payment times in Table 2.4, we can see that the shortest payment time is

10 days and that the longest payment time is 29 days. Beyond that, it is pretty difficult to inter-

pret the data in any meaningful way. To better understand the sample of 65 payment times, the

consulting firm will form a frequency distribution of the data and will graph the distribution by

constructing a histogram. Similar to the frequency distributions for qualitative data we studied in

Section 2.1, the frequency distribution will divide the payment times into classes and will tell us

how many of the payment times are in each class.

Step 1: Find the number of classes One rule for finding an appropriate number of classes

says that the number of classes should be the smallest whole number K that makes the quantity 2K

greater than the number of measurements in the data set. For the payment time data we have

65 measurements. Because 26
 64 is less than 65 and 27

 128 is greater than 65, we should use 

K  7 classes. Table 2.5 gives the appropriate number of classes (determined by the 2K rule) to

use for data sets of various sizes.

Step 2: Find the class length We find the length of each class by computing

Class length  
largest measurement  smallest measurement

number of classes

T A B L E 2 . 4 A Sample of Payment Times (in Days) for 65 Randomly Selected Invoices PayTimeDS

22 29 16 15 18 17 12 13 17 16 15

19 17 10 21 15 14 17 18 12 20 14

16 15 16 20 22 14 25 19 23 15 19

18 23 22 16 16 19 13 18 24 24 26

13 18 17 15 24 15 17 14 18 17 21

16 21 25 19 20 27 16 17 16 21

5This case is based on a real problem encountered by a company that employs one of our former students. For purposes of
confidentiality, we have withheld the company’s name.

C
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Because the largest and smallest payment times in Table 2.4 are 29 days and 10 days, the class

length is . This says that, in order to include the smallest and largest pay-

ment times in the 7 classes, each class must have a length of at least 2.7143. To obtain a more

convenient class length, we round this value. Often the class length is rounded up to the precision

of the measurements. For instance, because the payment times are measured to the nearest day,

we will round the class length from 2.7143 to 3 days.

Step 3: Form nonoverlapping classes of equal width We can form the classes of the

frequency distribution by defining the boundaries of the classes. To find the first class boundary,

we find the smallest payment time in Table 2.4, which is 10 days. This value is the lower boundary

of the first class. Adding the class length of 3 to this lower boundary, we obtain 

which is the upper boundary of the first class and the lower boundary of the second class. Simi-

larly, the upper boundary of the second class and the lower boundary of the third class equals

Continuing in this fashion, the lower boundaries of the remaining classes are 19,

22, 25, and 28. Adding the class length 3 to the lower boundary of the last class gives us the

upper boundary of the last class, 31. These boundaries define seven nonoverlapping classes for

the frequency distribution. We summarize these classes in Table 2.6. For instance, the first

class—10 days and less than 13 days—includes the payment times 10, 11, and 12 days; the sec-

ond class—13 days and less than 16 days—includes the payment times 13, 14, and 15 days; and

so forth. Notice that the largest observed payment time—29 days—is contained in the last class.

In cases where the largest measurement is not contained in the last class, we simply add another

class. Generally speaking, the guidelines we have given for forming classes are not inflexible

rules. Rather, they are intended to help us find reasonable classes. Finally, the method we have

used for forming classes results in classes of equal length. Generally, forming classes of equal

length will make it easier to appropriately interpret the frequency distribution.

Step 4: Tally and count the number of measurements in each class Having formed

the classes, we now count the number of measurements that fall into each class. To do this, it is

convenient to tally the measurements. We simply list the classes, examine the payment times in

Table 2.4 one at a time, and record a tally mark corresponding to a particular class each time we

encounter a measurement that falls in that class. For example, since the first four payment times in

Table 2.4 are 22, 19, 16, and 18, the first four tally marks are shown below. Here, for brevity, we

express the class “10 days and less than 13 days” as “10 13” and use similar notation for the other

classes.

Class First 4 Tally Marks All 65 Tally Marks Frequency

10  13 III 3

13  16 IIII IIII IIII 14

16  19 II IIII IIII IIII IIII III 23

19  22 I IIII IIII II 12

22  25 I IIII III 8

25  28 IIII 4

28  31 I 1

13  3  16.

10  3  13,

(29  10)兾7  2.7143

T A B L E 2 . 5 Recommended Number of Classes

for Data Sets of n Measurements*

Number of Classes Size, n, of the Data Set

2

3

4

5

6

7

8

9

10

*For completeness sake we have included all values of 

in this table. However, we do not recommend constructing a

histogram with fewer than 16 measurements.

n  1

 528  n  1056

 256  n  528

 128  n  256

 64  n  128

 32  n  64

 16  n  32

 8  n  16

 4  n  8

 1  n  4

T A B L E 2 . 6 Seven Nonoverlapping Classes 

for a Frequency Distribution of

the 65 Payment Times

Class 1 10 days and less than 13 days

Class 2 13 days and less than 16 days

Class 3 16 days and less than 19 days

Class 4 19 days and less than 22 days

Class 5 22 days and less than 25 days

Class 6 25 days and less than 28 days

Class 7 28 days and less than 31 days



After examining all 65 payment times, we have recorded 65 tally marks—see the bottom of

page 43. We find the frequency for each class by counting the number of tally marks recorded

for the class. For instance, counting the number of tally marks for the class “13  16”, we obtain

the frequency 14 for this class. The frequencies for all seven classes are summarized in Table 2.7.

This summary is the frequency distribution for the 65 payment times. Table 2.7 also gives the

relative frequency and the percent frequency for each of the seven classes. The relative

frequency of a class is the proportion (fraction) of the total number of measurements that are in

the class. For example, there are 14 payment times in the second class, so its relative frequency

is . This says that the proportion of the 65 payment times that are in the second class

is .2154, or, equivalently, that of the payment times are in the second

class. A list of all of the classes—along with each class relative frequency—is called a relative

frequency distribution. A list of all of the classes—along with each class percent frequency—

is called a percent frequency distribution.

Step 5: Graph the histogram We can graphically portray the distribution of payment times by

drawing a histogram. The histogram can be constructed using the frequency, relative frequency, or

percent frequency distribution. To set up the histogram, we draw rectangles that correspond to the

classes. The base of the rectangle corresponding to a class represents the payment times in the class.

The height of the rectangle can represent the class frequency, relative frequency, or percent frequency.

We have drawn a frequency histogram of the 65 payment times in Figure 2.7. The first (left-

most) rectangle, or “bar,” of the histogram represents the payment times 10, 11, and 12. Looking

at Figure 2.7, we see that the base of this rectangle is drawn from the lower boundary (10) of the

first class in the frequency distribution of payment times to the lower boundary (13) of the sec-

ond class. The height of this rectangle tells us that the frequency of the first class is 3. The second

histogram rectangle represents payment times 13, 14, and 15. Its base is drawn from the lower

boundary (13) of the second class to the lower boundary (16) of the third class, and its height tells

us that the frequency of the second class is 14. The other histogram bars are constructed similarly.

Notice that there are no gaps between the adjacent rectangles in the histogram. Here, although the

payment times have been recorded to the nearest whole day, the fact that the histogram bars touch

each other emphasizes that a payment time could (in theory) be any number on the horizontal

axis. In general, histograms are drawn so that adjacent bars touch each other.

Looking at the frequency distribution in Table 2.7 and the frequency histogram in Figure 2.7,

we can describe the payment times:

1 None of the payment times exceeds the industry standard of 30 days. (Actually, all of the

payment times are less than 30—remember the largest payment time is 29 days.)

2 The payment times are concentrated between 13 and 24 days (57 of the 65, or 

(57兾65)  100  87.69%, of the payment times are in this range). 

3 More payment times are in the class “16  19” than are in any other class (23 payment

times are in this class).

100(.2154)%  21.54%

14兾65  .2154

44 Chapter 2 Descriptive Statistics: Tabular and Graphical Methods

T A B L E 2 . 7 Frequency Distributions of the 

65 Payment Times

Relative Percent 
Class Frequency Frequency Frequency

10  13 3 3兾65  .0462 4.62%

13  16 14 14兾65  .2154 21.54

16  19 23 .3538 35.38

19  22 12 .1846 18.46

22  25 8 .1231 12.31

25  28 4 .0615 6.15

28  31 1 .0154 1.54
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Notice that the frequency distribution and histogram allow us to make some helpful conclu-

sions about the payment times, whereas looking at the raw data (the payment times in Table 2.4)

did not.

A relative frequency histogram and a percent frequency histogram of the payment times

would both be drawn like Figure 2.7 except that the heights of the rectangles represent, respec-

tively, the relative frequencies and the percent frequencies in Table 2.7. For example, Figure 2.8

gives a percent frequency histogram of the payment times. This histogram also illustrates that we

sometimes label the classes on the horizontal axis using the class midpoints. Each class midpoint

is exactly halfway between the boundaries of its class. For instance, the midpoint of the first class,

11.5, is halfway between the class boundaries 10 and 13. The midpoint of the second class, 14.5,

is halfway between the class boundaries 13 and 16. The other class midpoints are found similarly.

The percent frequency distribution of Figure 2.8 tells us that 21.54% of the payment times are in

the second class (which has midpoint 14.5 and represents the payment times 13, 14, and 15).

In the following box we summarize the steps needed to set up a frequency distribution and

histogram:

29.526.523.520.517.514.511.5
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F I G U R E 2 . 8 A Percent Frequency Histogram of the 65 Payment Times

Constructing Frequency Distributions and Histograms

adding the class length until the upper boundary

of the last (Kth) class is found.

4 Tally and count the number of measurements in

each class. The frequency for each class is the

count of the number of measurements in the

class. The relative frequency for each class is

the fraction of measurements in the class. The

percent frequency for each class is its relative

frequency multiplied by 100%.

5 Graph the histogram. To draw a frequency

histogram, plot each frequency as the height of

a rectangle positioned over its corresponding

class. Use the class boundaries to separate adja-

cent rectangles. A relative frequency histogram

and a percent histogram are graphed in the

same way except that the heights of the rectan-

gles are, respectively, the relative frequencies

and the percent frequencies. 

1 Find the number of classes. Generally, the num-

ber of classes K should equal the smallest whole

number that makes the quantity 2K greater

than the total number of measurements n (see 

Table 2.5 on page 43).

2 Compute the class length:

Generally, it is best to round this value up to the

same level of precision as the data.

3 Form nonoverlapping classes of equal length.

Form the classes by finding the class boundaries.

The lower boundary of the first class is the smallest

measurement in the data set. Add the class length

to this boundary to obtain the next boundary.

Successive boundaries are found by repeatedly

largest   measurement  smallest   measurement

K



The procedure in the above box is not the only way to construct a histogram. Often, histo-

grams are constructed more informally. For instance, it is not necessary to set the lower boundary

of the first (leftmost) class equal to the smallest measurement in the data. As an example, suppose

that we wish to form a histogram of the 50 gas mileages given in Table 1.6 (page 12). Examining

the mileages, we see that the smallest mileage is 29.8 mpg and that the largest mileage is 33.3 mpg.

Therefore, it would be convenient to begin the first (leftmost) class at 29.5 mpg and end the last

(rightmost) class at 33.5 mpg. Further, it would be reasonable to use classes that are .5 mpg in

length. We would then use 8 classes: 29.5  30, 30  30.5, 30.5  31, 31  31.5, 31.5  32, 

32  32.5, 32.5  33, and 33  33.5. A histogram of the gas mileages employing these classes

is shown in Figure 2.9.

Sometimes it is desirable to let the nature of the problem determine the histogram classes. For

example, to construct a histogram describing the ages of the residents in a city, it might be rea-

sonable to use classes having 10-year lengths (that is, under 10 years, 10–19 years, 20–29 years,

30–39 years, and so on).

Notice that in our examples we have used classes having equal class lengths. In general, it is best

to use equal class lengths whenever the raw data (that is, all the actual measurements) are available.

However, sometimes histograms are formed with unequal class lengths—particularly when we are

using published data as a source. Economic data and data in the social sciences are often published

in the form of frequency distributions having unequal class lengths. Dealing with this kind of data

is discussed in Exercise 2.85. Also discussed in this exercise is how to deal with open-ended

classes. For example, if we are constructing a histogram describing the yearly incomes of U.S.

households, an open-ended class could be households earning over $500,000 per year.

As an alternative to constructing a frequency distribution and histogram by hand, we can use

software packages such as Excel and MINITAB. Each of these packages will automatically de-

fine histogram classes for the user. However, these automatically defined classes will not neces-

sarily be the same as those that would be obtained using the manual method we have previously

described. Furthermore, the packages define classes by using different methods. (Descriptions of

how the classes are defined can often be found in help menus.) For example, Figure 2.10 gives

a MINITAB frequency histogram of the payment times in Table 2.4. Here, MINITAB has

defined 11 classes and has labeled five of the classes on the horizontal axis using midpoints

(12, 16, 20, 24, 28). It is easy to see that the midpoints of the unlabeled classes are 10, 14, 18, 22,

26, and 30. Moreover, the boundaries of the first class are 9 and 11, the boundaries of the second

class are 11 and 13, and so forth. MINITAB counts frequencies as we have previously described.

For instance, one payment time is at least 9 and less than 11, two payment times are at least 11

and less than 13, seven payment times are at least 13 and less than 15, and so forth.
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Figure 2.11 gives an Excel frequency distribution and histogram of the bottle design ratings

in Table 1.5. Excel labels histogram classes using their upper class boundaries. For example, the

boundaries of the second class are 20 and 22, the boundaries of the third class are 22 and 24, and

so forth. The first class corresponds to bottle design ratings that are 20 or less, while the last

class corresponds to ratings more than 36. Excel’s method for counting frequencies differs from

that of MINITAB (and, therefore, also differs from the way we counted frequencies by hand in

Example 2.2). Excel assigns a frequency to a particular class by counting the number of mea-

surements that are greater than the lower boundary of the class and less than or equal to the

upper boundary of the class. For example, one bottle design rating is greater than 20 and less

than or equal to (that is, at most) 22. Similarly, 15 bottle design ratings are greater than 32 and

at most 34.

In Figure 2.10 we have used MINITAB to automatically form histogram classes. It is also

possible to use software packages to form histogram classes that are defined by the user. We

explain how to do this in the appendices at the end of this chapter. Because Excel does not

always automatically define acceptable classes, the classes in Figure 2.11 are a modification of

Excel’s automatic classes. We also explain this modification in the appendices at the end of this

chapter.

Some common distribution shapes We often graph a frequency distribution in the form of

a histogram in order to visualize the shape of the distribution. If we look at the histogram of pay-

ment times in Figure 2.10, we see that the right tail of the histogram is longer than the left tail.

When a histogram has this general shape, we say that the distribution is skewed to the right. Here

the long right tail tells us that a few of the payment times are somewhat longer than the rest. If we

look at the histogram of bottle design ratings in Figure 2.11, we see that the left tail of the his-

togram is much longer than the right tail. When a histogram has this general shape, we say that

the distribution is skewed to the left. Here the long tail to the left tells us that, while most of the

bottle design ratings are concentrated above 25 or so, a few of the ratings are lower than the rest.

Finally, looking at the histogram of gas mileages in Figure 2.9, we see that the right and left tails

of the histogram appear to be mirror images of each other. When a histogram has this general

shape, we say that the distribution is symmetrical. Moreover, the distribution of gas mileages

appears to be piled up in the middle or mound shaped.

Mound-shaped, symmetrical distributions as well as distributions that are skewed to the right

or left are commonly found in practice. For example, distributions of scores on standardized tests

such as the SAT and ACT tend to be mound shaped and symmetrical, whereas distributions

of scores on tests in college statistics courses might be skewed to the left—a few students don’t

study and get scores much lower than the rest. On the other hand, economic data such as income

data are often skewed to the right—a few people have incomes much higher than most others.
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Many other distribution shapes are possible. For example, some distributions have two or more

peaks—we will give an example of this distribution shape later in this section. It is often very

useful to know the shape of a distribution. For example, knowing that the distribution of bottle

design ratings is skewed to the left suggests that a few consumers may have noticed a problem

with design that others didn’t see. Further investigation into why these consumers gave the design

low ratings might allow the company to improve the design.

Frequency polygons Another graphical display that can be used to depict a frequency

distribution is a frequency polygon. To construct this graphic, we plot a point above each class

midpoint at a height equal to the frequency of the class—the height can also be the class relative

frequency or class percent frequency if so desired. Then we connect the points with line seg-

ments. As we will demonstrate in the following example, this kind of graphic can be particularly

useful when we wish to compare two or more distributions.
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EXAMPLE 2.3 Comparing the Grade Distributions for Two Statistics Exams

Table 2.8 lists (in increasing order) the scores earned on the first exam by the 40 students in a

business statistics course taught by one of the authors several semesters ago. Figure 2.12 gives a

percent frequency polygon for these exam scores. Because exam scores are often reported by

using 10-point grade ranges (for instance, 80 to 90 percent), we have defined the following

classes: 30  40, 40  50, 50  60, 60  70, 70  80, 80  90, and 90  100. This is an

example of letting the situation determine the classes of a frequency distribution, which is com-

mon practice when the situation naturally defines classes. The points that form the polygon have

been plotted corresponding to the midpoints of the classes (35, 45, 55, 65, 75, 85, 95). Each point

is plotted at a height that equals the percentage of exam scores in its class. For instance, because

10 of the 40 scores are at least 90 and less than 100, the plot point corresponding to the class

midpoint 95 is plotted at a height of 25 percent.

Looking at Figure 2.12, we see that there is a concentration of scores in the 85 to 95 range and an-

other concentration of scores around 65. In addition, the distribution of scores is somewhat skewed

to the left—a few students had scores (in the 30s and 40s) that were quite a bit lower than the rest.

This is an example of a distribution having two peaks. When a distribution has multiple peaks,

finding the reason for the different peaks often provides useful information. The reason for the

two-peaked distribution of exam scores was that some students were not attending class regu-

larly. Students who received scores in the 60s and below admitted that they were cutting class,

whereas students who received higher scores were attending class on a regular basis.

After identifying the reason for the concentration of lower scores, the instructor established an

attendance policy that forced students to attend every class—any student who missed a class was

T A B L E 2 . 8 Exam Scores for the First 

Exam Given in a Statistics

Class FirstExamDS

32 63 69 85 91

45 64 69 86 92

50 64 72 87 92

56 65 76 87 93

58 66 78 88 93

60 67 81 89 94

61 67 83 90 96

61 68 83 90 98
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to be dropped from the course. Table 2.9 presents the scores on the second exam—after the

new attendance policy. Figure 2.13 presents (and allows us to compare) the percent frequency

polygons for both exams. We see that the polygon for the second exam is single peaked—the

attendance policy6 eliminated the concentration of scores in the 60s, although the scores are still

somewhat skewed to the left.

Cumulative distributions and ogives Another way to summarize a distribution is to con-

struct a cumulative distribution. To do this, we use the same number of classes, the same class

lengths, and the same class boundaries that we have used for the frequency distribution of a data

set. However, in order to construct a cumulative frequency distribution, we record for each

class the number of measurements that are less than the upper boundary of the class. To illustrate

this idea, Table 2.10 gives the cumulative frequency distribution of the payment time distribution

summarized in Table 2.7 (page 44). Columns (1) and (2) in this table give the frequency distrib-

ution of the payment times. Column (3) gives the cumulative frequency for each class. To see

how these values are obtained, the cumulative frequency for the class 10  13 is the number

of payment times less than 13. This is obviously the frequency for the class 10  13, which is 3.

The cumulative frequency for the class 13  16 is the number of payment times less than 16,

which is obtained by adding the frequencies for the first two classes—that is, 3  14  17.

The cumulative frequency for the class 16  19 is the number of payment times less than 19—

that is, 3  14  23  40. We see that, in general, a cumulative frequency is obtained by sum-

ming the frequencies of all classes representing values less than the upper boundary of the class.

T A B L E 2 . 9 Exam Scores for the Second Statistics

Exam—after a New Attendance 

Policy SecondExamDS

55 74 80 87 93

62 74 82 88 94

63 74 83 89 94

66 75 84 90 95

67 76 85 91 97

67 77 86 91 99

71 77 86 92

73 78 87 93
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F I G U R E 2 . 1 3 Percent Frequency Polygons of the Scores on

the First Two Exams in a Statistics Course

6Other explanations are possible. For instance, all of the students who did poorly on the first exam might have studied harder
for the second exam. However, the instructor’s 30 years of teaching experience suggests that attendance was the critical factor.

(3) (4) (5)
(1) (2) Cumulative Cumulative Cumulative

Class Frequency Frequency Relative Frequency Percent Frequency

10  13 3 3 3兾65  .0462 4.62%

13  16 14 17 17兾65  .2615 26.15

16   19 23 40 .6154 61.54

19   22 12 52 .8000 80.00

22  25 8 60 .9231 92.31

25   28 4 64 .9846 98.46

28  31 1 65 1.0000 100.00

T A B L E 2 . 1 0 A Frequency Distribution, Cumulative Frequency Distribution, Cumulative

Relative Frequency Distribution, and Cumulative Percent Frequency Distribution

for the Payment Time Data



Column (4) gives the cumulative relative frequency for each class, which is obtained by

summing the relative frequencies of all classes representing values less than the upper boundary

of the class. Or, more simply, this value can be found by dividing the cumulative frequency for

the class by the total number of measurements in the data set. For instance, the cumulative rela-

tive frequency for the class 19  22 is 52兾65  .8. Column (5) gives the cumulative percent

frequency for each class, which is obtained by summing the percent frequencies of all classes

representing values less than the upper boundary of the class. More simply, this value can be

found by multiplying the cumulative relative frequency of a class by 100. For instance, the

cumulative percent frequency for the class 19  22 is .8 (100)  80 percent.

As an example of interpreting Table 2.10, 60 of the 65 payment times are 24 days or less, or,

equivalently, 92.31 percent of the payment times (or a fraction of .9231 of the payment times) are

24 days or less. Also, notice that the last entry in the cumulative frequency distribution is the total

number measurements (here, 65 payment times). In addition, the last entry in the cumulative

relative frequency distribution is 1.0 and the last entry in the cumulative percent frequency

distribution is 100%. In general, for any data set, these last entries will be, respectively, the total

number of measurements, 1.0, and 100%.

An ogive (pronounced “oh-jive”) is a graph of a cumulative distribution. To construct a fre-

quency ogive, we plot a point above each upper class boundary at a height equal to the cumula-

tive frequency of the class. We then connect the plotted points with line segments. A similar

graph can be drawn using the cumulative relative frequencies or the cumulative percent frequen-

cies. As an example, Figure 2.14 gives a percent frequency ogive of the payment times. Looking

at this figure, we see that, for instance, a little more than 25 percent (actually, 26.15 percent

according to Table 2.10) of the payment times are less than 16 days, while 80 percent of the

payment times are less than 22 days. Also notice that we have completed the ogive by plotting an

additional point at the lower boundary of the first (leftmost) class at a height equal to zero. This

depicts the fact that none of the payment times is less than 10 days. Finally, the ogive graphically

shows that all (100 percent) of the payment times are less than 31 days.
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Exercises for Section 2.2

Ogive of Payment Times
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F I G U R E 2 . 1 4 A Percent Frequency Ogive of the Payment Times

CONCEPTS

2.13 Explain

a Why we construct a frequency distribution and a histogram for a data set.

b The difference between a frequency histogram and a frequency polygon.

c The difference between a frequency polygon and a frequency ogive.

2.14 Explain how to find 

a The frequency for a class

b The relative frequency for a class

c The percent frequency for a class
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2.15 Explain what each of the following distribution shapes looks like. Then draw a picture that

illustrates each shape.

a Symmetrical and mound shaped

b Double peaked

c Skewed to the right

d Skewed to the left

METHODS AND APPLICATIONS

2.16 Consider the following data: HistoData

36 39 36 35 36 20 19

46 40 42 34 41 36 42

40 38 33 37 22 33 28

38 38 34 37 17 25 38

a Find the number of classes needed to construct a histogram.

b Find the class length.

c Define nonoverlapping classes for a frequency distribution.

d Tally the number of values in each class and develop a frequency distribution.

e Draw a histogram for these data.

f Develop a percent frequency distribution.

2.17 Consider the frequency distribution of exam scores given below.

Class Frequency

90  100 12

80  90 17

70  80 14

60  70 5

50  60 2

a Develop a relative frequency distribution and a percent frequency distribution.

b Develop a cumulative frequency distribution and a cumulative percent frequency distribution.

c Draw a frequency polygon.

d Draw a frequency ogive.

THE MARKETING RESEARCH CASE Design

Recall that 60 randomly selected shoppers have rated a new bottle design for a popular soft drink. The

data are given below.

34 33 33 29 26 33 28 25 32 33

32 25 27 33 22 27 32 33 32 29

24 30 20 34 31 32 30 35 33 31

32 28 30 31 31 33 29 27 34 31

31 28 33 31 32 28 26 29 32 34

32 30 34 32 30 30 32 31 29 33

Use these data to work exercises 2.18 and 2.19.

2.18 a Find the number of classes that should be used to construct a frequency distribution and 

histogram for the bottle design ratings.

b If we round up to the nearest whole rating point, show that we should employ a class length

equal to 3.

c Define the nonoverlapping classes for a frequency distribution.

d Tally the number of ratings in each class and develop a frequency distribution.

e Draw the frequency histogram for the ratings data, and describe the distribution shape. Design

2.19 a Construct a relative frequency distribution and a percent frequency distribution for the bottle

design ratings.

b Construct a cumulative frequency distribution and a cumulative percent frequency distribution.

c Draw a frequency ogive for the bottle design ratings. Design

2.20 Table 2.11 gives the 25 most powerful celebrities and their annual pay as ranked by the editors of

Forbes magazine and as listed on the Forbes.com website on February 25, 2007. PowerCeleb

a Develop a frequency distribution for the celebrity pay data and draw a histogram.

b Develop a cumulative frequency distribution and a cumulative percent frequency distribution

for the celebrity pay data.

c Draw a percent frequency ogive for the celebrity pay data.

DS

DS

DS

DS

DS



2.21 THE VIDEO GAME SATISFACTION RATING CASE VideoGame

Recall that Table 1.7 (page 13) presents the satisfaction ratings for the XYZ-Box video game 

system that have been given by 65 randomly selected purchasers. Figure 2.15 gives the Excel

output of a histogram of these satisfaction ratings.

a Describe where the satisfaction ratings seem to be concentrated.

b Describe and interpret the shape of the distribution of ratings.

c Write out the eight classes used to construct this histogram.

d Construct a cumulative frequency distribution of the satisfaction ratings using the histogram

classes.

2.22 THE BANK CUSTOMER WAITING TIME CASE WaitTime

Recall that Table 1.8 (page 13) presents the waiting times for teller service during peak business

hours of 100 randomly selected bank customers. Figure 2.16 gives the MINITAB output of a

histogram of these waiting times that has been constructed using automatic classes.

a Describe where the waiting times seem to be concentrated.

b Describe and interpret the shape of the distribution of waiting times.

c What is the class length that has been automatically defined by MINITAB?

d Write out the automatically defined classes and construct a cumulative percent frequency

distribution of the waiting times using these classes.

DS

DS
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Source: http://www.forbes.com/2006/06/12/06celebrities_money-power-celebrities-list_land.html, 
(accessed February 25, 2007).

Power Pay
Ranking Celebrity Name ($mil)

1 Tom Cruise 67

2 Rolling Stones 90

3 Oprah Winfrey 225

4 U2 110

5 Tiger Woods 90

6 Steven Spielberg 332

7 Howard Stern 302

8 50 Cent 41

9 Cast of The Sopranos 52

10 Dan Brown 88

11 Bruce Springsteen 55

12 Donald Trump 44

13 Muhammad Ali 55

T A B L E 2 . 1 1 The 25 Most Powerful Celebrities as Rated by Forbes Magazine PowerCelebDS

Power Pay
Ranking Celebrity Name ($mil)

14 Paul McCartney 40

15 George Lucas 235

16 Elton John 34

17 David Letterman 40

18 Phil Mickelson 47

19 J.K. Rowling 75

20 Brad Pitt 25

21 Peter Jackson 39

22 Dr. Phil McGraw 45

23 Jay Leno 32

24 Celine Dion 40

25 Kobe Bryant 31
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2.23 THE TRASH BAG CASE TrashBag

Recall that Table 1.9 (page 14) presents the breaking strengths of 40 trash bags selected during a

40-hour pilot production run. Figure 2.17 gives a percent frequency histogram of these breaking

strengths.

a Describe where the breaking strengths seem to be concentrated.

b Describe and interpret the shape of the distribution of breaking strengths.

c What is the class length?

d Write out the classes and construct a percent frequency ogive for the breaking strengths using

these classes.

2.24 Table 2.12 gives the franchise value and 2006 revenues for each of the 30 teams in Major League

Baseball as reported by Forbes magazine and as listed on the Forbes.com website on February 25,

2007. MLBTeams

a Develop a frequency distribution and a frequency histogram for the 30 team values. Then

describe the distribution of team values.

b Develop a percent frequency distribution and a percent frequency histogram for the 30 team

revenues. Then describe the distribution of team revenues.

c Draw a percent frequency polygon for the 30 team values.
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F I G U R E 2 . 1 6 MINITAB Frequency Histogram of the 100 Waiting Times Using Automatic

Classes (for Exercise 2.22)
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F I G U R E 2 . 1 7 Percent Frequency Histogram of the 40 Breaking Strengths (for Exercise 2.23)



2.25 Forbes magazine publishes a list of “The 400 Best Big Companies” as selected by the magazine’s

writers and editors. Table 2.13 gives the best companies in the retailing industry as given by this

list on the Forbes.com website on February 27, 2007. ForbesBest

a Develop a frequency distribution and a frequency histogram for the five-year total return 

percentages. Describe the distribution of these percentages.

b Develop a percent frequency histogram for the sales values and then describe this distribution.

c Develop a relative frequency ogive for the net incomes.

2.3 Dot Plots 
A very simple graph that can be used to summarize a data set is called a dot plot. To make a dot

plot we draw a horizontal axis that spans the range of the measurements in the data set. We then

place dots above the horizontal axis to represent the measurements. As an example, Figure 2.18(a)

shows a dot plot of the exam scores in Table 2.8. Remember, these are the scores for the first

DS
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Source: http://www.forbes.com/lists/2006/33/Rank_1.html, (accessed February 25, 2007).

Value Revenues 
Rank Team ($mil) ($mil)

1 New York Yankees 1026 277

2 Boston Red Sox 617 206

3 New York Mets 604 195

4 Los Angeles Dodgers 482 189

5 Chicago Cubs 448 179

6 Washington Nationals 440 145

7 St Louis Cardinals 429 165

8 Seattle Mariners 428 179

9 Philadelphia Phillies 424 176

10 Houston Astros 416 173

11 San Francisco Giants 410 171

12 Atlanta Braves 405 172

13 Los Angeles Angels 
@ Anaheim 368 167

14 Baltimore Orioles 359 156

15 San Diego Padres 354 158

T A B L E 2 . 1 2 Major League Baseball Team Valuations and Revenues as Given on the Forbes.com Website on 

February 25, 2007 (for Exercise 2.24) MLBTeamsDS

Value Revenues 
Rank Team ($mil) ($mil)

16 Texas Rangers 353 153

17 Cleveland Indians 352 150

18 Chicago White Sox 315 157

19 Arizona Diamondbacks 305 145

20 Colorado Rockies 298 145

21 Detroit Tigers 292 146

22 Toronto Blue Jays 286 136

23 Cincinnati Reds 274 137

24 Pittsburgh Pirates 250 125

25 Kansas City Royals 239 117

26 Milwaukee Brewers 235 131

27 Oakland Athletics 234 134

28 Florida Marlins 226 119

29 Minnesota Twins 216 114

30 Tampa Bay Devil Rays 209 116

Source: http://www.forbes.com/lists/2007/88/biz_07platinum_The-400-Best-Big-Companies-Retailing_7Company.html, (accessed February 27, 2007).

5-Year Total Sales Net Income 
Company Return (%) ($bil) ($mil)

Aaron Rents 31.2 1.3 74

Abercrombie & Fitch 24.1 3.1 389

Advance Auto Parts 21.5 4.6 235

Aeropostale 10.5 1.3 85

Amer Eagle Outfitters 29.6 2.6 345

AnnTaylor Stores 22.6 2.3 149

Bed Bath & Beyond 3.3 6.1 579

Best Buy 12.4 32.6 1,246

CarMax 18.2 6.9 178

Charming Shoppes 22.0 3.0 103

Children’s Place 13.1 1.8 73

Claire’s Stores 36.0 1.4 171

CVS 16.2 41.5 1,358

Dick’s Sporting Goods 66.2 2.9 99

Dress Barn 29.3 1.3 86

T A B L E 2 . 1 3 The Best Performing Retailers from the Forbes List of “The 400 Best Big Companies” as Listed on the

Forbes.com Website on February 27, 2007 ForbesBestDS

5-Year Total Sales Net Income 
Company Return (%) ($bil) ($mil)

Fastenal 20.2 1.7 193

Lowe’s Cos 7.1 47.3 3,180

MarineMax 26.9 1.2 39

Nordstrom 39.6 8.2 636

O’Reilly Automotive 14.4 2.2 177

Office Depot 19.7 14.9 487

Petsmart 27.8 4.1 179

Pool 30.6 1.9 100

Ross Stores 16.7 5.4 220

Staples 17.0 17.3 927

Target 9.2 56.7 2,607

TJX Cos 8.5 17.1 821

United Auto Group 23.5 11.1 125

Walgreen 3.8 47.4 1,751

Construct
and inter-

pret dot plots.

LO4
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exam given before implementing a strict attendance policy. The horizontal axis spans exam

scores from 30 to 100. Each dot above the axis represents an exam score. For instance, the two

dots above the score of 90 tell us that two students received a 90 on the exam. The dot plot shows

us that there are two concentrations of scores—those in the 80s and 90s and those in the 60s. Fig-

ure 2.18(b) gives a dot plot of the scores on the second exam (which was given after imposing the

attendance policy). As did the percent frequency polygon for Exam 2 in Figure 2.13, this second

dot plot shows that the attendance policy eliminated the concentration of scores in the 60s.

Dot plots are useful for detecting outliers, which are unusually large or small observations

that are well separated from the remaining observations. For example, the dot plot for exam 1 in-

dicates that the score 32 seems unusually low. How we handle an outlier depends on its cause. If

the outlier results from a measurement error or an error in recording or processing the data, it

should be corrected. If such an outlier cannot be corrected, it should be discarded. If an outlier is

not the result of an error in measuring or recording the data, its cause may reveal important in-

formation. For example, the outlying exam score of 32 convinced the author that the student

needed a tutor. After working with a tutor, the student showed considerable improvement on

Exam 2. A more precise way to detect outliers is presented in Section 3.3.

F I G U R E 2 . 1 8 Comparing Exam Scores Using Dot Plots

(a) Dot Plot of Scores on Exam 1: Before Attendance Policy

(b) Dot Plot of Scores on Exam 2: After Attendance Policy

Dot Plot for Exam 2

30 40 50 60 70 80 90 100

Score 

Dot Plot for Exam 1

30 40 50 60 70 80 90 100

Score 

Exercises for Section 2.3
CONCEPTS

2.26 When we construct a dot plot, what does the horizontal axis represent? What does each dot represent?

2.27 If a data set consists of 1,000 measurements, would you summarize the data set using a histogram

or a dot plot? Explain.

METHODS AND APPLICATIONS

2.28 The following data consist of the number of students who were absent in a professor’s statistics

class each day during the last month. AbsenceData

2 0 3 1 2 5 8 0 1 4

1 10 6 2 2 0 3 6 0 1

Construct a dot plot of these data, and then describe the distribution of absences.

2.29 The following are the revenue growth rates for the 30 fastest-growing companies as listed March

16, 2005 on the Fortune magazine website. RevGrowth

93% 43% 91% 49% 70% 44% 71% 70% 52% 59%

33% 40% 60% 35% 51% 48% 39% 61% 25% 87%

87% 46% 38% 30% 33% 43% 29% 38% 60% 32%

Source: Fortune.com (accessed March 16, 2005)

Develop a dot plot for these data and describe the distribution of revenue growth rates.
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2.30 The yearly home run totals for Babe Ruth during his career as a New York Yankee are as follows

(the totals are arranged in increasing order): 22, 25, 34, 35, 41, 41, 46, 46, 46, 47, 49, 54, 54, 59,

60. Construct a dot plot for these data and then describe the distribution of home run totals.

RuthsHomers

2.4 Stem-and-Leaf Displays 
Another simple graph that can be used to quickly summarize a data set is called a stem-and-leaf

display. This kind of graph places the measurements in order from smallest to largest, and allows

the analyst to simultaneously see all of the measurements in the data set and see the shape of the

data set’s distribution.
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Construct
and inter-

pret stem-and-leaf
displays.

LO5

EXAMPLE 2.4 The Car Mileage Case

Table 2.14 presents the sample of 50 gas mileages for the new midsize model previously intro-

duced in Chapter 1. To develop a stem-and-leaf display, we note that the sample mileages range

from 29.8 to 33.3 and we place the leading digits of these mileages—the whole numbers 29, 30,

31, 32, and 33—in a column on the left side of a vertical line as follows.

29

30

31

32

33

This vertical arrangement of leading digits forms the stem of the display. Next, we pass through

the mileages in Table 2.14 one at a time and place each last digit (the tenths place) to the right

of the vertical line in the row corresponding to its leading digits. For instance, the first three

mileages—30.8, 31.7, and 30.1—are arranged as follows:

29

30 8 1

31 7

32

33

We form the leaves of the display by continuing this procedure as we pass through all

50 mileages. After recording the last digit for each of the mileages, we sort the digits in each row

from smallest to largest and obtain the stem-and-leaf display that follows:

29 8

30 1 3 4 5 5 6 7 7 8 8 8 

31 0 0 1 2 3 3 4 4 4 4 4 5 5 6 6 7 7 7 8 8 9 9

32 0 1 1 1 2 3 3 4 4 5 5 7 7 8

33 0 3

As we have said, the numbers to the left of the vertical line form the stem of the display. Each

number to the right of the vertical line is a leaf. Each combination of a stem value and a leaf value

T A B L E 2 . 1 4 A Sample of 50 Mileages for a New Midsize Model GasMilesDS

30.8 30.8 32.1 32.3 32.7

31.7 30.4 31.4 32.7 31.4

30.1 32.5 30.8 31.2 31.8

31.6 30.3 32.8 30.7 31.9

32.1 31.3 31.9 31.7 33.0

33.3 32.1 31.4 31.4 31.5

31.3 32.5 32.4 32.2 31.6

31.0 31.8 31.0 31.5 30.6

32.0 30.5 29.8 31.7 32.3

32.4 30.5 31.1 30.7 31.4

C
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represents a measurement in the data set. For instance, the first row in the display

29 8

tells us that the first two digits are 29 and that the last (tenth place) digit is 8—that is, this com-

bination represents the mileage 29.8 mpg. Similarly, the last row

33 0 3

represents the mileages 33.0 mpg and 33.3 mpg.

The entire stem-and-leaf display portrays the overall distribution of the sample mileages. It

groups the mileages into classes, and it graphically illustrates how many mileages are in each

class, as well as how the mileages are distributed within each class. The first class corresponds to

the stem 29 and consists of the mileages from 29.0 to 29.9. There is one mileage—29.8—in this

class. The second class corresponds to the stem 30 and consists of the mileages from 30.0 to 30.9.

There are 11 mileages in this class. Similarly, the third, fourth, and fifth classes correspond to the

stems 31, 32, and 33 and contain, respectively, 22 mileages, 14 mileages, and 2 mileages. More-

over, the stem-and-leaf display shows that the distribution of mileages is quite symmetrical. To

see this, imagine turning the stem-and-leaf display on its side so that the vertical line becomes

a horizontal number line. We see that the display now resembles a symmetrically shaped

histogram. However, the stem-and-leaf display is advantageous because it allows us to actually

see the measurements in the data set in addition to the distribution’s shape.

When constructing a stem-and-leaf display, there are no rules that dictate the number of stem

values (rows) that should be used. If we feel that the display has collapsed the mileages too

closely together, we can stretch the display by assigning each set of leading digits to two or more

rows. This is called splitting the stems. For example, in the following stem-and-leaf display of the

mileages the first (uppermost) stem value of 30 is used to represent mileages between 30.0 and

30.4. The second stem value of 30 is used to represent mileages between 30.5 and 30.9.

29 8

30 1 3 4

30 5 5 6 7 7 8 8 8 

31 0 0 1 2 3 3 4 4 4 4 4

31 5 5 6 6 7 7 7 8 8 9 9

32 0 1 1 1 2 3 3 4 4

32 5 5 7 7 8

33 0 3

Notice that, in this particular case, splitting the stems produces a display that seems to more

clearly reveal the symmetrical shape of the distribution of mileages.

Most statistical software packages can be used to construct stem-and-leaf displays. Figure 2.19

gives a MINITAB stem-and-leaf display of the 50 sample mileages. This output has been obtained

by splitting the stems—MINITAB produced this display automatically. MINITAB also provides

Stem-and-Leaf Display: Mpg

Stem-and-leaf of Mpg N = 50

Leaf unit = 0.10

1    29 8

4    30 134

12   30 55677888

23   31 00123344444

(11)  31 55667778899

16   32 011123344

7    32 55778

2    33 03

F I G U R E 2 . 1 9 MINITAB Stem-and-Leaf Display of the 50 Mileages



an additional column of numbers (on the left) that provides information about how many mileages

are in the various rows. For example, if we look at the MINITAB output, the 11 (in parentheses)

tells us that there are 11 mileages between 31.5 mpg and 31.9 mpg. The 12 (no parentheses) tells

us that a total of 12 mileages are at or below 30.9 mpg, while the 7 tells us that a total of 7 mileages

are at or above 32.5 mpg. 

It is possible to construct a stem-and-leaf display from measurements containing any number

of digits. To see how this can be done, consider the following data which consists of the number of

DVD players sold by an electronics manufacturer for each of the last 12 months.

13,502 15,932 14,739 15,249 14,312 17,111 DVDPlayers

19,010 16,121 16,708 17,886 15,665 16,475

To construct a stem-and-leaf display, we will use only the first three digits of each sales value and

we will define leaf values consisting of one digit. The stem will consist of the values 13, 14, 15,

16, 17, 18, and 19 (which represent thousands of units sold). Each leaf will represent the remain-

ing three digits rounded to the nearest 100 units sold. For example, 13,502 will be represented

by placing the leaf value 5 in the row corresponding to 13. To express the fact that the leaf 

5 represents 500, we say that the leaf unit is 100. Using this procedure, we obtain the following

stem-and-leaf display:

Leaf unit  100

13 5

14 3 7

15 2 7 9

16 1 5 7

17 1 9

18

19 0

The standard practice of always using a single digit for each leaf allows us to construct a stem-

and-leaf display for measurements having any number of digits as long as we appropriately define

a leaf unit. However, it is not possible to recover the original measurements from such a display.

If we do not have the original measurements, the best we can do is to approximate them by

multiplying the digits in the display by the leaf unit. For instance, the measurements in the

row corresponding to the stem value 17 can be approximated to be 171  (100)  17,100 and

179 (100) 17,900. In general, leaf units can be any power of 10 such as 0.1, 1, 10, 100, 1000,

and so on. If no leaf unit is given for a stem-and-leaf display, we assume its value is 1.0.

We summarize how to set up a stem-and-leaf display in the following box:

DS
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Constructing a Stem-and-Leaf Display

3 To the right of the vertical line, enter the leaf for

each measurement into the row corresponding

to the proper stem value. Each leaf should be a

single digit—these can be rounded values that

were originally more than one digit if we are

using an appropriately defined leaf unit.

4 Rearrange the leaves so that they are in increas-

ing order from left to right.

1 Decide what units will be used for the stems and

the leaves. Each leaf must be a single digit and

the stem values will consist of appropriate lead-

ing digits. As a general rule, there should be

between 5 and 20 stem values.

2 Place the stem values in a column to the left of a

vertical line with the smallest value at the top of

the column and the largest value at the bottom.

If we wish to compare two distributions, it is convenient to construct a back-to-back stem-

and-leaf display. Figure 2.20 presents a back-to-back stem-and-leaf display for the previously

discussed exam scores. The left side of the display summarizes the scores for the first exam.

Remember, this exam was given before implementing a strict attendance policy. The right side of

the display summarizes the scores for the second exam (which was given after imposing the

attendance policy). Looking at the left side of the display, we see that for the first exam there are two

concentrations of scores—those in the 80s and 90s and those in the 60s. The right side of the
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display shows that the attendance policy eliminated the concentration of scores in the 60s and

illustrates that the scores on exam 2 are almost single peaked and somewhat skewed to the left.

Stem-and-leaf displays are useful for detecting outliers, which are unusually large or small

observations that are well separated from the remaining observations. For example, the stem-and-

leaf display for exam 1 indicates that the score 32 seems unusually low. How we handle an out-

lier depends on its cause. If the outlier results from a measurement error or an error in recording

or processing the data, it should be corrected. If such an outlier cannot be corrected, it should be

discarded. If an outlier is not the result of an error in measuring or recording the data, its cause may

reveal important information. For example, the outlying exam score of 32 convinced the author

that the student needed a tutor. After working with a tutor, the student showed considerable

improvement on Exam 2. A more precise way to detect outliers is presented in Section 3.3.

F I G U R E 2 . 2 0 A Back-to-Back Stem-and-Leaf Display of the Exam Scores

3
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Exam 1 Exam 2

Exercises for Section 2.4
CONCEPTS

2.31 Explain the difference between a histogram and a stem-and-leaf display.

2.32 What are the advantages of using a stem-and-leaf display?

2.33 If a data set consists of 1,000 measurements, would you summarize the data set by using a stem-

and-leaf display or a histogram? Explain.

METHODS AND APPLICATIONS

2.34 The following data consist of the 2007 revenue growth rates (in percent) for a group of 20 firms.

Construct a stem-and-leaf display for these data. RevGrow2007

36 59 42 65 91 32 56 28 49 51

30 55 33 63 70 44 42 83 53 43

2.35 The following data consist of the 2007 profit margins (in percent) for a group of 20 firms. 

Construct a stem-and-leaf display for these data. ProfitMar2007

25.2 16.1 22.2 15.2 14.1 15.2 14.4 15.9 10.4 14.0

16.4 13.9 10.4 13.8 14.9 16.1 15.8 13.2 16.8 12.6

2.36 The following data consist of the 2007 sales figures (in millions of dollars) for a group of 20 firms.

Construct a stem-and-leaf display for these data. Use a leaf unit equal to 100. Sales2007

6835 1973 2820 5358 1233 3291 2707 3291 2675 3707

3517 1449 2384 1376 1725 6047 7903 4616 1541 4189

2.37 Figure 2.21 gives a stem-and-leaf display of the revenue growth rates (in percent) for the

30 fastest-growing companies as listed on March 16, 2005 on the Fortune magazine website.

a Use the stem-and-leaf display to describe the distribution of revenue growth rates.

b Write out the 30 observed revenue growth rates. That is, write out the original data.
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2.38 THE TRASH BAG CASE TrashBag

Figure 2.22 gives a stem-and-leaf display of the sample of 40 breaking strengths in the trash bag case.

a Use the stem-and-leaf display to describe the distribution of breaking strengths.

b Write out the 10 smallest breaking strengths as they would be expressed in the original data.

2.39 Babe Ruth’s record of 60 home runs in a single year was broken by Roger Maris, who hit 61

home runs in 1961. The yearly home run totals for Ruth in his career as a New York Yankee are

(arranged in increasing order) 22, 25, 34, 35, 41, 41, 46, 46, 46, 47, 49, 54, 54, 59, and 60. The

yearly home run totals for Maris over his career in the American League are (arranged in increas-

ing order) 8, 13, 14, 16, 23, 26, 28, 33, 39, and 61. Compare Ruth’s and Maris’s home run totals

by constructing a back-to-back stem-and-leaf display. What would you conclude about Maris’s

record-breaking year? HomeRuns

2.40 In March 2007 USA Today reported that more than 2.1 million Americans with a home missed at

least one mortgage payment at the end of 2006. In addition, the rate of new foreclosures was re-

ported to be at an all-time high. Table 2.15 gives the mortgage delinquency rates for each state and

the District of Columbia as reported by USAToday.com on March 13, 2007. DelinqRateDS

DS
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F I G U R E 2 . 2 1 Stem-and-Leaf Display of Revenue

Growth Rates (in percent) (for 

Exercise 2.37)

Stem-and-leaf of revenue growth N = 30

Leaf unit = 1.0

2 2 59

5 3 0233

9 3 5889

13 4 0334

(3) 4 689

13  5 12

11 5 9

10 6 001

7 6

7 7 001

4 7

4 8

4 8 77

2 9 13

Data Source: Fortune.com (accessed March 16, 2005)

F I G U R E 2 . 2 2 Stem-and-Leaf Display of the 40

Breaking Strengths (for Exercise 2.38)

Stem-and-leaf plot for strength

Stem unit = 1 Leaf unit = 0.1

Frequency Stem Leaf

1 46 8
0 47
1 47 5
2 48 2 3
2 48 5 8
4 49 0 2 3 4
4 49 5 6 8 9
4 50 0 1 2 3
6 50 5 6 7 8 9 9
5 51 0 1 2 3 4
3 51 5 7 9
2 52 0 3
2 52 5 6
2 53 0 2
1 53 5
1 54 0

40

Mississippi 10.6%

Louisiana 9.1%

Michigan 7.9%

Indiana 7.8%

Georgia 7.5%

West Virginia 7.4%

Texas 7.4%

Tennessee 7.3%

Ohio 7.3%

Alabama 7.1%

Kentucky 6.3%

South Carolina 6.3%

Pennsylvania 6.3%

North Carolina 6.1%

Arkansas 6.1%

Missouri 6.1%

Oklahoma 6.1%

Illinois 5.4%

Kansas 5.1%

Rhode Island 5.0%

Maine 4.9%

Florida 4.9%

New York 4.8%

Nebraska 4.7%

Massachusetts 4.5%

New Jersey 4.5%

Delaware 4.5%

Iowa 4.4%

New Hampshire 4.4%

Colorado 4.4%

New Mexico 4.3%

Connecticut 4.3%

Maryland 4.3%

Wisconsin 4.1%

Nevada 4.1%

Utah 4.0%

Minnesota 4.0%

Dist. of Columbia 3.7%

Virginia 3.7%

Arizona 3.5%

Vermont 3.4%

Idaho 3.4%

California 3.3%

Alaska 3.1%

Washington 2.9%

South Dakota 2.9%

Wyoming 2.9%

Montana 2.8%

North Dakota 2.7%

Oregon 2.6%

Hawaii 2.4%

T A B L E 2 . 1 5 Mortgage Delinquency Rates for Each of the 50 States and the District of Columbia as Reported 

by USAToday.com on March 13, 2007 (for Exercise 2.40) DelinqRateDS

Source: Mortgage Bankers Association as reported by Noelle Knox, “Record foreclosures hit mortgage lenders,” USA Today, March 13, 2007, 
http://www.usatoday.com/money/economy/housing/2007-03-13-foreclosures_N.htm
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a Construct a stem-and-leaf display of the mortgage delinquency rates and describe the distribu-

tion of these rates.

b Do there appear to be any rates that are outliers? Can you suggest a reason for any possible outliers?

2.41 THE VIDEO GAME SATISFACTION RATING CASE VideoGame

Recall that 65 purchasers have participated in a survey and have rated the XYZ-Box video game sys-

tem. The composite ratings that have been obtained are as follows:

39 38 40 40 40 46 43 38 44 44 44

45 42 42 47 46 45 41 43 46 44 42

38 46 45 44 41 45 40 36 48 44 47

42 44 44 43 43 46 43 44 44 46 43

42 40 42 45 39 43 44 44 41 39 45

41 39 46 45 43 47 41 45 45 41 

a Construct a stem-and-leaf display for the 65 composite ratings. Hint: Each whole number rating

can be written with an “implied tenth place” of zero. For instance, 39 can be written as 39.0. Use

the implied zeros as the leaf values and the whole numbers 36, 37, 38, 39, etc. as the stem values.

b Describe the distribution of composite ratings.

c If we consider a purchaser to be “very satisfied” if his or her composite score is at least 42, can

we say that almost all purchasers of the XYZ-Box video game system are “very satisfied”?

2.5 Cross-tabulation Tables (Optional) 
Previous sections in this chapter have presented methods for summarizing data for a single vari-

able. Often, however, we wish to use statistics to study possible relationships between several

variables. In this section we present a simple way to study the relationship between two variables.

A cross-tabulation table classifies data on two dimensions. Such a table consists of rows and

columns—the rows classify the data according to one dimension and the columns classify the

data according to a second dimension.

DS

Examine
the rela-

tionships between
variables by using
cross-tabulation
tables (Optional).
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EXAMPLE 2.5 The Investor Satisfaction Case

An investment broker sells several kinds of investment products—a stock fund, a bond fund, and

a tax-deferred annuity. The broker wishes to study whether client satisfaction with its products

and services depends on the type of investment product purchased. To do this, 100 of the broker’s

clients are randomly selected from the population of clients who have purchased shares in exactly

one of the funds. The broker records the fund type purchased by each client and has one of its in-

vestment counselors personally contact the client. When contacted, the client is asked to rate his

or her level of satisfaction with the purchased fund as high, medium, or low. The resulting data

are given in Table 2.16.

Looking at the raw data in Table 2.16, it is difficult to see whether the level of client satisfac-

tion varies depending on the fund type. We can look at the data in an organized way by construct-

ing a cross-tabulation table. A cross-tabulation of fund type versus level of client satisfaction is

shown in Table 2.17. The classification categories for the two variables are defined along the left

and top margins of the table. The three row labels—bond fund, stock fund, and tax deferred

annuity—define the three fund categories and are given in the left table margin. The three column

labels—high, medium, and low—define the three levels of client satisfaction and are given along

the top table margin. Each row and column combination, that is, each fund type and level of sat-

isfaction combination, defines what we call a “cell” in the table. Because each of the randomly

selected clients has invested in exactly one fund type and has reported exactly one level of satis-

faction, each client can be placed in a particular cell in the cross-tabulation table. For example,

because client number 1 in Table 2.16 has invested in the bond fund and reports a high level of

client satisfaction, client number 1 can be placed in the upper left cell of the table (the cell defined

by the Bond Fund row and High Satisfaction column). 

We fill in the cells in the table by moving through the 100 randomly selected clients and by

tabulating the number of clients who can be placed in each cell. For instance, moving through

the 100 clients results in placing 15 clients in the “bond fund—high” cell, 12 clients in the

“bond fund—medium” cell, and so forth. The counts in the cells are called the cell frequencies.

C



In Table 2.17 these frequencies tell us that 15 clients invested in the bond fund and reported a

high level of satisfaction, 4 clients invested in the stock fund and reported a medium level of sat-

isfaction, and so forth.

The far right column in the table (labeled Total) is obtained by summing the cell frequencies

across the rows. For instance, these totals tell us that 15  12  3  30 clients invested in the

bond fund, 24  4  2  30 clients invested in the stock fund, and 1  24  15  40 clients

invested in the tax deferred annuity. These row totals provide a frequency distribution for the

different fund types. By dividing the row totals by the total of 100 clients surveyed, we can
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T A B L E 2 . 1 7 A Cross-tabulation Table of Fund Type versus Level of Client Satisfaction

Level of Satisfaction

Fund Type High Medium Low Total

Bond Fund 15 12 3 30

Stock Fund 24 4 2 30

Tax Deferred Annuity 1 24 15 40

Total 40 40 20 100

Fund Level of
Client Type Satisfaction

1 BOND HIGH

2 STOCK HIGH

3 TAXDEF MED

4 TAXDEF MED

5 STOCK LOW

6 STOCK HIGH

7 STOCK HIGH

8 BOND MED

9 TAXDEF LOW

10 TAXDEF LOW

11 STOCK MED

12 BOND LOW

13 STOCK HIGH

14 TAXDEF MED

15 TAXDEF MED

16 TAXDEF LOW

17 STOCK HIGH

18 BOND HIGH

19 BOND MED

20 TAXDEF MED

21 TAXDEF MED

22 BOND HIGH

23 TAXDEF MED

24 TAXDEF LOW

25 STOCK HIGH

26 BOND HIGH

27 TAXDEF LOW

28 BOND MED

29 STOCK HIGH

30 STOCK HIGH

31 BOND MED

32 TAXDEF MED

33 BOND HIGH

34 STOCK MED

Fund Level of
Client Type Satisfaction

35 STOCK HIGH

36 BOND MED

37 TAXDEF MED

38 TAXDEF LOW

39 STOCK HIGH

40 TAXDEF MED

41 BOND HIGH

42 BOND HIGH

43 BOND LOW

44 TAXDEF LOW

45 STOCK HIGH

46 BOND HIGH

47 BOND MED

48 STOCK HIGH

49 TAXDEF MED

50 TAXDEF MED

51 STOCK HIGH

52 TAXDEF MED

53 STOCK HIGH

54 TAXDEF MED

55 STOCK LOW

56 BOND HIGH

57 STOCK HIGH

58 BOND MED

59 TAXDEF LOW

60 TAXDEF LOW

61 STOCK MED

62 BOND LOW

63 STOCK HIGH

64 TAXDEF MED

65 TAXDEF MED

66 TAXDEF LOW

67 STOCK HIGH

68 BOND HIGH

Fund Level of
Client Type Satisfaction

69 BOND MED

70 TAXDEF MED

71 TAXDEF MED

72 BOND HIGH

73 TAXDEF MED

74 TAXDEF LOW

75 STOCK HIGH

76 BOND HIGH

77 TAXDEF LOW

78 BOND MED

79 STOCK HIGH

80 STOCK HIGH

81 BOND MED

82 TAXDEF MED

83 BOND HIGH

84 STOCK MED

85 STOCK HIGH

86 BOND MED

87 TAXDEF MED

88 TAXDEF LOW

89 STOCK HIGH

90 TAXDEF MED

91 BOND HIGH

92 TAXDEF HIGH

93 TAXDEF LOW

94 TAXDEF LOW

95 STOCK HIGH

96 BOND HIGH

97 BOND MED

98 STOCK HIGH

99 TAXDEF MED

100 TAXDEF MED

T A B L E 2 . 1 6 Results of a Customer Satisfaction Survey Given to 100 Randomly Selected Clients Who Invest in One

of Three Fund Types—a Bond Fund, a Stock Fund, or a Tax-Deferred Annuity InvestDS
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obtain relative frequencies; and by multiplying each relative frequency by 100, we can obtain

percent frequencies. That is, we can obtain the frequency, relative frequency, and percent

frequency distributions for fund type as follows:

Fund Type Frequency Relative Frequency Percent Frequency

Bond fund 30 30兾100  .30 .30 (100)  30%

Stock fund 30 30兾100  .30 .30 (100)  30%

Tax deferred annuity 40 40兾100  .40 .40 (100)  40%

100

We see that 30 percent of the clients invested in the bond fund, 30 percent invested in the stock

fund, and 40 percent invested in the tax deferred annuity.

The bottom row in the table (labeled Total) is obtained by summing the cell frequencies down

the columns. For instance, these totals tell us that 15  24  1  40 clients reported a high level

of satisfaction, 12  4  24  40 clients reported a medium level of satisfaction, and 3  2  

15  20 clients reported a low level of satisfaction. These column totals provide a frequency dis-

tribution for the different satisfaction levels (see below). By dividing the column totals by the

total of 100 clients surveyed, we can obtain relative frequencies, and by multiplying each relative

frequency by 100, we can obtain percent frequencies. That is, we can obtain the frequency, rela-

tive frequency, and percent frequency distributions for level of satisfaction as follows:

Level of Satisfaction Frequency Relative Frequency Percent Frequency

High 40 40兾100  .40 .40 (100)  40%

Medium 40 40兾100  .40 .40 (100)  40%

Low 20 20兾100  .20 .20 (100)  20%

100

We see that 40 percent of all clients reported high satisfaction, 40 percent reported medium sat-

isfaction, and 20 percent reported low satisfaction.

We have seen that the totals in the margins of the cross-tabulation table give us frequency

distributions that provide information about each of the variables fund type and level of client

satisfaction. However, the main purpose of constructing the table is to investigate possible rela-

tionships between these variables. Looking at Table 2.17, we see that clients who have invested

in the stock fund seem to be highly satisfied and that those who have invested in the bond fund

seem to have a high to medium level of satisfaction. However, clients who have invested in the

tax deferred annuity seem to be less satisfied.

One good way to investigate relationships such as these is to compute row percentages and

column percentages. We compute row percentages by dividing each cell’s frequency by its cor-

responding row total and by expressing the resulting fraction as a percentage. For instance, the

row percentage for the upper lefthand cell (bond fund and high level of satisfaction) in Table 2.17

is (15兾30)  100%  50%. Similarly, column percentages are computed by dividing each

cell’s frequency by its corresponding column total and by expressing the resulting fraction as a

percentage. For example, the column percentage for the upper lefthand cell in Table 2.17 is

(15兾40)  100%  37.5%. Table 2.18 summarizes all of the row percentages for the different

fund types in Table 2.17. We see that each row in Table 2.18 gives a percentage frequency distri-

bution of level of client satisfaction given a particular fund type.

For example, the first row in Table 2.18 gives a percent frequency distribution of client sat-

isfaction for investors who have purchased shares in the bond fund. We see that 50 percent of

T A B L E 2 . 1 8 Row Percentages for Each Fund Type

Level of Satisfaction

Fund Type High Medium Low Total

Bond Fund 50% 40% 10% 100%

Stock Fund 80% 13.33% 6.67% 100%

Tax Deferred 2.5% 60% 37.5% 100%



bond fund investors report high satisfaction, while 40 percent of these investors report medium

satisfaction, and only 10 percent report low satisfaction. The other rows in Table 2.18 provide

percent frequency distributions of client satisfaction for stock fund and annuity purchasers.

All three percent frequency distributions of client satisfaction—for the bond fund, the stock

fund, and the tax deferred annuity—are illustrated using bar charts in Figure 2.23. In this figure,

the bar heights for each chart are the respective row percentages in Table 2.18. For example, these

distributions tell us that 80 percent of stock fund investors report high satisfaction, while

97.5 percent of tax deferred annuity purchasers report medium or low satisfaction. Looking at the

entire table of row percentages (or the bar charts in Figure 2.23), we might conclude that stock

fund investors are highly satisfied, that bond fund investors are quite satisfied (but, somewhat less

so than stock fund investors), and that tax-deferred-annuity purchasers are less satisfied than either

stock fund or bond fund investors. In general, row percentages and column percentages help us to

quantify relationships such as these.

In the investment example, we have cross-tabulated two qualitative variables. We can also

cross-tabulate a quantitative variable versus a qualitative variable or two quantitative variables

against each other. If we are cross-tabulating a quantitative variable, we often define categories

by using appropriate ranges. For example, if we wished to cross-tabulate level of education

(grade school, high school, college, graduate school) versus income, we might define income

classes $0–$50,000, $50,001–$100,000, $100,001–$150,000, and above $150,000.
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F I G U R E 2 . 2 3 Bar Charts Illustrating Percent Frequency Distributions of Client Satisfaction as Given by the 

Row Percentages for the Three Fund Types in Table 2.18
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Exercises for Section 2.5
CONCEPTS

2.42 Explain the purpose behind constructing a cross-tabulation table.

2.43 A cross-tabulation table consists of several “cells”. Explain how we fill the cells in the table.

2.44 Explain how to compute (1) the row percentages for a cross-tabulation table (2) the column per-

centages. What information is provided by the row percentages in a particular row of the table?

What information is provided by the column percentages in a particular column of the table?

METHODS AND APPLICATIONS

Exercises 2.45 through 2.47 are based on the following situation:

The marketing department at the Rola-Cola Bottling Company is investigating the attitudes and 

preferences of consumers towards Rola-Cola and a competing soft drink, Koka-Cola. Forty randomly 

selected shoppers are given a “blind taste-test” and are asked to give their cola preferences. The results are

given in Table 2.19—each shopper’s preference, Rola-Cola or Koka-Cola, is revealed to the shopper only

after he or she has tasted both brands without knowing which cola is which. In addition, each survey 

participant is asked to answer three more questions: (1) Have you previously purchased Rola-Cola: Yes 
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or No? (2) What is your sweetness preference for cola drinks: very sweet, sweet, or not so sweet? (3) How

many 12-packs of cola drinks does your family consume in a typical month? These responses are also

given in Table 2.19.

2.45 Construct a cross-tabulation table using cola preference (Rola or Koka) as the row variable and

Rola-Cola purchase history (Yes or No) as the column variable. Based on the table, answer the 

following.

a How many shoppers who preferred Rola-Cola in the blind taste test had previously purchased

Rola-Cola?

b How many shoppers who preferred Koka-Cola in the blind taste test had not previously 

purchased Rola-Cola?

c What kind of relationship, if any, seems to exist between cola preference and Rola-Cola 

purchase history?

2.46 Construct a cross-tabulation table using cola preference (Rola or Koka) as the row variable and

sweetness preference (very sweet, sweet, or not so sweet) as the column variable. Based on the

table, answer the following:

a How many shoppers who preferred Rola-Cola in the blind taste test said that they preferred a

cola drink to be either very sweet or sweet?

b How many shoppers who preferred Koka-Cola in the blind taste test said that they preferred a

cola drink to be not so sweet?

c What kind of relationship, if any, seems to exist between cola preference and sweetness

preference?

2.47 Construct a cross-tabulation table using cola preference (Rola or Koka) as the row variable and the

number of 12-packs consumed in a typical month (categories 0 through 5, 6 through 10, and more

than 10) as the column variable. Based on the table, answer the following:

a How many shoppers who preferred Rola-Cola in the blind taste test purchase 10 or fewer 

12-packs of cola drinks in a typical month?

b How many shoppers who preferred Koka-Cola in the blind taste test purchase 6 or more 

12-packs of cola drinks in a typical month?

c What kind of relationship, if any, seems to exist between cola preference and cola consumption

in a typical month?

2.48 A marketing research firm wishes to study the relationship between wine consumption and

whether a person likes to watch professional tennis on television. One hundred randomly selected

T A B L E 2 . 1 9 Rola-Cola Bottling Company Survey Results ColaSurveyDS

Cola Previously Sweetness Monthly Cola
Shopper Preference Purchased? Preference Consumption

1 Koka No Very Sweet 4

2 Rola Yes Sweet 8

3 Koka No Not So Sweet 2

4 Rola Yes Sweet 10

5 Rola No Very Sweet 7

6 Rola Yes Not So Sweet 6

7 Koka No Very Sweet 4

8 Rola No Very Sweet 3

9 Koka No Sweet 3

10 Rola No Very Sweet 5

11 Rola Yes Sweet 7

12 Rola Yes Not So Sweet 13

13 Rola Yes Very Sweet 6

14 Koka No Very Sweet 2

15 Koka No Not So Sweet 7

16 Rola Yes Sweet 9

17 Koka No Not So Sweet 1

18 Rola Yes Very Sweet 5

19 Rola No Sweet 4

20 Rola No Sweet 12

Cola Previously Sweetness Monthly Cola
Shopper Preference Purchased? Preference Consumption

21 Koka No Very Sweet 4

22 Rola Yes Not So Sweet 9

23 Rola Yes Not So Sweet 3

24 Koka No Not So Sweet 2

25 Koka No Sweet 5

26 Rola Yes Very Sweet 7

27 Koka No Very Sweet 7

28 Rola Yes Sweet 8

29 Rola Yes Not So Sweet 6

30 Koka No Not So Sweet 3

31 Koka Yes Sweet 10

32 Rola Yes Very Sweet 8

33 Koka Yes Sweet 4

34 Rola No Sweet 5

35 Rola Yes Not So Sweet 3

36 Koka No Very Sweet 11

37 Rola Yes Not So Sweet 9

38 Rola No Very Sweet 6

39 Koka No Not So Sweet 2

40 Rola Yes Sweet 5



people are asked whether they drink wine and whether they watch tennis. The following results are

obtained: WineCons

Watch Do Not
Tennis Watch Tennis Total

Drink Wine 16 24 40

Do Not Drink Wine 4 56 60

Total 20 80 100

a What percentage of those surveyed both watch tennis and drink wine? What percentage of

those surveyed do neither?

b Using the survey data, construct a table of row percentages.

c Using the survey data, construct a table of column percentages.

d What kind of relationship, if any, seems to exist between whether or not a person watches 

tennis and whether or not a person drinks wine?

e Illustrate your conclusion of part (d) by plotting bar charts of appropriate column percentages

for people who watch tennis and for people who do not watch tennis.

2.49 In a survey of 1,000 randomly selected U.S. citizens aged 21 years or older, 721 believed that the

amount of violent television programming had increased over the past 10 years, 454 believed that

the overall quality of television programming had gotten worse over the past 10 years, and 362 

believed both.

a Use this information to fill in the cross-tabulation table below.

TV Violence TV Violence 
Increased Not Increased Total

TV Quality Worse

TV Quality Not Worse

Total

b Using the completed cross-tabulation table, construct a table of row percentages.

c Using the completed cross-tabulation table, construct a table of column percentages.

d What kind of relationship, if any, seems to exist between whether a person believed that TV

violence had increased over the past ten years and whether a person believed that the overall

quality of TV programming had gotten worse over the past ten years?

e Illustrate your answer to part (d) by constructing bar charts of appropriate row percentages.

In Exercises 2.50 and 2.51 we consider the results of a Gallup Lifestyle Poll about restaurant tipping

habits as reported by the Gallup News Service on January 8, 2007. The poll asked Americans to

recommend the percentage of a restaurant bill that should be left as a tip. As reported on galluppoll.com,

Americans gave an overall (average) recommendation of 16.2 percent.

2.50 As part of its study, Gallup investigated a possible relationship between tipping attitudes and 

income. Using the poll results, the following row percentages can be obtained for three income

ranges—less than $30,000; $30,000 through $74,999; and $75,000 or more. RowPercents 

Appropriate Tip Percent*

Income Less than 15% 15% 16–19% 20% or more Total

Less than $30,000 28.41% 42.04% 1.14% 28.41% 100%

$30,000 through $74,999 15.31% 42.86% 6.12% 35.71% 100%

$75,000 or more 8.16% 32.66% 9.18% 50.00% 100%

*Among those surveyed having an opinion.

a Construct a percentage bar chart of recommended tip percentage for each of the three income

ranges.

b Using the bar charts, describe the relationship between recommended tip percentage and 

income level.

2.51 Gallup also asked survey participants if they have ever eaten at a restaurant and left no tip at

all because of poor service. Almost half (46 percent) of those surveyed said they have done so.

Because it seems that whether or not a person has left a restaurant without tipping might be

related to a person’s generosity in terms of recommended tip percentage, the survey investigated

this possible relationship. Using the poll results, the column percentages at the top of page 67

can be obtained for each of the categories “Yes, have left without tipping” and “No, have not

left without tipping.” ColPercentsDS

DS

DS
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Tip less than 15% Tip 15% through 19% Tip 20% or more

Yes, have left 
without tipping 64% 50% 35%

No, have not left 
without tipping 36% 50% 65%

Total 100% 100% 100%

a Construct a percentage bar chart of the categories “Yes, have left without tipping” and “No,

have not left without tipping” for each of the tip categories “less than 15%,” “15% through

19%,” and “20% or more.”

b Using the bar charts, describe the relationship between whether or not a person has left without

tipping and tipping generosity.

2.6 Scatter Plots (Optional) 
We often study relationships between variables by using graphical methods. A simple graph that

can be used to study the relationship between two variables is called a scatter plot. As an exam-

ple, suppose that a marketing manager wishes to investigate the relationship between the sales

volume (in thousands of units) of a product and the amount spent (in units of $10,000) on adver-

tising the product. To do this, the marketing manager randomly selects 10 sales regions having

equal sales potential. The manager assigns a different level of advertising expenditure for Janu-

ary 2008 to each sales region as shown in Table 2.20. At the end of the month, the sales volume

for each region is recorded as also shown in Table 2.20.

A scatter plot of these data is given in Figure 2.24. To construct this plot, we place the variable

advertising expenditure (denoted x) on the horizontal axis and we place the variable sales volume

(denoted y) on the vertical axis. For the first sales region, advertising expenditure equals 5 and

sales volume equals 89. We plot the point with coordinates x⫽ 5 and y⫽ 89 on the scatter plot to

represent this sales region. Points for the other sales regions are plotted similarly. The scatter plot

shows that there is a positive relationship between advertising expenditure and sales volume—that

is, higher values of sales volume are associated with higher levels of advertising expenditure.

We have drawn a straight line through the plotted points of the scatter plot to represent the

relationship between advertising expenditure and sales volume. We often do this when the rela-

tionship between two variables appears to be straight line, or linear. Of course, the relationship

between x and y in Figure 2.24 is not perfectly linear—not all of the points in the scatter plot are

exactly on the line. Nevertheless, because the relationship between x and y appears to be approxi-

mately linear, it seems reasonable to represent the general relationship between these variables

using a straight line. In future chapters we will explain ways to quantify such a relationship—that

is, describe such a relationship numerically. We will show that we can statistically express the

strength of a linear relationship and that we can calculate the equation of the line that best fits the

points of a scatter plot.

Examine

the rela-

tionships between

variables by using

scatter plots

(Optional).

LO7

F I G U R E 2 . 2 4 A Scatter Plot of Sales Volume versus

Advertising Expenditure
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T A B L E 2 . 2 0 Values of Advertising Expenditure (in

$10,000s) and Sales Volume (in 1000s)

for Ten Sales Regions SalesPlotDS

Sales Advertising Sales 
Region Expenditure, x Volume, y

1 5 89

2 6 87

3 7 98

4 8 110

5 9 103

6 10 114

7 11 116

8 12 110

9 13 126

10 14 130



A scatter plot can reveal various kinds of relationships. For instance, Figures 2.25, 2.26, and

2.27 show several possible relationships between two variables x and y. Figure 2.25 shows a

relationship similar to that of our advertising expenditure—sales volume example—here y has a

tendency to increase as x increases. Figure 2.26 illustrates a situation in which x and y do not

appear to have any linear relationship. Figure 2.27 illustrates a negative linear relationship—here

y has a tendency to decrease as x increases. Finally, not all relationships are linear. In Chapter 15

we will consider how to represent and quantify curved relationships.

To conclude this section, recall from Chapter 1 that a runs plot—also called a time series plot—

is a plot of individual process measurements versus time. This implies that a runs plot is a scatter

plot, where values of a process variable are plotted on the vertical axis versus corresponding val-

ues of time on the horizontal axis.
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F I G U R E 2 . 2 5 A Positive Linear
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F I G U R E 2 . 2 6 Little or No Linear
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F I G U R E 2 . 2 7 A Negative Linear

Relationship
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Exercises for Section 2.6
CONCEPTS

2.52 Explain the purpose for constructing a scatter plot of y versus x.

2.53 Draw a scatter plot of y versus x in which y increases in a linear fashion as x increases.

2.54 Draw a scatter plot of y versus x in which y decreases in a linear fashion as x increases.

2.55 Draw a scatter plot of y versus x in which there is little or no linear relationship between y and x.

2.56 Discuss the relationship between a scatter plot and a runs plot.

METHODS AND APPLICATIONS

2.57 THE REAL ESTATE SALES PRICE CASE RealEst

A real estate agency collects data concerning y the sales price of a house (in thousands of

dollars), and x  the home size (in hundreds of square feet). The data are given in Table 2.21.

Construct a scatter plot of y versus x and interpret what the plot says.

2.58 THE FUEL CONSUMPTION CASE FuelCon1

Table 2.22 gives the average hourly outdoor temperature (x) in a city during a week and the city’s

natural gas consumption (y) during the week for each of the previous eight weeks (the temperature

readings are expressed in degrees Fahrenheit and the natural gas consumptions are expressed in

millions of cubic feet of natural gas). The MINITAB output in Figure 2.28 gives a scatter plot of 

y versus x. Discuss the nature of the relationship between y and x.

DS

DS

T A B L E 2 . 2 2 The Fuel Consumption Data FuelCon1DS

Week 1 2 3 4 5 6 7 8

Temperature, x 28.0 28.0 32.5 39.0 45.9 57.8 58.1 62.5

Natural Gas 
Consumption, y 12.4 11.7 12.4 10.8 9.4 9.5 8.0 7.5

T A B L E 2 . 2 1

Real Estate Sales

Price Data

RealEstDS

Sales Home 
Price (y) Size (x)

180 23

98.1 11

173.1 20

136.5 17

141 15

165.9 21

193.5 24

127.8 13

163.5 19

172.5 25

Source: Reprinted with
permission from The Real

Estate Appraiser and 

Analyst Spring 1986 issue.
Copyright 1986 by the 
Appraisal Institute,
Chicago, Illinois.
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2.59 Figure 2.29 gives a runs plot of the average U.S. monthly pay cable TV rate (for premium 

services) for each year from 1975 to 2005. Figure 2.29 also gives a runs plot of the average

monthly non-cable (mostly satellite) TV rate (for premium services) for each year from 1994 to

2005.7 Satellite TV became a serious competitor to cable TV in the early 1990s. Does it appear that

the emergence of satellite TV had an influence on cable TV rates? What happened after satellite

TV became more established in the marketplace? PayTVRates

2.60 Figure 2.30 gives a scatter plot of the number of units sold, y, of 20 varieties of a canned soup 

versus the amount of shelf space, x, allocated to each variety. Do you think that sales is affected by

the amount of allocated shelf space, or vice versa?

2.61 THE FAST-FOOD RESTAURANT RATING CASE FastFood

Figure 2.31 presents the ratings given by 406 randomly selected individuals of six fast food restau-

rants on the basis of taste, convenience, familiarity, and price. The data were collected by researchers

at The Ohio State University in the early 1990s. Here, 1 is the best rating and 6 the worst. In addi-

tion, each individual ranked the restaurants from 1 through 6 on the basis of overall preference. 

Interpret the Excel scatter plot, and construct and interpret other relevant scatter plots.

DS

DS

7The time series data for this exercise are on the website for this book.

F I G U R E 2 . 2 8 MINITAB Scatter Plot of the 

Fuel Consumption Data (for 
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F I G U R E 2 . 2 9 Runs Plots for Exercise 2.59
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F I G U R E 2 . 3 0 A Scatter Plot of Units
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(for Exercise 2.60)
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F I G U R E 2 . 3 1 Excel Output of the Mean Restaurant Ratings

and a Scatter Plot of Mean Preference versus

Mean Taste (for Exercise 2.61) FastFoodDS
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2.7 Misleading Graphs and Charts (Optional) 
The statistical analyst’s goal should be to present the most accurate and truthful portrayal of a

data set that is possible. Such a presentation allows managers using the analysis to make in-

formed decisions. However, it is possible to construct statistical summaries that are misleading.

Although we do not advocate using misleading statistics, you should be aware of some of the

ways statistical graphs and charts can be manipulated in order to distort the truth. By knowing

what to look for, you can avoid being misled by a (we hope) small number of unscrupulous

practitioners.

As an example, suppose that the faculty at a major university will soon vote on a proposal to

join a union. Both the union organizers and the university administration plan to distribute recent

salary statistics to the entire faculty. Suppose that the mean faculty salary at the university and the

mean salary increase at the university (expressed as a percentage) for each of the years 2004

through 2007 are as follows:

Mean Salary Mean Salary
Year (All Ranks) Increase (Percent)

2004 $60,000 3.0%

2005 61,600 4.0

2006 63,500 4.5

2007 66,100 6.0

The university administration does not want the faculty to unionize and, therefore, hopes to

convince the faculty that substantial progress has been made to increase salaries without a union.

On the other hand, the union organizers wish to portray the salary increases as minimal so that

the faculty will feel the need to unionize.

Figure 2.32 gives two bar charts of the mean salaries at the university for each year from 2004

to 2007. Notice that in Figure 2.32(a) the administration has started the vertical scale of the bar

chart at a salary of $58,000 by using a scale break ( ). Alternatively, the chart could be set up

without the scale break by simply starting the vertical scale at $58,000. Starting the vertical scale

at a value far above zero makes the salary increases look more dramatic. Notice that when the

union organizers present the bar chart in Figure 2.32(b), which has a vertical scale starting at

zero, the salary increases look far less impressive.

Figure 2.33 presents two bar charts of the mean salary increases (in percentages) at the uni-

versity for each year from 2004 to 2007. In Figure 2.33(a), the administration has made the

widths of the bars representing the percentage increases proportional to their heights. This makes

the upward movement in the mean salary increases look more dramatic because the observer’s

eye tends to compare the areas of the bars, while the improvements in the mean salary increases

are really only proportional to the heights of the bars. When the union organizers present the bar

chart of Figure 2.33(b), the improvements in the mean salary increases look less impressive

because each bar has the same width.
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Figure 2.34 gives two time series plots of the mean salary increases at the university from

2004 to 2007. In Figure 2.34(a) the administration has stretched the vertical axis of the graph.

That is, the vertical axis is set up so that the distances between the percentages are large. This

makes the upward trend of the mean salary increases appear to be steep. In Figure 2.34(b) the

union organizers have compressed the vertical axis (that is, the distances between the percent-

ages are small). This makes the upward trend of the mean salary increases appear to be gradual.

As we will see in the exercises, stretching and compressing the horizontal axis in a time series

plot can also greatly affect the impression given by the plot.

It is also possible to create totally different interpretations of the same statistical summary by

simply using different labeling or captions. For example, consider the bar chart of mean salary

increases in Figure 2.33(b). To create a favorable interpretation, the university administration

might use the caption “Salary Increase Is Higher for the Fourth Year in a Row.” On the other

hand, the union organizers might create a negative impression by using the caption “Salary

Increase Fails to Reach 10% for Fourth Straight Year.”

In summary, we do not approve of using statistics to mislead and distort reality. Statistics should

be used to present the most truthful and informative summary of the data that is possible. However,

it is important to carefully study any statistical summary so that you will not be misled. Look for

manipulations such as stretched or compressed axes on graphs, axes that do not begin at zero, and

bar charts with bars of varying widths.Also, carefully think about assumptions, and make your own

conclusions about the meaning of any statistical summary rather than relying on captions written

by others. Doing these things will help you to see the truth and to make well-informed decisions.
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Exercises for Section 2.7
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CONCEPTS

2.62 When we construct a bar chart or graph, what is the effect of starting the vertical axis at a value

that is far above zero? Explain.

2.63 Find an example of a misleading use of statistics in a newspaper, magazine, corporate annual

report, or other source. Then explain why your example is misleading.

METHODS AND APPLICATIONS

2.64 Figure 2.35 gives two more time series plots of the previously discussed salary increases. In

Figure 2.35(a) the administration has compressed the horizontal axis. In Figure 2.35(b) the union

organizers have stretched the horizontal axis. Discuss the different impressions given by the two

time series plots.

2.65 In the article “How to Display Data Badly” in the May 1984 issue of The American Statistician,

Howard Wainer presents a stacked bar chart of the number of public and private elementary

schools (1929–1970). This bar chart is given in Figure 2.36. Wainer also gives a line graph of the

number of private elementary schools (1930–1970). This graph is shown in Figure 2.37.
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a Looking at the bar chart of Figure 2.36, does there appear to be an increasing trend in the

number of private elementary schools from 1930 to 1970?

b Looking at the line graph of Figure 2.37, does there appear to be an increasing trend in the

number of private elementary schools from 1930 to 1970?

c Which portrayal of the data do you think is more appropriate? Explain why.

d Is either portrayal of the data entirely appropriate? Explain.

Chapter Summary

We began this chapter by explaining how to summarize qualita-

tive data. We learned that we often summarize this type of data in

a table that is called a frequency distribution. Such a table gives

the frequency, relative frequency, or percent frequency of

items that are contained in each of several nonoverlapping classes

or categories. We also learned that we can summarize qualitative

data in graphical form by using bar charts and pie charts and

that qualitative quality data are often summarized using a special

bar chart called a Pareto chart. We continued in Section 2.2 by

discussing how to graphically portray quantitative data. In partic-

ular, we explained how to summarize such data by using fre-

quency distributions and histograms. We saw that a histogram

can be constructed using frequencies, relative frequencies, or per-

centages, and that we often construct histograms using statistical

software such as MINITAB or the analysis toolpak in Excel. We

used histograms to describe the shape of a distribution and we

saw that distributions are sometimes mound shaped and sym-

metrical, but that a distribution can also be skewed (to the right

or to the left). We also learned that a frequency distribution can

be graphed by using a frequency polygon and that a graph of a

cumulative frequency distribution is called an ogive. In

Sections 2.3 and 2.4 we showed how to summarize relatively

small data sets by using dot plots and stem-and-leaf displays.

These graphics allow us to see all of the measurements in a data

set and to (simultaneously) see the shape of the data set’s distrib-

ution. Next, we learned about how to describe the relationship

between two variables. First, in optional Section 2.5 we explained

how to construct and interpret a cross-tabulation table which

classifies data on two dimensions using a table that consists of

rows and columns. Then, in optional Section 2.6 we showed how

to construct a scatter plot. Here, we plot numerical values of one

variable on a horizontal axis versus numerical values of another

variable on a vertical axis. We saw that we often use such a plot to

look at possible straight-line relationships between the variables.

Finally, in optional Section 2.7 we learned about misleading

graphs and charts. In particular, we pointed out several graphical

tricks to watch for. By careful analysis of a graph or chart, one can

avoid being misled.

Glossary of Terms

bar chart: A graphical display of data in categories made up of

vertical or horizontal bars. Each bar gives the frequency, relative

frequency, or percentage frequency of items in its corresponding

category. (page 36)

class midpoint: The point in a class that is halfway between the

lower and upper class boundaries. (page 45)

cross-tabulation table: A table consisting of rows and columns

that is used to classify data on two dimensions. (page 61)

cumulative frequency distribution: A table that summarizes

the number of measurements that are less than the upper class

boundary of each class. (page 49)

cumulative percent frequency distribution: A table that sum-

marizes the percentage of measurements that are less than the

upper class boundary of each class. (page 50)

cumulative relative frequency distribution: A table that sum-

marizes the fraction of measurements that are less than the upper

class boundary of each class. (page 50)

dot plot: A graphical portrayal of a data set that shows the data

set’s distribution by plotting individual measurements above a

horizontal axis. (page 54)

frequency distribution: A table that summarizes the number of

items (or measurements) in each of several nonoverlapping

classes. (pages 35, 44)

frequency polygon: A graphical display in which we plot points

representing each class frequency (or relative frequency or percent

frequency) above their corresponding class midpoints and con-

nect the points with line segments. (page 48)

histogram: Agraphical display of a frequency distribution, relative

frequency distribution, or percentage frequency distribution. It

divides measurements into classes and graphs the frequency, relative

frequency, or percentage frequency for each class. (pages 42, 44)

ogive: A graph of a cumulative distribution (frequencies, relative

frequencies, or percent frequencies may be used). (page 50)

outlier: An unusually large or small observation that is well sep-

arated from the remaining observations. (page 55) 

Pareto chart: A bar chart of the frequencies or percentages for

various types of defects. These are used to identify opportunities

for improvement. (page 38)

percent frequency distribution: A table that summarizes the

percentage of items (or measurements) in each of several

nonoverlapping classes. (pages 36, 44)

pie chart: A graphical display of data in categories made up of

“pie slices.” Each pie slice represents the frequency, relative

frequency, or percentage frequency of items in its corresponding

category. (page 37)

relative frequency distribution: A table that summarizes the

fraction of items (or measurements) in each of several nonover-

lapping classes. (pages 36, 44)

scatter plot: A graph that is used to study the possible relation-

ship between two variables y and x. The observed values of y are
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plotted on the vertical axis versus corresponding observed values

of x on the horizontal axis. (page 67)

skewed to the left: A distribution shape having a long tail to the

left. (page 47)

skewed to the right: A distribution shape having a long tail to

the right. (page 47)

stem-and-leaf display: A graphical portrayal of a data set that

shows the data set’s distribution by using stems consisting of

leading digits and leaves consisting of trailing digits. (page 56)

symmetrical distribution: A distribution shape having right and

left sides that are “mirror images” of each other. (page 47)

Important Formulas and Graphics

Frequency distribution: page 45

Relative frequency: page 36

Percent frequency: page 36

Bar chart: page 37

Pie chart: page 37

Pareto chart: page 38

Histogram: page 45

Frequency polygon: page 48

Cumulative distribution: page 49

Ogive: page 50

Dot plot: page 54

Stem-and-leaf display: page 58

Cross-tabulation table: page 61

Scatter plot: page 67

Time series plot: page 68

Supplementary Exercises

2.66 A manufacturer produces a bulk chemical product. Customer requirements state that this product

must have a specified viscosity when melted at a temperature of 300 F (viscosity measures how

thick and gooey the product is when melted). Chemical XB-135 is used in the production of this

chemical product, and the company’s chemists feel that the amount of chemical XB-135 may be

related to viscosity. In order to verify and quantify this relationship, 24 batches of the product are

produced. The amount (x) of chemical XB-135 (in pounds) is varied from batch to batch and the

viscosity (y) obtained for each batch is measured. Table 2.23 gives (in time order) the values of x

and the corresponding values of y obtained for the 24 batches. Viscosity

a Construct a scatter plot of viscosity (y) versus the amount (x) of chemical XB-135.

b Describe any apparent relationship between y and x.

c It might be tempting to conclude that changes in the amount of chemical XB-135 cause

changes in viscosity. Under what circumstances might such a conclusion be reasonable?

DS

T A B L E 2 . 2 3 Viscosity Data for 24 Batches of a Chemical Product Produced on August 1,

2007 ViscosityDS

Pounds of Chemical Viscosity Pounds of Chemical Viscosity
Batch XB-135 (x) (y) Batch XB-135 (x) (y)

1 10.0 31.76 13 11.2 32.93

2 10.0 31.91 14 11.2 33.19

3 10.2 32.02 15 11.4 33.35

4 10.2 31.85 16 11.4 32.76

5 10.4 32.17 17 11.6 33.33

6 10.4 32.30 18 11.6 33.19

7 10.6 32.60 19 11.8 33.28

8 10.6 32.15 20 11.8 33.57

9 10.8 32.52 21 12.0 33.60

10 10.8 32.46 22 12.0 33.43

11 11.0 32.41 23 12.2 33.91

12 11.0 32.77 24 12.2 33.76

Exercises 2.67 through 2.74 are based on the data in Table 2.24. This table gives the results of the J.D.

Power initial quality study of 2006 automobiles. Each model is rated on overall manufacturing quality 

and overall design quality on a scale from “among the best” to “the rest”—see the scoring legend at the

bottom of the table. JDPowerDS
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2.67 Develop a frequency distribution of the overall manufacturing quality ratings. Describe the 

distribution. JDPower

2.68 Develop a relative frequency distribution of the overall design quality ratings. Describe the 

distribution. JDPower

2.69 Construct a percentage bar chart of the overall manufacturing quality ratings for each of the fol-

lowing: automobiles of United States origin; automobiles of Pacific Rim origin (Japan/Korea); and

automobiles of European origin (Germany/Great Britain/Sweden). Compare the three distributions

in a written report. JDPower

2.70 Construct a percentage pie chart of the overall design quality ratings for each of the following: 

automobiles of United States origin; automobiles of Pacific Rim origin (Japan/Korea); and automo-

biles of European origin (Germany/Great Britain/Sweden). Compare the three distributions in a

written report. JDPower

2.71 Construct a crosstabulation table of automobile origin versus overall manufacturing quality rating.

Set up rows corresponding to the United States, the Pacific Rim (Japan/Korea), and Europe 

(Germany/Great Britain/Sweden), and set up columns corresponding to the ratings “among

the best” through “the rest.” Describe any apparent relationship between origin and overall 

manufacturing quality rating. JDPower

2.72 Develop a table of row percentages for the crosstabulation table you set up in Exercise 2.71. 

Using these row percentages, construct a percentage frequency distribution of overall manufactur-

ing quality rating for each of the United States, the Pacific Rim, and Europe. Illustrate these 

three frequency distributions using percent bar charts and compare the distributions in a written 

report. JDPower

2.73 Construct a crosstabulation table of automobile origin versus overall design quality rating. Set 

up rows corresponding to the United States, the Pacific Rim (Japan/Korea), and Europe 

(Germany/Great Britain/Sweden), and set up columns corresponding to the ratings “among the

best” through “the rest.” Describe any apparent relationship between origin and overall design

quality. JDPower

2.74 Develop a table of row percentages for the crosstabulation table you set up in Exercise 2.73. Using

these row percentages, construct a percentage frequency distribution of overall design quality rating

for each of the United States, the Pacific Rim, and Europe. Illustrate these three frequency distribu-

tions using percentage pie charts and compare the distributions in a written report. JDPowerDS

DS

DS

DS

DS

DS

DS

DS

T A B L E 2 . 2 4 Results of the J. D. Power Initial Quality Study of 2006 Automobiles JDPowerDS

Company Country of Overall Quality Overall Quality 
Origin Manufacturing Design

Acura Japan

Audi Germany

BMW Germany

Buick United States

Cadillac United States

Chevrolet United States

Chrysler United States

Dodge United States

Ford United States

GMC United States

Honda Japan

HUMMER United States

Hyundai Korea

Infiniti Japan

Isuzu Japan

Jaguar Great Britain

Jeep United States

Kia Korea

Land Rover Great Britain

Company Country of Overall Quality Overall Quality 
Origin Manufacturing Design

Lexus Japan

Lincoln United States

Mazda Japan

Mercedes-Benz Germany

Mercury United States

MINI Great Britain

Mitsubishi Japan

Nissan Japan

Pontiac United States

Porsche Germany

Saab Sweden

Saturn United States

Scion Japan

Subaru Japan

Suzuki Japan

Toyota Japan

Volkswagen Germany

Volvo Sweden

Scoring Legend

Among the best About average

Better than most The restSource: http://www.jdpower.com/autos/brand-ratings/
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2.75 Consider constructing a frequency distribution and histogram for the perceived age 

estimates. ModelAge

a How many classes should be used for the frequency distribution and histogram?

b Develop a frequency distribution, a relative frequency distribution, and a percent frequency 

distribution for the perceived age estimates. Hint: Round the class length down to 2.

c Draw a frequency histogram for the perceived age estimates.

d Describe the shape of the distribution of perceived age estimates.

2.76 Construct a frequency polygon of the perceived age estimates. Hint: Round the class length 

down to 2. ModelAge

2.77 Construct a dot plot of the perceived age estimates and describe the shape of the distribution. What

percentage of the perceived ages are below the industry’s code provision of 25 years old? Do you

think that this percentage is too high? ModelAge

2.78 Using the frequency distribution you developed in Exercise 2.75, develop: ModelAge

a A cumulative frequency distribution.

b A cumulative relative frequency distribution.

c A cumulative percent frequency distribution.

d A frequency ogive of the perceived age estimates.

e How many perceived age estimates are 28 or less?

f What percentage of perceived age estimates are 22 or less?

Exercises 2.79 through 2.84 are based on the data in Table 2.25. This table gives data concerning the

30 fastest-growing companies as listed on March 16, 2005, on the Fortune magazine website.

Fastgrow

2.79 Develop a stem-and-leaf display of the revenue growth percentages for the 30 fastest-growing

companies and describe the shape of the distribution. FastGrow

2.80 Develop a frequency distribution and a frequency histogram of the EPS (earnings per share)

growth percentages. Then describe the shape of the distribution. FastGrowDS

DS

DS

DS

DS

DS

DS

Exercises 2.75 through 2.78 are based on the following case.

THE CIGARETTE ADVERTISEMENT CASE ModelAge

In an article in the Journal of Marketing, Mazis, Ringold, Perry, and Denman discuss the perceived ages

of models in cigarette advertisements.8 To quote the authors:

Most relevant to our study is the Cigarette Advertiser’s Code, initiated by the tobacco industry in

1964. The code contains nine advertising principles related to young people, including the following

provision (Advertising Age 1964): “Natural persons depicted as smokers in cigarette advertising shall

be at least 25 years of age and shall not be dressed or otherwise made to appear to be less than

25 years of age.”

Tobacco industry representatives have steadfastly maintained that code provisions are still being observed.

A 1988 Tobacco Institute publication, “Three Decades of Initiatives by a Responsible Cigarette Industry,”

refers to the industry code as prohibiting advertising and promotion “directed at young people” and as 

“requiring that models in advertising must be, and must appear to be, at least 25 years old.” John R. 

Nelson, Vice President of Corporate Affairs for Philip Morris, wrote, “We employ only adult models in

our advertising who not only are but look over 25.” However, industry critics have charged that current

cigarette advertising campaigns use unusually young-looking models, thereby violating the voluntary 

industry code.

Suppose that a sample of 50 people is randomly selected at a shopping mall. Each person in the sample

is shown a typical cigarette advertisement and is asked to estimate the age of the model in the ad. The 50

perceived age estimates so obtained are as follows.

26 30 23 27 27 32 28 19 25 29

31 28 24 26 29 27 28 17 28 21

30 28 25 31 22 29 18 27 29 23

28 26 24 30 27 25 26 28 20 24

29 32 27 17 30 27 21 29 26 28

DS

8Source: M. B. Mazis, D. J. Ringold, E. S. Perry, and D. W. Denman, “Perceived Age and Attractiveness of Models in Cigarette
Advertisements,” Journal of Marketing 56 (January 1992), pp. 22–37.
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2.81 Construct a percent frequency polygon of the total return percentages and then describe the shape

of the distribution. FastGrow

2.82 Construct cumulative frequency and cumulative relative frequency distributions of the EPS

(earnings per share) growth percentages. Then construct a relative frequency ogive of these

percentages. FastGrow

2.83 The price/earnings ratio of a firm is a multiplier applied to a firm’s earnings per share (EPS) to 

determine the value of the firm’s common stock. For instance, if a firm’s earnings per share is $5,

and if its price/earnings ratio (or P/E ratio) is 10, then the market value of each share of common

stock is ($5)(10)  $50. To quote Stanley B. Block and Geoffrey A. Hirt in their book Foundations

of Financial Management:9

The P/E ratio indicates expectations about the future of a company. Firms expected to provide

returns greater than those for the market in general with equal or less risk often have P/E ratios

higher than the market P/E ratio.

In the figure below we give a dot plot of the P/E ratios for 29 of the 30 fastest-growing companies

(the P/E ratio for one of the companies was not available to Fortune). Describe the distribution of

P/E ratios. FastGrow

2.84 Construct a dot plot of the total return percentages for the 30 fastest-growing companies and

describe the distribution of return percentages. FastGrow

2.85 In this exercise we consider how to deal with class lengths that are unequal (and with open-ended

classes) when setting up histograms. Often data are published in this form and we wish to 

DS

DS

DS

DS

T A B L E 2 . 2 5 Data Concerning the 30 Fastest-Growing Companies as Listed on March 16, 2005 on the Fortune

Magazine Website FastGrowDS

EPS Revenue Total
Rank Company Growth* Growth* Return*

1 InVision Technologies 222% 93% 135%

2 eResearch Technology 256% 43% 218%

3 New Century Financial 85% 91% 89%

4 Central European 98% 49% 135%
Distribution

5 eBay 92% 70% 39%

6 National Medical 85% 44% 107%
Health Card Sys

7 Countrywide Financial 78% 71% 46%

8 Neoware Systems 76% 70% 47%

9 Friedman Billing 93% 52% 44%
Ramsey Group

10 Bradley Pharmaceuticals 59% 59% 76%

11 Middleby 91% 33% 109%

12 Hovnanian Enterprises 71% 40% 69%

13 Websense 162% 60% 23%

14 Sanders Morris Harris 185% 35% 36%
Group

15 Career Education 66% 51% 45%

EPS Revenue Total
Rank Company Growth* Growth* Return*

16 American Healthways 167% 48% 28%

17 United PanAm 65% 39% 62%
Financial

18 FTI Consulting 105% 61% 19%

19 Jarden 99% 25% 109%

20 Par Pharmaceutical 143% 87% 5%

21 Capital Title Group 84% 87% 21%

22 Advanced 128% 46% 24%
Neuromodulation

23 Possis Medical 76% 38% 42%

24 Symantec 85% 30% 59%

25 ASV 128% 33% 32%

26 Chico’s FAS 47% 43% 66%

27 Rewards Network 152% 29% 38%

28 Fidelity National 64% 38% 38%
Financial

29 NetBank 107% 60%  1%

30 Electronic Arts 254% 32% 24%

*3-year annual rate.

Source: Fortune.com (accessed March 16, 2005). Copyright © 2005 Time, Inc. All rights reserved.

9Source: Excerpt from S. B. Block and G. A. Hirt, Foundations of Financial Management, p. 28. © 1994 Richard D. Irwin.
Reprinted with permission of McGraw-Hill Companies, Inc.
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construct a histogram. An example is provided by data concerning the benefits of ISO 9000 regis-

tration published by CEEM Information Services. According to CEEM:10

ISO 9000 is a series of international standards for quality assurance management systems. It

establishes the organizational structure and processes for assuring that the production of goods

or services meet a consistent and agreed-upon level of quality for a company’s customers.

CEEM presents the results of a Quality Systems Update/Deloitte & Touche survey of ISO

9000–registered companies conducted in July 1993. Included in the results is a summary of the

total annual savings associated with ISO 9000 implementation for surveyed companies. The find-

ings (in the form of a frequency distribution of ISO 9000 savings) are given on the page margin.

Notice that the classes in this distribution have unequal lengths and that there is an open-ended

class ( $500K).

To construct a histogram for these data, we select one of the classes as a base. It is often conve-

nient to choose the shortest class as the base (although it is not necessary to do so). Using this

choice, the 0 to $10K class is the base. This means that we will draw a rectangle over the 0 to

$10K class having a height equal to 162 (the frequency given for this class in the published data).

Because the other classes are longer than the base, the heights of the rectangles above these classes

will be adjusted. Remembering that the area of a rectangle positioned over a particular class should

represent the relative proportion of measurements in the class, we proceed as follows. The length

of the $10K to 25K class differs from the base class by a factor of (25   10)兾(10   0)  3兾2, and,

therefore, we make the height of the rectangle over the $10K to 25K class equal to (2兾3)(62)  

41.333. Similarly, the length of the $25K to 50K class differs from the length of the base class by a

factor of (50   25)兾(10   0)  5兾2, and, therefore, we make the height of the rectangle over the

$25K to 50K class equal to (2兾5)(53)  21.2.

a Use the procedure just outlined to find the heights of the rectangles drawn over all the other

classes (with the exception of the open-ended class,  $500K).

b Draw the appropriate rectangles over the classes (except for  $500K). Note that the $250K 

to 500K class is a lot longer than the others. There is nothing wrong with this as long as we 

adjust its rectangle’s height.

c We complete the histogram by placing a star (*) to the right of $500K on the scale of measure-

ments and by noting “37” next to the * to indicate 37 companies saved more than $500K. 

Complete the histogram by doing this.

2.86 A basketball player practices free throws by taking 25 shots each day, and he records the number 

of shots missed each day in order to track his progress. The numbers of shots missed on days 1

through 30 are, respectively, 17, 15, 16, 18, 14, 15, 13, 12, 10, 11, 11, 10, 9, 10, 9, 9, 9, 10, 8, 10, 6,

8, 9, 8, 7, 9, 8, 7, 5, 8. Construct a stem-and-leaf display and runs plot of the numbers of missed

shots. Do you think that the stem-and-leaf display is representative of the numbers of shots that the

player will miss on future days? Why or why not? FreeThrw

2.87 Figure 2.38 was used in various Chevrolet magazine advertisements in 1997 to compare the 

overall resale values of Chevrolet, Dodge, and Ford trucks in the years from 1990 to 1997. What is

somewhat misleading about this graph?

2.88 In the Fall 1993 issue of VALIC Investment Digest, the Variable Annuity Life Insurance Company

used pie charts to illustrate an investment strategy called rebalancing. This strategy involves 

reviewing an investment portfolio annually to return the asset mix (stocks, bonds, Treasury bills,

and so on) to a preselected allocation mix. VALIC describes rebalancing as follows (refer to the pie

charts in Figure 2.39):

Rebalancing—A Strategy to Keep Your Allocation on Track

Once you’ve established your ideal asset allocation mix, many experts recommend that you

review your portfolio at least once a year to make sure your portfolio remains consistent with

your preselected asset allocation mix. This practice is referred to as rebalancing.

For example, let’s assume a moderate asset allocation mix of 50 percent equities funds,

40 percent bond funds, and 10 percent cash equivalent funds. The chart [see Figure 2.39]

based on data provided by Ibbotson, a major investment and consulting firm, illustrates how

rebalancing works. Using the Standard & Poor’s 500 Index, the Salomon Brothers Long-Term

High-Grade Corporate Bond Index, and the U.S. 30-day Treasury bill average as a cash-

equivalent rate, our hypothetical portfolio balance on 12/31/90 is $10,000. One year later

the account had grown to $12,380. By the end of 1991, the allocation had changed to

52.7%/38.7%/8.5%. The third pie chart illustrates how the account was once again rebalanced

to return to a 50%/40%/10% asset allocation mix.

DS

ISO 9000

Annual Number of
Savings Companies

0 to $10K 162

$10K to 25K 62

$25K to 50K 53

$50K to 100K 60

$100K to 150K 24

$150K to 200K 19

$200K to 250K 22

$250K to 500K 21

( $500K) 37

Note: (K  1000)

DS

10Source: CEEM Information Services, Fairfax, Virginia. Is ISO 9000 for You?

55%

60%

70%

65%

Ford Chevy Dodge

F I G U R E 2 . 3 8

A Graph Comparing

the Resale Values 

of Chevy, Dodge,

and Ford Trucks

Source: Reprinted courtesy
of General Motors 
Corporation.
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Rebalancing has the potential for more than merely helping diversify your portfolio. By

continually returning to your original asset allocation, it is possible to avoid exposure to more

risk than you previously decided you were willing to assume. 

a Suppose you control a $100,000 portfolio and have decided to maintain an asset allocation mix

of 60 percent stock funds, 30 percent bond funds, and 10 percent government securities. Draw

a pie chart illustrating your portfolio (like the ones in Figure 2.39).

b Over the next year your stock funds earn a return of 30 percent, your bond funds earn a return

of 15 percent, and your government securities earn a return of 6 percent. Calculate the end-of-

year values of your stock funds, bond funds, and government securities. After calculating the

end-of-year value of your entire portfolio, determine the asset allocation mix (percent stock

funds, percent bond funds, and percent government securities) of your portfolio before rebal-

ancing. Finally, draw an end-of-year pie chart of your portfolio before rebalancing. 

c Rebalance your portfolio. That is, determine how much of the portfolio’s end-of-year value

must be invested in stock funds, bond funds, and government securities in order to restore your

original asset allocation mix of 60 percent stock funds, 30 percent bond funds, and 10 percent

government securities. Draw a pie chart of your portfolio after rebalancing.

T-bills
10%

How rebalancing works

$4,000

$1,000

$5,000

S&P 500 Index
50%

Salomon Brothers
Lt. Corp

Bond Index
40%

$4,952

$1,238

$6,190

T-bills
10%

S&P 500 Index
50%

S&P 500 Index
52.7%

Salomon Brothers
Lt. Corp

Bond Index
40%

$4,796

T-bills
8.5% Salomon Brothers

Lt. Corp
Bond Index

38.7%

Balance 12/31/90...$10,000 Balance 12/31/91...$12,380
(after rebalancing)

Balance 12/31/91...$12,380
(before rebalancing)

$1,056

$6,527

      
     

    
    

  R
ebal

an
ci

n
g
 

        E
a
rn

in
gs 

Lt.-Bond Index
⫹$156

T-Bills
⫹$181

S&P 500 Index
⫺$337

F I G U R E 2 . 3 9 Using Pie Charts to Illustrate Portfolio Rebalancing (for Exercise 2.88)

Source: The Variable Annuity Life Insurance Company, VALIC 6, no. 4 (Fall 1993).

2.89 Internet Exercise

The Gallup Organization provides market research and
consulting services around the world. Gallup pub-
lishes the Gallup Poll, a widely recognized barometer of
American and international opinion. The Gallup website
provides access to many recent Gallup studies. Although
a subscription is needed to access the entire site, many
articles about recent Gallup Poll results can be accessed
free of charge. To find poll results, go to the Gallup
home page (http://www.gallup.com/) and click on the
Gallup Poll icon or type the web address http://www.
galluppoll.com/ directly into your web browser. The poll
results are presented using a variety of statistical sum-
maries and graphics that we have learned about in this
chapter.

a Go to the Gallup Organization website and access
several of the articles presenting recent poll results.

Find and print examples of some of the statistical
summaries and graphics that we studied in this chap-
ter. Then write a summary describing which statisti-
cal methods and graphics seem to be used most 
frequently by Gallup when presenting poll results.

b Read the results of a Gallup Poll that you find to be
of particular interest and summarize (in your own
words) its most important conclusions. Cite the
statistical evidence in the article that you believe
most clearly backs up each conclusion. 

c By searching the web, or by searching other sources
(such as newspapers and magazines), find an exam-
ple of a misleading statistical summary or graphic.
Print or copy the misleading example and write a
paragraph describing why you think the summary or
graphic is misleading.



80 Chapter 2 Descriptive Statistics: Tabular and Graphical Methods

Appendix 2.1 ■ Tabular and Graphical Methods Using Excel
The instructions in this section begin by describing the entry of data into an Excel spreadsheet. Alternatively, the
data may be downloaded from this book’s website. The appropriate data file name is given at the top of each
instruction block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing
results in Excel.

Construct a frequency distribution of Jeep sales as in
Table 2.2 on page 36 (data file: JeepSales.xlsx):

• Enter the Jeep sales data in Table 2.1 on page 36
(C  Commander; G  Grand Cherokee; 
L  Liberty; W  Wrangler) into column A with
label Jeep Model in cell A1.

We obtain the frequency distribution by forming what
is called a PivotTable. This is done as follows:

• Select Insert : PivotTable

• In the Create PivotTable dialog box, click “Select a
table or range.”

• Enter the range of the data to be analyzed into
the Table/Range window. Here we have entered
the range of the Jeep sales data A1.A252—that 
is, the entries in rows 1 through 252 in column A.
The easiest way to do this is to click in the
Table/Range window and to then drag from cell
A1 through cell A252 with the mouse.

• Select “New Worksheet” to have the PivotTable
output displayed in a new worksheet.

• Click OK in the Create PivotTable dialog box

• In the PivotTable Field List task pane, drag the
label “Jeep Model” and drop it into the Row 
Labels area. 

• Also drag the label “Jeep Model” and drop it into

the Values area. When this is done, the label 

will automatically change to “Count of Jeep
Model” and the PivotTable will be displayed in
the new worksheet.

• To calculate relative frequencies and percent 
frequencies of Jeep sales as in Table 2.3 on 
page 36, enter the cell formula  B4/B$8 into 
cell C4 and copy this cell formula down through
all of the rows in the PivotTable (that is, through
cell C8) to obtain a relative frequency for each
row and the total relative frequency of 1.0000.
Copy the cells containing the relative frequencies
into cells D4 through D8, select them, right-click
on them, and format the cells to represent 
percentages to the decimal place accuracy you
desire.

a
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After creating a tabular frequency distribution by using a
PivotTable, it is easy to create bar charts and pie charts.

Construct a frequency bar chart of Jeep sales as in Fig-
ure 2.1 on page 37 (data file: JeepTable.xlsx):

• Enter the frequency distribution of Jeep sales in
Table 2.2 on page 36 as shown in the screen with
the various model identifiers in column A (with
label Jeep Model) and with the corresponding 
frequencies in column B (with label Frequency).

• Select the entire data set using the mouse.

• Select Insert : Bar : All Chart Types

• In the Insert Chart dialog box, select Column from
the chart type list on the left, select Clustered 
Column from the gallery of charts on the right, 
and click OK.

• The bar chart will be displayed in a graphics window.

• As demonstrated in Appendix 1.1, move the bar
chart to a new worksheet before editing. 

• In the new worksheet, the chart can be edited by
selecting the Layout tab. By clicking on the Labels,
Axes, Background, Analysis, and Properties groups,
many of the chart characteristics can be edited,
data labels (the numbers above the bars that give
the bar heights) can be inserted, and so forth.
Alternatively, the chart can be edited by right- 
clicking on various portions of the chart and by
using the pop-up menus that are displayed.

• To construct a relative frequency or percentage 
frequency bar chart, simply replace the frequencies
in the spreadsheet by their corresponding relative
frequencies or percentage frequencies and follow
the above instructions for constructing a frequency
bar chart.
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Construct a percentage pie chart of Jeep sales as in Fig-
ure 2.3 on page 38 (data file: JeepTable.xlsx):

• Enter the percent frequency distribution of Jeep
sales in Table 2.3 on page 36 as shown in the 
screen with the various model identifiers in 
column A (with label Jeep Model) and with the
corresponding percent frequencies in column B
(with label Percent Freq).

• Select the entire data set using the mouse.

• Select Insert : Pie : 2-D Pie : Pie

• The pie chart is edited in the same way a bar chart
is edited—see the instructions above related to
editing bar charts.

Constructing frequency distributions and histograms using the Analysis 
ToolPak: The Analysis ToolPak is an Excel add-in that is used for a variety of
statistical analyses—including construction of frequency distributions and his-
tograms from raw (that is, un-summarized) data. The ToolPak is available when
Microsoft Office or Excel is installed. However, in order to use it, the ToolPak
must first be loaded. To see if the Analysis ToolPak has been loaded on your
computer, click the Microsoft Office Button, click Excel Options, and finally click
Add-Ins. If the ToolPak has been loaded on your machine, it will be in the list of
Active Application Add-ins. If Analysis ToolPak does not appear in this list, select
Excel Add-ins in the Manage box and click Go. In the Add-ins box, place a check-
mark in the Analysis ToolPak checkbox, and then click OK. Note that, if the
Analysis ToolPak is not listed in the Add-Ins available box, click Browse to
attempt to find it. If you get prompted that the Analysis ToolPak is not currently
installed on your computer, click Yes to install it. In some cases, you might need
to use your original MS Office or Excel CD/DVD to install and load the Analysis
ToolPak by going through the setup process.

Constructing a frequency histogram of the bottle design
ratings as in Figure 2.11 on page 47 (data file: Design.xlsx):

• Enter the 60 bottle design ratings in Table 1.5 on
page 10 into Column A with label Rating in cell A1.

• Select Data : Data Analysis

• In the Data Analysis dialog box, select Histogram in
the Analysis Tools window and click OK.

• In the Histogram dialog box, click in the Input Range
window and select the range of the data A1.A61
into the Input Range window by dragging the
mouse from cell A1 through cell A61.

• Place a checkmark in the Labels checkbox.

• Under “Output options,” select “New Worksheet
Ply.”

• Enter a name for the new worksheet in the New
Worksheet Ply window—here Histogram 1.

• Place a checkmark in the Chart Output checkbox.

• Click OK in the Histogram dialog box.

• Notice that we are leaving the Bin Range window
blank. This will cause Excel to define automatic
classes for the frequency distribution and
histogram. However, because Excel’s automatic
classes are often not appropriate, we will revise
these automatic classes as follows.
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• The frequency distribution will be displayed in 
the new worksheet and the histogram will be 
displayed in a graphics window. 

Notice that Excel defines what it calls bins when con-
structing the histogram. The bins define the automatic
classes for the histogram. The bins that are automati-
cally defined by Excel are often cumbersome—the
bins in this example are certainly inconvenient for
display purposes! Although one might be tempted
to simply round the bin values, we have found that
the rounded bin values can produce an unacceptable
histogram with unequal class lengths (whether this
happens depends on the particular bin values in a given 
situation).

To obtain more acceptable results, we suggest that new bin values be defined that are roughly based on the
automatic bin values. We can do this as follows. First, we note that the smallest bin value is 20 and that this bin
value is expressed using the same decimal place accuracy as the original data (recall that the bottle design ratings
are all whole numbers). Remembering that Excel obtains a cell frequency by counting the number of measurements
that are less than or equal to the upper class boundary and greater than the lower class boundary, the first class con-
tains bottle design ratings less than or equal to 20. Based on the author’s experience, the first automatic bin value
given by Excel is expressed to the same decimal place accuracy as the data being analyzed. However, if the smallest
bin value were to be expressed using more decimal places than the original data, then we suggest rounding it
down to the decimal place accuracy of the original data being analyzed. Frankly, the authors are not sure that this
would ever need to be done—it was not necessary in any of the examples we have tried. Next, find the class length
of the Excel automatic classes and round it to a convenient value. For the bottle design ratings, using the first and
second bin values in the screen, the class length is 22.14285714 – 20 which equals 2.14285714. To obtain more con-
venient classes, we will round this value to 2. Starting at the first automatic bin value of 20, we now construct classes
having length equal to 2. This gives us new bin values of 20, 22, 24, 26, and so on. We suggest continuing to define
new bin values until a class containing the largest measurement in the data is found. Here, the largest bottle design
rating is 35 (see Table 1.5 on page 10). Therefore, the last bin value is 36, which says that the last class will contain
ratings greater than 34 and less than or equal to 36—that is, the ratings 35 and 36. 

We suggest constructing classes in this way unless one or more measurements are unusually large compared to
the rest of the data—we might call these unusually large measurements outliers. We will discuss outliers more thor-
oughly in Chapter 3 (and in later chapters). For now, if we (subjectively) believe that one or more outliers exist, we
suggest placing these measurements in the “more” class and placing a histogram bar over this class having the same
class length as the other bars. In such a situation, we must recognize that the Excel histogram will not be technically
correct because the area of the bar (or rectangle) above the “more” class will not necessarily equal the relative
proportion of measurements in the class. Nevertheless—given the way Excel constructs histogram classes—the
approach we suggest seems reasonable. In the bottle design situation, the largest rating of 35 is not unusually
large and, therefore, the “more” class will not contain any measurements.

To construct the revised histogram:

• Open a new worksheet, copy the bottle design
ratings into column A and enter the new bin 
values into column B (with label Bin) as shown.

• Select Data : Data Analysis : Histogram

• Click OK in the Data Analysis dialog box.

• In the Histogram dialog box, select the range of the
ratings data A1.A61 into the Input Range window.

• Click in the Bin Range window and enter the
range of the bin values B1.B10.

• Place a checkmark in the Labels checkbox.

• Under “Output options,” select “New Worksheet
Ply” and enter a name for the new worksheet—
here Histogram 2.

• Place a checkmark in the Chart Output checkbox.

• Click OK in the Histogram dialog box.
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• The revised frequency distribution will be 
displayed in the new worksheet and the 
histogram will be displayed in a graphics
window.

• Click in the graphics window and (as 
demonstrated in Appendix 1.1) move the
histogram to a new worksheet for editing.

• The histogram will be displayed in the new chart
sheet in a much larger format that makes it 
easier to carry out editing.

To remove the gaps between the histogram bars:

• Right click on one of the histogram bars and 
select Format Data Series from the pop-up 
window.

• Set the gap width to zero by moving the gap
width slider to “No Gap” and click “Close” in the
Format Data Series dialog box.

• By selecting the Chart Tools Layout tab, the 
histogram can be edited in many ways. This can
also be done by right clicking on various portions
of the histogram and by making desired pop-up
menu selections.

• To obtain data labels (the numbers on the tops
of the bars that indicate the bar heights), right
click on one of the histogram bars and select
“Add data labels” from the pop-up menu.

After final editing, the histogram might look like the
one illustrated in Figure 2.11 on page 47.

Constructing a frequency histogram of bottle design
ratings from summarized data:

• Enter the midpoints of the frequency distribution
classes into column A with label Midpoint and
enter the class frequencies into column B with
label Frequency.

• Use the mouse to select the cell range that 
contains the frequencies (here, cells B2 through
B10).

• Select Insert : Column : 2-D Column 
(Clustered Column)
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• Right-click on the chart that is displayed and click
on Select Data in the pop-up menu.

• In the Select Data Source dialog box, click on the
Edit button in the “Horizontal (Category) Axis
Labels” window. 

• In the Axis Labels dialog box, use the mouse to
enter the cell range that contains the midpoints
(here, A2.A10) into the “Axis label range” 
window.

• Click OK in the Axis Labels dialog box.

• Click OK in the Select Data Source dialog box.

• Move the chart that appears to a chart sheet, 
remove the gaps between the bars as previously
shown, and edit the chart as desired.

Relative frequency and percent frequency histograms
would be constructed in the same way with the class
midpoints in column A of the Excel spreadsheet and
with the relative or percent frequencies in column B.

We now describe how to construct a frequency 
polygon from summarized data.

Note that, if the data are not summarized, first use
the Histogram option in the Analysis ToolPak to de-
velop a summarized frequency distribution.

• Enter the class midpoints and class frequencies as
shown previously for summarized data.

• Use the mouse to select the cell range that 
contains the frequencies.

• Select Insert : Line : Line with markers

• Right-click on the chart that is displayed and click
on Select Data in the pop-up menu.

• In the Select Data Source dialog box, click on the
Edit button in the “Horizontal (Category) Axis
Labels” window. 

• In the Axis Labels dialog box, use the mouse to
enter the cell range that contains the midpoints
into the “Axis label range” window.

• Click OK in the Axis Labels dialog box.

• Click OK in the Select Data Source dialog box.

• Move the chart that appears to a chart sheet,
and edit the chart as desired.
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To construct a percent frequency ogive for the bot-
tle design rating distribution (data file: Design.xlsx):

Follow the instructions for constructing a histogram
by using the Analysis ToolPak with the following
changes:

• In the Histogram dialog box, place a check-
mark in the Cumulative Percentage checkbox.

• After moving the histogram to a chart sheet,
right-click on any histogram bar.

• Select “Format Data Series” from the pop-up
menu.

• In the “Format Data Series” dialog box, 
(1) select Fill from the list of “Series Options”
and select “No fill” from the list of Fill 
options; (2) select Border Color from the list of
“Series Options” and select “No line” from
the list of Border Color options; (3) Click Close.

• Click on the chart to remove the histogram
bars.

Construct a cross-tabulation table of fund type
versus level of client satisfaction as in Table 2.17
on page 62 (data file: Invest.xlsx):

• Enter the customer satisfaction data in 
Table 2.16 on page 62—fund types in column
A with label “Fund Type” and satisfaction 
ratings in column B with label “Satisfaction
Rating.”

• Select Insert : PivotTable

• In the Create PivotTable dialog box, click
“Select a table or range.”

• By dragging with the mouse, enter the 
range of the data to be analyzed into the
Table/Range window. Here we have entered
the range of the client satisfaction data
A1.B101.

• Select the New Worksheet option to place the
PivotTable in a new worksheet.

• Click OK in the Create PivotTable dialog box.

• In the PivotTable Field List task pane, drag the
label “Fund Type” and drop it into the Row
Labels area.

• Also drag the label “Fund Type” and drop it 

into the Values area. When this is done,

the label will automatically change to “Count
of Fund Type.”

• Drag the label “Satisfaction Rating” into the
Column Labels area. 

a
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• The PivotTable will be created and placed in a
new worksheet.

• Now right-click inside the PivotTable and select
PivotTable Options from the pop-up menu.

• In the PivotTable Options dialog box, select the
Totals & Filters tab and make sure that a 
checkmark has been placed in each of the “Show
grand totals for rows” and the “Show grand 
totals for columns” checkboxes.

• Select the Layout & Format tab, place a check-
mark in the “For empty cells show” checkbox
and enter 0 (the number zero) into its corre-
sponding window. (For the customer satisfaction
data, none of the cell frequencies equal zero,
but, in general, this setting should be made to
prevent empty cells from being left blank in the
cross-tabulation table.) 

• To change the order of the column labels from
the default alphabetical ordering (High, Low,
Medium) to the more logical ordering of High,
Medium, Low, right-click on LOW, select Move
from the pop-up menu, and select “Move LOW
to End.”

• The cross-tabulation table is now complete.

Construct a scatter plot of sales volume versus
advertising expenditure as in Figure 2.24 on page 67
(data file: SalesPlot.xlsx):

• Enter the advertising and sales data in Table 2.20
on page 67 into columns A and B—advertising 
expenditures in column A with label “Ad Exp”
and sales values in column B with label “Sales
Vol.” Note: The variable to be graphed on the
horizontal axis must be in the first column (that
is, the left-most column) and the variable to be
graphed on the vertical axis must be in the 
second column (that is, the rightmost column).

• Click in the range of data to be graphed, or 
select the entire range of the data to be graphed.

• Select Insert : Scatter : Scatter with only Markers

• The scatter plot will be displayed in a graphics
window. Move the plot to a chart sheet and edit
appropriately.
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Appendix 2.2 ■ Tabular and Graphical Methods Using MegaStat
The instructions in this section begin by describing the entry of data into an Excel worksheet. Alternatively, the data
may be downloaded from this book’s website. The appropriate data file name is given at the top of each instruc-
tion block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing re-
sults in Excel. Please refer to Appendix 1.2 for more information about MegaStat basics. 

Construct a frequency distribution and bar chart of
Jeep sales as in Table 2.2 on page 36 and Figure 2.2
on page 37 (data file: JeepSales.xlsx):

• Enter the Jeep sales data in Table 2.1 on page 36
(C  Commander; G  Grand Cherokee; 
L  Liberty; W  Wrangler) into column A with
label Jeep Model in cell A1.

• Enter the categories for the qualitative variable
(C, G, L, W) into the worksheet. Here we have
placed them in cells B2 through B5—the location
is arbitrary.

• Select Add-Ins : MegaStat : Frequency 
Distributions : Qualitative

• In the “Frequency Distributions—Qualitative”
dialog box, use the autoexpand feature to 
enter the range A1.A252 of the Jeep sales data
into the Input Range window.

• Enter the cell range B2.B5 of the categories (C,
G, L, W) into the “specification range” window.

• Place a checkmark in the “histogram” checkbox
to obtain a bar chart.

• Click OK in the “Frequency Distributions—
Qualitative” dialog box.

• The frequency distribution and bar chart will be
placed in a new output sheet.

• The output can be edited in the output sheet.
Alternatively, the bar chart can be moved to a
chart sheet (see Appendix 1.2) for more
convenient editing.

Construct a frequency distribution and percent fre-
quency histogram of the gas mileages as in Fig-
ure 2.9 on page 46 (data file: GasMiles.xlsx):

• Enter the gasoline mileage data in Table 1.6 on
page 12 into column A with the label Mpg in
cell A1 and with the 50 gas mileages in cells 
A2 to A51.

• Select Add-Ins : MegaStat : Frequency 
Distributions : Quantitative

• In the “Frequency Distributions—Quantitative”
dialog box, use the autoexpand feature to enter
the range A1.A51 of the gas mileages into the
Input Range window.

• To obtain automatic classes for the histogram,
leave the “interval width” and “lower boundary
of first interval” windows blank.

• Place a checkmark in the Histogram checkbox.

• Click OK in the “Frequency Distributions—
Quantitative” dialog box.
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• The frequency distribution and histogram will be
placed in a new output worksheet.

• The chart can be edited in the Output worksheet
or you can move the chart to a chart sheet for
editing.

• To obtain data labels (the numbers on the tops of
the bars that indicate the bar heights), right click
on one of the histogram bars and select “Add
data labels” from the pop-up menu.

To construct a frequency polygon and a percent 
frequency ogive, simply place checkmarks in the 
Polygon and Ogive checkboxes in the “Frequency 
Distributions—Quantitative” dialog box.

Construct a percent frequency histogram of the bottle
design ratings similar to Figure 2.11 on page 47 with
user specified classes (data file: Design.xlsx):

• Enter the 60 bottle design ratings in Table 1.5 
on page 10 into Column A with label Rating in
cell A1.

• Select Add-Ins : MegaStat : Frequency 
Distributions : Quantitative

• In the “Frequency Distributions—Quantitative”
dialog box, use the autoexpand feature to enter
the input range A1.A61 of the bottle design 
ratings into the Input Range window.

• Enter the class width (in this case equal to 2) into
the “interval width” window.

• Enter the lower boundary of the first—that is,
leftmost—interval of the histogram (in this case
equal to 20) into the “lower boundary of first 
interval” window.

• Make sure that the Histogram checkbox is
checked.

• Click OK in the “Frequency Distributions—
Quantitative” dialog box. 

• We obtain a histogram with class boundaries 20,
22, 24, 26, 28, 30, 32, 34, and 36. Note that the
appearance of this histogram is not exactly the
same as that of the Excel histogram in Figure 2.11
on page 47 because we recall that MegaStat and
Excel count frequencies differently.

• The histogram can be moved to a chart sheet for
editing purposes.
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Construct a dot plot (as in Figure 2.18 on page 55) and a
stem-and-leaf display (as in Figure 2.20 on page 59) of
the scores on the first statistics exam as discussed in
Example 2.3 on page 48 (data file: FirstExam.xlsx):

• Enter the 40 scores for exam 1 in Table 2.8 on
page 48 into column A with label “Exam 1” in
cell A1.

• Select Add-Ins : MegaStat : Descriptive Statistics.

• In the “Descriptive Statistics” dialog box, use the
autoexpand feature to enter the range A1.A41 of
the exam scores into the “Input range” window.

• Place a checkmark in the DotPlot checkbox to 
obtain a dot plot.

• Place a checkmark in the “Stem and Leaf Plot”
checkbox to obtain a stem-and-leaf display.

• Place a checkmark in the “Split Stem” checkbox.
(In general, whether or not this should be done de-
pends on how you want the output to appear. You
may wish to construct two plots—one with the Split
Stem option and one without—and then choose the
output you like best.) In the exam score situation, the
Split Stem option is needed to obtain a display that
looks like the one in Figure 2.20.

• Click OK in the “Descriptive Statistics” dialog box.

• The dot plot and stem-and-leaf display will be placed
in an output sheet. Here, the stem-and-leaf display
we have obtained for exam 1 is the “mirror image” of
the plot shown in Figure 2.20 (because we have con-
structed a single display for exam 1, while Figure 2.20
shows back-to-back displays for both exams 1 and 2).

• The dot plot can be moved to a chart sheet for editing.

Construct a cross-tabulation table of fund type versus
level of client satisfaction as in Table 2.17 on page 62
(data file: Invest.xlsx):

• Enter the customer satisfaction data in Table 2.16
on page 62—fund types in column A with label
FundType and satisfaction ratings in column B with
label SRating.

• Enter the three labels (BOND; STOCK; TAXDEF) for
the qualitative variable FundType into cells C2, C3,
and C4 as shown in the screen.

• Enter the three labels (HIGH; MED; LOW) for the
qualitative variable SRating into cells C6, C7, and C8
as shown in the screen.

• Select Add-Ins : MegaStat : 
Chi-Square/CrossTab : Crosstabulation 

• In the Crosstabulation dialog box, use the
autoexpand feature to enter the range A1.A101 
of the row variable FundType into the “Row 
variable Data range” window.

• Enter the range C2.C4 of the labels of the 
qualitative variable FundType into the “Row 
variable Specification range window.”

• Use the autoexpand feature to enter the range
B1.B101 of the column variable SRating into the
“Column variable Data range” window.

• Enter the range C6.C8 of the labels of the
qualitative variable SRating into the “Column
variable Specification range window.”
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• Uncheck the “chi-square” checkbox.

• Click OK in the Crosstabulation dialog box.

• The cross-tabulation table will be displayed in an
Output worksheet.

• Row percentages and column percentages can
be obtained by simply placing checkmarks in the
“% of row” and “% of column” checkboxes.

Construct a scatter plot of sales volume versus
advertising expenditure as in Figure 2.24 on
page 67 (data file: SalesPlot.xlsx):

• Enter the advertising and sales data in Table 2.20
on page 67 into columns A and B—advertising 
expenditures in column A with label “Ad Exp”
and sales values in column B with label “Sales
Vol.”

• Select Add-Ins : MegaStat : 
Correlation/Regression : Scatterplot

• In the Scatterplot dialog box, use the 
autoexpand feature to enter the range A1.A11
of the advertising expenditures into the 
“horizontal axis” window.

• Use the autoexpand feature to enter the range
B1.B11 of the sales volumes into the “vertical
axis” window.

• Uncheck the “Plot linear regression line” 
checkbox.

• Under Display options, select Markers.

• Click OK in the Scatterplot dialog box.

• The scatterplot is displayed in an Output 
worksheet and can be moved to a chart sheet for
editing.
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Appendix 2.3 ■ Tabular and Graphical Methods Using MINITAB

Construct a frequency distribution of Jeep sales as in
Table 2.2 on page 36 (data file: JeepSales.MTW):

• Enter the Jeep sales data in Table 2.1 on page 36
(C  Commander; G  Grand Cherokee; 
L  Liberty; W  Wrangler) into column C1
with label (variable name) Jeep Model.

• Select Stat : Tables : Tally Individual Variables

• In the Tally Individual Variables dialog box,
enter the variable name ‘Jeep Model’ into the
Variables window. Because this variable name
consists of more than one word, we must 
enclose the name in single quotes—this defines
both the words Jeep and Model to be parts of
the same variable name.

• Place a checkmark in the Display “Counts”
checkbox to obtain frequencies. 

We would check: “Percents” to obtain percent
frequencies; “Cumulative counts” to obtain 
cumulative frequencies; and “Cumulative
percents” to obtain cumulative percent
frequencies.

• Click OK in the Tally Individual Variables dialog
box.

• The frequency distribution is displayed in the
Session window.

Construct a bar chart of the Jeep sales distribution
from the raw sales data similar to Figure 2.1 on
page 37 (data file: JeepSales.MTW):

• Enter the Jeep sales data in Table 2.1 on page 36
(C  Commander; G  Grand Cherokee; 
L  Liberty; W  Wrangler) into column C1
with label (variable name) Jeep Model.

• Select Graph : Bar Chart . . .

• In the Bar Charts dialog box, select “Counts of
unique values” from the “Bars represent” 
pull-down menu.

• Select “Simple” from the gallery of bar chart
types (this is the default selection, which is 
indicated by the reverse highlighting in black).

• Click OK in the Bar Charts dialog box.

The instructions in this section begin by describing the entry of data into the MINITAB data window. Alternatively,
the data may be downloaded from this book’s website. The appropriate data file name is given at the top of each
instruction block. Please refer to Appendix 1.3 for further information about entering data, saving data and print-
ing results when using MINITAB.
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• In the “Bar Chart—Counts of unique values,
Simple” dialog box, enter the variable name
‘Jeep Model’ into the “Categorical variables”
window. Be sure to remember the single
quotes around the name Jeep Model.

• To obtain data labels (numbers at the tops of
the bars that indicate the heights of the bars—
in this case, the frequencies), click on the
Labels . . . button. 

• In the “Bar Chart—Labels” dialog box, click on
the Data Labels tab and select “Use y-value 
labels”. This will produce data labels that are
equal to the category frequencies. 

• Click OK in the “Bar Chart—Labels” dialog box.

• Click OK in the “Bar Chart—Counts of unique
values, Simple” dialog box.

• The bar chart will be displayed in a graphics
window. The chart may be edited by right-
clicking on various portions of the chart and
by using the pop-up menus that appear—see
Appendix 1.3 for more details.

• Here we have obtained a frequency bar chart.
To obtain a percent frequency bar chart, click
on the Chart Options . . . button and select
“Show Y as Percent” in the “Bar Chart—
Options” dialog box.

Construct a bar chart from the tabular frequency
distribution of Jeep sales in Table 2.2 on page 36
(data file: JeepTable.MTW):

• Enter the Jeep sales distribution from 
Table 2.2 as shown in the screen with the four
models in column C1 (with variable name Jeep
Model) and with the associated frequencies in
column C2 (with variable name Frequency).

• Select Graph : Bar Chart

• In the Bar Charts dialog box, select “Values
from a table” in the “Bars represent”
pull-down menu.

• Select “One column of values—Simple” from
the gallery of bar chart types.

• Click OK in the Bar Charts dialog box.

• In the “Bar Chart—Values from a table, One
column of values, Simple” dialog box, enter
the variable name Frequency into the “Graph
variables” window and enter the variable
name ‘Jeep Model’ into the “Categorical vari-
able” window. Be sure to remember the sin-
gle quotes around the name Jeep Model.

• Click on the Labels . . . button and select “Use 
y-value labels” as shown previously.

• Click OK in the “Bar Chart—Labels” dialog box.

• Click OK in the “Bar Chart—Values from a table,
One column of values, Simple” dialog box.

• The bar chart will be displayed in a graphics
window.
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Construct a pie chart of Jeep sales percentages similar
to that shown in Figure 2.3 on page 38.

• Enter the Jeep sales data in Table 2.1 on page 36
(C  Commander; G  Grand Cherokee; 
L  Liberty; W  Wrangler) into column C1 with
label (variable name) Jeep Model.

• Select Graph : Pie Chart

• In the Pie Chart dialog box, select “Chart counts of
unique values”.

• Enter the variable name ‘Jeep Model’ into the
“Categorical variables” window. Be sure to
remember the single quotes around the name Jeep
Model.

• In the Pie Chart dialog box, click on the Labels . . .
button.

• In the “Pie Chart—Labels” dialog box, click on the
Slice Labels tab.

• Place checkmarks in the Category name, Percent,
and “Draw a line from label to slice” checkboxes.

To obtain a frequency pie chart, select Frequency
rather than Percent in this dialog box. Or, both
Percent and Frequency can be selected.

• Click OK in the “Pie Chart—Labels” dialog box.

• Click OK in the Pie Chart dialog box.

• The pie chart will appear in a graphics window.

Construct a pie chart from the tabular percent
frequency distribution of Jeep sales in Table 2.3 on
page 36 (data file: JeepPercents.MTW):

• Enter the Jeep sales percent frequency distribution
from Table 2.3 as shown in the screen with the four
models in column C1 (with variable name Jeep
Model) and with the associated percent 
frequencies in column C2 (with variable name 
Percent Freq).

• Select Graph : Pie Chart

• In the Pie Chart dialog box, select “Chart values
from a table.”

• Enter the variable name ‘Jeep Model’ into the
“Categorical variable” window. Be sure to
remember the single quotes around the name
Jeep Model.

• Enter the variable name ‘Percent Freq’ into the
“Summary variables” window. Be sure to 
remember the single quotes around the name 
Percent Freq.

• Continue by following the directions directly
above for adding data labels and generating the
pie chart.
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Construct a frequency histogram of the payment
times in Figure 2.10 on page 46 (data file: PayTime
.MTW):

• Enter the payment time data from Table 2.4
on page 42 into column C1 with variable name
PayTime. 

• Select Graph : Histogram

• In the Histograms dialog box, select Simple
from the gallery of histogram types and click 
OK.

• In the “Histogram—Simple” dialog box, enter
the variable name PayTime into the Graph
Variables window and click on the Scale 
button.

• In the “Histogram—Scale” dialog box, click on
the “Y- Scale Type” tab and select Frequency
to obtain a frequency histogram. We would
select Percent to request a percent frequency
histogram. Then click OK in the “Histogram—
Scale” dialog box.

• Data labels are requested in the same way as
we have demonstrated for bar charts. Click 
on the Labels… button in the “Histogram—
Simple” dialog box. In the “Histogram—
Labels” dialog box, click on the Data Labels
tab and select “Use y-value labels.” Then click
OK in the “Histogram—Labels” dialog box.

• To create the histogram, click OK in the
“Histogram—Simple” dialog box. 

• The histogram will appear in a graphics
window and can be edited as described in
Appendix 1.3.

• The histogram can be selected for printing or
can be copied and pasted into a word 
processing document. (See Appendix 1.3.)

• Notice that MINITAB automatically defines
classes for the histogram bars, and auto-
matically provides labeled tick marks (here 12,
16, 20, 24 and 28) on the x-scale of the 
histogram. These automatic classes are not
the same as those we formed in Example 2.2,
summarized in Table 2.7, and illustrated in
Figure 2.7 on page 44. However, we can edit
the automatically constructed histogram to
produce the histogram classes of Figure 2.7.
This is sometimes called “binning.”



96 Chapter 2 Descriptive Statistics: Tabular and Graphical Methods

To obtain user specified histogram classes—for
example, the payment time histogram classes of
Figure 2.7 on page 44 (data file: PayTime.MTW):

• Right click inside any of the histogram bars.

• In the pop-up menu, select “Edit bars.”

• In the “Edit Bars” dialog box, select the 
Binning tab.

• To label the x-scale by using class boundaries,
select the “Interval Type” to be Cutpoint.

• Select the “Interval Definition” to be
Midpoint/Cutpoint positions.

• In the Midpoint/Cutpoint positions window,
enter the class boundaries (or cutpoints) 

10 13 16 19 22 25 28 31

as given in Table 2.7 or shown in Figure 2.7
(both on page 44). 

• If we wished to label the x-scale by using class
midpoints as in Figure 2.8 on page 45, we
would select the “Interval Type” to be 
Midpoint and we would enter the midpoints 
of Figure 2.8 (11.5, 14.5, 17.5, and so forth) 
into the Midpoint/Cutpoint positions window.

• Click OK in the Edit Bars dialog box.

• The histogram in the graphics window will 
be edited to produce the class boundaries,
histogram bars, and x-axis labels shown in
Figure 2.7.

Frequency Polygons and Ogives: MINITAB does not have automatic procedures for con-
structing frequency polygons and ogives. However, these graphics can be constructed
quite easily by using the MINITAB Graph Annotation Tools. To access these tools and
have them placed on the MINITAB toolbar, select 

Tools : Toolbars : Graph Annotation Tools

• To construct a frequency polygon, follow the preceding instructions for 
constructing a histogram. In addition, however, click on the Data View button, 
select the Data Display tab, place a checkmark in the Symbols checkbox (also
uncheck the Bars checkbox). This will result in plotted points above the histogram
classes—rather than bars. Now select the polygon tool 

from the Graph Annotation Tools toolbar and draw connecting lines to form the
polygon. Instructions for using the polygon tool can be found in the MINITAB help
resources listed under “To create a polygon.” 
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• To construct an ogive, follow the above instructions for constructing a frequency
polygon. In addition, however, click on the Scale button, select the “Y-Scale Type”
tab, and place a checkmark in the “Accumulate values across bins” checkbox. This
will result in a plot of cumulative frequencies—rather than histogram bars. Now 
select the polyline tool 

from the Graph Annotation Tools toolbar and draw connecting lines to form the
ogive. Instructions for using the polyline tool can be found in the MINITAB help 
resources listed under “To create a polyline.” 
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Score on Exam 1

Dotplot of Score on Exam 1

Construct a dot plot of the exam scores as in Figure 2.18(a)
on page 55 (data file: FirstExam.MTW):

• Enter the scores for exam 1 in Table 2.8 on page 48
into column C1 with variable name ‘Score on
Exam 1’.

• Select Graph : Dot Plot

• In the Dotplots dialog box, select “One Y Simple”
from the gallery of dot plots.

• Click OK in the Dotplots dialog box.

• In the “Dotplot—One Y, Simple” dialog box, enter
the variable name ‘Score on Exam 1’ into the
“Graph variables” window. Be sure to include the
single quotes.

• Click OK in the “Dotplot—One Y, Simple” dialog
box.

• The dotplot will be displayed in a graphics window.

• To change the x-axis labels (or, ticks), right-click on
any one of the existing labels (say, the 45, for 
instance) and select “Edit X Scale . . .” from the
popup menu.

• In the Edit Scale dialog box, select the Scale tab 
and select “Position of Ticks” as the “Major Ticks
Positions” setting.

• Enter the desired ticks (30 40 50 60 70 80 90
100) into the “Position of ticks” window and click
OK in the Edit Scale dialog box.

• The x-axis labels (ticks) will be changed and the new
dotplot will be displayed in the graphics window.
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Construct a stem-and-leaf display of the gasoline
mileages as in Figure 2.19 on page 57 (data file:
GasMiles.MTW): 

• Enter the mileage data from Table 2.14 on 
page 56 into column C1 with variable name Mpg.

• Select Graph : Stem-and-Leaf

• In the Stem-and-Leaf dialog box, enter the variable
name Mpg into the “Graph Variables” window.

• Click OK in the Stem-and-Leaf dialog box.

• The stem-and-leaf display appears in the Session
window and can be selected for printing or
copied and pasted into a word processing 
document. (See Appendix 1.3.)

Construct a cross-tabulation table of fund type versus
level of client satisfaction as in Table 2.17 on page 62
(data file: Invest.MTW):

• Enter the client satisfaction data from Table 2.16
on page 62 with client number in column C1 
having variable name Client, and with fund type
and satisfaction rating in columns C2 and C3, 
respectively, having variable names ‘Fund Type’
and ‘Satisfaction Level’.

The default ordering for the different levels of each
categorical variable in the cross-tabulation table will
be alphabetical—that is, BOND, STOCK, TAXDEF for
‘Fund Type’ and HIGH, LOW, MED for ‘Satisfaction 
Rating’. To change the ordering to HIGH, MED, LOW
for ‘Satisfaction Rating’:

• Click on any cell in column C3 (Satisfaction Rating).

• Select Editor : Column : Value order

• In the “Value Order for C3 (Satisfaction Level)” 
dialog box, select the “User-specified order” 
option.

• In the “Define an order (one value per line)” 
window, specify the order HIGH, MED, LOW.

• Click OK in the “Value Order for C3 (Satisfaction
Level)” dialog box.

To construct the cross-tabulation table:

• Select Stat : Tables : Cross Tabulation and 
Chi-Square

• In the “Cross Tabulation and Chi-Square” dialog
box, enter the variable name ‘Fund Type’ 
(including the single quotes) into the “Categorical
variables: For rows” window.

• Enter the variable name ‘Satisfaction Rating’ 
(including the single quotes) into the 
“Categorical variables: For columns” window.

• Place a checkmark in the “Display Counts” 
checkbox. We would check “Display Row 
percents” to produce a table of row percentages
and we would check “Display Column percents”
to produce a table of column percentages.

• Click OK in the “Cross Tabulation and Chi-Square”
dialog box to obtain results in the Session window.
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Construct a scatter plot of sales volume versus advertis-
ing expenditure as in Figure 2.24 on page 67 (data file:
SalesPlot.MWT).

• Enter the sales and advertising data in Table 2.20
(on page 67)—sales region in column C1 (with 
variable name ‘Sales Region’), advertising expendi-
ture in column C2 (with variable name ‘Adv Exp’),
and sales volume in column C3 (with variable name
‘Sales Vol’).

• Select Graph : Scatterplot

• In the Scatterplots dialog box, select “With 
Regression” from the gallery of scatterplots in order
to produce a scatterplot with a “best line” fitted to
the data (see Chapter 13 for discussion of this “best
line”). Select “Simple” if a fitted line is not desired.

• Click OK in the Scatterplots dialog box.

• In the “Scatterplot—With Regression” dialog box,
enter the variable name ‘Sales Vol’ (including the
single quotes) into row 1 of the “Y variables” 
window and enter the variable name ‘Adv Exp’ 
(including the single quotes) into row 1 of the 
“X variables” window.

• Click OK in the “Scatterplot—With Regression” 
dialog box.

• The scatterplot and fitted line will be displayed in 
a graphics window.

• Additional plots can be obtained by placing 
appropriate variable names in other rows in the 
“Y variables” and “X variables” windows.
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we might estimate (1) a typical bottle design rating

and (2) how the bottle design ratings vary from

consumer to consumer.

Taken together, the graphical displays of Chapter 2

and the numerical methods of this chapter give us a

basic understanding of the important aspects of a

set of measurements. We will illustrate this by

continuing to analyze the car mileages, payment

times, bottle design ratings, and cell phone usages

introduced in Chapters 1 and 2.

3.1 Describing Central Tendency  
The mean, median, and mode In addition to describing the shape of the distribution of

a sample or population of measurements, we also describe the data set’s central tendency. A

measure of central tendency represents the center or middle of the data. Sometimes we think

of a measure of central tendency as a typical value. However, as we will see, not all measures

of central tendency are necessarily typical values.

One important measure of central tendency for a population of measurements is the popula-

tion mean. We define it as follows:

The population mean, which is denoted and pronounced mew, is the average of the population

measurements.

More precisely, the population mean is calculated by adding all the population measurements and

then dividing the resulting sum by the number of population measurements. For instance, sup-

pose that Chris is a college junior majoring in business. This semester Chris is taking five classes

and the numbers of students enrolled in the classes (that is, the class sizes) are as follows:

Class Class Size ClassSizes
Business Law 60

Finance 41

International Studies 15

Management 30

Marketing 34

The mean of this population of class sizes is

Since this population of five class sizes is small, it is possible to compute the population mean.

Often, however, a population is very large and we cannot obtain a measurement for each popula-

tion element. Therefore, we cannot compute the population mean. In such a case, we must

estimate the population mean by using a sample of measurements.

In order to understand how to estimate a population mean, we must realize that the population

mean is a population parameter.

A population parameter is a number calculated using the population measurements that

describes some aspect of the population. That is, a population parameter is a descriptive measure

of the population.

There are many population parameters, and we discuss several of them in this chapter. The simplest

way to estimate a population parameter is to make a point estimate, which is a one-number

estimate of the value of the population parameter. Although a point estimate is a guess of a popu-

lation parameter’s value, it should not be a blind guess. Rather, it should be an educated guess

based on sample data. One sensible way to find a point estimate of a population parameter is to

use a sample statistic.
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n this chapter we study numerical methods

for describing the important aspects of a set

of measurements. If the measurements are

values of a quantitative variable, we often describe

(1) what a typical measurement might be and

(2) how the measurements vary, or differ, from each

other. For example, in the car mileage case we might

estimate (1) a typical EPA gas mileage for the new

midsize model and (2) how the EPA mileages vary

from car to car. Or, in the marketing research case,

I
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A sample statistic is a number calculated using the sample measurements that describes some

aspect of the sample. That is, a sample statistic is a descriptive measure of the sample.

The sample statistic that we use to estimate the population mean is the sample mean, which is

denoted as (pronounced x bar) and is the average of the sample measurements.

In order to write a formula for the sample mean, we employ the letter n to represent the num-

ber of sample measurements, and we refer to n as the sample size. Furthermore, we denote the

sample measurements as , , . . . , . Here is the first sample measurement, is the second

sample measurement, and so forth. We denote the last sample measurement as . Moreover,

when we write formulas we often use summation notation for convenience. For instance, we

write the sum of the sample measurements

as . Here the symbol 兺 simply tells us to add the terms that follow the symbol. The term 

is a generic (or representative) observation in our data set, and the and the n indicate where

to start and stop summing. Thus

We define the sample mean as follows:
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The sample mean is defined to be

and is the point estimate of the population mean . m
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EXAMPLE 3.1 The Car Mileage Case

In order to offer its tax credit, the federal government has decided to define the “typical” EPA

combined city and highway mileage for a car model as the mean of the population of EPA com-

bined mileages that would be obtained by all cars of this type. Here, using the mean to represent

a typical value is probably reasonable. We know that some individual cars will get mileages that

are lower than the mean and some will get mileages that are above it. However, because there will

be many thousands of these cars on the road, the mean mileage obtained by these cars is proba-

bly a reasonable way to represent the model’s overall fuel economy. Therefore, the government

will offer its tax credit to any automaker selling a midsize model equipped with an automatic

transmission that achieves a mean EPA combined mileage of at least 31 mpg.

To demonstrate that its new midsize model qualifies for the tax credit, the automaker in this

case study wishes to use the sample of 50 mileages in Table 3.1 to estimate m, the model’s mean

mileage. Before calculating the mean of the entire sample of 50 mileages, we will illustrate the

formulas involved by calculating the mean of the first five of these mileages. Table 3.1 tells us that

x1  30.8, x2  31.7, x3  30.1, x4  31.6, and x5  32.1, so the sum of the first five mileages is

Therefore, the mean of the first five mileages is
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a

5

i 1

xi

5
 

156.3

5
 31.26

 30.8  31.7  30.1  31.6  32.1  156.3

a
5

i 1

xi  x1  x2  x3  x4  x5

m

C
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Of course, intuitively, we are likely to obtain a more accurate point estimate of the population

mean by using all of the available sample information. The sum of all 50 mileages can be veri-

fied to be

Therefore, the mean of the sample of 50 mileages is

This point estimate says we estimate that the mean mileage that would be obtained by all of the

new midsize cars that will or could potentially be produced this year is 31.56 mpg. Unless we are

extremely lucky, however, this sample mean will not exactly equal the average mileage that

would be obtained by all cars. That is, the point estimate  31.56 mpg, which is based on the

sample of 50 randomly selected mileages, probably does not exactly equal the population meanm.

Therefore, although  31.56 provides some evidence that m is at least 31 and thus that the

automaker should get the tax credit, it does not provide definitive evidence. In later chapters, we

discuss how to assess the reliability of the sample mean and how to use a measure of reliability

to decide whether sample information provides definitive evidence.

Another descriptive measure of the central tendency of a population or a sample of measure-

ments is the median. Intuitively, the median divides a population or sample into two roughly

equal parts. We calculate the median, which is denoted Md, as follows:

x

x

x  
a
50

i 1

xi

50
 

1578

50
 31.56

a
50

i 1

xi  x1  x2      x50  30.8  31.7      31.4  1578

T A B L E 3 . 1 A Sample of 50 Mileages GasMilesDS

30.8 30.8 32.1 32.3 32.7

31.7 30.4 31.4 32.7 31.4

30.1 32.5 30.8 31.2 31.8

31.6 30.3 32.8 30.7 31.9

32.1 31.3 31.9 31.7 33.0

33.3 32.1 31.4 31.4 31.5

31.3 32.5 32.4 32.2 31.6

31.0 31.8 31.0 31.5 30.6

32.0 30.5 29.8 31.7 32.3

32.4 30.5 31.1 30.7 31.4

BI

Consider a population or a sample of measurements, and arrange the measurements in increasing order.

The median, Md, is found as follows:

1 If the number of measurements is odd, the median is the middlemost measurement in the ordering.

2 If the number of measurements is even, the median is the average of the two middlemost measurements

in the ordering. 

For example, recall that Chris’s five classes have sizes 60, 41, 15, 30, and 34. To find the me-

dian of the population of class sizes, we arrange the class sizes in increasing order as follows:

15 30 34 41 60

Because the number of class sizes is odd, the median of the population of class sizes is the mid-

dlemost class size in the ordering. Therefore, the median is 34 students (it is circled).

As another example, suppose that in the middle of the semester Chris decides to take an addi-

tional class—a sprint class in individual exercise. If the individual exercise class has 30 students,

then the sizes of Chris’s six classes are (arranged in increasing order):

15 30 30 34 41 60



Because the number of classes is even, the median of the population of class sizes is the average of

the two middlemost class sizes, which are circled. Therefore, the median is stu-

dents. Note that, although two of Chris’s classes have the same size, 30 students, each observation

is listed separately (that is, 30 is listed twice) when we arrange the observations in increasing order.

As a third example, if we arrange the sample of 50 mileages in Table 3.1 in increasing order,

we find that the two middlemost mileages—the 25th and 26th mileages—are 31.5 and 31.6. It

follows that the median of the sample is 31.55. Therefore, we estimate that the median mileage

that would be obtained by all of the new midsize cars that will or could potentially be produced

this year is 31.55 mpg. The Excel output in Figure 3.1 shows this median mileage, as well as the

previously calculated mean mileage of 31.56 mpg. Other quantities given on the output will be

discussed later in this chapter.

A third measure of the central tendency of a population or sample is the mode, which is

denoted Mo.

The mode, Mo, of a population or sample of measurements is the measurement that occurs most

frequently.

For example, the mode of Chris’s six class sizes is 30. This is because more classes (two) have a

size of 30 than any other size. Sometimes the highest frequency occurs at more than one measure-

ment. When this happens, two or more modes exist. When exactly two modes exist, we say the data

are bimodal. When more than two modes exist, we say the data are multimodal. If data are presented

in classes (such as in a frequency or percent histogram), the class having the highest frequency or

percent is called the modal class. For example, Figure 3.2 shows a histogram of the car mileages

that has two modal classes—the class from 31.0 mpg to 31.5 mpg and the class from 31.5 mpg to

32.0 mpg. Since the mileage 31.5 is in the middle of the modal classes, we might estimate that the

population mode for the new midsize model is 31.5 mpg. Or, alternatively, because the Excel out-

put in Figure 3.1 tells us that the mode of the sample of 50 mileages is 31.4 mpg (it can be verified

that this mileage occurs five times in Table 3.1), we might estimate that the population mode is

31.4 mpg. Obviously, these two estimates are somewhat contradictory. In general, it can be difficult

to define a reliable method for estimating the population mode. Therefore, although it can be infor-

mative to report the modal class or classes in a frequency or percent histogram, the mean or median

is used more often than the mode when we wish to describe a data set’s central tendency by using a

single number. Finally, the mode is a useful descriptor of qualitative data. For example, we have

seen in Chapter 2 that the most frequently sold 2006 Jeep model at the Cincinnati Jeep dealership

was the Jeep Liberty, which accounted for 31.87 percent of Jeep sales.

Comparing the mean, median, and mode Often we construct a histogram for a sample

to make inferences about the shape of the sampled population. When we do this, it can be useful

to “smooth out” the histogram and use the resulting relative frequency curve to describe the shape

(30  34)兾2  32

104 Chapter 3 Descriptive Statistics: Numerical Methods

Histogram of Gas Mileages
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F I G U R E 3 . 2 A Percent Histogram Describing

the 50 Mileages

F I G U R E 3 . 1 Excel Output of Statistics 

Describing the 50 Mileages

Mileage

Mean 31.56

Standard Error 0.1128

Median 31.55

Mode 31.4

Standard Deviation 0.7977

Sample Variance 0.6363

Kurtosis  0.5112

Skewness  0.0342

Range 3.5

Minimum 29.8

Maximum 33.3

Sum 1578

Count 50
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of the population. Relative frequency curves can have many shapes. Three common shapes are

illustrated in Figure 3.3. Part (a) of this figure depicts a population described by a symmetrical

relative frequency curve. For such a population, the mean ( ), median (Md), and mode (Mo) are

all equal. Note that in this case all three of these quantities are located under the highest point of

the curve. It follows that when the frequency distribution of a sample of measurements is

approximately symmetrical, then the sample mean, median, and mode will be nearly the same.

For instance, consider the sample of 50 mileages in Table 3.1. Because the histogram of these

mileages in Figure 3.2 is approximately symmetrical, the mean—31.56—and the median—

31.55—of the mileages are approximately equal to each other.

Figure 3.3(b) depicts a population that is skewed to the right. Here the population mean is

larger than the population median, and the population median is larger than the population mode

(the mode is located under the highest point of the relative frequency curve). In this case the pop-

ulation mean averages in the large values in the upper tail of the distribution. Thus the popula-

tion mean is more affected by these large values than is the population median. To understand

this, we consider the following example.

m

(a) A symmetrical curve (b) A curve skewed to the right

Mo

Md

 
Mo

Md

 

(c) A curve skewed to the left

Mo

Md
 

F I G U R E 3 . 3 Relationships among the Mean M, the Median Md, and the Mode Mo

EXAMPLE 3.2 The Household Income Case

An economist wishes to study the distribution of household incomes in a midwestern city. To do

this, the economist randomly selects a sample of households from the city and deter-

mines last year’s income for each household.1 The resulting sample of 12 household incomes—

arranged in increasing order—is as follows (the incomes are expressed in dollars):

7,524 11,070 18,211 26,817 36,551 41,286

49,312 57,283 72,814 90,416 135,540 190,250

Because the number of incomes is even, the median of the incomes is the average of the two mid-

dlemost incomes, which are enclosed in ovals. Therefore, the median is 

The mean of the incomes is the sum of the incomes, 737,076, divided by 12, or $61,423.

Here, the mean has been affected by averaging in the large incomes $135,540 and $190,250 and

thus is larger than the median. The median is said to be resistant to these large incomes because

the value of the median is affected only by the position of these large incomes in the ordered list

of incomes, not by the exact sizes of the incomes. For example, if the largest income were

smaller—say $150,000—the median would remain the same but the mean would decrease. If

the largest income were larger—say $300,000—the median would also remain the same but the

mean would increase. Therefore, the median is resistant to large values but the mean is not. Sim-

ilarly, the median is resistant to values that are much smaller than most of the measurements. In

general, we say that the median is resistant to extreme values.

Figure 3.3(c) depicts a population that is skewed to the left. Here the population mean is smaller

than the population median, and the population median is smaller than the population mode. In this

case the population mean averages in the small values in the lower tail of the distribution, and the

$45,299.

(41,286  49,312)兾2  

n  12

C

IncomesDS

1Note that, realistically, an economist would sample many more than 12 incomes from a city. We have made the sample size in

this case small so that we can simply illustrate various ideas throughout this chapter.



mean is more affected by these small values than is the median. For instance, in a survey several

years ago of 20 Decision Sciences graduates at Miami University, 18 of the graduates had obtained

employment in business consulting that paid a mean salary of about $43,000. One of the graduates

had become a Christian missionary and listed his salary as $8,500, and another graduate was work-

ing for his hometown bank and listed his salary as $10,500. The two lower salaries decreased the

overall mean salary to about $39,650, which was below the median salary of about $43,000.

When a population is skewed to the right or left with a very long tail, the population mean can be

substantially affected by the extreme population values in the tail of the distribution. In such a case,

the population median might be better than the population mean as a measure of central tendency.

For example, the yearly incomes of all people in the United States are skewed to the right with a very

long tail. Furthermore, the very large incomes in this tail cause the mean yearly income to be inflated

above the typical income earned by most Americans. Because of this, the median income is more

representative of a typical U.S. income.
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EXAMPLE 3.3 The Marketing Research Case

BI

BI

The Excel output in Figure 3.4 tells us that the mean and the median of the sample of 60 bottle

design ratings are 30.35 and 31, respectively. Because the histogram of the bottle design ratings

in Figure 3.5 is not highly skewed to the left, the sample mean is not much less than the sample

median. Therefore, using the mean as our measure of central tendency, we estimate that the mean

rating of the new bottle design that would be given by all consumers is 30.35. This is consider-

ably higher than the minimum standard of 25 for a successful bottle design.

The MINITAB output in Figure 3.6 gives a histogram of the 65 payment times, and the MINITAB

output in Figure 3.7 tells us that the mean and the median of the payment times are 18.108 days

and 17 days, respectively. Because the histogram is not highly skewed to the right, the sample

mean is not much greater than the sample median. Therefore, using the mean as our measure of

central tendency, we estimate that the mean payment time of all bills using the new billing system

is 18.108 days. This is substantially less than the typical payment time of 39 days that had been

experienced using the old billing system.

EXAMPLE 3.4 The Payment Time Case

C

C

Mean 30.35

0.401146

3.107263

9.655085

1.423397

 1.17688
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1821

Standard Error

Median

Mode

Standard Deviation

Sample Variance

Kurtosis

Skewness

Range

Minimum

Maximum

Sum

Count

STATISTICS

F I G U R E 3 . 4 Excel Output of Statistics

Describing the 60 Bottle

Design Ratings
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F I G U R E 3 . 5 Excel Frequency Histogram 

of the 60 Bottle Design 

Ratings

When a population is symmetrical or not highly skewed, then the population mean and the

population median are either equal or roughly equal, and both provide a good measure of the

population central tendency. In this situation, we usually make inferences about the population

mean because much of statistical theory is based on the mean rather than the median.



Variable    Count      Mean     StDev    Variance  

PayTime 65    18.108     3.961      15.691  

Variable   Minimum       Q1    Median        Q3    Maximum    Range

PayTime 10.000   15.000    17.000    21.000     29.000   19.000

F I G U R E 3 . 7 MINITAB Output of Statistics Describing the 65 Payment Times

BI
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To conclude this section, note that the mean and the median convey useful information about

a population having a relative frequency curve with a sufficiently regular shape. For instance, the

mean and median would be useful in describing the mound-shaped, or single-peaked, distribu-

tions in Figure 3.3. However, these measures of central tendency do not adequately describe

a double-peaked distribution. For example, the mean and the median of the exam scores in the

double-peaked distribution of Figure 2.12 (page 48) are 75.225 and 77. Looking at the distribu-

tion, neither the mean nor the median represents a typical exam score. This is because the exam

scores really have no central value. In this case the most important message conveyed by the

double-peaked distribution is that the exam scores fall into two distinct groups.
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F I G U R E 3 . 6 MINITAB Frequency Histogram of the 65 Payment Times

EXAMPLE 3.5 The Cell Phone Case 

Remember that if the cellular cost per minute for the random sample of 100 bank employees

is over 18 cents per minute, the bank will benefit from automated cellular management of its

calling plans. Last month’s cellular usages for the 100 randomly selected employees are given

in Table 1.4 (page 9), and a dot plot of these usages is given in the page margin. If we add

together the usages, we find that the 100 employees used a total of 46,625 minutes. Further-

more, the total cellular cost incurred by the 100 employees is found to be $9,317 (this total

includes base costs, overage costs, long distance, and roaming). This works out to an average

of $9,317兾46,625  $.1998, or 19.98 cents per minute. Because this average cellular cost per

minute exceeds 18 cents per minute, the bank will hire the cellular management service to

manage its calling plans.

C

Exercises for Section 3.1
CONCEPTS

3.1 Explain the difference between each of the following:

a A population parameter and its point estimate.

b A population mean and a corresponding sample mean.
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Variable    Count    Mean   StDev  Variance  

Ratings 65  42.954   2.642     6.982   

Variable  Minimum      Q1   Median       Q3   Maximum   Range

Ratings 36.000  41.000   43.000   45.000    48.000  12.000

F I G U R E 3 . 8 MINITAB Output of Statistics Describing the 65 Satisfaction Ratings (for Exercise 3.5)

Variable     Count   Mean    StDev  Variance  

WaitTime 100  5.460    2.475     6.128  

Variable   Minimum     Q1   Median       Q3   Maximum    Range

WaitTime 0.400  3.800    5.250    7.200    11.600   11.200

F I G U R E 3 . 9 MINITAB Output of Statistics Describing the 100 Waiting Times (for Exercise 3.6)

3.2 Explain how the population mean, median, and mode compare when the population’s relative

frequency curve is

a Symmetrical.

b Skewed with a tail to the left.

c Skewed with a tail to the right.

METHODS AND APPLICATIONS

3.3 Calculate the mean, median, and mode of each of the following populations of numbers:

a 9, 8, 10, 10, 12, 6, 11, 10, 12, 8

b 110, 120, 70, 90, 90, 100, 80, 130, 140

3.4 Calculate the mean, median, and mode for each of the following populations of numbers:

a 17, 23, 19, 20, 25, 18, 22, 15, 21, 20

b 505, 497, 501, 500, 507, 510, 501

3.5 THE VIDEO GAME SATISFACTION RATING CASE VideoGame

Recall that Table 1.7 (page 13) presents the satisfaction ratings for the XYZ-Box game system that

have been given by 65 randomly selected purchasers. Figures 3.8 and 3.11(a) give the MINITAB

and Excel outputs of statistics describing the 65 satisfaction ratings.

a Find the sample mean on the outputs. Does the sample mean provide evidence that the mean of

the population of all possible customer satisfaction ratings for the XYZ-Box is at least 42? 

(Recall that a “very satisfied” customer gives a rating that is at least 42.) Explain your answer.

b Find the sample median on the outputs. How do the mean and median compare? What does the

histogram in Figure 2.15 (page 52) tell you about why they compare this way?

3.6 THE BANK CUSTOMER WAITING TIME CASE WaitTime

Recall that Table 1.8 (page 13) presents the waiting times for teller service during peak business hours

of 100 randomly selected bank customers. Figures 3.9 and 3.11(b) give the MINITAB and Excel out-

puts of statistics describing the 100 waiting times.

a Find the sample mean on the outputs. Does the sample mean provide evidence that the mean of

the population of all possible customer waiting times during peak business hours is less than

six minutes (as is desired by the bank manager)? Explain your answer.

b Find the sample median on the outputs. How do the mean and median compare? What does the

histogram in Figure 2.16 (page 53) tell you about why they compare this way?

3.7 THE TRASH BAG CASE TrashBag

Consider the trash bag problem. Suppose that an independent laboratory has tested 30-gallon trash

bags and has found that none of the 30-gallon bags currently on the market has a mean breaking

strength of 50 pounds or more. On the basis of these results, the producer of the new, improved

trash bag feels sure that its 30-gallon bag will be the strongest such bag on the market if the new

trash bag’s mean breaking strength can be shown to be at least 50 pounds. Recall that Table 1.9

(page 14) presents the breaking strengths of 40 trash bags of the new type that were selected during

DS

DS

DS
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a 40-hour pilot production run. Figures 3.10 and 3.11(c) give the MINITAB and Excel outputs of

statistics describing the 40 breaking strengths.

a Find the sample mean on the outputs. Does the sample mean provide evidence that the mean of

the population of all possible trash bag breaking strengths is at least 50 pounds? Explain your

answer.

b Find the sample median on the outputs. How do the mean and median compare? What does the

histogram in Figure 2.17 (page 53) tell you about why they compare this way?

3.8 Lauren is a college sophomore majoring in business. This semester Lauren is taking courses in

accounting, economics, management information systems, public speaking, and statistics. The

sizes of these classes are, respectively, 350, 45, 35, 25, and 40. Find the mean and the median

of the class sizes. What is a better measure of Lauren’s “typical class size”—the mean or the

median?

Exercises 3.9 through 3.13 refer to information in Table 3.2, which gives data concerning lifestyles in the

United States and eight other countries. In each exercise (a) compute the appropriate mean and median;

(b) compare the mean and median and explain what they say about skewness; (c) construct a dot plot and

discuss what the dot plot says about skewness and whether this agrees with how the mean and median

compare; (d) discuss how the United States compares to the mean and median. LifeStyle

3.9 Analyze the data concerning voters in Table 3.2 as described above. LifeStyle

3.10 Analyze the data concerning income tax rates in Table 3.2 as described above. LifeStyle

3.11 Analyze the data concerning video rentals in Table 3.2 as described above. LifeStyle

3.12 Analyze the data concerning PCs in Table 3.2 as described above. LifeStyle

3.13 Analyze the data concerning religion in Table 3.2 as described above. LifeStyle

3.14 Table 3.3 gives the number of unique visitors during December 2006 to the top 10 websites as rated

by comScore Media Metrix, a division of comScore Networks, Inc. Compute the mean and median

for the website data and compare them. What do they say about skewness? WebVisit

3.15 In 1998 the National Basketball Association (NBA) experienced a labor dispute that canceled

almost half of the professional basketball season. The NBA owners, who were worried about

escalating salaries because several star players had recently signed huge contracts, locked out the

DS

DS

DS

DS

DS

DS

DS

Variable     Count    Mean   StDev   Variance  

Strength 40  50.575   1.644      2.702  

Variable   Minimum      Q1  Median       Q3   Maximum   Range

Strength 46.800  49.425  50.650   51.650    54.000   7.200

F I G U R E 3 . 1 0 MINITAB Output of Statistics Describing the 40 Breaking Strengths (for Exercise 3.7)

F I G U R E 3 . 1 1 Excel Outputs of Statistics Describing Three Data Sets (for Exercises 3.5, 3.6, and 3.7)

(a) Satisfaction rating statistics

Ratings

Mean 42.9538

Standard Error 0.3277

Median 43

Mode 44

Standard Deviation 2.6424

Sample Variance 6.9822

Kurtosis  0.3922

Skewness  0.4466

Range 12

Minimum 36

Maximum 48

Sum 2792

Count 65

(b) Waiting time statistics

WaitTime

Mean 5.46

Standard Error 0.2475

Median 5.25

Mode 5.8

Standard Deviation 2.4755

Sample Variance 6.1279

Kurtosis  0.4050

Skewness 0.2504

Range 11.2

Minimum 0.4

Maximum 11.6

Sum 546

Count 100

(c) Breaking strength statistics

Strength

Mean 50.575

Standard Error 0.2599

Median 50.65

Mode 50.9

Standard Deviation 1.6438

Sample Variance 2.7019

Kurtosis  0.2151

Skewness  0.0549

Range 7.2

Minimum 46.8

Maximum 54

Sum 2023

Count 40



players and demanded that a salary cap be established. This led to discussion in the media about

excessive player salaries. On October 30, 1998, an article titled “What does average salary really

mean in the NBA?” by Jonathan Sills appeared in his Behind the Numbers column on the

ESPN.com website. The article discussed the validity of some media claims about NBA player

salaries. Figure 3.12 shows a frequency distribution of NBA salaries as presented in the Sills

article. Use the frequency distribution to do the following:

a Compare the mean, median, and mode of the salaries and explain the relationship. Note that 

the minimum NBA salary at the time of the lockout was $272,500.

b Noting that 411 NBA players were under contract, estimate the percentage of players who

earned more than the mean salary; more than the median salary.

c Below we give three quotes from news stories cited by Sills in his article. Comment on the

validity of each statement.

“Last year, the NBA middle class made an average of $2.6 million. On that scale, I’d

take the NBA lower class.”—Houston Chronicle

“The players make an obscene amount of money—the median salary is well over 

$2 million!”—St. Louis Post Dispatch

“The players want us to believe they literally can’t ‘survive’ on $2.6 million a year, the

average salary in the NBA.”—Washington Post

3.2 Measures of Variation 
Range, variance, and standard deviation In addition to estimating a population’s central

tendency, it is important to estimate the variation of the population’s individual values. For ex-

ample, Figure 3.13 shows two histograms. Each portrays the distribution of 20 repair times (in

days) for personal computers at a major service center. Because the mean (and median and mode)

of each distribution equals four days, the measures of central tendency do not indicate any differ-

ence between the American and National Service Centers. However, the repair times for the

American Service Center are clustered quite closely together, whereas the repair times for the

National Service Center are spread farther apart (the repair time might be as little as one day, but

could also be as long as seven days). Therefore, we need measures of variation to express how

the two distributions differ.

One way to measure the variation of a set of measurements is to calculate the range.

Consider a population or a sample of measurements. The range of the measurements is the

largest measurement minus the smallest measurement.

In Figure 3.13, the smallest and largest repair times for the American Service Center are three

days and five days; therefore, the range is 5  3  2 days. On the other hand, the range for the
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T A B L E 3 . 3

Top 10 Websites in December

2006 as Rated by comScore

Media Metrix WebVisitDS

Unique 
Visitors

(Millions)

Yahoo! sites 131

Time Warner Network 121

Microsoft sites 117

Google sites 113

eBay 84

Fox Interactive Media 73

Amazon sites 57

Ask Network 56

Wal-Mart 44

Viacom Digital 40

Source: Courtesy of ComScore

Networks. Copyright © 2007. All

rights reserved.

Numbers of players
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  $272,500
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  $2,176,000

F I G U R E 3 . 1 2

1997–98 NBA Salaries

Source: Reprinted courtesy 

of ESPN.

Compute
and inter-

pret the range,
variance, and
standard deviation.

LO2

T A B L E 3 . 2 Data Comparing Lifestyles in the U.S. and Eight Other Countries

LifeStyleDS

Voters Income Tax Religion
Percentage Highest Percentage of 
Who Voted in Personal Video Rentals PCs Households Who
Last National National Per Capita Per 100 Attend Services
Election Rate per Year People Regularly

U.S. 49.1% 40% 13.8 35.0 51.6%

Germany 82.2 56 2.1 17.0 20.0

France 68.9 54 0.9 16.0 N.A.

Britain 71.5 40 3.3 20.0 23.6

Netherlands 78.3 60 1.8 20.0 28.9

Sweden 78.6 55 2.1 18.0 10.0

Italy 85.0 46 0.7 11.5 55.8

Japan 58.8 50 7.5 14.0 N.A.

South Korea 63.9 44 N.A. N.A. N.A.

N.A.-Not available.

Source: “America vs. The New Europe: By The Numbers,” Fortune, December 21, 1998, p. 156. Reprinted from

the December 21, 1998, issue of Fortune, copyright 1998 Time, Inc. All rights reserved.
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National Service Center is 7  1  6 days. The National Service Center’s larger range indicates

that this service center’s repair times exhibit more variation.

In general, the range is not the best measure of a data set’s variation. One reason is that it is

based on only the smallest and largest measurements in the data set and therefore may reflect an

extreme measurement that is not entirely representative of the data set’s variation. For example,

in the marketing research case, the smallest and largest ratings in the sample of 60 bottle design

ratings are 20 and 35. However, to simply estimate that most bottle design ratings are between 20

and 35 misses the fact that 57, or 95 percent, of the 60 ratings are at least as large as the minimum

rating of 25 for a successful bottle design. In general, to fully describe a population’s variation,

it is useful to estimate intervals that contain different percentages (for example, 70 percent,

95 percent, or almost 100 percent) of the individual population values. To estimate such intervals,

we use the population variance and the population standard deviation.

The Population Variance and Standard Deviation

The population variance s
2 (pronounced sigma squared ) is the average of the squared deviations of the

individual population measurements from the population mean m.

The population standard deviation (pronounced sigma) is the positive square root of the population

variance.

s

For example, consider again the population of Chris’s class sizes this semester. These class sizes

are 60, 41, 15, 30, and 34. To calculate the variance and standard deviation of these class sizes,

we first calculate the population mean to be

Next, we calculate the deviations of the individual population measurements from the population

mean  36 as follows:

(60  36)  24 (41  36)  5 (15  36)   21 (30  36)   6 (34  36)   2

Then we compute the sum of the squares of these deviations:

(24)2  (5)2  ( 21)2  ( 6)2  ( 2)2  576  25  441  36  4  1082

Finally, we calculate the population variance , the average of the squared deviations, by divid-
ing the sum of the squared deviations, 1,082, by the number of squared deviations, 5. That is, 
equals Furthermore, this implies that the population standard deviation —
the positive square root of —is 

To see that the variance and standard deviation measure the variation, or spread, of the individ-

ual population measurements, suppose that the measurements are spread far apart. Then, many

measurements will be far from the mean , many of the squared deviations from the mean will be

large, and the sum of squared deviations will be large. It follows that the average of the squared

m

1216.4  14.71.s
2

s1,082兾5  216.4.
s

2
s

2

m

m  
60  41  15  30  34
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F I G U R E 3 . 1 3 Repair Times for Personal Computers at Two Service Centers



deviations—the population variance—will be relatively large. On the other hand, if the population

measurements are clustered close together, many measurements will be close to m, many of the

squared deviations from the mean will be small, and the average of the squared deviations—the

population variance—will be small. Therefore, the more spread out the population measurements,

the larger is the population variance, and the larger is the population standard deviation.

To further understand the population variance and standard deviation, note that one reason we

square the deviations of the individual population measurements from the population mean is

that the sum of the raw deviations themselves is zero. This is because the negative deviations

cancel the positive deviations. For example, in the class size situation, the raw deviations are 24,

5,  21,  6, and  2, which sum to zero. Of course, we could make the deviations positive by

finding their absolute values. We square the deviations instead because the resulting population

variance and standard deviation have many important interpretations that we study throughout

this book. Since the population variance is an average of squared deviations of the original pop-

ulation values, the variance is expressed in squared units of the original population values. On the

other hand, the population standard deviation—the square root of the population variance—is

expressed in the same units as the original population values. For example, the previously dis-

cussed class sizes are expressed in numbers of students. Therefore, the variance of these class

sizes is  216.4 (students)2, whereas the standard deviation is  14.71 students. Since the

population standard deviation is expressed in the same units as the population values, it is more

often used to make practical interpretations about the variation of these values.

When a population is too large to measure all the population units, we estimate the population

variance and the population standard deviation by the sample variance and the sample standard

deviation. We calculate the sample variance by dividing the sum of the squared deviations of the

sample measurements from the sample mean by n  1, the sample size minus one. Although we

might intuitively think that we should divide by n rather than n  1, it can be shown that divid-

ing by n tends to produce an estimate of the population variance that is too small. On the other

hand, dividing by n  1 tends to produce a larger estimate that we will show in Chapter 7 is more

appropriate. Therefore, we obtain:

ss
2
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The Sample Variance and the Sample Standard Deviation

The sample variance s2 (pronounced s squared) is defined to be

and is the point estimate of the population variance .

The sample standard deviation is the positive square root of the sample variance and is the

point estimate of the population standard deviation .s

s  2s2

s
2

s2
 

a
n

i 1

(xi  x )2

n  1
 

(x1  x)2
 (x2  x)2

     (xn  x)2

n  1

To illustrate the calculation of the sample variance and standard deviation, we begin by consider-

ing the first five mileages in Table 3.1 (page 103): x1 30.8, x2 31.7, x3 30.1, x4 31.6, and

x5 32.1. Since the mean of these five mileages is it follows that

Therefore, the variance and the standard deviation of the sample of the first five mileages are

s2
 

2.572

5  1
 .643    and    s  1.643  .8019

  2.572

  ( .46)2
 (.44)2

 ( 1.16)2
 (.34)2

 (.84)2

  (31.6  31.26)2
 (32.1  31.26)2

  (30.8  31.26)2
 (31.7  31.26)2

 (30.1  31.26)2

 a

5

i 1

(xi  x)2
 (x1  x)2

 (x2  x)2
 (x3  x)

2
 (x4  x)

2
 (x5  x)2

x  31.26,

EXAMPLE 3.6 The Car Mileage Case C
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Of course, intuitively, we are likely to obtain more accurate point estimates of the population vari-

ance and standard deviation by using all the available sample information. Recall that the mean

of all 50 mileages is Using this sample mean, it can be verified that

Therefore, the variance and the standard deviation of the sample of 50 mileages are

Notice that the Excel output in Figure 3.1 (page 104) gives these quantities. Here s2 .6363 and

s  .7977 are the point estimates of the variance, s2, and the standard deviation, s, of the popu-

lation of the mileages of all the cars that will be or could potentially be produced. Furthermore,

the sample standard deviation is expressed in the same units (that is, miles per gallon) as the sam-

ple values. Therefore s  .7977 mpg.

Before explaining how we can use s2 and s in a practical way, we present a formula that makes

it easier to compute s2. This formula is useful when we are using a handheld calculator that is not

equipped with a statistics mode to compute s2.

s2
 

31.18

50  1
 .6363    and    s  1.6363  .7977. 

  31.18

  ( .76)2
 (.14)2

       ( .16)2

  (30.8  31.56)2
 (31.7  31.56)2

       (31.4  31.56)2

a
50

i 1

(xi  x)2
 (x1  x )2

 (x2  x)2
       (x50  x)2

x  31.56.

The sample variance can be calculated using the computational formula

s2
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Consider the sample of 65 payment times in Table 2.4 (page 42). Using these data, it can be

verified that

Therefore,

and days (see the MINITAB output in Figure 3.7 on 

page 107).

s  2s2
 215.69135  3.9612

 
1,004.2464

64
 15.69135 s2

 
1

(65  1)
B22317  

(1,177)2

65
R

 a

65

i 1

x
2
i  x

2
1  x2

2
     x

2
65  (22)2

 (19)2
     (21)2

 22,317

 a

65

i 1

xi  x1  x2       x65  22  19      21  1,177  and

EXAMPLE 3.7 The Payment Time Case C

A practical interpretation of the standard deviation: the Empirical Rule One type

of relative frequency curve describing a population is the normal curve, which is discussed

in Chapter 6. The normal curve is a symmetrical, bell-shaped curve and is illustrated in 

Figure 3.14(a). If a population is described by a normal curve, we say that the population is 

normally distributed, and the following result can be shown to hold.

Use the Em-
pirical Rule

and Chebyshev’s
Theorem to
describe variation.

LO3
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Again consider the sample of 50 mileages. We have seen that  31.56 and s  .7977 for this

sample are the point estimates of the mean m and the standard deviation s of the population of

all mileages. Furthermore, the histogram of the 50 mileages in Figure 3.15 suggests that the

x

The Empirical Rule for a Normally Distributed Population

If a population has mean M and standard deviation S and is described by a normal curve, then, as 

illustrated in Figure 3.14(a),

ations of the mean and thus lie in the interval

3 99.73 percent of the population measurements

are within (plus or minus) three standard devi-

ations of the mean and thus lie in the interval

[m  3s, m  3s]  [m  3s]

[m  2s, m  2s]  [m  2s]

1 68.26 percent of the population measurements

are within (plus or minus) one standard devi-

ation of the mean and thus lie in the interval

2 95.44 percent of the population measurements

are within (plus or minus) two standard devi-

[m  s, m  s]  [m  s]

F I G U R E 3 . 1 4 The Empirical Rule and Tolerance Intervals

68.26% of the population

measurements are within

(plus or minus) one standard

deviation of the mean

           

95.44% of the population

measurements are within

(plus or minus) two standard

deviations of the mean

     2    2  

99.73% of the population

measurements are within

(plus or minus) three standard

deviations of the mean

     3     3 

(a) The Empirical Rule (b) Tolerance intervals for the 2009 Buick LaCrosse

11

All mid-size cars

Your actual
mileage will vary

depending on how you
drive and maintain

your vehicle.

W2A

Expected range
for most drivers
23 to 33 MPG

Expected range
for most drivers
23 to 33 MPG

Expected range
for most drivers
14 to 20 MPG

Expected range
for most drivers
14 to 20 MPG

based on 15,000 miles
at $2.80 per gallon

See the Recent Fuel Economy Guide at dealers or www.fueleconomy.gov

Estimated
Annual Fuel Cost

$1,999

These estimates reflect new EPA methods beginning with 2008 models.

Combined Fuel Economy
This Vehicle

21
48

CITY MPG HIGHWAY MPG

2817

EPA Fuel Economy Estimates

EXAMPLE 3.8 The Car Mileage Case C

In general, an interval that contains a specified percentage of the individual measurements in a

population is called a tolerance interval. It follows that the one, two, and three standard

deviation intervals around given in (1), (2), and (3) are tolerance intervals containing, respec-

tively, 68.26 percent, 95.44 percent, and 99.73 percent of the measurements in a normally distrib-

uted population. Often we interpret the three-sigma interval to be a tolerance interval

that contains almost all of the measurements in a normally distributed population. Of course, we

usually do not know the true values of and . Therefore, we must estimate the tolerance inter-

vals by replacing and in these intervals by the mean and standard deviation s of a sample

that has been randomly selected from the normally distributed population.

xsm

sm

[m  3s]

m
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F I G U R E 3 . 1 5 Estimated Tolerance Intervals in the Car Mileage Case

Estimated tolerance interval for
the mileages of 99.73 percent of
all individual cars

29.2 34.0

Estimated tolerance interval for
the mileages of 95.44 percent of
all individual cars

30.0 33.2

Estimated tolerance interval for
the mileages of 68.26 percent of
all individual cars

30.8 32.4

Histogram of the 50 Mileages
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population of all mileages is normally distributed. To more simply illustrate the Empirical

Rule, we will round to 31.6 and s to .8. It follows that, using the interval

1  [31.6 .8] [31.6 .8, 31.6 .8] [30.8, 32.4], we estimate that 68.26 percent

of all individual cars will obtain mileages between 30.8 mpg and 32.4 mpg.

2  [31.6 2(.8)] [31.6 1.6] [30.0, 33.2], we estimate that 95.44 percent of

all individual cars will obtain mileages between 30.0 mpg and 33.2 mpg.

3  [31.6 3(.8)] [31.6 2.4] [29.2, 34.0], we estimate that 99.73 percent of

all individual cars will obtain mileages between 29.2 mpg and 34.0 mpg.

Figure 3.15 depicts these estimated tolerance intervals, which are shown below the histogram.

Since the difference between the upper and lower limits of each estimated tolerance interval

is fairly small, we might conclude that the variability of the individual car mileages around

the estimated mean mileage of 31.6 mpg is fairly small. Furthermore, the interval  

[29.2, 34.0] implies that almost any individual car that a customer might purchase this year will

obtain a mileage between 29.2 mpg and 34.0 mpg.

Before continuing, recall that we have rounded and s to one decimal point accuracy in

order to simplify our initial example of the Empirical Rule. If, instead, we calculate the

Empirical Rule intervals by using  31.56 and s .7977 and then round the interval end-

points to one decimal place accuracy at the end of the calculations, we obtain the same intervals

as obtained above. In general, however, rounding intermediate calculated results can lead to

inaccurate final results. Because of this, throughout this book we will avoid greatly rounding

intermediate results.

We next note that if we actually count the number of the 50 mileages in Table 3.1 that are con-

tained in each of the intervals  [30.8, 32.4],  [30.0, 33.2], and  

[29.2, 34.0], we find that these intervals contain, respectively, 34, 48, and 50 of the 50 mileages.

The corresponding sample percentages—68 percent, 96 percent, and 100 percent—are close to

the theoretical percentages—68.26 percent, 95.44 percent, and 99.73 percent—that apply to a

normally distributed population. This is further evidence that the population of all mileages is

(approximately) normally distributed and thus that the Empirical Rule holds for this population.

[x  3s][x  2s][x  s]

x

x

[x  3s]

[x  3s]

[x  2s]

[x  s]

x



To conclude this example, we note that the automaker has studied the combined city and

highway mileages of the new model because the federal tax credit is based on these combined

mileages. When reporting fuel economy estimates for a particular car model to the public,

however, the EPA realizes that the proportions of city and highway driving vary from pur-

chaser to purchaser. Therefore, the EPA reports both a combined mileage estimate and separate

city and highway mileage estimates to the public. Figure 3.14(b) presents a window sticker

that summarizes these estimates for the 2009 Buick LaCrosse equipped with a six-cylinder

engine and an automatic transmission. The city mpg of 17 and the highway mpg of 28 given at

the top of the sticker are point estimates of, respectively, the mean city mileage and the mean

highway mileage that would be obtained by all such 2009 LaCrosses. The expected city range

of 14 to 20 mpg says that most LaCrosses will get between 14 mpg and 20 mpg in city driving.

The expected highway range of 23 to 33 mpg says that most LaCrosses will get between

23 mpg and 33 mpg in highway driving. The combined city and highway mileage estimate for

the LaCrosse is 21 mpg.

Skewness and the Empirical Rule The Empirical Rule holds for normally distributed pop-

ulations. In addition:

The Empirical Rule also approximately holds for populations having mound-shaped (single-

peaked) distributions that are not very skewed to the right or left. 

In some situations, the skewness of a mound-shaped distribution can make it tricky to know

whether to use the Empirical Rule. This will be investigated in the end-of-section exercises.

When a distribution seems to be too skewed for the Empirical Rule to hold, it is probably best to

describe the distribution’s variation by using percentiles, which are discussed in the next section.

Chebyshev’s Theorem If we fear that the Empirical Rule does not hold for a particular

population, we can consider using Chebyshev’s Theorem to find an interval that contains a

specified percentage of the individual measurements in the population. Although Chebyshev’s

Theorem technically applies to any population, we will see that it is not as practically useful as

we might hope.
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Chebyshev’s Theorem

Consider any population that has mean and standard deviation . Then, for any value of k greater

than 1, at least of the population measurements lie in the interval .[m  ks]100(1  1兾k2)%

sm

For example, if we choose k equal to 2, then at least 100(1  1兾22)%  100(3兾4)%  75% of

the population measurements lie in the interval [m 2s]. As another example, if we choose k

equal to 3, then at least 100(1  1兾32)%   100(8兾9)%   88.89% of the population measure-

ments lie in the interval [m 3s]. As yet a third example, suppose that we wish to find an inter-

val containing at least 99.73 percent of all population measurements. Here we would set

100(1  1兾k2)% equal to 99.73%, which implies that (1   1兾k 2)   .9973. If we solve for k, we

find that k 19.25. This says that at least 99.73 percent of all population measurements lie in

the interval [m 19.25s]. Unless s is extremely small, this interval will be so long that it will

tell us very little about where the population measurements lie. We conclude that Chebyshev’s

Theorem can help us find an interval that contains a reasonably high percentage (such as 75 per-

cent or 88.89 percent) of all population measurements. However, unless  is extremely small,

Chebyshev’s Theorem will not provide a useful interval that contains almost all (say, 99.73 percent)

of the population measurements.

Although Chebyshev’s Theorem technically applies to any population, it is only of practical

use when analyzing a non-mound-shaped (for example, a double-peaked) population that is

not very skewed to the right or left. Why is this? First, we would not use Chebyshev’s Theo-

rem to describe a mound-shaped population that is not very skewed because we can use the

Empirical Rule to do this. In fact, the Empirical Rule is better for such a population because it

gives us a shorter interval that will contain a given percentage of measurements. For example,

if the Empirical Rule can be used to describe a population, the interval [m 3s] will contain
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99.73 percent of all measurements. On the other hand, if we use Chebyshev’s Theorem, the inter-

val [m 19.25s] is needed. As another example, the Empirical Rule tells us that 95.44 percent

of all measurements lie in the interval [m 2s], whereas Chebyshev’s Theorem tells us only that

at least 75 percent of all measurements lie in this interval.

It is also not appropriate to use Chebyshev’s Theorem—or any other result making use

of the population standard deviation S—to describe a population that is very skewed. This

is because, if a population is very skewed, the measurements in the long tail to the left or right

will inflate . This implies that tolerance intervals calculated using s will be so long that they are

of little use. In this case, it is best to measure variation by using percentiles, which are discussed

in the next section.

z-scores We can determine the relative location of any value in a population or sample by

using the mean and standard deviation to compute the value’s z-score. For any value x in a popu-

lation or sample, the z-score corresponding to x is defined as follows:

s

z-score:

z  
x  mean

standard  deviation

The z-score, which is also called the standardized value, is the number of standard deviations that

x is from the mean. A positive z-score says that x is above (greater than) the mean, while a

negative z-score says that x is below (less than) the mean. For instance, a z-score equal to 2.3 says

that x is 2.3 standard deviations above the mean. Similarly, a z-score equal to  1.68 says that x

is 1.68 standard deviations below the mean. A z-score equal to zero says that x equals the mean.

A z-score indicates the relative location of a value within a population or sample. For exam-

ple, below we calculate the z-scores for each of the profit margins for five of the best big compa-

nies in America as rated by Forbes magazine on its website on March 25, 2005.2 For these five

companies, the mean profit margin is 10% and the standard deviation is 3.406%.

Company Profit margin, x x ⴚmean z-score

Black & Decker 8% 8 10  2  2兾3.406  .59

Washington Post 10 10 10 0 0兾3.406 0

Texas Instruments 15 15 10 5 5兾3.406 1.47

Clorox 12 12 10 2 2兾3.406 .59

Foot Locker 5 5 10  5  5兾3.406  1.47

These z-scores tell us that the profit margin for Texas Instruments is the farthest above the mean.

More specifically, this profit margin is 1.47 standard deviations above the mean. The profit mar-

gin for Foot Locker is the farthest below the mean—it is 1.47 standard deviations below the mean.

Since the z-score for the Washington Post equals zero, its profit margin equals the mean.

Values in two different populations or samples having the same z-score are the same number

of standard deviations from their respective means and, therefore, have the same relative loca-

tions. For example, suppose that the mean score on the midterm exam for students in Section A

of a statistics course is 65 and the standard deviation of the scores is 10. Meanwhile, the mean

score on the same exam for students in Section B is 80 and the standard deviation is 5. A student

in Section A who scores an 85 and a student in Section B who scores a 90 have the same

relative locations within their respective sections because their z-scores, (85 65)兾10 2 and 

(90 80)兾5 2, are equal.

The coefficient of variation Sometimes we need to measure the size of the standard devia-

tion of a population or sample relative to the size of the population or sample mean. The coeffi-

cient of variation, which makes this comparison, is defined for a population or sample as follows:

2Source: Forbes, 3/16/05. © 2005 Forbes, Inc. Reprinted with permission.

coefficient of variation  
standard  deviation

mean
 100



Exercises for Section 3.2
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The coefficient of variation compares populations or samples having different means and different

standard deviations. For example, Morningstar.com3 gives the mean and standard deviation4 of the

returns for each of the Morningstar Top 25 Large Growth Funds. As given on the Morningstar

website, the mean return for the Strong Advisor Select A fund is 10.39 percent with a standard

deviation of 16.18 percent, while the mean return for the Nations Marisco 21st Century fund is

17.7 percent with a standard deviation of 15.81 percent. It follows that the coefficient of variation

for the Strong Advisor fund is (16.18兾10.39) 100 155.73, and that the coefficient of variation

for the Nations Marisco fund is (15.81兾17.7)  100  89.32. This tells us that, for the Strong

Advisor fund, the standard deviation is 155.73 percent of the value of its mean return. For the

Nations Marisco fund, the standard deviation is 89.32 percent of the value of its mean return.

In the context of situations like the stock fund comparison, the coefficient of variation is often

used as a measure of risk because it measures the variation of the returns (the standard deviation)

relative to the size of the mean return. For instance, although the Strong Advisor fund and the

Nations Marisco fund have comparable standard deviations (16.18 percent versus 15.81 percent),

the Strong Advisor fund has a higher coefficient of variation than does the Nations Marisco fund

(155.73 versus 89.32). This says that, relative to the mean return, the variation in returns for the

Strong Advisor fund is higher. That is, we would conclude that investing in the Strong Advisor

fund is riskier than investing in the Nations Marisco fund.

CONCEPTS

3.16 Define the range, variance, and standard deviation for a population.

3.17 Discuss how the variance and the standard deviation measure variation.

3.18 The Empirical Rule for a normally distributed population and Chebyshev’s Theorem have the same

basic purpose. In your own words, explain what this purpose is.

METHODS AND APPLICATIONS

3.19 Consider the following population of five numbers: 5, 8, 10, 12, 15. Calculate the range, variance,

and standard deviation of this population.

3.20 Table 3.4 gives the percentage of homes sold during the fourth quarter of 2006 that a median

income household could afford to purchase at the prevailing mortgage interest rate for six Texas

metropolitan areas. The data were compiled by the National Association of Home Builders.

Calculate the range, variance, and standard deviation of this population of affordability

percentages. HouseAff

3.21 Table 3.5 gives data concerning the top 10 U.S. airlines (ranked by revenue) as listed on the

Fortune magazine website on April 27, 2007. AirRev

a Calculate the population range, variance, and standard deviation of the 10 revenues and of the

10 profits (note that negative values are losses rather than profits).

b Using the population of profits, compute and interpret the z-score for each airline.

3.22 In order to control costs, a company wishes to study the amount of money its sales force spends

entertaining clients. The following is a random sample of six entertainment expenses (dinner costs

for four people) from expense reports submitted by members of the sales force. DinnerCost

$157 $132 $109 $145 $125 $139

a Calculate and s for the expense data. In addition, show that the two different formulas 

for calculating s2 give the same result.

b Assuming that the distribution of entertainment expenses is approximately normally distributed,

calculate estimates of tolerance intervals containing 68.26 percent, 95.44 percent, and 

99.73 percent of all entertainment expenses by the sales force.

c If a member of the sales force submits an entertainment expense (dinner cost for four) of $190,

should this expense be considered unusually high (and possibly worthy of investigation by the

company)? Explain your answer.

d Compute and interpret the z-score for each of the six entertainment expenses.

x, s2,

DS

DS

DS

3Source: http://poweredby.morningstar.com/Selectors/AolTop25/AolTop25List.html, March 17, 2005.
4Annualized return based on the last 36 monthly returns.
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3.23 THE TRASH BAG CASE TrashBag

The mean and the standard deviation of the sample of 40 trash bag breaking strengths are

and s  1.6438.

a What does the histogram in Figure 2.17 (page 53) say about whether the Empirical Rule should

be used to describe the trash bag breaking strengths?

b Use the Empirical Rule to calculate estimates of tolerance intervals containing 68.26 percent,

95.44 percent, and 99.73 percent of all possible trash bag breaking strengths.

c Does the estimate of a tolerance interval containing 99.73 percent of all breaking strengths

provide evidence that almost any bag a customer might purchase will have a breaking strength

that exceeds 45 pounds? Explain your answer.

d How do the percentages of the 40 breaking strengths in Table 1.9 (page 14) that actually fall

into the intervals and compare to those given by the Empirical

Rule? Do these comparisons indicate that the statistical inferences you made in parts b and c

are reasonably valid?

3.24 THE BANK CUSTOMER WAITING TIME CASE WaitTime

The mean and the standard deviation of the sample of 100 bank customer waiting times are

and s 2.475.

a What does the histogram in Figure 2.16 (page 53) say about whether the Empirical Rule should

be used to describe the bank customer waiting times?

b Use the Empirical Rule to calculate estimates of tolerance intervals containing 68.26 percent,

95.44 percent, and 99.73 percent of all possible bank customer waiting times.

c Does the estimate of a tolerance interval containing 68.26 percent of all waiting times provide

evidence that at least two-thirds of all customers will have to wait less than eight minutes for

service? Explain your answer.

d How do the percentages of the 100 waiting times in Table 1.8 (page 13) that actually fall into

the intervals , and compare to those given by the Empirical Rule?

Do these comparisons indicate that the statistical inferences you made in parts b and c are

reasonably valid?

3.25 THE VIDEO GAME SATISFACTION RATING CASE VideoGame

The mean and the standard deviation of the sample of 65 customer satisfaction ratings are

and s 2.6424.

a What does the histogram in Figure 2.15 (page 52) say about whether the Empirical Rule should

be used to describe the satisfaction ratings?

b Use the Empirical Rule to calculate estimates of tolerance intervals containing 68.26 percent,

95.44 percent, and 99.73 percent of all possible satisfaction ratings.

c Does the estimate of a tolerance interval containing 99.73 percent of all satisfaction ratings provide

evidence that 99.73 percent of all customers will give a satisfaction rating for the XYZ-Box game

system that is at least 35 (the minimal rating of a “satisfied” customer)? Explain your answer.

d How do the percentages of the 65 customer satisfaction ratings in Table 1.7 (page 13) that

actually fall into the intervals , , and compare to those given by the

Empirical Rule? Do these comparisons indicate that the statistical inferences you made in parts b

and c are reasonably valid?

[ x  3s][ x  2s][ x  s]

x  42.95

DS

[ x  3s][ x  s], [ x  2s]

x  5.46

DS

[ x  3s][ x  s], [ x  2s],

x  50.575

DS

T A B L E 3 . 4 Housing Affordability in Texas 

HouseAffDS

Metro Area Percentage 

Austin-Round Rock 57.5

Dallas-Plano-Irving^^^ 61.7

El Paso 32.5

Fort Worth-Arlington^^^ 67.4

Houston-Sugar Land-Baytown 55.7

San Antonio 49.2

^^^ Indicate Metropolitan Divisions. All others are Metropoli-

tan Statistical Areas.

Data compiled by National Association of Home Builders

http//www.nabb.org/

T A B L E 3 . 5 The Top 10 Airlines (Ranked by Revenue)

in 2006 AirRevDS

Revenue Profits
Airline ($ billions) ($ millions)
American Airlines 22.6 231

United Airlines 19.3 22,876

Delta Air Lines 17.2 ⴚ6,203

Continental Airlines 13.1 343

Northwest Airlines 12.6 ⴚ2,835

US Airways Group 11.6 304

Southwest Airlines 9.1 499

Alaska Air Group 3.3 ⴚ53

SkyWest 3.1 146

Jetblue Airways 2.4 ⴚ1

Source: Fortune 500, April 27, 2007,

http://money.cnn.com/magazines/fortune500/2007/industries/Airlines/1.html.



3.26 Consider the 63 automatic teller machine (ATM) transaction times given in Table 3.6 above.

a Construct a histogram (or a stem-and-leaf display) for the 63 ATM transaction times. Describe

the shape of the distribution of transaction times. ATMTime

b When we compute the sample mean and sample standard deviation for the transaction times,

we find that and s 4.475. Compute each of the intervals , , and

. Then count the number of transaction times that actually fall into each interval and

find the percentage of transaction times that actually fall into each interval.

c How do the percentages of transaction times that fall into the intervals , , and

compare to those given by the Empirical Rule? How do the percentages of transaction

times that fall into the intervals and compare to those given by Chebyshev’s

Theorem?

d Explain why the Empirical Rule does not describe the transaction times extremely well.

3.27 The Morningstar Top Fund lists at the Morningstar.com website give the mean yearly return and

the standard deviation of the returns for each of the listed funds. As given by Morningstar.com on

March 17, 2005, the RS Internet Age Fund has a mean yearly return of 10.93 percent with a 

standard deviation of 41.96 percent; the Franklin Income A fund has a mean yearly return of 

13 percent with a standard deviation of 9.36 percent; the Jacob Internet fund has a mean yearly 

return of 34.45 percent with a standard deviation of 41.16 percent.

a For each mutual fund, find an interval in which you would expect 95.44 percent of all yearly

returns to fall. Assume returns are normally distributed.

b Using the intervals you computed in part a, compare the three mutual funds with respect to

average yearly returns and with respect to variability of returns.

c Calculate the coefficient of variation for each mutual fund, and use your results to compare the

funds with respect to risk. Which fund is riskier?

3.3 Percentiles, Quartiles, and Box-and-Whiskers 
Displays 

Percentiles, quartiles, and five-number displays In this section we consider percentiles

and their applications. We begin by defining the pth percentile.

For a set of measurements arranged in increasing order, the pth percentile is a value such that 

p percent of the measurements fall at or below the value, and (100 p) percent of the measure-

ments fall at or above the value.

[ x  3s][ x  2s]

[ x  3s]

[ x  2s][ x  s]

[ x  3s]

[x  2s][x  s]x  36.56

DS
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T A B L E 3 . 6 ATM Transaction Times (in Seconds) for 63 Withdrawals ATMTimeDS

Transaction Time Transaction Time Transaction Time

1 32 22 34 43 37

2 32 23 32 44 32

3 41 24 34 45 33

4 51 25 35 46 33

5 42 26 33 47 40

6 39 27 42 48 35

7 33 28 46 49 33

8 43 29 52 50 39

9 35 30 36 51 34

10 33 31 37 52 34

11 33 32 32 53 33

12 32 33 39 54 38

13 42 34 36 55 41

14 34 35 41 56 34

15 37 36 32 57 35

16 37 37 33 58 35

17 33 38 34 59 37

18 35 39 38 60 39

19 40 40 32 61 44

20 36 41 35 62 40

21 32 42 33 63 39

Compute
and inter-

pret percentiles,
quartiles, and 
box-and-whiskers
displays.

LO4
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There are various procedures for calculating percentiles. One procedure for calculating the

pth percentile for a set of n measurements uses the following three steps:

Step 1: Arrange the measurements in increasing order.

Step 2: Calculate the index

Step 3: (a) If i is not an integer, round up to obtain the next integer greater than i. This integer

denotes the position of the pth percentile in the ordered arrangement.

(b) If i is an integer, the pth percentile is the average of the measurements in positions

i and in the ordered arrangement.

To illustrate the calculation and interpretation of percentiles, recall in the household income

case that an economist has randomly selected a sample of households from a midwestern

city and has determined last year’s income for each household. In order to assess the variation of

the population of household incomes in the city, we will calculate various percentiles for the sam-

ple of incomes. Specifically, we will calculate the 10th, 25th, 50th, 75th, and 90th percentiles of

these incomes. The first step is to arrange the incomes in increasing order as follows:

7,524 11,070 18,211 26,817 36,551 41,286

49,312 57,283 72,814 90,416 135,540 190,250

To find the 10th percentile, we calculate (in step 2) the index

Because is not an integer, step 3(a) says to round up to 2. It follows that the 10th

percentile is the income in position 2 in the ordered arrangement—that is, 11,070. To find the

25th percentile, we calculate the index

Because is an integer, step 3(b) says that the 25th percentile is the average of the incomes

in positions 3 and 4 in the ordered arrangement—that is, To

find the 50th percentile, we calculate the index

Because is an integer, step 3(b) says that the 50th percentile is the average of the incomes

in positions 6 and 7 in the ordered arrangement—that is, To

find the 75th percentile, we calculate the index

Because is an integer, step 3(b) says that the 75th percentile is the average of the incomes in

positions 9 and 10 in the ordered arrangement—that is, To find

the 90th percentile, we calculate the index

Because is not an integer, step 3(a) says to round up to 11. It follows that the

90th percentile is the income in position 11 in the ordered arrangement—that is, 135,540.

One appealing way to describe the variation of a set of measurements is to divide the data into

four parts, each containing approximately 25 percent of the measurements. This can be done by

defining the first, second, and third quartiles as follows:

The first quartile, denoted Q1, is the 25th percentile.

The second quartile (or median), denoted Md, is the 50th percentile.

The third quartile, denoted Q3, is the 75th percentile.

i  10.8i  10.8

i  冢 p

100冣n  冢
90

100冣12  10.8

(72,814  90,416)兾2  81,615.

i  9

i  冢 p

100冣n  冢
75

100冣12  9

(41,286  49,312)兾2  45,299.

i  6

i  冢 p

100冣n  冢
50

100冣12  6

(18,211  26,817)兾2  22,514.

i  3

i  冢 p

100冣n  冢
25

100冣12  3

i  1.2i  1.2

i  冢 p

100冣n  冢
10

100冣12  1.2

n  12

i  1

i  冢 p

100冣n



Note that the second quartile is simply another name for the median. Furthermore, the procedure

we have described here that is used to find the 50th percentile (second quartile) will always give the

same result as the previously described procedure (see Section 3.1) for finding the median. To

illustratehowthequartilesdivideasetofmeasurements into fourparts, consider the followingdisplay

of thesampled incomes,whichshowsthefirstquartile (the25thpercentile), the median

(the 50th percentile), and the third quartile (the 75th percentile), :

7,524 11,070 18,211 兩 26,817 36,511 41,286 兩
Q1  22,514 Md  45,299

49,312 57,283 72,814 兩 90,416 135,540 190,250

Q3  81,615

Using the quartiles, we estimate that for the household incomes in the midwestern city: (1) 25 per-

cent of the incomes are less than or equal to $22,514, (2) 25 percent of the incomes are 

between $22,514 and $45,299, (3) 25 percent of the incomes are between $45,299 and $81,615,

and (4) 25 percent of the incomes are greater than or equal to $81,615. In addition, to assess some

of the lowest and highest incomes, the 10th percentile estimates than 10 percent of the incomes

are less than or equal to $11,070, and the 90th percentile estimates that 10 percent of the incomes

are greater than or equal to $135,540.

In general, unless percentiles correspond to very high or very low percentages, they are resis-

tant (like the median) to extreme values. For example, the 75th percentile of the household in-

comes would remain $81,615 even if the largest income—$190,250—were, instead, $7,000,000.

On the other hand, the standard deviation in this situation would increase. In general, if a popu-

lation is highly skewed to the right or left, the standard deviation is so large that using it to

describe variation does not provide much useful information. For example, the standard devia-

tion of the 12 household incomes is inflated by the large incomes $135,540 and $190,250 and can

be calculated to be $54,567. Because the mean of the 12 incomes is $61,423, Chebyshev’s

Theorem says that we estimate that at least 75 percent of all household incomes in the city are in

the interval —that is, are $170,557

or less. This is much less informative than using the 75th percentile, which estimates that 75 per-

cent of all household incomes are less than or equal to $81,615. In general, if a population is

highly skewed to the right or left, it can be best to describe the variation of the population by

using various percentiles. This is what we did when we estimated the variation of the household

incomes in the city by using the 10th, 25th, 50th, 75th, and 90th percentiles of the 12 sampled

incomes. Using other percentiles can also be informative. For example, the Bureau of the Census

sometimes assesses the variation of all household incomes in the United States by using the 20th,

40th, 60th, and 80th percentiles of these incomes.

We sometimes describe a set of measurements by using a five-number summary. The summary

consists of (1) the smallest measurement; (2) the first quartile, Q1; (3) the median, Md; (4) the

third quartile, Q3; and (5) the largest measurement. It is easy to graphically depict a five-number

summary. For example, the MINITAB output in Figure 3.16 below tells us that for the 65 payment

times, the smallest payment time is 10, and the largest payment time

is 29. It follows that a graphical depiction of this five number summary is as shown in the page

margin. Notice that we have drawn a vertical line extending from the smallest payment time to

the largest payment time. In addition, a rectangle is drawn that extends from Q1 to Q3, and a

horizontal line is drawn to indicate the location of the median. The summary divides the payment

Q1  15, Md  17, Q3  21,

[x  2s]  [61,423  2(54,567)]  [ 47,711, 170,557]

Q3  81,615Md  45,299,

Q1  22,514,
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Payment Time 

Five-Number 

Summary

F I G U R E 3 . 1 6 MINITAB Output of Statistics Describing the 65 Payment Times

Variable    Count      Mean     StDev    Variance  

PayTime 65    18.108     3.961      15.691  

Variable   Minimum       Q1    Median        Q3    Maximum    Range

PayTime 10.000   15.000    17.000    21.000     29.000   19.000

10

29

Md   17

Q1   15

Q3   21



3.3 Percentiles, Quartiles, and Box-and-Whiskers Displays 123

times into four parts, with the middle 50 percent of the payment times depicted by the rectangle.

The summary indicates that the largest 25 percent of the payment times is more spread out than

the smallest 25 percent of the payment times, and that the second-largest 25 percent of the

payment times is more spread out than the second-smallest 25 percent of the payment times.

Overall, the summary indicates that the payment times are somewhat skewed to the right.

As another example, it can be shown that for the 60 bottle design ratings, the smallest rating is

20, and the largest rating is 35. It follows that a graphical depiction

of this five-number summary is also as shown in the page margin. The summary shows that the

smallest 25 percent of the ratings is more spread out than any of the other quarters of the ratings,

and that the other three quarters are equally spread out. Overall, the summary shows that the bot-

tle design ratings are skewed to the left. In addition, it can be verified that the 5th percentile of the

ratings is 25. This says that we estimate that 95 percent of all consumers would give the new bot-

tle design ratings that are at least as large as the minimum rating of 25 for a successful bottle design.

Using the first and third quartiles, we define the interquartile range to be IQR   Q3   Q1.

This quantity can be interpreted as the length of the interval that contains the middle 50 percent

of the measurements. For instance, the interquartile range of the 65 payment times is Q3 Q1 

21 15 6. This says that we estimate that the middle 50 percent of all payment times fall

within a range that is six days long.

The procedure we have presented for calculating the first and third quartiles is not the only

procedure for computing these quantities. In fact, several procedures exist, and, for example,

different statistical computer packages use several somewhat different methods for computing the

quartiles. These different procedures sometimes obtain different results, but the overall objective

is always to divide the data into four equal parts.

Box-and-whiskers displays (box plots) A more sophisticated modification of the graphi-

cal five-number summary is called a box-and-whiskers display (sometimes called a box plot).

Such a display is constructed by using Q1, Md, Q3, and the interquartile range. As an example,

suppose that 20 randomly selected customers give the following satisfaction ratings (on a scale

of 1 to 10) for a DVD recorder:

1 3 5 5 7 8 8 8 8 8 8 9 9 9 9 9 10 10 10 10

It can be shown that for these ratings Q1 7.5, Md 8, Q3 9, and IQR Q3 Q1 9 7.5 

1.5. To construct a box-and-whiskers display, we first draw a box that extends from Q1 to Q3. As

shown in Figure 3.17(a) on the next page, for the satisfaction ratings data this box extends from

Q1 7.5 to Q3 9. The box contains the middle 50 percent of the data set. Next a vertical line is

drawn through the box at the value of the median Md (sometimes a plus sign ( ) is plotted at the

median instead of a vertical line). This line divides the data set into two roughly equal parts. We

next define what we call inner and outer fences. The inner fences are located 1.5 IQR below

Q1 and 1.5 IQR above Q3. For the satisfaction ratings data, the inner fences are

Q1   1.5(IQR)   7.5   1.5(1.5)   5.25 and Q3   1.5(IQR)   9   1.5(1.5)   11.25

(again see Figure 3.17(a)). The outer fences are located 3 IQR below Q1 and 3 IQR above

Q3. For the satisfaction ratings data, the outer fences are

Q1   3(IQR)   7.5   3(1.5)  3.0 and Q3   3(IQR)   9   3(1.5)   13.5

(these are also shown in Figure 3.17(a)). The inner and outer fences help us to draw the plot’s

whiskers: dashed lines extending below Q1 and above Q3 (as in Figure 3.17(a)). One whisker is

drawn from Q1 to the smallest measurement between the inner fences. For the satisfaction ratings

data, this whisker extends from Q1 7.5 down to 7, because 7 is the smallest rating between the

inner fences 5.25 and 11.25. The other whisker is drawn from Q3 to the largest measurement

between the inner fences. For the satisfaction ratings data, this whisker extends from Q3 9 up to

10, because 10 is the largest rating between the inner fences 5.25 and 11.25. The inner and outer

fences are also used to identify outliers. An outlier is a measurement that is separated from (that

is, different from) most of the other measurements in the data set. Measurements that are located

between the inner and outer fences are considered to be mild outliers, whereas measurements that

are located outside the outer fences are considered to be extreme outliers. We indicate the

locations of mild outliers by plotting these measurements with the symbol *, and we indicate the

Q1  29, Md  31, Q3  33,

20

35

Md   31

Q1   29

Q3   33

Bottle Design Rating

Five-Number 

Summary

DVDSatDS



locations of extreme outliers by plotting these measurements with the symbol o. For the satisfaction

ratings data, the ratings 3 and 5 are mild outliers (*) because these ratings are between the inner

fence of 5.25 and the outer fence of 3.0. The rating 1 is an extreme outlier (o) because this rating is

outside the outer fence 3.0. These outliers are plotted in Figure 3.17(a). Part (b) of Figure 3.17 gives

a MINITAB output of the box-and-whiskers plot. Notice that MINITAB identifies the median by

using a plus sign ( ).

We now summarize how to construct a box-and-whiskers plot.

124 Chapter 3 Descriptive Statistics: Numerical Methods

F I G U R E 3 . 1 7 A Box-and-Whiskers Display of the Satisfaction Ratings

Extreme
outlier

Mild
outliers Q1   7.5 Q3   9

Md    8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3(IQR) 3(IQR)

Inner fence
  11.25

Inner fence
  5.25

Outer fence
  3.0

Outer fence
  13.5

1.5(IQR) 1.5(IQR)

Boxplot
--------

O         *         *         ---I +    I-----

--------

+---------+---------+---------+---------+---------+------ Ratings

0.0       2.0       4.0       6.0       8.0      10.0

(a) Constructing the display

(b) MINITAB output

Constructing a Box-and-Whiskers Display (Box Plot)

3 Draw whiskers as dashed lines that extend

below Q1 and above Q3. Draw one whisker from

Q1 to the smallest measurement that is between

the inner fences. Draw the other whisker from

Q3 to the largest measurement that is between

the inner fences.

4 Measurements that are located between the inner

and outer fences are called mild outliers. Plot these

measurements using the symbol *.

5 Measurements that are located outside the

outer fences are called extreme outliers. Plot

these measurements using the symbol o.

1 Draw a box that extends from the first quartile

Q1 to the third quartile Q3. Also draw a vertical

line through the box located at the median Md.

2 Determine the values of the inner fences and

outer fences. The inner fences are located 

1.5 IQR below Q1 and 1.5 IQR above Q3. That

is, the inner fences are

Q1   1.5(IQR) and Q3  1.5(IQR)

The outer fences are located 3 IQR below Q1 and

3 IQR above Q3. That is, the outer fences are

Q1   3(IQR) and Q3   3(IQR)

When interpreting a box-and-whiskers display, keep several points in mind. First, the box

(between Q1 and Q3) contains the middle 50 percent of the data. Second, the median (which is in-

side the box) divides the data into two roughly equal parts. Third, if one of the whiskers is longer
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than the other, the data set is probably skewed in the direction of the longer whisker. Last, obser-

vations designated as outliers should be investigated. Understanding the root causes behind the

outlying observations will often provide useful information. For instance, understanding why

several of the satisfaction ratings in the box plot of Figure 3.17 are substantially lower than the

great majority of the ratings may suggest actions that can improve the DVD recorder manufac-

turer’s product and/or service. Outliers can also be caused by inaccurate measuring, reporting,

or plotting of the data. Such possibilities should be investigated, and incorrect data should be

adjusted or eliminated.

Generally, a box plot clearly depicts the central tendency, variability, and overall range of a set

of measurements. A box plot also portrays whether the measurements are symmetrically

distributed. However, the exact shape of the distribution is better portrayed by a stem-and-leaf dis-

play and/or a histogram. For instance, Figure 3.18 shows a stem-and-leaf display and box plot of

the scores on the 100-point statistics exam of Table 2.8 (page 48) that was given before an atten-

dance policy was begun. We see that, although the box plot in Figure 3.18 tells us that the exam

scores are somewhat skewed with a tail to the left, it does not reveal the double-peaked nature of

the exam score distribution. On the other hand, the stem-and-leaf display clearly shows that this

distribution is double-peaked.

Graphical five-number summaries and box-and-whiskers displays are perhaps best used to

compare different sets of measurements. We demonstrate this use of such displays in the follow-

ing example.

F I G U R E 3 . 1 8 A Stem-and-Leaf Display and Box Plot of the Exam Scores

20 40 60 80

Exam Score

BoxPlot

100 120

Stem and Leaf Plot for ExamScore

Stem unit = 10

Leaf unit = 1

Frequency Stem Leaf
1 3 2
0 3
0 4
1 4 5
1 5 0
2 5 68
6 6 011344
7 6 5677899
1 7 2
2 7 68
3 8 133
6 8 567789
8 9 00122334
2 9 68

40

In July of 1993, the Variable Annuity Life Insurance Company (VALIC) sent its investors an

analysis of the performance of its variable account mutual fund options relative to other variable

annuity fund options in various categories (stock index, money market, and so forth). VALIC used

the graphical five-number summaries in Figure 3.19 on the next page to summarize and compare

performances. The dot within each five-number summary represents the return of the VALIC

mutual fund option for that category. In explaining the plots, VALIC said

The data show that all of VALIC’s mutual fund options ranked at or above their respective category

median return for the three-month period ending March 31, 1993. Also, eight of VALIC’s mutual

fund options ranked above their respective category median return for the 12-month period ending

March 31, 1993.

Notice that the lengths of the graphical five number summaries indicate performance variability

for the various funds. For example, while the median three-month returns for Midcap Index funds

and Small Cap Index funds are similar, the returns for Small Cap funds are more variable. Also,

in general, three-month returns for funds of all types are more variable than 12-month returns.

EXAMPLE 3.9 The VALIC Case C
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Exercises for Section 3.3
CONCEPTS

3.28 Explain each of the following in your own words: a percentile; the first quartile, Q1; the third

quartile, Q3; and the interquartile range, IQR.

3.29 Discuss how a box-and-whiskers display is used to identify outliers.

METHODS AND APPLICATIONS

3.30 Suppose that 20 randomly selected customers give the following satisfaction ratings (on a scale of

1 to 10) for a DVD recorder.

1 3 5 5 7 8 8 8 8 8 8 9 9 9 9 9 10 10 10 10

Find the first quartile, the median, and the third quartile for these data. Construct a five-number

summary. DVDSat

3.31 Thirteen internists in the Midwest are randomly selected, and each internist is asked to report last

year’s income. The incomes obtained (in thousands of dollars) are 152, 144, 162, 154, 146, 241,

127, 141, 171, 177, 138, 132, 192. Find: DrSalary
a The 90th percentile.

b The median.

c The first quartile.

d The third quartile.

e The 10th percentile.

f The interquartile range.

g Develop a five-number summary and a box-and-whiskers display.

3.32 In the book Business Research Methods, Donald R. Cooper and C. William Emory present

box-and-whiskers plots comparing the net profits of firms in five different industry sectors. Each plot

(for a sector) was constructed using net profit figures for a sample of firms from the Forbes 500s.

Figure 3.20 gives the five box-and-whiskers plots.

a Using the plots in Figure 3.20, write an analysis comparing net profits for the five sectors.

Compare central tendency, variability, skewness, and outliers.

b For which sectors are net profits most variable? Least variable?

c Which sectors provide opportunities for the highest net profits?

3.33 On its website, the Statesman Journal newspaper (Salem, Oregon, 2005) reports mortgage loan

interest rates for 30-year and 15-year fixed-rate mortgage loans for a number of Willamette

Valley lending institutions. Of interest is whether there is any systematic difference between

30-year rates and 15-year rates (expressed as annual percentage rate or APR) and, if there is,

DS

DS

F I G U R E 3 . 1 9 Graphical Comparison of the Performance of Mutual Funds by Using Five-Number Summaries
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VALIC

75th

Median

25th
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what is the size of that difference. The table below displays the 30-year rate and the 15-year rate

for each of nine lending institutions. Also given is the difference between the 30-year rate and

the 15-year rate for each lending institution. To the right of the table are given side-by-side

MINITAB box-and-whiskers plots of the 30-year rates and the 15-year rates and a MINITAB

box-and-whiskers plot of the differences between the rates. Use the box-and-whiskers plots to

compare the 30-year rates and the 15-year rates. Also, calculate the average of the differences

between the rates. Mortgage

3.34 In this section we have presented a commonly accepted way to compute the first, second,

and third quartiles. Some statisticians, however, advocate an alternative method for

computing Q1 and Q3. This method defines the first quartile, Q1, as what is called the

lower hinge and defines the third quartile, Q3, as the upper hinge. In order to calculate

these quantities for a set of n measurements, we first arrange the measurements in

increasing order. Then, if n is even, the lower hinge is the median of the smallest n兾2

measurements, and the upper hinge is the median of the largest n兾2 measurements.

If n is odd, we insert Md into the data set to obtain a set of n 1 measurements. Then

the lower hinge is the median of the smallest (n 1)兾2 measurements, and the upper hinge is

the median of the largest (n 1)兾2 measurements.

a Consider the random sample of n 20 customer satisfaction ratings:

1 3 5 5 7 8 8 8 8 8 8 9 9 9 9 9 10 10 10 10

The smallest 10 ratings The largest 10 ratings

Using the method presented on pages 121 and 122 of this section, find Q1 and Q3. Then

find the lower hinge and the upper hinge for the satisfaction ratings. How do your results

compare? DVDSatDS

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Lending Institution 30-Year 15-Year Difference

Blue Ribbon Home Mortgage 5.375 4.750 0.625

Coast To Coast Mortgage Lending 5.250 4.750 0.500

Community Mortgage Services Inc. 5.000 4.500 0.500

Liberty Mortgage 5.375 4.875 0.500

Jim Morrison’s MBI 5.250 4.875 0.375

Professional Valley Mortgage 5.250 5.000 0.250

Mortgage First 5.750 5.250 0.500

Professional Mortgage Corporation 5.500 5.125 0.375

Resident Lending Group Inc. 5.625 5.250 0.375

Source: http://online.statesmanjournal.com/mortrates.cfm

DS

F I G U R E 3 . 2 0 Box-and-Whiskers Plots Comparing Net Profits for Five Industry Sectors 

(for Exercise 3.32)
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b Consider the following random sample of doctors’ salaries (in thousands of dollars):

127 132 138 141 146 152 154 171 177 192 241

Using the method presented on pages 121 and 122 of this section, find Q1 and Q3. The median

of the 11 salaries is Md  152. If we insert this median into the data set, we obtain the following

set of n 1 12 salaries:

127 132 138 141 146 152 152 154 171 177 192 241

The smallest 6 salaries The largest 6 salaries

Find the lower hinge and the upper hinge for the salaries. Compare your values of Q1 and Q3

with the lower and upper hinges.

c For the11doctors’salaries,whichquantities (Q1,Md, and Q3 asdefined inon page121 of this section

or the lower hinge, Md, and the upper hinge) in your opinion best divide the salaries into four parts?

3.35 Figure 3.21 gives seven pairs of five-number summaries presented in an article in the January 1995

issue of Quality Progress. In the article, authors Dale H. Myers and Jeffrey Heller discuss how

AT&T has employed a quality award process (called the Chairman’s Quality Award or CQA) to

improve quality. To quote Myers and Heller:

In 1989, AT&T began searching for a systematic process to achieve two major goals: aligning

its business management systems more closely with customers’ needs and integrating quality

principles into every business practice. AT&T wanted this new process to be based on clear

and quantifiable standards so that its key building blocks—the business units and divisions—

could objectively assess the strengths and shortcomings of their operations.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

n  11
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F I G U R E 3 . 2 1 Comparison of AT&T Chairman’s Quality Award Scores from 1990 to 1993 for Eight Business Units

(for Exercise 3.35)
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This chart compares CQA scores for eight AT&T business units that have participated in the CQA process
every year between 1990 and 1993. Scores are recorded in the seven CQA categories. The top and bottom 
whiskers in each column represent the highest and lowest scores of any unit. The horizontal line through 
each box represents the median score (that is, four of the units scored above this line, and four scored 
below it ).

Source: D. H. Myers and J. Heller, “The Dual Role of AT&T’s Self-Assessment Process,” Quality Progress, January 1995, 

pp. 79–83. Copyright © 1995. American Society for Quality Control. Used with permission.
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Within a year, AT&T took its first major step into the world of objective self-assessment.

The New Jersey–based telecommunications giant created a Chairman’s Quality Award (CQA)

process modeled after the Malcolm Baldrige National Quality Award process.5

Using clear and objective criteria, the CQA process helps units and divisions assess

their business performance and share their most successful practices with each other. It also pro-

vides feedback that helps them identify their strengths and opportunities for improvement.

A business unit (department, division, etc.) that chooses to participate in the award program is

examined and scored in seven categories—leadership, information and analysis, strategic quality

planning, human resource development and management, management of process quality, quality

and operational results, and customer focus and satisfaction.

In order to track AT&T’s improvement from 1990 to 1993, the company identified eight business

units that participated in the award process every year from 1990 to 1993. For each award category

(leadership and so on), a five-number display of the eight business units’ 1990 scores was compared

to a five-number display of their 1993 scores. The two five-number displays (1990 and 1993) are

given for all seven categories in Figure 3.21. Use this figure to answer the following:

a Based on central tendency, which categories showed improvement from 1990 to 1993?

b Based on central tendency, which categories showed the most improvement from 1990 to

1993? Which showed the least improvement?

c In which categories did the variability of the CQA scores increase from 1990 to 1993? In which

categories did the variability decrease? In which categories did the variability remain about the

same from 1990 to 1993?

d In which categories did the nature of the skewness of the CQA scores change from 1990 to

1993? Interpret these changes.

3.4 Covariance, Correlation, and the Least 
Squares Line (Optional) 

In Section 2.6 we discussed how to use a scatter plot to explore the relationship between two

variables x and y. To construct a scatter plot, a sample of n pairs of values of x and y—(x1, y1),

(x2, y2), . . . , (xn, yn)—is collected. Then, each value of y is plotted against the corresponding

value of x. If the plot points seem to fluctuate around a straight line, we say that there is a

linear relationship between x and y. For example, suppose that 10 sales regions of equal sales

potential for a company were randomly selected. The advertising expenditures (in units of

$10,000) in these 10 sales regions were purposely set in July of last year at the values given in

the second column of Figure 3.22(a) on the next page. The sales volumes (in units of $10,000)

were then recorded for the 10 sales regions and found to be as given in the third column of

Figure 3.22(a). A scatter plot of sales volume, y, versus advertising expenditure, x, is given in

Figure 3.22(b) and shows a linear relationship between x and y.

A measure of the strength of the linear relationship between x and y is the covariance. The

sample covariance is calculated by using the sample of n pairs of observed values and x and y.

5We discuss the Malcolm Baldrige National Quality Award process in Chapter 17.

Compute
and inter-

pret covariance,
correlation, and the
least squares line
(Optional).

LO5

The sample covariance is denoted as and is defined as follows:

sxy  

a
n

i 1

(xi  x)(yi  y)

n  1

sxy

To use this formula, we first find the mean of the n observed values of x and the mean of the n

observed values of y. For each observed (xi, yi) combination, we then multiply the deviation of xi

from by the deviation of yi from to form the product . Finally, we add together

the n products , , . . . , and divide the result-

ing sum by . For example, the mean of the 10 advertising expenditures in Figure 3.22(a)

is , and the mean of the 10 sales volumes in Figure 3.22(a) is . It follows

that the numerator of sxy is the sum of the values of (yi  108.3).(yi  y)  (xi  9.5)(xi  x)

y  108.3x  9.5

n  1

(xn  x)(yn  y)(x2  x)(y2  y)(x1  x)(y1  y)

(xi  x)(yi  y)yx

yx



Table 3.7 shows that this sum equals 365.50, which implies that the sample covariance is

To interpret the covariance, consider Figure 3.23(a). This figure shows the scatter plot of Fig-

ure 3.22(b) with a vertical blue line drawn at and a horizontal red line drawn at .

The lines divide the scatter plot into four quadrants. Points in quadrant I correspond to xi greater than

and greater than and thus give a value of ( )( ) greater than 0. Points in quadrant III

correspond to xi less than and yi less than and thus also give a value of ( )( ) greater

than 0. It follows that if is positive, the points having the greatest influence on

and thus on must be in quadrants I and III. Therefore, a positive value of sxy (as in the sales volume

example) indicates a positive linear relationship between x and y. That is, as x increases, y increases.

If we further consider Figure 3.23(a), we see that points in quadrant II correspond to xi less than

and yi greater than and thus give a value of less than 0. Points in quadrant IV

correspond to xi greater than and yi less than and thus also give a value of less

than 0. It follows that if sxy is negative, the points having the greatest influence on

and thus on sxy must be in quadrants II and IV. Therefore, a negative value of sxy indicates a negative

linear relationshipbetweenxandy.That is, asx increases,ydecreases, as shown inFigure3.23(b).For

example, anegative linear relationshipmight exist betweenaveragehourlyoutdoor temperature (x) in

a city during aweekand the city’s natural gas consumption (y) during theweek.That is, as the average

hourly outdoor temperature increases, the city’s natural gas consumption would decrease. Finally,

(yi ⫺ y)⌺(xi ⫺ x)

(yi ⫺ y)(xi ⫺ x)yx

(yi ⫺ y)(xi ⫺ x)y

x

sxy

(yi ⫺ y)⌺(xi ⫺ x)sxy

yi ⫺ yxi ⫺ xyx

yi ⫺ yxi ⫺ xyyix

y ⫽ 108.3x ⫽ 9.5

sxy ⫽
a (xi ⫺ x)(yi ⫺ y)

n ⫺ 1
⫽

365.50

9
⫽ 40.61111
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xi yi (xi ⴚ 9.5) (yi ⴚ 108.3) (xi ⴚ 9.5)(yi ⴚ 108.3)

5 89 ⫺4.5 ⫺19.3 86.85

6 87 ⫺3.5 ⫺21.3 74.55

7 98 ⫺2.5 ⫺10.3 25.75

8 110 ⫺1.5 1.7 ⫺2.55

9 103 ⫺0.5 ⫺5.3 2.65

10 114 0.5 5.7 2.85

11 116 1.5 7.7 11.55

12 110 2.5 1.7 4.25

13 126 3.5 17.7 61.95

14 130 4.5 21.7 97.65

Totals 95 1083 0 0 365.50

T A B L E 3 . 7 The Calculation of the Numerator of sxy

Sales Advertising Sales
Region Expenditure, x Volume, y

1 5 89

2 6 87

3 7 98

4 8 110

5 9 103

6 10 114

7 11 116

8 12 110

9 13 126

10 14 130

F I G U R E 3 . 2 2 The Sales Volume Data, and a Scatter Plot
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(a) The sales volume data SalesPlotDS (b) A scatter plot of sales volume versus advertising expenditure
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note that if sxy isnearzero, the (xi,yi)pointswouldbe fairlyevenlydistributedacrossall fourquadrants.

This would indicate little or no linear relationship between x and y, as shown in Figure 3.23(c).

From the previous discussion, it might seem that a large positive value for the covariance in-

dicates that x and y have a strong positive linear relationship and a very negative value for the

covariance indicates that x and y have a strong negative linear relationship. However, one prob-

lem with using the covariance as a measure of the strength of the linear relationship between

x and y is that the value of the covariance depends on the units in which x and y are measured. A

measure of the strength of the linear relationship between x and y that does not depend on the

units in which x and y are measured is the correlation coefficient.

F I G U R E 3 . 2 3 Interpretation of the Sample Covariance
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The sample correlation coefficient is denoted as r and is defined as follows:

Here, sxy is the previously defined sample covariance, sx is the sample standard deviation of the sample of 

x values, and sy is the sample standard deviation of the sample of y values.

r  
sxy

sx sy

For the sales volume data:

and

Therefore, the sample correlation coefficient is

It can be shown that the sample correlation coefficient r is always between  1 and 1. A value

of r near 0 implies little linear relationship between x and y. A value of r close to 1 says that x and

y have a strong tendency to move together in a straight-line fashion with a positive slope and,

therefore, that x and y are highly related and positively correlated. A value of r close to  1 says

that x and y have a strong tendency to move together in a straight-line fashion with a negative

r  
sxy

sxsy

 
40.61111

(3.02765)(14.30656)
 .93757

sy  Q a
10

i 1

(yi  y)2

9
 14.30656sx  Q a

10

i 1

(xi  x)2

9
 3.02765
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It can be shown that the slope b1 (defined as rise/run) of the least squares line is given by the equation

In addition, the y-intercept b0 of the least squares line (where the line intersects the y-axis when x equals 0)

is given by the equation

b0  y  b1x

b1  
sxy

sx
2

For example, recall that for the sales volume data in Figure 3.22(a), 

It follows that the slope of the least squares line for

these data is

The of the least squares line is

Furthermore, we can write the equation of the least squares line as

Here, since we will use the line to predict y on the basis of x, we call the predicted value of y

when the advertising expenditure is x. For example, suppose that we will spend $100,000 on

advertising in a sales region in July of a future year. Because an advertising expenditure of

$100,000 corresponds to an x of 10, a prediction of sales volume in July of the future year is (see

Figure 3.24):

Is this prediction likely to be accurate? If the least squares line developed from last July’s data

applies to the future July, then, since the sample correlation coefficient is fairly closer  .93757

  110.5152 (that is, $1,105,152)

ŷ  66.2122  4.4303(10)

ŷ

  66.2122  4.4303x

ŷ  b0  b1x

b0  y  b1x  108.3  4.4303(9.5)  66.2122

y-intercept

b1  
sxy

s2
x

 
40.61111

(3.02765)2  4.4303

sx  3.02765, x  9.5, and  y  108.3.

sxy  40.61111,

slope and, therefore, that x and y are highly related and negatively correlated. Note that if ,

the (x, y) points fall exactly on a positively sloped straight line, and, if r   1, the (x, y) points

fall exactly on a negatively sloped straight line. For example, since r  .93757 in the sales vol-

ume example, we conclude that advertising expenditure (x) and sales volume (y) have a strong

tendency to move together in a straight line fashion with a positive slope. That is, x and y have a

strong positive linear relationship.

We next note that the sample covariance is the point estimate of the population

covariance, which we denote as , and the sample correlation coefficient r is the point estimate

of the population correlation coefficient, which we denote as r. To define and r, let mx and

sx denote the mean and the standard deviation of the population of all possible x values, and let

my and sy denote the mean and the standard deviation of the population of all possible y values.

Then, is the average of all possible values of (x   mx)(y   my), and r equals 冒(sxsy).

Similar to r, r is always between and 1.

After establishing that a strong positive or a strong negative linear relationship exists between

two variables x and y, we might wish to predict y on the basis of x. This can be done by drawing

a straight line through a scatter plot of the observed data. Unfortunately, however, if different

people visually drew lines through the scatter plot, their lines would probably differ from each

other. What we need is the “best line” that can be drawn through the scatter plot. Although there

are various definitions of what this best line is, one of the most useful best lines is the least

squares line. The least squares line will be discussed in detail in Chapter 13. For now, we will say

that, intuitively, the least squares line is the line that minimizes the sum of the squared vertical

distances between the points on the scatter plot and the line.

 1

sxysxy

sxy

sxy

sxy

r  1
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to 1, we might hope that the prediction will be reasonably accurate. However, we will see in

Chapter 13 that a sample correlation coefficient near 1 does not necessarily mean that the least

squares line will predict accurately. We will also study (in Chapter 13) better ways to assess the

potential accuracy of a prediction.

F I G U R E 3 . 2 4 The Least Squares Line for the Sales Volume Data
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The least squares line
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Exercises for Section 3.4
CONCEPTS

3.36 Discuss what the covariance and the correlation coefficient say about the linear relationship 

between two variables x and y.

3.37 Discuss how the least squares line is used to predict y on the basis of x.

METHODS AND APPLICATIONS

3.38 THE FUEL CONSUMPTION CASE FuelCon1

Below we give the average hourly outdoor temperature (x) in a city during a week and the city’s

natural gas consumption (y) during the week for each of eight weeks (the temperature readings are

expressed in degrees Fahrenheit and the natural gas consumptions are expressed in millions of

cubic feet of natural gas—denoted MMcf). The output to the right of the data is obtained when

MINITAB is used to fit a least squares line to the natural gas (fuel) consumption data.

DS

Average Hourly Weekly Fuel
Temperature, Consumption, 

Week x (ºF) y (MMcf)

1 28.0 12.4

2 28.0 11.7

3 32.5 12.4

4 39.0 10.8

5 45.9 9.4

6 57.8 9.5

7 58.1 8.0

8 62.5 7.5

FuelCon1DS
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Best Fit Line for Fuel Consumption Data

FuelCons = 15.84 - 0.1279 Temp



3.5 Weighted Means and Grouped Data (Optional) 
Weighted means In Section 3.1 we studied the mean, which is an important measure of cen-

tral tendency. In order to calculate a mean, we sum the population (or sample) measurements, and

then divide this sum by the number of measurements in the population (or sample). When we do

this, each measurement counts equally. That is, each measurement is given the same importance

or weight.

Sometimes it makes sense to give different measurements unequal weights. In such a case, a

measurement’s weight reflects its importance, and the mean calculated using the unequal weights

is called a weighted mean.

We calculate a weighted mean by multiplying each measurement by its weight, summing the

resulting products, and dividing the resulting sum by the sum of the weights:

134 Chapter 3 Descriptive Statistics: Numerical Methods

Service Number of Copiers Number of Minutes
Call Serviced, x Required, y

1 4 109

2 2 58

3 5 138

4 7 189

5 1 37

6 3 82

7 4 103

8 5 134

9 2 68

10 4 112

11 6 154

SrvcTimeDS

Copiers Line Fit Plot

Minutes = 11.4641 + 24.6022*Copiers 
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a The sample correlation coefficient r can be calculated to equal .9952 for the service time data.

What does this value of r say about the relationship between x and y?

b Predict the service time for a future service call on which five copiers will be serviced.

Compute
and inter-

pret weighted
means and the
mean and standard
deviation of
grouped data 
(Optional).

LO6

Weighted Mean

The weighted mean equals

where

x
i
⫽ the value of the ith measurement

w
i
⫽ the weight applied to the ith measurement

awixi

awi

It can be shown that for the fuel consumption data:

Calculate and r. Show how the values and on the MINITAB

output have been calculated. Find a prediction of the fuel consumption during a week when the

average hourly temperature is 40⬚ Fahrenheit.

3.39 THE SERVICE TIME CASE SrvcTime

Accu-Copiers, Inc., sells and services the Accu-500 copying machine. As part of its standard

service contract, the company agrees to perform routine service on this copier. To obtain informa-

tion about the time it takes to perform routine service, Accu-Copiers has collected data for 11

service calls. The data are given on the left below, and the Excel output of a least squares line fit

to these data is given on the right below.

DS

b0 ⫽ 15.84b1 ⫽ ⫺.1279sxy, sx, sy,

a
8

i⫽1

(xi ⫺ x)(yi ⫺ y) ⫽ ⫺179.6475a
8

i⫽1

(yi ⫺ y)2
⫽ 25.549

a
8

i⫽1

(xi ⫺ x)2
⫽ 1404.355y ⫽ 10.2125x ⫽ 43.98
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UnEmployDS

Such a quantity can be computed for a population of measurements or for a sample of measurements.

In order to illustrate the need for a weighted mean and the required calculations, consider the

June 2001 unemployment rates for various regions in the United States:6

If we wish to compute a mean unemployment rate for the entire United States, we should use a

weighted mean. This is because each of the four regional unemployment rates applies to a different

number of workers in the labor force. For example, the 4.7 percent unemployed for the South ap-

plies to a labor force of 50.6 million workers and thus should count more heavily than the 5.0 per-

cent unemployed for the West, which applies to a smaller labor force of 32.5 million workers.

The unemployment rate measurements are x1 4.1 percent, x2 4.7 percent, x3 4.4 percent,

and x4 5.0 percent, and the weights applied to these measurements are w1 26.9, w2 50.6,

w3 34.7, and w4 32.5. That is, we are weighting the unemployment rates by the regional labor

force sizes. The weighted mean is computed as follows:

In this case the unweighted mean of the four regional unemployment rates equals 4.55 percent.

Therefore, the unweighted mean understates the U.S. unemployment rate by .03 percent (or

understates U.S. unemployment by .0003(144.7 million) 43,410 workers).

The weights chosen for calculating a weighted mean will vary depending on the situation. For

example, in order to compute the mean percentage return for a portfolio of investments, the

percentage returns for various investments might be weighted by the dollar amounts invested in

each. Or in order to compute a mean profit margin for a company consisting of several divisions,

the profit margins for the different divisions might be weighted by the sales volumes of the

divisions. Again, the idea is to choose weights that represent the relative importance of the mea-

surements in the population or sample.

Descriptive statistics for grouped data We usually calculate measures of central ten-

dency and variability using the individual measurements in a population or sample. However,

sometimes the only data available are in the form of a frequency distribution or a histogram. For

example, newspapers and magazines often summarize data using frequency distributions and his-

tograms without giving the individual measurements in a data set. Data summarized in frequency

distribution or histogram form are often called grouped data. In this section we show how to

compute descriptive statistics for such data.

Suppose we are given a frequency distribution summarizing a sample of 65 customer satisfac-

tion ratings for a consumer product.

Because we do not know each of the 65 individual satisfaction ratings, we cannot compute an

exact value for the mean satisfaction rating. However, we can calculate an approximation of this

mean. In order to do this, we use the midpoint of each class to represent the measurements in the

Satisfaction Rating Frequency

36–38 4

39–41 15

42–44 25

45–47 19

48–50 2

  
663.29

144.7
 4.58%

 m  
26.9(4.1)  50.6(4.7)  34.7(4.4)  32.5(5.0)

26.9  50.6  34.7  32.5

Civilian Labor Force
Census Region (Millions) Unemployment Rate

Northeast 26.9 4.1%

South 50.6 4.7%

Midwest 34.7 4.4%

West 32.5 5.0%

6Source: U.S. Bureau of Labor Statistics, http://stats.bls.gov/news.release/laus.t01.htm, August 7, 2001.

SatRatingsDS



class. When we do this, we are really assuming that the average of the measurements in each

class equals the class midpoint. Letting Mi denote the midpoint of class i, and letting fi denote the

frequency of class i, we compute the mean by calculating a weighted mean of the class midpoints

using the class frequencies as the weights. The logic here is that if fi measurements are included

in class i, then the midpoint of class i should count fi times in the weighted mean. In this case, the

sum of the weights equals the sum of the class frequencies, which equals the sample size. There-

fore, we obtain the following equation for the sample mean of grouped data:
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Sample Mean for Grouped Data

where

fi the frequency for class i

Mi the midpoint for class i

n    the sample sizea fi

x  
a fiMi

a fi

 
a fiMi

n

Table 3.8 summarizes the calculation of the mean satisfaction rating for the previously given fre-

quency distribution of satisfaction ratings. Note that in this table each midpoint is halfway

between its corresponding class limits. For example, for the first class M1 (36 38)冫2 37.

We find that the sample mean satisfaction rating is 43.

We can also compute an approximation of the sample variance for grouped data. Recall that

when we compute the sample variance using individual measurements, we compute the squared

deviation from the sample mean for each individual measurement xi and then sum

the squared deviations. For grouped data, we do not know each of the xi values. Because of this,

we again let the class midpoint Mi represent each measurement in class i. It follows that we

compute the squared deviation for each class and then sum these squares, weighting

each squared deviation by its corresponding class frequency fi. That is, we approximate

by using . Finally, we obtain the sample variance for the grouped

data by dividing this quantity by the sample size minus 1. We summarize this calculation in the

following box:

a fi(Mi  x)2
a (xi  x)2

(Mi  x)2

(xi  x)2

Satisfaction Rating Frequency (fi) Class Midpoint (Mi) fiMi

36–38 4 37 4(37)   148

39–41 15 40 15(40)   600

42–44 25 43 25(43)   1,075

45–47 19 46 19(46)   874

48–50 2 49 2(49)   98

n   65 2,795

x  a
fiMi

n
 

2,795

65
 43

T A B L E 3 . 8 Calculating the Sample Mean Satisfaction Rating

Sample Variance for Grouped Data

where is the sample mean for the grouped data.x

s2
 
a fi(Mi  x)2

n  1

Table 3.9 illustrates calculating the sample variance of the previously given frequency distri-

bution of satisfaction ratings. We find that the sample variance is s2 8.15625 and, therefore, that

the sample standard deviation is .s  18.15625  2.8559
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Finally, although we have illustrated calculating the mean and variance for grouped data in the

context of a sample, similar calculations can be done for a population of measurements. If we let

N be the size of the population, the grouped data formulas for the population mean and variance

are given in the following box:

Population Mean for Grouped Data Population Variance for Grouped Data

s
2
 
a fi(Mi  m)2

N
m  

a fiMi

N

T A B L E 3 . 9 Calculating the Sample Variance of the Satisfaction Ratings

Class Squared 
Satisfaction Frequency Midpoint Deviation Deviation
Rating fi Mi (Mi  ) (Mi  )2 fi(Mi  )2

36–38 4 37 37 43    6 36 4(36)  144

39–41 15 40 40 43    3 9 15(9)  135

42–44 25 43 43 43   0 0 25(0)  0

45–47 19 46 46 43   3 9 19(9)  171

48–50 2 49 49 43   6 36 2(36)  72

65

s2  sample variance  
afi(Mi  x)2

n  1
 

522

65  1
 8.15625

a fi(Mi  x)2
 522

xxx

Exercises for Section 3.5
CONCEPTS

3.40 Consider calculating a student’s grade point average using a scale where 4.0 represents an A and

0.0 represents an F. Explain why the grade point average is a weighted mean. What are the xi

values? What are the weights?

3.41 When we perform grouped data calculations, we represent the measurements in a class by using

the midpoint of the class. Explain the assumption that is being made when we do this.

3.42 When we compute the mean, variance, and standard deviation using grouped data, the results

obtained are approximations of the population (or sample) mean, variance, and standard deviation.

Explain why this is true.

METHODS AND APPLICATIONS

3.43 According to the Morningstar.com website, the 2004 total return percentages for several popular

funds were as follows: FundReturns

Suppose that an investor had $100,000 invested in the Vanguard 500 Index fund, $500,000 invested

in the Wasatch Core Growth fund, $500,000 invested in the Fidelity Stock Selector fund, $200,000

invested in the Fidelity Dividend Growth fund, and $50,000 invested in the Janus Worldwide fund.

a Compute a weighted mean that measures the 2004 average total return for the investor’s

portfolio.

b Compare your weighted mean with the unweighted mean of the five total return percentages.

Explain why they differ.

2004
Fund Total Return %

Vanguard 500 Index 10.7

Wasatch Core Growth 21.7

Fidelity Stock Selector 9.9

Fidelity Dividend Growth 5.8

Janus Worldwide 5.5

Source: http://quicktake.morningstar.com/Fund/TotalReturns.asp (accessed March 17, 2005).

DS
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3.44 The following are the January 2005 unemployment rates and civilian labor force sizes for five

states in the Midwest. UnEmpStates

a Using a weighted mean, compute an average unemployment rate for the five state region.

b Calculate the unweighted mean for the five unemployment rates. Explain why the weighted

and unweighted means differ.

3.45 The following frequency distribution summarizes the weights of 195 fish caught by anglers

participating in a professional bass fishing tournament. BassWeights

a Calculate the (approximate) sample mean for these data.

b Calculate the (approximate) sample variance for these data.

3.46 The following is a frequency distribution summarizing earnings per share (EPS) growth data for

the 30 fastest-growing firms as given on Fortune magazine’s website on March 16, 2005.

EPSGrowth

Calculate the (approximate) population mean, variance, and standard deviation for these data.

3.47 The Data and Story Library website (a website devoted to applications of statistics) gives a

histogram of the ages of a sample of 60 CEOs taken in 1993. We present the data in the form of a

frequency distribution below. CEOAges

Calculate the (approximate) sample mean, variance, and standard deviation of these data.

Age (Years) Frequency

28–32 1

33–37 3

38–42 3

43–47 13

48–52 14

53–57 12

58–62 9

63–67 1

68–72 3

73–77 1

Source: http://lib.stat.cmu.edu/DASL/Stories/ceo.html (accessed

April 15, 2005).

DS

EPS Growth
(Percent) Frequency

0–49 1

50–99 17

100–149 5

150–199 4

200–249 1

250–299 2

Source: http://www.fortune.com (accessed March 16, 2005).

DS

Weight (Pounds) Frequency

1–3 53

4–6 118

7–9 21

10–12 3

DS

Size of Civilian Unemployment
State Labor Force (Millions) Rate (%)

Iowa 1.62 5.1

Michigan 5.09 7.1

Illinois 6.45 5.6

Indiana 3.18 5.4

Wisconsin 3.08 4.8

Source: United States Bureau of Labor Statistics, http://stats.bls.gov/ (accessed March 17, 2005).
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Compute
and inter-

pret the geometric
mean (Optional).

LO73.6 The Geometric Mean (Optional) 
In Section 3.1 we defined the mean to be the average of a set of population or sample measure-

ments. This mean is sometimes referred to as the arithmetic mean. While very useful, the arithmetic

mean is not a good measure of the rate of change exhibited by a variable over time. To see this, con-

sider the rate at which the value of an investment changes—its rate of return. Suppose that an ini-

tial investment of $10,000 increases in value to $20,000 at the end of one year and then decreases

in value to its original $10,000 value after two years. The rate of return for the first year, R1, is

and the rate of return for the second year, R2, is

Although the value of the investment at the beginning and end of the two-year period is the same,

the arithmetic mean of the yearly rates of return is (R1 R2)兾2 (100% ( 50%))兾2 25%.

This arithmetic mean does not communicate the fact that the value of the investment is un-

changed at the end of the two years.

To remedy this situation, we define the geometric mean of the returns to be the constant

return Rg, that yields the same wealth at the end of the investment period as do the actual

returns. In our example, this says that if we express Rg, R1, and R2 as decimal fractions (here

R1 1 and R2  .5),

or

Therefore, the geometric mean Rg expresses the fact that the value of the investment is un-

changed after two years.

In general, if R1, R2, . . . , Rn are returns (expressed in decimal form) over n time periods:

The geometric mean of the returns R1, R2, . . . , R
n

is

and the ending value of an initial investment I experiencing returns R1, R2, . . . , Rn is I(1  Rg)
n.

As another example, suppose that in year 3 our investment’s value increases to $25,000, which

says that the rate of return for year 3 (expressed as a percentage) is

Since (expressed as decimals) and the geometric mean return at

the end of year 3 is

and the value of the investment after 3 years is

10,000 (1 .3572)3   $25,000

  .3572

  1.3572  1

 Rg  13 (1  1)(1  ( .5))(1  1.5)  1

R3  1.5,R1  1, R2   .5,

  150%

 R3  冢25,000  10,000

10,000 冣  100%

Rg  1n (1  R1)(1  R2)    (1  Rn)  1

  11  1  0

  1(1  1)(1  ( .5))  1

 Rg  1(1  R1)(1  R2)  1

(1  Rg)
2
 10,000  (1  R1)(1  R2)  10,000

R2  冢10,000  20,000

20,000 冣  100%   50%

R1  冢20,000  10,000

10,000 冣  100%  100%



Chapter Summary

We began this chapter by presenting and comparing several mea-

sures of central tendency. We defined the population mean and

we saw how to estimate the population mean by using a sample

mean. We also defined the median and mode, and we compared

the mean, median, and mode for symmetrical distributions and

for distributions that are skewed to the right or left. We then stud-

ied measures of variation (or spread ). We defined the range,

variance, and standard deviation, and we saw how to estimate

a population variance and standard deviation by using a sample.

We learned that a good way to interpret the standard deviation

when a population is (approximately) normally distributed is

to use the empirical rule, and we studied Chebyshev’s Theorem,

which gives us intervals containing reasonably large fractions of

the population units no matter what the population’s shape might

be. We also saw that, when a data set is highly skewed, it is best

to use percentiles and quartiles to measure variation, and we

learned how to construct a box-and-whiskers plot by using the

quartiles.

After learning how to measure and depict central tendency

and variability, we presented several optional topics. First, we dis-

cussed several numerical measures of the relationship between two

variables. These included the covariance, the correlation coeffi-

cient, and the least squares line. We then introduced the concept

of a weighted mean and also explained how to compute descrip-

tive statistics for grouped data. Finally, we showed how to calcu-

late the geometric mean and demonstrated its interpretation.
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Exercises for Section 3.6
CONCEPTS

3.48 In words, explain the interpretation of the geometric mean return for an investment.

3.49 If we know the initial value of an investment and its geometric mean return over a period of years,

can we compute the ending value of the investment? If so, how?

METHODS AND APPLICATIONS

3.50 Suppose that a company’s sales were $5,000,000 three years ago. Since that time sales have grown

at annual rates of 10 percent,  10 percent, and 25 percent.

a Find the geometric mean growth rate of sales over this three-year period.

b Find the ending value of sales after this three-year period.

3.51 Suppose that a company’s sales were $1,000,000 four years ago and are $4,000,000 at the end of

the four years. Find the geometric mean growth rate of sales.

3.52 The Standard & Poor’s 500 stock index is a commonly used measure of stock market performance

in the United States. In the table below, we give the value of the S&P 500 index on the first day of

market trading for each year from 2000 to 2005. S&P500

a Show that the percentage changes (rates of return) for the S&P 500 index for the years from

2000 to 2001 and from 2001 to 2002 are, respectively,  11.8 percent and  10.0 percent (that

is,  .118 and  .100 expressed as decimal fractions).

b Find the rates of return for the S&P 500 index for each of the years: from 2002 to 2003; from

2003 to 2004; from 2004 to 2005.

c Calculate the geometric mean return for the S&P 500 index over the period from 2000 to 2005.

d Suppose that an investment of $1,000,000 is made in 2000 and that the portfolio performs with

returns equal to those of the S&P 500 index. What is the investment portfolio worth in 2005?

3.53 According to the USA Statistics in Brief summary of U.S. census data, the amount of consumer

credit outstanding (in billions of dollars) is as follows:7

1990 : $789 1995 : $1,096 2000 : $1,534

a Find the geometric mean five-year rate of increase in consumer credit outstanding.

b Use the geometric mean rate of increase to project the amount of consumer credit outstanding

in 2005.

Year S&P 500 Index

2000 1,455.22

2001 1,283.27

2002 1,154.67

2003 909.03

2004 1,108.48

2005 1,211.92

Source: http://table.finance.yahoo.com.

DS

7Source: http://www.census.gov/statlab/www/part5.html.
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Glossary of Terms

box-and-whiskers display (box plot): A graphical portrayal of

a data set that depicts both the central tendency and variability of

the data. It is constructed using Q1, Md, and Q3. (pages 123, 124)

central tendency: A term referring to the middle of a population

or sample of measurements. (page 101)

Chebyshev’s Theorem: A theorem that (for any population)

allows us to find an interval that contains a specified percentage

of the individual measurements in the population. (page 116)

coefficient of variation: A quantity that measures the variation

of a population or sample relative to its mean. (page 117)

correlation coefficient: A numerical measure of the linear

relationship between two variables that is between ⫺1 and 1.

(page 131)

covariance: A numerical measure of the linear relationship

between two variables that depends upon the units in which the

variables are measured. (page 129)

Empirical Rule: For a normally distributed population, this

rule tells us that 68.26 percent, 95.44 percent, and 99.73 percent,

respectively, of the population measurements are within one, two,

and three standard deviations of the population mean. (page 114)

extreme outlier (in a box-and-whiskers display): Measure-

ments located outside the outer fences. (page 124)

first quartile (denoted Q1): A value below which approxi-

mately 25 percent of the measurements lie; the 25th percentile.

(page 121)

geometric mean: The constant return (or rate of change) that

yields the same wealth at the end of several time periods as do

actual returns. (page 139)

grouped data: Data presented in the form of a frequency distri-

bution or a histogram. (page 135)

inner fences (in a box-and-whiskers display): Points located

1.5 ⫻ IQR below Q1 and 1.5 ⫻ IQR above Q3. (page 124)

interquartile range (denoted IQR): The difference between the

third quartile and the first quartile (that is, Q3 ⫺ Q1). (page 123)

least squares line: The line that minimizes the sum of the squared

vertical differences between points on a scatter plot and the line.

(page 132)

measure of variation: A descriptive measure of the spread of

the values in a population or sample. (page 110)

median (denoted Md): Ameasure of central tendency that divides

a population or sample into two roughly equal parts. (page 103)

mild outlier (in a box-and-whiskers display): Measurements

located between the inner and outer fences. (page 124)

mode (denoted Mo): The measurement in a sample or a popula-

tion that occurs most frequently. (page 124)

mound-shaped: Description of a relative frequency curve that is

“piled up in the middle.” (page 116)

normal curve: A bell-shaped, symmetrical relative frequency

curve. We will present the exact equation that gives this curve in

Chapter 6. (page 113)

outer fences (in a box-and-whiskers display): Points located

below and above . (page 124)

percentile: The value such that a specified percentage of the mea-

surements in a population or sample fall at or below it. (page 120)

point estimate: A one-number estimate for the value of a popu-

lation parameter. (page 101)

population mean (denoted M): The average of a population of

measurements. (page 101)

population parameter: A descriptive measure of a population.

It is calculated using the population measurements. (page 101)

population standard deviation (denoted S): The positive

square root of the population variance. It is a measure of the vari-

ation of the population measurements. (page 111)

population variance (denoted S2): The average of the squared

deviations of the individual population measurements from the

population mean. It is a measure of the variation of the population

measurements. (page 111)

range: The difference between the largest and smallest measure-

ments in a population or sample. It is a simple measure of variation.

(page 110)

sample mean (denoted x–): The average of the measurements in a

sample. It is the point estimate of the population mean. (page 102)

sample size (denoted n): The number of measurements in a

sample. (page 102)

sample standard deviation (denoted s): The positive square

root of the sample variance. It is the point estimate of the popula-

tion standard deviation. (page 112)

sample statistic: A descriptive measure of a sample. It is calcu-

lated from the measurements in the sample. (page 102)

sample variance (denoted s2): A measure of the variation of the

sample measurements. It is the point estimate of the population

variance. (page 112)

third quartile (denoted Q3): A value below which approxi-

mately 75 percent of the measurements lie; the 75th percentile.

(page 121)

tolerance interval: An interval of numbers that contains a spec-

ified percentage of the individual measurements in a population.

(page 114)

weighted mean: A mean where different measurements are

given different weights based on their importance. (page 134)

z-score (of a measurement): The number of standard deviations

that a measurement is from the mean. This quantity indicates

the relative location of a measurement within its distribution.

(page 117)

Q33 ⫻ IQRQ13 ⫻ IQR

Important Formulas

The population mean, m: page 101

The sample mean, : page 102

The median: page 103

The mode: page 104

The population range: page 110

The population variance, s2: page 111

The population standard deviation, s: page 111

x

The sample variance, s2: pages 112 and 113

The sample standard deviation, s: page 112

Computational formula for s2: page 113

The Empirical Rule: page 114

Chebyshev’s Theorem: page 116

z-score: page 117

The coefficient of variation: page 117
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The pth percentile: pages 120, 121

The quartiles: page 121

The sample covariance: page 129

The sample correlation coefficient: page 131

The least squares line: page 132

The weighted mean: page 134

Sample mean for grouped data: page 136

Sample variance for grouped data: page 136

Population mean for grouped data: page 137

Population variance for grouped data: page 137

The geometric mean: page 139

Source: Reprinted from the January 15, 1992, issue of

Business Week by special permission. Copyright © 1992 by

The McGraw-Hill Companies.
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Number for 1,000 lines of code

Worst case
Average case
Best case

76 78 80 82 84 86 88 90

Number of 
bugs, errors, defects

per 1,000 lines of code

F I G U R E 3 . 2 5 Software Performance at

NASA’s Goddard Space 

Center, 1976–1990

(for Exercise 3.55)

T A B L E 3 . 1 0 Elapsed Time (in Hours) for Completing and 

Delivering Medical Lab Tests LabTestDS

6.1 8.7 1.1 4.0

2.1 3.9 2.2 5.0

2.1 7.1 4.3 8.8

3.5 1.2 3.2 1.3

1.3 9.3 4.2 7.3

5.7 6.5 4.4 16.2

1.3 1.3 3.0 2.7

15.7 4.9 2.0 5.2

3.9 13.9 1.8 2.2

8.4 5.2 11.9 3.0

24.0 24.5 24.8 24.0

1.7 4.4 2.5 16.2

17.8 2.9 4.0 6.7

5.3 8.3 2.8 5.2

17.5 1.1 3.0 8.3

1.2 1.1 4.5 4.4

5.0 2.6 12.7 5.7

4.7 5.1 2.6 1.6

3.4 8.1 2.4 16.7

4.8 1.7 1.9 12.1

9.1 5.6 13.0 6.4

Source: N. R. Farnum, Modern Statistical Quality Control and Improvement, p. 55.

Reprinted by permission of Brooks/Cole, an imprint of the Wadsworth Group, a

division of Thompson Learning. Fax 800-730-2215.

3.54 In the book Modern Statistical Quality Control and Improvement, Nicholas R. Farnum presents

data concerning the elapsed times from the completion of medical lab tests until the results are

recorded on patients’ charts. Table 3.10 gives the times it took (in hours) to deliver and chart the

results of 84 lab tests over one week. Use the techniques of this and the previous chapter to

determine if there are some deliveries with excessively long waiting times. Which deliveries might

be investigated in order to discover reasons behind unusually long delays? LabTest

3.55 Figure 3.25 depicts data for a study of 80 software projects at NASA’s Goddard Space Center. 

The figure shows the number of bugs per 1,000 lines of code from 1976 to 1990. Write a short

paragraph describing how the reliability of the software has improved. Explain how the data 

indicate improvement.

3.56 THE INVESTMENT CASE InvestRet

The Fall 1995 issue of Investment Digest, a publication of The Variable Annuity Life Insurance

Company of Houston, Texas, discusses the importance of portfolio diversification for long-term

investors. The article states:

While it is true that investment experts generally advise long-term investors to invest in vari-

able investments, they also agree that the key to any sound investment portfolio is diversifi-

cation. That is, investing in a variety of investments with differing levels of historical return

and risk. 

Investment risk is often measured in terms of the volatility of an investment over time.

When volatility, sometimes referred to as standard deviation, increases, so too does the level

of return. Conversely, as risk (standard deviation) declines, so too do returns.

DS

DS

Supplementary Exercises



Supplementary Exercises 143

In order to explain the relationship between the return on an investment and its risk, Investment

Digest presents a graph of mean return versus standard deviation (risk) for nine investment classes

over the period from 1970 to 1994. This graph, which Investment Digest calls the “risk/return

trade-off,” is shown in Figure 3.26. The article says that this graph

. . . illustrates the historical risk/return trade-off for a variety of investment classes over the

24-year period between 1970 and 1994.

In the chart, cash equivalents and fixed annuities, for instance, had a standard deviation of

0.81% and 0.54% respectively, while posting returns of just over 7.73% and 8.31%. At the other

end of the spectrum, domestic small-company stocks were quite volatile—with a standard de-

viation of 21.82%—but compensated for that increased volatility with a return of 14.93%.

The answer seems to lie in asset allocation. Investment experts know the importance of

asset allocation. In a nutshell, asset allocation is a method of creating a diversified portfolio

of investments that minimize historical risk and maximize potential returns to help you meet

your retirement goals and needs.

Suppose that, by reading off the graph of Figure 3.26, we obtain the mean return and standard 

deviation combinations for the various investment classes as shown in Table 3.11.

Further suppose that future returns in each investment class will behave as they have from 1970

to 1994. That is, for each investment class, regard the mean return and standard deviation in 

Table 3.11 as the population mean and the population standard deviation of all possible future 

returns. Then do the following:

a Assuming that future returns for the various investment classes are mound-shaped, for each 

investment class compute intervals that will contain approximately 68.26 percent and 

99.73 percent of all future returns.

b Making no assumptions about the population shapes of future returns, for each investment class

compute intervals that will contain at least 75 percent and 88.89 percent of all future returns.

c Assuming that future returns are mound-shaped, find

(1) An estimate of the maximum return that might be realized for each investment class.

(2) An estimate of the minimum return (or maximum loss) that might be realized for each

investment class.

d Assuming that future returns are mound-shaped, which two investment classes have the highest

estimated maximum returns? What are the estimated minimum returns (maximum losses) for

these investment classes?

e Assuming that future returns are mound-shaped, which two investment classes have the

smallest estimated maximum returns? What are the estimated minimum returns for these

investment classes?

Source: The Variable Annuity Life Insurance Company, VALIC 9, (1995), no. 3.
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F I G U R E 3 . 2 6 The Risk/Return Trade-Off 

(for Exercise 3.56)

T A B L E 3 . 1 1 Mean Return and Standard

Deviation for Nine Investment

Classes InvestRetDS

Mean Standard
Investment Class Return Deviation

Fixed annuities 8.31% .54%

Cash equivalents 7.73 .81

U.S. Treasury bonds 8.80 5.98

U.S. investment-grade
corporate bonds 9.33 7.92

Non–U.S. government bonds 10.95 10.47

Domestic large cap stocks 11.71 15.30

International equities 14.02 17.16

Domestic midcap stocks 13.64 18.19

Domestic small cap stocks 14.93 21.82



f Calculate the coefficient of variation for each investment class and compare the investment

classes with respect to risk. Which class is riskiest? Least risky?

3.57 THE UNITED KINGDOM INSURANCE CASE

Figure 3.27 summarizes information concerning insurance expenditures of households in the

United Kingdom in 1993.

a Approximately what percentage of households spent money to buy life insurance?

b What is the approximate average expenditure (in UKL) per household on life insurance? Note:

the averages given in Figure 3.27 are for households that spend in the class.

3.58 THE INTERNATIONAL BUSINESS TRAVEL EXPENSE CASE

Suppose that a large international corporation wishes to obtain its own “benchmark” for one-day

travel expenses in Moscow. To do this, it records the one-day travel expenses for a random

sample of 35 executives visiting Moscow. The mean and the standard deviation of these expenses

are calculated to be  $538 and s  $41. Furthermore, a histogram shows that the expenses are

approximately normally distributed.

a Find an interval that we estimate contains 99.73 percent of all one-day travel expenses in Moscow.

b If an executive submits an expense of $720 for a one-day stay in Moscow, should this expense

be considered unusually high? Why or why not?

3.59 THE FLORIDA POOL HOME CASE PoolHome

In Florida, real estate agents refer to homes having a swimming pool as pool homes. In this case,

Sunshine Pools Inc. markets and installs pools throughout the state of Florida. The company wishes

to estimate the percentage of a pool’s cost that can be recouped by a buyer when he or she sells the

home. For instance, if a homeowner buys a pool for which the current purchase price is $30,000 and

then sells the home in the current real estate market for $20,000 more than the homeowner would

get if the home did not have a pool, the homeowner has recouped (20,000兾30,000) 100%  

66.67% of the pool’s cost. To make this estimate, the company randomly selects 80 homes from all

of the homes sold in a Florida city (over the last six months) having a size between 2,000 and 3,500

square feet. For each sampled home, the following data are collected: selling price (in thousands of

dollars); square footage; the number of bathrooms; a niceness rating (expressed as an integer from 1

to 7 and assigned by a real estate agent); and whether or not the home has a pool (1 yes, 0 no).

The data are given in Table 3.12. Figure 3.28 gives descriptive statistics for the 43 homes having a

pool and for the 37 homes that do not have a pool.

a Using Figure 3.28, compare the mean selling prices of the homes having a pool and the homes

that do not have a pool. Using this data, and assuming that the average current purchase price

of the pools in the sample is $32,500, estimate the percentage of a pool’s cost that can be

recouped when the home is sold. 

b The comparison you made in part (a) could be misleading. Noting that different homes have

different square footages, numbers of bathrooms, and niceness ratings, explain why.
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Source: CSO family expenditure survey.
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F I G U R E 3 . 2 7 1993 Insurance Expenditures of Households in the United Kingdom (for Exercise 3.57)
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T A B L E 3 . 1 2 The Florida Pool Home Data PoolHomeDS

Price Size Number of Niceness Pool? Price Size Number of Niceness Pool?
Home ($1000s) (Sq Feet) Bathrooms Rating yes=1; no=0 Home ($1000s) (Sq Feet) Bathrooms Rating yes=1; no=0

1 260.9 2666 2 1/2 7 0 41 285.6 2761 3 6 1

2 337.3 3418 3 1/2 6 1 42 216.1 2880 2 1/2 2 0

3 268.4 2945 2 5 1 43 261.3 3426 3 1 1

4 242.2 2942 2 1/2 3 1 44 236.4 2895 2 1/2 2 1

5 255.2 2798 3 3 1 45 267.5 2726 3 7 0

6 205.7 2210 2 1/2 2 0 46 220.2 2930 2 1/2 2 0

7 249.5 2209 2 7 0 47 300.1 3013 2 1/2 6 1

8 193.6 2465 2 1/2 1 0 48 260.0 2675 2 6 0

9 242.7 2955 2 4 1 49 277.5 2874 3 1/2 6 1

10 244.5 2722 2 1/2 5 0 50 274.9 2765 2 1/2 4 1

11 184.2 2590 2 1/2 1 0 51 259.8 3020 3 1/2 2 1

12 325.7 3138 3 1/2 7 1 52 235.0 2887 2 1/2 1 1

13 266.1 2713 2 7 0 53 191.4 2032 2 3 0

14 166.0 2284 2 1/2 2 0 54 228.5 2698 2 1/2 4 0

15 330.7 3140 3 1/2 6 1 55 266.6 2847 3 2 1

16 289.1 3205 2 1/2 3 1 56 233.0 2639 3 3 0

17 268.8 2721 2 1/2 6 1 57 343.4 3431 4 5 1

18 276.7 3245 2 1/2 2 1 58 334.0 3485 3 1/2 5 1

19 222.4 2464 3 3 1 59 289.7 2991 2 1/2 6 1

20 241.5 2993 2 1/2 1 0 60 228.4 2482 2 1/2 2 0

21 307.9 2647 3 1/2 6 1 61 233.4 2712 2 1/2 1 1

22 223.5 2670 2 1/2 4 0 62 275.7 3103 2 1/2 2 1

23 231.1 2895 2 1/2 3 0 63 290.8 3124 2 1/2 3 1

24 216.5 2643 2 1/2 3 0 64 230.8 2906 2 1/2 2 0

25 205.5 2915 2 1 0 65 310.1 3398 4 4 1

26 258.3 2800 3 1/2 2 1 66 247.9 3028 3 4 0

27 227.6 2557 2 1/2 3 1 67 249.9 2761 2 5 0

28 255.4 2805 2 3 1 68 220.5 2842 3 3 0

29 235.7 2878 2 1/2 4 0 69 226.2 2666 2 1/2 6 0

30 285.1 2795 3 7 1 70 313.7 2744 2 1/2 7 1

31 284.8 2748 2 1/2 7 1 71 210.1 2508 2 1/2 4 0

32 193.7 2256 2 1/2 2 0 72 244.9 2480 2 1/2 5 0

33 247.5 2659 2 1/2 2 1 73 235.8 2986 2 1/2 4 0

34 274.8 3241 3 1/2 4 1 74 263.2 2753 2 1/2 7 0

35 264.4 3166 3 3 1 75 280.2 2522 2 1/2 6 1

36 204.1 2466 2 4 0 76 290.8 2808 2 1/2 7 1

37 273.9 2945 2 1/2 5 1 77 235.4 2616 2 1/2 3 0

38 238.5 2727 3 1 1 78 190.3 2603 2 1/2 2 0

39 274.4 3141 4 4 1 79 234.4 2804 2 1/2 4 0

40 259.6 2552 2 7 1 80 238.7 2851 2 1/2 5 0

F I G U R E 3 . 2 8 Descriptive Statistics for Homes With and Without Pools (for Exercise 3.59)

Descriptive Statistics Descriptive Statistics
(Homes with Pools) Price (Homes without Pools) Price

count 43 count 37

mean 276.056 mean 226.900

sample variance 937.821 sample variance 609.902

sample standard deviation 30.624 sample standard deviation 24.696

minimum 222.4 minimum 166

maximum 343.4 maximum 267.5

range 121 range 101.5
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3.60 Internet Exercise
Overview: The Data and Story Library (DASL) houses
a rich collection of data sets useful for teaching and learn-
ing statistics, from a variety of sources, contributed
primarily by university faculty members. DASL can be
reached through the BSC by clicking on the Data Bases
button in the BSC home screen and by then clicking on the
Data and Story Library link. The DASL can also be reached
directly using the url http://lib.stat.cmu.edu/DASL/. The
objective of this exercise is to retrieve a data set of chief
executive officer salaries and to construct selected graphi-
cal and numerical statistical summaries of the data.

a From the McGraw-Hill/Irwin Business Statistics
Center Data Bases page, go to the DASL website and
select “List all topics.” From the Stories by Topic
page, select Economics, then CEO Salaries to reach
the CEO Salaries story. From the CEO Salary story
page, select the Datafile Name: CEO Salaries to

reach the data set page. The data set includes the
ages and salaries (save for a single missing observa-
tion) for a sample of 60 CEOs. Capture these obser-
vations and copy them into an Excel or MINITAB
worksheet. This data capture can be accomplished
in a number of ways. One simple approach is to use
simple copy and paste procedures from the DASL
data set to Excel or MINITAB (data sets CEOSal.xlsx,
CEOSal.MTW).

b Use your choice of statistical software to create
graphical and numerical summaries of the CEO
Salary data and use these summaries to describe the
data. In Excel, create a histogram of salaries and
generate descriptive statistics. In MINITAB, create a
histogram, stem-and-leaf display, box plot, and
descriptive statistics. Offer your observations about
typical salary level, the variation in salaries, and the
shape of the distribution of CEO salaries.

Appendix 3.1 ■ Numerical Descriptive Statistics Using Excel
The instructions in this section begin by describing the entry of data into an Excel worksheet. Alternatively, the data
may be downloaded from this book’s website. The appropriate data file name is given at the top of each instruc-
tion block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing re-
sults when using Excel.

Numerical descriptive statistics for the bottle design
ratings in Figure 3.4 on page 106 (data file: Design.xlsx):

• Enter the bottle design ratings data into column A
with the label Rating in cell A1 and with the 
60 design ratings from Table 1.5 on page 10 in cells
A2 to A61.

• Select Data : Data Analysis : Descriptive Statistics.

• Click OK in the Data Analysis dialog box.

• In the Descriptive Statistics dialog box, enter the
range for the data, A1.A61, into the “Input Range”
box.

• Check the “Labels in First Row” checkbox. 

• Click in the “Output Range” window and enter the
desired cell location for the upper left corner of 
the output, say cell C1.

• Check the “Summary Statistics” checkbox.

• Click OK in the Descriptive Statistics dialog box.

• The descriptive statistics summary will appear in
cells C1. D15. Drag the column C border to reveal
complete labels for all statistics.
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Least squares line, correlation, and covariance for the
sales volume data in Figure 3.22(a) on page 130 (data
file: SalesPlot.xlsx):

To compute the equation of the least squares line:

• Follow the directions in Appendix 2.1 for
constructing a scatter plot of sales volume versus
advertising expenditure.

• When the scatter plot is displayed in a graphics
window, move the plot to a chart sheet.

• In the new chart sheet, right-click on any of the
plotted points in the scatter plot (Excel refers to 
the plotted points as the data series) and select 
Add Trendline from the pop-up menu.

• In the Format Trendline dialog box, select 
Trendline Options.

• In the Trendline Options task pane, select Linear
for the “Trend/Regression Type”.

• Place a checkmark in the “Display Equation on
chart” checkbox.

• Click the Close button in the Format Trendline
dialog box.

• The Trendline equation will be displayed in
the scatter plot and the chart can be edited 
appropriately.
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To compute the sample covariance between sales
volume and advertising expenditure:

• Enter the advertising and sales data in
Figure 3.22(a) on page 130 into columns A and
B—advertising expenditures in column A with
label “Ad Exp” and sales values in column B with
label “Sales Vol”.

• Select Data : Data Analysis : Covariance

• Click OK in the Data Analysis dialog box.

• In the Covariance dialog box, enter the range of
the data, A1:B11 into the Input Range window.

• Select “Grouped By: Columns” if this is not
already the selection.

• Place a checkmark in the “Labels in first row”
checkbox.

• Under “Output options”, select Output Range
and enter the cell location for the upper left
corner of the output, say A14, in the Output
Range window.

• Click OK in the Covariance dialog box.

The Excel ToolPak Covariance routine calculates the
population covariance. This quantity is the value in
cell B16 ( 36.55). To compute the sample covariance
from this value, we multiply by n兾(n  1) where n is
the sample size. In this situation, the sample size
is 10. Therefore, we compute the sample covariance
as follows:

• Type the label “Sample Covariance” in cell E15.

• In cell E16 write the cell formula  (10兾9)*B16
and type enter.

• The sample covariance ( 40.61111) is the result
in cell E16.
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To compute the sample correlation coefficient be-
tween sales volume and advertising expenditure:

• Select Data : Data Analysis : Correlation

• In the correlation dialog box, enter the range of
the data, A1:B11 into the Input Range window.

• Select “Grouped By: Columns” if this is not al-
ready the selection.

• Place a checkmark in the “Labels in first row”
checkbox.

• Under output options, select “New Worksheet
Ply” to have the output placed in a new work-
sheet and enter the name Output for the new
worksheet.

• Click OK in the Correlation dialog box.

• The sample correlation coefficient ( 0.93757) is
displayed in the Output worksheet.

Appendix 3.2 ■ Numerical Descriptive Statistics Using MegaStat
The instructions in this section begin by describing the entry of data into an Excel worksheet. Alternatively, the data
may be downloaded from this book’s website. The appropriate data file name is given at the top of each instruc-
tion block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing re-
sults in Excel. Please refer to Appendix 1.2 for more information about using MegaStat.

To analyze the gas mileage data in Table 3.1 on
page 103 (data file: GasMiles.xlsx): 

• Enter the mileage data from Table 3.1 into
column A with the label Mpg in cell A1 and with
the 50 gas mileages in cells A2 through A51. 

In order to compute descriptive statistics similar to
those given in Figure 3.1 on page 104:

• Select Add-Ins : MegaStat : Descriptive Statistics

• In the “Descriptive Statistics” dialog box, use the
autoexpand feature to enter the range A1:A51
into the Input Range box.

• Place checkmarks in the checkboxes that 
correspond to the desired statistics. If tolerance
intervals based on the empirical rule are desired,
check the “Empirical Rule” checkbox.

• Click OK in the “Descriptive Statistics” dialog box.

• The output will be placed in an Output
worksheet.



Least squares line and correlation for the sales volume
data in Figure 3.22(a) on page 130 (data file: SalesPlot.
xlsx):

To compute the equation of the least squares line:

• Enter the advertising and sales data in
Figure 3.22(a) on page 130 into columns A and B—
advertising expenditures in column A with label
“Ad Exp” and sales values in column B with label
“Sales Vol”.

• Select Add-Ins : MegaStat : Correlation /
Regression : Scatterplot

• In the Scatterplot dialog box, use the autoexpand
feature to enter the range of the values of 
advertising expenditure (x), A1:A11, into the 
“horizontal axis” window. 

• Enter the range of the values of sales volume (y),
B1:B11, into the “vertical axis” window.

• Place a checkmark in the “Plot linear regression
line” checkbox.

• Select Markers as the Display option.

• Click OK in the Scatterplot dialog box.

• The equation of the least squares line is displayed
in the scatterplot.

• Move the scatterplot to a chart sheet and edit the
plot as desired.
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To construct a boxplot of satisfaction ratings (data
file: DVDSat.xlsx):

• Enter the satisfaction rating data on page 123
into column A with the label Ratings in cell A1
and with the 20 satisfaction ratings in cells A2 to
A21.

• Select Add-Ins : MegaStat : Descriptive Statistics

• In the “Descriptive Statistics” dialog box, use the
autoexpand feature to enter the input range
A1:A21 into the Input Range box.

• Place a checkmark in the Boxplot checkbox.

• Click OK in the “Descriptive Statistics” dialog box.

• The boxplot output will be placed in an output
worksheet. 

• Move the boxplot to a chart sheet and edit as 
desired.
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Appendix 3.3 ■ Numerical Descriptive Statistics Using MINITAB
The instructions in this section begin by describing the entry of data into the MINITAB data window. Alternatively,
the data may be downloaded from this book’s website. The appropriate data file name is given at the top of each
instruction block. Please refer to Appendix 1.3 for further information about entering data, saving data, and print-
ing results when using MINITAB.

Numerical descriptive statistics in Figure 3.7 on page 107
(data file: PayTime.MTW):

• Enter the payment time data from Table 2.4
(page 42) into column C1 with variable name
PayTime.

• Select Stat : Basic Statistics : Display Descriptive
Statistics.

• In the Display Descriptive Statistics dialog box, 
select the variable Paytime into the Variables 
window.

• In the Display Descriptive Statistics dialog box, click
on the Statistics button.

• In the “Descriptive Statistics—Statistics” dialog
box, enter checkmarks in the checkboxes 
corresponding to the desired descriptive statistics.
Here we have checked the mean, standard 
deviation, variance, first quartile, median, third
quartile, minimum, maximum, range, and N total
checkboxes.

• Click OK in the “Descriptive Statistics—Statistics”
dialog box.

• Click OK in the Display Descriptive Statistics
dialog box.

• The requested descriptive statistics are displayed in
the session window.

To compute the sample correlation coefficient between
sales volume (y) and advertising expenditure (x):

• Select Add-Ins : MegaStat : Correlation / 
Regression : Correlation Matrix

• In the Correlation Matrix dialog box, use the
mouse to select the range of the data A1:B11 into
the Input window.

• Click OK in the Correlation Matrix dialog box.

• The sample correlation coefficient between 
advertising expenditure and sales volume is 
displayed in an output sheet.
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Least squares line, correlation, and covariance for the
sales volume data in Section 3.4 (data file: SalesPlot.
MTW):

To compute the equation of the least squares line:

• Enter the sales and advertising data in 
Figure 3.22(a) on page 130—advertising 
expenditure in column C1 with variable name
‘Adv Exp’, and sales volume in column C2 with
variable name ‘Sales Vol’.

• Select Stat : Regression : Fitted Line Plot

• In the Fitted Line Plot dialog box, enter the 
variable name ‘Sales Vol’ (including the single
quotes) into the “Response (Y)” window.

• Enter the variable name ‘Adv Exp’ (including the
single quotes) into the “Predictor (X)” window.

• Select Linear for the “Type of Regression Model”.

• Click OK in the Fitted Line Plot dialog box.

• A scatter plot of sales volume versus advertising 
expenditure that includes the equation of the 
least squares line will be displayed in a graphics
window.

Box plot similar to Figure 3.17(b) on page 124 (data
file DVDSat.MTW):

• Enter the satisfaction rating data from page 123
into column C1 with variable name Ratings.

• Select Graph : Boxplot

• In the Boxplots dialog box, select “One Y Simple”
and click OK.

• In the “Boxplot—One Y, Simple” dialog box, select
Ratings into the “Graph variables” window.

• Click on the Scale button, select the Axes and
Ticks tab, check “Transpose value and category
scales” and click OK.

• Click OK in the “Boxplot—One Y, Simple” dialog
box.

• The boxplot is displayed in a graphics window.

• Note that the boxplot produced by MINITAB is
constructed using methods somewhat different
from those presented in Section 3.3 of this book.
Consult the MINITAB help menu for a precise 
description of the boxplot construction method
used. A boxplot that is constructed using the
methods of Section 3.3 can be displayed in the
Session window—rather than in a graphics 
window. Instructions for constructing such a 
boxplot—called a character boxplot—can be
found in the MINITAB help menu (see “Character
graphs”).
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To compute the sample covariance:

• Select Stat : Basic Statistics : Covariance 

• In the Covariance dialog box, enter the variable
names ‘Adv Exp’ and ‘Sales Vol’ (including the 
single quotes) into the Variables window.

• Click OK in the Covariance dialog box.

• The covariance will be displayed in the session 
window.

To compute the sample correlation coefficient:

• Select Stat : Basic Statistics : Correlation

• In the Correlation dialog box, enter the variable
names ‘Adv Exp’ and ‘Sales Vol’ (including the 
single quotes) into the Variables window.

• Remove the checkmark from the “Display 
p-values” checkbox—or keep this checked as 
desired (we will learn about p-values in later 
chapters).

• Click OK in the Correlation dialog box.

• The correlation coefficient will be displayed in the
session window.
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n Chapter 3 we explained how to use sample

statistics as point estimates of population

parameters. Starting in Chapter 7, we will

focus on using sample statistics to make more

sophisticated statistical inferences about population

parameters. We will see that these statistical

inferences are generalizations—based on calculating

probabilities—about population parameters. In this

chapter and in Chapters 5 and 6 we present the

fundamental concepts about probability that

are needed to understand how we make such

statistical inferences. We begin our discussions in

this chapter by considering rules for calculating

probabilities.

In order to illustrate some of the concepts in this

chapter, we will introduce a new case.

The AccuRatings Case: AccuRatings is a radio

ratings service provided by Strategic Radio

Research, a media research firm in Chicago,

Illinois. AccuRatings clients include radio stations

owned by CBS, Cap Cities/ABC, Group W, Tribune,

and many other major broadcast groups across

the United States and Canada. In addition,

Strategic Radio Research is the primary research

vendor for MTV/Music Television. Strategic has

twice been named to the Inc. 500 list of fastest-

growing privately held companies in America.

Using portions of an AccuRatings report and the

concepts of probability, we will analyze patterns

of radio listenership in the Los Angeles market.

We will also use Strategic Radio Research data

and several probability rules to analyze the

popularity of individual songs on a client’s 

playlist.

C

I

4.1 The Concept of Probability 
We use the concept of probability to deal with uncertainty. Intuitively, the probability of an event

is a number that measures the chance, or likelihood, that the event will occur. For instance, the

probability that your favorite football team will win its next game measures the likelihood of

a victory. The probability of an event is always a number between 0 and 1. The closer an event’s

probability is to 1, the higher is the likelihood that the event will occur; the closer the event’s

probability is to 0, the smaller is the likelihood that the event will occur. For example, if you

believe that the probability that your favorite football team will win its next game is .95, then you

are almost sure that your team will win. However, if you believe that the probability of victory is

only .10, then you have very little confidence that your team will win.

When performing statistical studies, we sometimes collect data by performing a controlled

experiment. For instance, we might purposely vary the operating conditions of a manufacturing

process in order to study the effects of these changes on the process output. Alternatively, we

sometimes obtain data by observing uncontrolled events. For example, we might observe the

closing price of a share of General Motors’ stock every day for 30 trading days. In order to

simplify our terminology, we will use the word experiment to refer to either method of data

collection.

An experiment is any process of observation that has an uncertain outcome. The process must

be defined so that on any single repetition of the experiment, one and only one of the possible

outcomes will occur. The possible outcomes for an experiment are called experimental

outcomes.

For example, if the experiment consists of tossing a coin, the experimental outcomes are “head”

and “tail.” If the experiment consists of rolling a die, the experimental outcomes are 1, 2, 3, 4, 5,

and 6. If the experiment consists of subjecting an automobile to a tailpipe emissions test, the

experimental outcomes are pass and fail.

We often wish to assign probabilities to experimental outcomes. This can be done by several

methods. Regardless of the method used, probabilities must be assigned to the experimental

outcomes so that two conditions are met:

1 The probability assigned to each experimental outcome must be between 0 and 1. That is, 

if E represents an experimental outcome and if P(E) represents the probability of this

outcome, then 0  P(E)  1.

2 The probabilities of all of the experimental outcomes must sum to 1.

Explain
what a

probability is.

LO1



Sometimes, when all of the experimental outcomes are equally likely, we can use logic to

assign probabilities. This method, which is called the classical method, will be more fully

discussed in the next section. As a simple example, consider the experiment of tossing a fair coin.

Here, there are two equally likely experimental outcomes—head (H ) and tail (T ). Therefore,

logic suggests that the probability of observing a head, denoted P(H), is 1 2  .5, and that the

probability of observing a tail, denoted P(T), is also 1 2  .5. Notice that each probability

is between 0 and 1. Furthermore, because H and T are all of the experimental outcomes,

P(H )  P(T)  1.

Probability is often interpreted to be a long-run relative frequency. As an example, con-

sider repeatedly tossing a coin. If we get 6 heads in the first 10 tosses, then the relative

frequency, or fraction, of heads is 6 10  .6. If we get 47 heads in the first 100 tosses, the rel-

ative frequency of heads is 47 100  .47. If we get 5,067 heads in the first 10,000 tosses, the

relative frequency of heads is 5,067 10,000  .5067.1 Since the relative frequency of heads is

approaching (that is, getting closer to) .5, we might estimate that the probability of obtaining a

head when tossing the coin is .5. When we say this, we mean that, if we tossed the coin an

indefinitely large number of times (that is, a number of times approaching infinity), the relative

frequency of heads obtained would approach .5. Of course, in actuality it is impossible to toss

a coin (or perform any experiment) an indefinitely large number of times. Therefore, a relative

frequency interpretation of probability is a mathematical idealization. To summarize, suppose

that E is an experimental outcome that might occur when a particular experiment is performed.

Then the probability that E will occur, P(E), can be interpreted to be the number that would be

approached by the relative frequency of E if we performed the experiment an indefinitely large

number of times. It follows that we often think of a probability in terms of the percentage of

the time the experimental outcome would occur in many repetitions of the experiment. For

instance, when we say that the probability of obtaining a head when we toss a coin is .5, we are

saying that, when we repeatedly toss the coin an indefinitely large number of times, we will

obtain a head on 50 percent of the repetitions.

Sometimes it is either difficult or impossible to use the classical method to assign probabili-

ties. Since we can often make a relative frequency interpretation of probability, we can estimate

a probability by performing the experiment in which an outcome might occur many times. Then,

we estimate the probability of the experimental outcome to be the proportion of the time that

the outcome occurs during the many repetitions of the experiment. For example, to estimate the

probability that a randomly selected consumer prefers Coca-Cola to all other soft drinks, we

perform an experiment in which we ask a randomly selected consumer for his or her preference.

There are two possible experimental outcomes: “prefers Coca-Cola” and “does not prefer Coca-

Cola.” However, we have no reason to believe that these experimental outcomes are equally

likely, so we cannot use the classical method. We might perform the experiment, say, 1,000 times

by surveying 1,000 randomly selected consumers. Then, if 140 of those surveyed said that they

prefer Coca-Cola, we would estimate the probability that a randomly selected consumer prefers

Coca-Cola to all other soft drinks to be 140 1,000  .14. This is called the relative frequency

method for assigning probability.

If we cannot perform the experiment many times, we might estimate the probability by using

our previous experience with similar situations, intuition, or special expertise that we may

possess. For example, a company president might estimate the probability of success for a one-

time business venture to be .7. Here, on the basis of knowledge of the success of previous simi-

lar ventures, the opinions of company personnel, and other pertinent information, the president

believes that there is a 70 percent chance the venture will be successful.

When we use experience, intuitive judgement, or expertise to assess a probability, we call this

a subjective probability. Such a probability may or may not have a relative frequency interpre-

tation. For instance, when the company president estimates that the probability of a successful

business venture is .7, this may mean that, if business conditions similar to those that are about

to be encountered could be repeated many times, then the business venture would be successful

in 70 percent of the repetitions. Or, the president may not be thinking in relative frequency terms

but rather may consider the venture a “one-shot” proposition. We will discuss some other

156 Chapter 4 Probability

1The South African mathematician John Kerrich actually obtained this result when he tossed a coin 10,000 times while

imprisoned by the Germans during World War II.
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subjective probabilities later. However, the interpretations of statistical inferences we will 

explain in later chapters are based on the relative frequency interpretation of probability. For this

reason, we will concentrate on this interpretation.

4.2 Sample Spaces and Events 
In order to calculate probabilities by using the classical method, it is important to understand and

use the idea of a sample space.

The sample space of an experiment is the set of all possible experimental outcomes. The

experimental outcomes in the sample space are often called sample space outcomes.

EXAMPLE 4.1

A company is choosing a new chief executive officer (CEO). It has narrowed the list of candidates

to four finalists (identified by last name only)—Adams, Chung, Hill, and Rankin. If we consider

our experiment to be making a final choice of the company’s CEO, then the experiment’s sample

space consists of the four possible experimental outcomes:

A  Adams is chosen as CEO.

C  Chung is chosen as CEO.

H  Hill is chosen as CEO.

R  Rankin is chosen as CEO.

Each of these outcomes is a sample space outcome, and the set of these sample space outcomes

is the sample space.

Next, suppose that industry analysts feel (subjectively) that the probabilities that Adams,

Chung, Hill, and Rankin will be chosen as CEO are .1, .2, .5, and .2, respectively. That is, in prob-

ability notation

Notice that each probability assigned to a sample space outcome is between 0 and 1 and that the

sum of the probabilities equals 1.

P(A)  .1    P(C )  .2    P(H )  .5    and    P(R)  .2

EXAMPLE 4.2

A newly married couple plans to have two children. Naturally, they are curious about whether

their children will be boys or girls. Therefore, we consider the experiment of having two

children. In order to find the sample space of this experiment, we let B denote that a child is a

boy and G denote that a child is a girl. Then, it is useful to construct the tree diagram shown

in Figure 4.1. This diagram pictures the experiment as a two-step process—having the first

child, which could be either a boy or a girl (B or G), and then having the second child, which

could also be either a boy or a girl (B or G). Each branch of the tree leads to a sample space

outcome. These outcomes are listed at the right ends of the branches. We see that there are four

sample space outcomes. Therefore, the sample space (that is, the set of all the sample space

outcomes) is

BB BG GB GG

In order to consider the probabilities of these outcomes, suppose that boys and girls are equally

likely each time a child is born. Intuitively, this says that each of the sample space outcomes is

equally likely. That is, this implies that

P(BB)  P(BG)  P(GB)  P(GG)  

This says that there is a 25 percent chance that each of these outcomes will occur. Again, notice

that these probabilities sum to 1.

1

4

List the out-
comes in a

sample space and
use the list to com-
pute probabilities.

LO2



EXAMPLE 4.3

A student takes a pop quiz that consists of three true–false questions. If we consider our

experiment to be answering the three questions, each question can be answered correctly or

incorrectly. We will let C denote answering a question correctly and I denote answering a ques-

tion incorrectly. Then, Figure 4.2 depicts a tree diagram of the sample space outcomes for the

experiment. The diagram portrays the experiment as a three-step process—answering the first

question (correctly or incorrectly, that is, C or I ), answering the second question, and answering

the third question. The tree diagram has eight different branches, and the eight sample space out-

comes are listed at the ends of the branches. We see that the sample space is

CCC CCI CIC CII

ICC ICI IIC III

Next, suppose that the student was totally unprepared for the quiz and had to blindly guess the

answer to each question. That is, the student had a 50–50 chance (or .5 probability) of correctly

answering each question. Intuitively, this would say that each of the eight sample space outcomes

is equally likely to occur. That is,

P(CCC)  P(CCI)      P(III)  

Here, as in Examples 4.1 and 4.2, the sum of the probabilities of the sample space outcomes is

equal to 1.

1

8
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F I G U R E 4 . 1 A Tree Diagram of the Genders of Two Children

               Girl (G) 

Boy (B)

Boy (
B
)

Girl (G)

Boy (B)

Girl (G)

BB

BG

GB

GG

First child Second child Sample space

 outcome 

Events and finding probabilities by using sample spaces At the beginning of this

chapter, we informally talked about events. We now give the formal definition of an event.

An event is a set (or collection) of sample space outcomes.

For instance, if we consider the couple planning to have two children, the event “the couple

will have at least one girl” consists of the sample space outcomes BG, GB, and GG. That is,

the event “the couple will have at least one girl” will occur if and only if one of the sample
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space outcomes BG, GB, or GG occurs. As another example, in the pop quiz situation, the

event “the student will answer at least two out of three questions correctly” consists of the

sample space outcomes CCC, CCI, CIC, and ICC, while the event “the student will answer all

three questions correctly” consists of the sample space outcome CCC. In general, we see that

the word description of an event determines the sample space outcomes that correspond to the

event.

Suppose that we wish to find the probability that an event will occur. We can find such a prob-

ability as follows:

The probability of an event is the sum of the probabilities of the sample space outcomes that

correspond to the event.

As an example, in the CEO situation, suppose only Adams and Hill are internal candidates (they

already work for the company). Letting INT denote the event that “an internal candidate is

selected for the CEO position,” then INT consists of the sample space outcomes A and H (that is,

INT will occur if and only if either of the sample space outcomes A or H occurs). It follows that

P(INT)  P(A)  P(H )  .1  .5  .6. This says that the probability that an internal candidate

will be chosen to be CEO is .6.

In general, we have seen that the probability of any sample space outcome (experimental

outcome) is a number between 0 and 1, and we have also seen that the probabilities of all the

sample space outcomes sum to 1. It follows that the probability of an event (that is, the prob-

ability of a set of sample space outcomes) is a number between 0 and 1. That is,

If A is an event, then 0  P(A)  1.

Moreover:

1 If an event never occurs, then the probability of this event equals 0.

2 If an event is certain to occur, then the probability of this event equals 1.

F I G U R E 4 . 2 A Tree Diagram of Answering Three True–False Questions

Sample space

 outcome 

Question 3Question 2 Question 1 

Correct (C)

Incorrect (I)

Correct (C)

Incorrect (I)

Correct (C)

Incorrect (I)

Correct (C
)

Incorrect (I)

Correct (C
)

Corre
ct

 (C
)

Incorrect (I) Incorrect (I)

Correct (C)

Incorrect (I)

CCC

CCI

CIC

CII

ICC

ICI

IIC

III



EXAMPLE 4.4

Consider the couple that is planning to have two children, and suppose that each child is equally

likely to be a boy or girl. Recalling that in this case each sample space outcome has a probability

equal to 1 4, we see that:

1 The probability that the couple will have two boys is

since two boys will be born if and only if the sample space outcome BB occurs.

2 The probability that the couple will have one boy and one girl is

since one boy and one girl will be born if and only if one of the sample space outcomes

BG or GB occurs.

3 The probability that the couple will have two girls is

since two girls will be born if and only if the sample space outcome GG occurs.

4 The probability that the couple will have at least one girl is

since at least one girl will be born if and only if one of the sample space outcomes BG, GB,

or GG occurs.

P(BG)  P(GB)  P(GG)  
1

4
 

1

4
 

1

4
 

3

4

P(GG)  
1

4

P(BG)  P(GB)  
1

4
  

1

4
 

1

2

P(BB)  
1

4
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EXAMPLE 4.5

Again consider the pop quiz consisting of three true–false questions, and suppose that the student

blindly guesses the answers. Remembering that in this case each sample space outcome has a prob-

ability equal to 1 8, then:

1 The probability that the student will get all three questions correct is

2 The probability that the student will get exactly two questions correct is

since two questions will be answered correctly if and only if one of the sample space out-

comes CCI, CIC, or ICC occurs.

3 The probability that the student will get exactly one question correct is

since one question will be answered correctly if and only if one of the sample space out-

comes CII, ICI, or IIC occurs.

4 The probability that the student will get all three questions incorrect is

5 The probability that the student will get at least two questions correct is

since the student will get at least two questions correct if and only if one of the sample

space outcomes CCC, CCI, CIC, or ICC occurs.

P(CCC )  P(CCI)  P(CIC)  P(ICC)  
1

8
 

1

8
 

1

8
 

1

8
 

1

2

P(III)  
1

8

P(CII )  P(ICI )  P(IIC )  
1

8
 

1

8
 

1

8
 

3

8

P(CCI )  P(CIC )  P(ICC )  
1

8
 

1

8
 

1

8
 

3

8

P(CCC )  
1

8
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Notice that in the true–false question situation we find that, for instance, the probability that

the student will get exactly two questions correct equals the ratio

In general, when a sample space is finite we can use the following method for computing the

probability of an event.

If all of the sample space outcomes are equally likely, then the probability that an event will occur

is equal to the ratio

When we use this rule, we are using the classical method for computing probabilities.

Furthermore, it is important to emphasize that we can use this rule only when all of the sample

space outcomes are equally likely (as they are in the true–false question situation). For example,

if we were to use this rule in the CEO situation, we would find that the probability of choosing

an internal candidate as CEO is

This result is not equal to the correct value of P(INT), which we previously found to be equal to .6.

Here, this rule does not give us the correct answer because the sample space outcomes A, C, H, and

R are not equally likely—recall that , , , and .P(R)  .2P(H )  .5P(C)  .2P(A)  .1

P(INT)  
the number of internal candidates

the total number of candidates
 

2

4
 .5

the number of sample space outcomes that correspond to the event

the total number of sample space outcomes

the number of sample space outcomes resulting in two correct answers

the total number of sample space outcomes
 

3

8

EXAMPLE 4.6

Suppose that 650,000 of the 1,000,000 households in an eastern U.S. city subscribe to a

newspaper called the Atlantic Journal, and consider randomly selecting one of the house-

holds in this city. That is, consider selecting one household by giving each and every

household in the city the same chance of being selected. Let A be the event that the randomly

selected household subscribes to the Atlantic Journal. Then, because the sample space of this

experiment consists of 1,000,000 equally likely sample space outcomes (households), it

follows that

This says that the probability that the randomly selected household subscribes to the Atlantic

Journal is .65.

  .65

  
650,000

1,000,000

 P(A)  
the number of households that subscribe to the Atlantic Journal

the total number of households in the city

EXAMPLE 4.7 The AccuRatings Case

As discussed in the introduction to this chapter, AccuRatings is a radio ratings service provided

by Strategic Radio Research, a media research firm in Chicago, Illinois. Figure 4.3 gives portions

of an AccuRatings report on radio ratings in the Los Angeles market. This report, based on inter-

views with 5,528 randomly selected persons 12 years of age or older, gives estimates of the

number and the percentage of Los Angeles residents who would name each of the top 10 radio

stations in Los Angeles as the station they listen to most.

To better understand the estimates in Figure 4.3, we will consider how they were obtained.

AccuRatings asked each of the 5,528 sampled residents to name which station (if any) he or

C



she listens to most. AccuRatings then used the responses of the sampled residents to calculate

the proportion of these residents who favored each station. The sample proportion of the resi-

dents who favored a particular station is an estimate of the population proportion of all Los

Angeles residents (12 years of age or older) who favor the station, or, equivalently, of the

probability that a randomly selected Los Angeles resident would favor the station. For example,

if 445 of the 5,528 sampled residents favored station KPWR, then 445 5,528  .080499276 is

an estimate of P(KPWR), the probability that a randomly selected Los Angeles resident would

favor station KPWR. Furthermore, assuming that there are 8,300,000 Los Angeles residents

12 years of age or older, an estimate of the number of these residents who favor station

KPWR is

Now, if we

1 Round the estimated number of residents favoring station KPWR to 668,100, and

2 Express the estimated probability P(KPWR) as the rounded percentage 8.0%,

we obtain what the AccuRatings report in Figure 4.3 states are (1) the estimated number of

core listeners for station KPWR and (2) the estimated share of all listeners for station KPWR.

These measures of listenership would be determined for other stations in a similar manner (see

Figure 4.3).

(8,300,000)  (.080499276)  668,143.99
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F I G U R E 4 . 3 Portions of an AccuRatings Report on Radio Ratings in the Los Angeles Market

TARGET AUDIENCE:

All estimates on this page are for the demographic

of P12 . (Other pages might reflect M25–54,

Asians 18–34, Broward County, or Imported

Beer drinkers.)

SAMPLE SIZE:

The estimates on this

page are based on 

interviews with 5,528

people who meet the

criterion described at left.

STATION CORE LISTENERS:

AccuRatings estimates that about

668,100 Los Angeles residents

would name KPWR as the 

station they listen to the most.

KPWR

KLAX

KROQ

KIIS-A/F

KFI

KFWB

KKBT

KABC

KRTH

KCBS-FM

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

668,100

531,800

505,100

418,200

386,500

383,500

378,500

346,600

302,300

299,500

8.0 <— 8.4

6.4 <— 4.4

6.1 <— 5.6

5.0 <— 5.6

4.7 <— 4.0

4.6 <— 3.8

4.6 <— 4.1

4.2 <— 4.2

3.6 <— 3.7

3.6 <— 1.3

SHARE:

KPWR's 668,100 core

listeners represent 8.0%

of all radio listeners on 

this page.

RECALLED FORMER SHARE:

We asked the same sample of 

respondents to think back five or 

six months ago. 8.4% of the 

respondents said they believed 

that KPWR was the station they 

listened to most back then. (This 

suggests that KPWR has lost a

few core listeners to other

stations in recent months. It is a 

reliable medium-term trend 

indicator because it is based on

exactly the same respondents as

the previous column.)

STATION 

CORE  LISTENERS SHARE

RECALLED

FORMER

SHARE

STANDARD DEMO RANKER

PERSONS 12     (N 5528)

STEP

1

STEP

3

STEP

2

STEP

4

STEP

5

Source: Strategic Radio Research, AccuRatings Introduction for Broadcasters.

To conclude this section, we note that in optional Section 4.6 we discuss several counting

rules that can be used to count the number of sample space outcomes in an experiment. These
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Exercises for Sections 4.1 and 4.2
CONCEPTS

4.1 Define the following terms: experiment, event, probability, sample space.

4.2 Explain the properties that must be satisfied by a probability.

METHODS AND APPLICATIONS

4.3 Two randomly selected grocery store patrons are each asked to take a blind taste test and to then

state which of three diet colas (marked as A, B, or C) he or she prefers.

a Draw a tree diagram depicting the sample space outcomes for the test results.

b List the sample space outcomes that correspond to each of the following events:

(1) Both patrons prefer diet cola A.

(2) The two patrons prefer the same diet cola.

(3) The two patrons prefer different diet colas.

(4) Diet cola A is preferred by at least one of the two patrons.

(5) Neither of the patrons prefers diet cola C.

c Assuming that all sample space outcomes are equally likely, find the probability of each of the

events given in part b.

4.4 Suppose that a couple will have three children. Letting B denote a boy and G denote a girl:

a Draw a tree diagram depicting the sample space outcomes for this experiment.

b List the sample space outcomes that correspond to each of the following events:

(1) All three children will have the same gender.

(2) Exactly two of the three children will be girls.

(3) Exactly one of the three children will be a girl.

(4) None of the three children will be a girl.

c Assuming that all sample space outcomes are equally likely, find the probability of each of the

events given in part b.

4.5 Four people will enter an automobile showroom, and each will either purchase a car (P) or not

purchase a car (N).

a Draw a tree diagram depicting the sample space of all possible purchase decisions that could

potentially be made by the four people.

b List the sample space outcomes that correspond to each of the following events:

(1) Exactly three people will purchase a car.

(2) Two or fewer people will purchase a car.

(3) One or more people will purchase a car.

(4) All four people will make the same purchase decision.

c Assuming that all sample space outcomes are equally likely, find the probability of each of the

events given in part b.

4.6 THE ACCURATINGS CASE

Using the information given in the AccuRatings report of Figure 4.3 (page 162), find estimates of

each of the following:

a The probability that a randomly selected Los Angeles resident (12 years or older) would name

station KLAX as the station that he or she listens to most.

b The probability that a randomly selected Los Angeles resident (12 years or older) would name

station KABC as the station that he or she listens to most.

c The percentage of all Los Angeles residents (12 years or older) who would name KCBS-FM as

the station that he or she listens to most.

d The number of the 5,528 sampled residents who named station KFI as the station he or she

listens to most.

e The number of the 5,528 sampled residents who named station KROQ as the station he or she

listens to most.

4.7 Let A, B, C, D, and E be sample space outcomes forming a sample space. Suppose that P(A)  .2,

P(B)  .15, P(C)  .3, and P(D)  .2. What is P(E)? Explain how you got your answer.

rules are particularly useful when there are many sample space outcomes and thus these outcomes

are difficult to list.



4.3 Some Elementary Probability Rules 
We can often calculate probabilities by using formulas called probability rules. We will begin

by presenting the simplest probability rule: the rule of complements. To start, we define the

complement of an event:

Given an event A, the complement of A is the event consisting of all sample space outcomes that

do not correspond to the occurrence of A. The complement of A is denoted . Furthermore, 

denotes the probability that A will not occur.

Figure 4.4 is a Venn diagram depicting the complement of an event A. In any probability

situation, either an event A or its complement must occur. Therefore, we have

This implies the following result:

P(A)  P(A)  1

A

A

P(A)A
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A A

F I G U R E 4 . 4

The Complement of

an Event (the Shaded

Region Is , the

Complement of A)

A

The Rule of Complements

Consider an event A. Then, the probability that A will not occur is

P(A)  1  P(A)

EXAMPLE 4.8

Recall from Example 4.6 that the probability that a randomly selected household in an eastern

U.S. city subscribes to the Atlantic Journal is .65. It follows that the probability of the comple-

ment of this event (that is, the probability that a randomly selected household in the eastern U.S.

city does not subscribe to the Atlantic Journal) is 1  .65  .35.

EXAMPLE 4.9

Consider Example 4.6, and recall that 650,000 of the 1,000,000 households in an eastern

U.S. city subscribe to the Atlantic Journal. Also, suppose that 500,000 households in the city

subscribe to a competing newspaper, the Beacon News, and further suppose that 250,000

households subscribe to both the Atlantic Journal and the Beacon News. As in Example 4.6,

we consider randomly selecting one household in the city, and we define the following events.

the randomly selected household subscribes to the Atlantic Journal.

the randomly selected household does not subscribe to the Atlantic Journal.

the randomly selected household subscribes to the Beacon News.

the randomly selected household does not subscribe to the Beacon News.

Using the notation A B to denote both A and B, we also define

the randomly selected household subscribes to both the Atlantic Journal

and the Beacon News.

Since 650,000 of the 1,000,000 households subscribe to the Atlantic Journal (that is, correspond

to the event A occurring), then 350,000 households do not subscribe to the Atlantic Journal (that

is, correspond to the event occurring). Similarly, 500,000 households subscribe to the Beacon

News (B), so 500,000 households do not subscribe to the Beacon News . We summarize this

information, as well as the 250,000 households that correspond to the event occurring,

in Table 4.1.

A   B

(B)

A

A   B K

B K

B K

A K

A K

Use
elementary

probability rules to
compute
probabilities.

LO3
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Next, consider the events

the randomly selected household subscribes to the Atlantic Journal and does not

subscribe to the Beacon News.

the randomly selected household does not subscribe to the Atlantic Journal and

does subscribe to the Beacon News.

the randomly selected household does not subscribe to the Atlantic Journal and

does not subscribe to the Beacon News.

Since 650,000 households subscribe to the Atlantic Journal (A) and 250,000 households

subscribe to both the Atlantic Journal and the Beacon News ( ), it follows that 650,000  

250,000  400,000 households subscribe to the Atlantic Journal but do not subscribe to the

Beacon News . This subtraction is illustrated in Table 4.2(a). By similar logic, it also

follows that:

1 As illustrated in Table 4.2(b), 500,000  250,000  250,000 households do not subscribe

to the Atlantic Journal but do subscribe to the Beacon News .

2 As illustrated in Table 4.2(c), 350,000  250,000  100,000 households do not subscribe

to the Atlantic Journal and do not subscribe to the Beacon News .(A   B)

(A   B)

(A   B)

A   B

A   B K

A    B K

A   B K

T A B L E 4 . 1 A Summary of the Number of Households Corresponding to the 

Events A, , B, , and A  BBA

Subscribes to Does Not Subscribe
Beacon News, to Beacon News,

Events B Total

250,000 650,000

350,000

Total 500,000 500,000 1,000,000

B

Does Not Subscribe to
Atlantic Journal, A

Subscribes to Atlantic
Journal, A

T A B L E 4 . 2 Subtracting to Find the Number of Households Corresponding to the 

Events A  ,  B, and  BAAB

(a) The Number of Households Corresponding to (A and )

Subscribes to Does Not Subscribe
Beacon News, to Beacon News,

Events B Total

650,000  250,000

250,000   400,000 650,000

350,000

Total 500,000 500,000 1,000,000

(b) The Number of Households Corresponding to ( and B)

Subscribes to Does Not Subscribe
Beacon News, to Beacon News,

Events B Total

650,000  250,000

250,000  400,000 650,000

500,000  250,000
 250,000 350,000

Total 500,000 500,000 1,000,000

Subscribes to Atlantic
Journal, A

B

A

Subscribes to Atlantic
Journal, A

B

B

Does Not Subscribe to
Atlantic Journal, A

Does Not Subscribe to
Atlantic Journal, A



We summarize all of these results in Table 4.3, which is called a contingency table. Because we

will randomly select one household (making all of the households equally likely to be chosen),

the probability of any of the previously defined events is the ratio of the number of households

corresponding to the event’s occurrence to the total number of households in the city. Therefore,

for example,

This last probability says that the probability that the randomly selected household subscribes to

both the Atlantic Journal and the Beacon News is .25.

Next, letting denote A or B (or both), we consider finding the probability of the event

the randomly selected household subscribes to the Atlantic

Journal or the Beacon News (or both)—that is, subscribes to

at least one of the two newspapers.

Looking at Table 4.3, we see that the households subscribing to the Atlantic Journal or the

Beacon News are (1) the 400,000 households that subscribe to only the Atlantic Journal,

(2) the 250,000 households that subscribe to only the Beacon News, , and (3) the

250,000 households that subscribe to both the Atlantic Journal and the Beacon News,

Therefore, since a total of 900,000 households subscribe to the Atlantic Journal or the Beacon

News, it follows that

This says that the probability that the randomly selected household subscribes to the Atlantic

Journal or the Beacon News is .90. That is, 90 percent of the households in the city subscribe to

the Atlantic Journal or the Beacon News. Notice that does not equal

P(A)  P(B)  .65  .5  1.15

Logically, the reason for this is that both P(A)  .65 and P(B)  .5 count the 25 percent of the

households that subscribe to both newspapers. Therefore, the sum of P(A) and P(B) counts this

P(A   B)  .90

P(A   B)  
900,000

1,000,000
 .9

A   B.

A   BA   B,

A   B K

A ´ B

P(A   B)  
250,000

1,000,000
 .25

P(B)  
500,000

1,000,000
 .5P(A)  

650,000

1,000,000
 .65
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Subscribes to Does Not Subscribe
Beacon News, to Beacon News,

Events B Total

250,000 400,000 650,000

250,000 100,000 350,000

Total 500,000 500,000 1,000,000

Subscribes to Atlantic
Journal, A

B

Does Not Subscribe to
Atlantic Journal, A

(c) The Number of Households Corresponding to ( and )

Subscribes to Does Not Subscribe
Beacon News, to Beacon News,

Events B Total

650,000  250,000

250,000  400,000 650,000

500,000  250,000 350,000  250,000

 250,000  100,000 350,000

Total 500,000 500,000 1,000,000

Subscribes to Atlantic
Journal, A

B

BA

Does Not Subscribe to
Atlantic Journal, A

T A B L E 4 . 2 (continued )

T A B L E 4 . 3 A Contingency Table Summarizing Subscription Data for the Atlantic Journal

and the Beacon News
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Noting that Figure 4.5 shows Venn diagrams depicting the events A, B, , and ,

we have the following general result:

A   BA   B

25 percent of the households once too often. It follows that if we subtract from

the sum of P(A) and P(B), then we will obtain . That is,

 .65  .5  .25  .90

In order to generalize the ideas in the previous example, we make the following definitions:

P(A   B)  P(A)  P(B)  P(A   B)

P(A   B)

P(A   B)  .25

The Intersection and Union of Two Events

Given two events A and B,

1 The intersection of A and B is the event consisting of the sample space outcomes belonging to both A

and B. The intersection is denoted by . Furthermore, denotes the probability that both A

and B will simultaneously occur.

2 The union of A and B is the event consisting of the sample space outcomes belonging to A or B (or both).

The union is denoted . Furthermore, denotes the probability that A or B  or B (or both)

will occur.

P(A ´ B)A ´ B

P(A ¨  B)A ¨  B

The Addition Rule

Let A and B be events. Then, the probability that A or B (or both) will occur is

P(A ´ B)  P(A)  P(B)  P(A ¨  B)

The reasoning behind this result has been illustrated at the end of Example 4.9. Similarly, the

Venn diagrams in Figure 4.5 show that when we compute we are counting each of

the sample space outcomes in twice. We correct for this by subtracting .

We next define the idea of mutually exclusive events:

P(A   B)A   B

P(A)  P(B),

Mutually Exclusive Events

Two events A and B are mutually exclusive if they have no sample space outcomes in common. In this case,

the events A and B cannot occur simultaneously, and thus

P(A ¨  B)  0

Noting that Figure 4.6 is a Venn diagram depicting two mutually exclusive events, we consider

the following example.

EXAMPLE 4.10

Consider randomly selecting a card from a standard deck of 52 playing cards. We define the

following events:

J  the randomly selected card is a jack.

Q  the randomly selected card is a queen.

R  the randomly selected card is a red card (that is, a diamond or a heart).

Because there is no card that is both a jack and a queen, the events J and Q are mutually

exclusive. On the other hand, there are two cards that are both jacks and red cards—the jack of

diamonds and the jack of hearts—so the events J and R are not mutually exclusive.



We have seen that for any two events A and B, the probability that A or B (or both) will occur is

Therefore, when calculating , we should always subtract from the sum of

and . However, when A and B are mutually exclusive, equals 0. Therefore,

in this case—and only in this case—we have the following:

P(A   B)P(B)P(A)

P(A   B)P(A   B)

P(A   B)  P(A)  P(B)  P(A   B)
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F I G U R E 4 . 5 Venn Diagrams Depicting the Events A, B, A B, and A Bªº

(a) The event A is the shaded region

A B

(b) The event B is the shaded region

A B

(c) The event A B is the shaded region

A B

(d) The event A B is the shaded region

A B

F I G U R E 4 . 6

Two Mutually

Exclusive Events

A B

The Addition Rule for Two Mutually Exclusive Events

Let A and B be mutually exclusive events. Then, the probability that A or B will occur is

P(A ´ B)  P(A)  P(B)

EXAMPLE 4.11

Again consider randomly selecting a card from a standard deck of 52 playing cards, and define

the events

J  the randomly selected card is a jack.

Q  the randomly selected card is a queen.

R  the randomly selected card is a red card (a diamond or a heart).

Since there are four jacks, four queens, and 26 red cards, we have , ,

and . Furthermore, since there is no card that is both a jack and a queen, the events

J and Q are mutually exclusive and thus . It follows that the probability that the

randomly selected card is a jack or a queen is

Since there are two cards that are both jacks and red cards—the jack of diamonds and the jack

of hearts—the events J and R are not mutually exclusive. Therefore, the probability that the

randomly selected card is a jack or a red card is
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52
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52
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52
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 P(J   R)  P(J)  P(R)  P(J   R)
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 P(J   Q)  P(J)  P(Q)

P(J   Q)  0

P(R)  
26
52

P(Q)  
4

52P(J)  
4

52
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We now consider an arbitrary group of events—A1, A2, . . . , AN. We will denote the probabil-

ity that A1 or A2 or · · · or AN occurs (that is, the probability that at least one of the events occurs)

as · · · . Although there is a formula for this probability, it is quite complicated

and we will not present it in this book. However, sometimes we can use sample spaces to reason

out such a probability. For instance, in the playing card situation of Example 4.11, there are four

jacks, four queens, and 22 red cards that are not jacks or queens (the 26 red cards minus the two

red jacks and the two red queens). Therefore, because there are a total of 30 cards corresponding

to the event , it follows that

Because some cards are both jacks and red cards, and because some cards are both queens and

red cards, we say that the events J, Q, and R are not mutually exclusive. When, however, a group

of events is mutually exclusive, there is a simple formula for the probability that at least one of

the events will occur:

P(J   Q   R)  
30

52
 

15

26

J   Q   R

  AN)P(A1  A2  

The Addition Rule for N Mutually Exclusive Events

The events A1, A2, . . . , AN are mutually exclusive if no two of the events have any sample space outcomes in

common. In this case, no two of the events can occur simultaneously, and

P(A1 ´ A2 ´    ´ AN)  P(A1)  P(A2)      P(AN)

As an example of using this formula, again consider the playing card situation and the events

J and Q. If we define the event

K  the randomly selected card is a king

then the events J, Q, and K are mutually exclusive. Therefore,

P(J Q  K)  P(J)  P(Q)  P(K )
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EXAMPLE 4.12 The AccuRatings Case

Recall that Figure 4.3 (page 162) gives the AccuRatings estimates of the number and the per-

centage of Los Angeles residents who favor each of the 10 top radio stations in Los Angeles. We

will let the call letters of each station denote the event that a randomly selected Los Angeles res-

ident would favor the station. Since the AccuRatings survey asked each resident to name the

single station (if any) that he or she listens to most, the 10 events

KPWR KLAX KROQ KIIS–A/F KFI

KFWB KKBT KABC KRTH and KCBS–FM

are mutually exclusive. Therefore, for example, the probability that a randomly selected Los

Angeles resident would favor a station that is rated among the top 10

P(KPWR KLAX      KCBS–FM)

is the sum of the 10 individual station probabilities

P(KPWR)  P(KLAX)      P(KCBS–FM)

Since we can estimate each individual station probability by dividing the share for the station in

Figure 4.3 by 100, we estimate that the probability that a randomly selected Los Angeles resident

would favor a station that is rated among the top 10 is

Note that these probabilities sum to less than 1 because there are far more than 10 stations in Los

Angeles.

.08  .064  .061  .050  .047  .046  .046  .042  .036  .036  .508

C



CONCEPTS

4.8 Explain what it means for two events to be mutually exclusive; for N events.

4.9 If A and B are events, define , A  B, A  B, and  .

METHODS AND APPLICATIONS

4.10 Consider a standard deck of 52 playing cards, a randomly selected card from the deck, and the

following events:

red black ace nine diamond club

a Describe the sample space outcomes that correspond to each of these events.

b For each of the following pairs of events, indicate whether the events are mutually exclusive.

In each case, if you think the events are mutually exclusive, explain why the events have no

common sample space outcomes. If you think the events are not mutually exclusive, list the

sample space outcomes that are common to both events.

(1) R and A (3) A and N (5) D and C

(2) R and C (4) N and C

4.11 Of 10,000 students at a college, 2,500 have a Mastercard (M), 4,000 have a VISA (V ), and 1,000

have both.

a Find the probability that a randomly selected student

(1) Has a Mastercard.

(2) Has a VISA.

(3) Has both credit cards.

b Construct and fill in a contingency table summarizing the credit card data. Employ the 

following pairs of events: M and , V and .

c Use the contingency table to find the probability that a randomly selected student

(1) Has a Mastercard or a VISA.

(2) Has neither credit card.

(3) Has exactly one of the two credit cards.

4.12 The card game of Euchre employs a deck that consists of all four of each of the aces, kings,

queens, jacks, tens, and nines (one of each suit—clubs, diamonds, spades, and hearts). Find the

probability that a randomly selected card from a Euchre deck is

a A jack (J).

b A spade (S).

c A jack or an ace (A).

d A jack or a spade.

e Are the events J and A mutually exclusive? J and S? Why or why not?

4.13 Each month a brokerage house studies various companies and rates each company’s stock as being

either “low risk” or “moderate to high risk.” In a recent report, the brokerage house summarized

its findings about 15 aerospace companies and 25 food retailers in the following table:

Company Type Low Risk Moderate to High Risk

Aerospace company 6 9

Food retailer 15 10

If we randomly select one of the total of 40 companies, find

a The probability that the company is a food retailer.

b The probability that the company’s stock is “low risk.”

c The probability that the company’s stock is “moderate to high risk.”

d The probability that the company is a food retailer and has a stock that is “low risk.”

e The probability that the company is a food retailer or has a stock that is “low risk.”

4.14 In the book Essentials of Marketing Research, William R. Dillon, Thomas J. Madden, and Neil 

H. Firtle present the results of a concept study for a new wine cooler. Three hundred consumers 

between 21 and 49 years old were randomly selected. After sampling the new beverage, each was

asked to rate the appeal of the phrase

Not sweet like wine coolers, not filling like beer, and more refreshing than wine or mixed

drinks

as it relates to the new wine cooler. The rating was made on a scale from 1 to 5, with 5 representing

“extremely appealing” and with 1 representing “not at all appealing.” The results obtained are

given in Table 4.4. WineCoolerDS

V M 

C  D  N  A  B  R  

BAA
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Based on these results, estimate the probability that a randomly selected 21- to 49-year-old

consumer

a Would give the phrase a rating of 5.

b Would give the phrase a rating of 3 or higher.

c Is in the 21–24 age group; the 25–34 age group; the 35–49 age group.

d Is a male who gives the phrase a rating of 4.

e Is a 35- to 49-year-old who gives the phrase a rating of 1.

4.15 THE ACCURATINGS CASE

Using the information in Figure 4.3 (page 162), find an estimate of the probability that a randomly se-

lected Los Angeles resident (12 years or older) would

a Name one of the top three rated stations (KPWR, KLAX, or KROQ) as the station that he or

she listens to most.

b Not name one of the top five rated stations as the station that he or she listens to most.

c Name a station that is not rated among the top seven stations as the station that he or she listens

to most.

d Name a station that is not rated among the top three stations nor is rated lower than 10th as the

station that he or she listens to most.

4.4 Conditional Probability and Independence 
Conditional probability In Table 4.5 we repeat the contingency table summarizing the sub-

scription data for the Atlantic Journal and the Beacon News. Suppose that we randomly select a

household, and that the chosen household reports that it subscribes to the Beacon News. Given

this new information, we wish to find the probability that the household subscribes to the Atlantic

Journal. This new probability is called a conditional probability.

The probability of the event A, given the condition that the event B has occurred, is written

as P(A |B)—pronounced “the probability of A given B.” We often refer to such a probability as

the conditional probability of A given B.

In order to find the conditional probability that a household subscribes to the Atlantic Journal,

given that it subscribes to the Beacon News, notice that if we know that the randomly selected

household subscribes to the Beacon News, we know that we are considering one of 500,000

households (see Table 4.5). That is, we are now considering what we might call a reduced sample

space of 500,000 households. Since 250,000 of these 500,000 Beacon News subscribers also

subscribe to the Atlantic Journal, we have

This says that the probability that the randomly selected household subscribes to the Atlantic

Journal, given that the household subscribes to the Beacon News, is .5. That is, 50 percent of the

Beacon News subscribers also subscribe to the Atlantic Journal.

Next, suppose that we randomly select another household from the community of 1,000,000

households, and suppose that this newly chosen household reports that it subscribes to the

Atlantic Journal. We now wish to find the probability that this household subscribes to the

P(A  B)  
250,000

500,000
 .5

T A B L E 4 . 4 Results of a Concept Study for a New Wine Cooler WineCoolerDS

Gender Age Group
Rating Total Male Female 21–24 25–34 35–49

Extremely appealing (5) 151 68 83 48 66 37

(4) 91 51 40 36 36 19

(3) 36 21 15 9 12 15

(2) 13 7 6 4 6 3

Not at all appealing (1) 9 3 6 4 3 2

Source: W. R. Dillon, T. J. Madden, and N. H. Firtle, Essentials of Marketing Research (Burr Ridge, IL: Richard D. Irwin, Inc.,

1993), p. 390.

Compute
conditional

probabilities and
assess independence.

LO4
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Conditional Probability

1 The conditional probability that A will occur given that B will occur is written P(A |B) and is defined to be

Here we assume that P(B) is greater than 0.

2 The conditional probability that B will occur given that A will occur is written P(B | A) and is defined to be

Here we assume that P(A) is greater than 0.

P(B  A)  
P(A ¨  B)

P(A)

P(A  B)  
P(A ¨  B)

P(B)

If we multiply both sides of the equation

P(A  B)  
P(A   B)

P(B)

Beacon News. We write this new probability as . If we know that the randomly selected

household subscribes to the Atlantic Journal, we know that we are considering a reduced sample

space of 650,000 households (see Table 4.5). Since 250,000 of these 650,000 Atlantic Journal

subscribers also subscribe to the Beacon News, we have

This says that the probability that the randomly selected household subscribes to the Beacon

News, given that the household subscribes to the Atlantic Journal, is .3846. That is, 38.46 percent

of the Atlantic Journal subscribers also subscribe to the Beacon News.

If we divide both the numerator and denominator of each of the conditional probabilities

P(A  B) and P(B  A) by 1,000,000, we obtain

We express these conditional probabilities in terms of P(A), P(B), and P(A  B) in order to obtain

a more general formula for a conditional probability. We need a more general formula because,

although we can use the reduced sample space approach we have demonstrated to find conditional

probabilities when all of the sample space outcomes are equally likely, this approach may not give

correct results when the sample space outcomes are not equally likely. We now give expressions

for conditional probability that are valid for any sample space.

P(B  A)  
250,000

650,000
 

250,000 1,000,000

650,000 1,000,000
 

P(A   B)

P(A)

P(A  B)  
250,000

500,000
 

250,000 1,000,000

500,000 1,000,000
 

P(A   B)

P(B)
 

P(B  A)  
250,000

650,000
 .3846

P(B  A)

T A B L E 4 . 5 A Contingency Table Summarizing Subscription Data for the Atlantic Journal and the

Beacon News

Subscribes to Does Not Subscribe
Beacon News, to Beacon News,

Events B Total

250,000 400,000 650,000

250,000 100,000 350,000

Total 500,000 500,000 1,000,000

Subscribes to Atlantic
Journal, A

B

Does Not Subscribe to
Atlantic Journal, 

––
A
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by P(B), we obtain the equation

P(A B)  P(B)P(A  B)

Similarly, if we multiply both sides of the equation

by P(A), we obtain the equation

P(A B)  P(A)P(B  A)

In summary, we now have two equations that can be used to calculate P(A B). These equations

are often referred to as the general multiplication rule for probabilities.

P(B  A)  
P(A B)

P(A)

The General Multiplication Rule—Two Ways to Calculate P (A  B)

Given any two events A and B,

P(A  B)  P(A)P(B  A)

 P(B)P(A  B)

EXAMPLE 4.13

In a soft drink taste test, each of 1,000 consumers chose between two colas—Cola 1 and Cola 2—

and stated whether they preferred their cola drinks sweet or very sweet. Unfortunately, some of

the survey information was lost. The following information remains:

1 68.3 percent of the consumers (that is, 683 consumers) preferred Cola 1 to Cola 2.

2 62 percent of the consumers (that is, 620 consumers) preferred their cola sweet (rather than

very sweet).

3 85 percent of the consumers who said that they liked their cola sweet preferred Cola 1 to

Cola 2.

To recover all of the lost survey information, consider randomly selecting one of the 1,000

survey participants, and define the following events:

C1  the randomly selected consumer prefers Cola 1.

C2  the randomly selected consumer prefers Cola 2.

S  the randomly selected consumer prefers sweet cola drinks.

V  the randomly selected consumer prefers very sweet cola drinks.

From the survey information that remains, (1) says that P(C1)  .683, (2) says that P(S )  .62,

and (3) says that P(C1  S )  .85.

We will see that we can recover all of the lost survey information if we can find P(C1 S ).

The general multiplication rule says that

Although we know that P(C1)  .683, we do not know P(S  C1). Therefore, we cannot calcu-

late P(C1  S ) as P(C1)P(S  C1). However, because we know that P(S )  .62 and that

P(C1  S)  .85, we can calculate

P(C1  S )  P(S )P(C1  S )

This implies that 527 consumers preferred Cola 1 and preferred their cola sweet. Since 683

consumers preferred Cola 1, and 620 consumers preferred sweet cola drinks, we can summarize

the numbers of consumers corresponding to the events C1, C2, S, V, and as shown in

Table 4.6. Furthermore, by performing subtractions as shown in Table 4.7, the numbers of

consumers corresponding to the events , , and can be obtained. We

summarize all of our results in Table 4.8. We will use these results in the next subsection to

investigate the relationship between cola preference and sweetness preference.

C 2   VC2   SC1   V

C1   S

 (.62)(.85)  .527

P(C1   S)  P(C1)P(S   C1)  P(S )P(C1   S )



Independence We have seen in Example 4.13 that P(C1)  .683, while P(C1  S)  .85.

Because P(C1  S) is greater than P(C1), the probability that a randomly selected consumer will

prefer Cola 1 is higher if we know that the person prefers sweet cola than it is if we have no

knowledge of the person’s sweetness preference. Another way to see this is to use Table 4.8 to

calculate

Since is greater than , the probability that a randomly se-

lected consumer will prefer Cola 1 is higher if the consumer prefers sweet colas than it is if the

consumer prefers very sweet colas. Since the probability of the event C1 is influenced by whether

the event S occurs, we say that the events C1 and S are dependent. If were equal to

P(C1), then the probability of the event C1 would not be influenced by whether S occurs. In this

case we would say that the events C1 and S are independent. This leads to the following defini-

tion of independence:

P(C1   S)

P(C1   V )  .4105P(C1   S )  .85

P(C1   V )  
P(C1 V )

P(V)
 

156 1,000

380 1,000
 .4105
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S V
Events (Sweet) (Very Sweet) Total

C1 (Cola 1) 527 156 683

C2 (Cola 2) 93 224 317

Total 620 380 1,000

T A B L E 4.7 Subtractions to Obtain the Number of

Consumers Corresponding to the

Events C1  V, C2  S, and C2   V

S V
Events (Sweet) (Very Sweet) Total

C1 (Cola 1) 527 683  527  156 683

C2 (Cola 2) 620  527  93 380  156  224 317

Total 620 380 1,000

T A B L E 4.6 A Summary of the Number of

Consumers Corresponding to the

Events C1, C2, S, V, and C1  S

S V
Events (Sweet) (Very Sweet) Total

C1 (Cola 1) 527 683

C2 (Cola 2) 317

Total 620 380 1,000

T A B L E 4.8 A Contingency Table Summarizing the Cola Brand and Sweetness Preferences

Independent Events

Two events A and B are independent if and only if

1 P(A  B)  P(A) or, equivalently,

2 P(B  A)  P(B)

Here we assume that P(A) and P(B) are greater than 0. 

When we say that conditions (1) and (2) are equivalent, we mean that condition (1) holds if

and only if condition (2) holds. Although we will not prove this, we will demonstrate it in the next

example.

EXAMPLE 4.14

In the soft drink taste test of Example 4.13, we have seen that P(C1  S)  .85 does not equal

P(C1)  .683. This implies that P(S  C1) does not equal P(S). To demonstrate this, note from

Table 4.8 that

P(S   C1)  
P(C1 S)

P(C1)
 

527 1,000

683 1,000
 .7716
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This probability is larger than . In summary:

1 A comparison of and says that a consumer is more likely to

prefer Cola 1 if the consumer prefers sweet colas.

2 A comparison of and says that a consumer is more likely to

prefer sweet colas if the consumer prefers Cola 1.

This suggests, but does not prove, that one reason Cola 1 is preferred to Cola 2 is that Cola 1 is

sweet (as opposed to very sweet).

If the occurrences of the events A and B have nothing to do with each other, then we know that

A and B are independent events. This implies that P(A  B) equals P(A) and that P(B  A) equals

P(B). Recall that the general multiplication rule tells us that, for any two events A and B, we can

say that

P(A  B)  P(A)P(B  A)

Therefore, if P(B  A) equals P(B), it follows that

P(A  B)  P(A)P(B)

which is called the multiplication rule for independent events. To summarize:

P(S)  .62P(S  C1)  .7716

P(C1)  .683P(C1  S)  .85

P(S )  620 1,000  .62

The Multiplication Rule for Two Independent Events

If A and B are independent events, then

P(A B)  P(A)P(B) 

As a simple example, define the events C and P as follows:

C   your favorite college football team wins its first game next season.

P   your favorite professional football team wins its first game next season.

Suppose you believe that for next season P(C)  .6 and P(P)  .6. Then, because the outcomes

of a college football game and a professional football game would probably have nothing to do

with each other, it is reasonable to assume that C and P are independent events. It follows that

P(C  P)  P(C)P(P)  (.6)(.6)  .36

This probability might be surprisingly low. That is, since you believe that each of your teams has a

60 percent chance of winning, you might feel reasonably confident that both your college and

professional teams will win their first game. Yet, the chance of this happening is really only .36!

Next, consider a group of events A1, A2, . . . , AN. Intuitively, the events A1, A2, . . . , AN are

independent if the occurrences of these events have nothing to do with each other. Denoting the

probability that A1 and A2 and    and AN will simultaneously occur as P(A1 A2      AN),

we have the following:

The Multiplication Rule for N Independent Events

If A1, A2, . . . , AN are independent events, then

P(A1 ¨  A2 ¨      ¨  AN)  P(A1)P(A2)     P(AN)

This says that the multiplication rule for two independent events can be extended to any number

of independent events.

EXAMPLE 4.15

This example is based on a real situation encountered by a major producer and marketer of

consumer products. The company assessed the service it provides by surveying the attitudes

of its customers regarding 10 different aspects of customer service—order filled correctly,

billing amount on invoice correct, delivery made on time, and so forth. When the survey



results were analyzed, the company was dismayed to learn that only 59 percent of the survey

participants indicated that they were satisfied with all 10 aspects of the company’s service.

Upon investigation, each of the 10 departments responsible for the aspects of service consid-

ered in the study insisted that it satisfied its customers 95 percent of the time. That is, each

department claimed that its error rate was only 5 percent. Company executives were confused

and felt that there was a substantial discrepancy between the survey results and the claims

of the departments providing the services. However, a company statistician pointed out that

there was no discrepancy. To understand this, consider randomly selecting a customer from

among the survey participants, and define 10 events (corresponding to the 10 aspects of service

studied):

A1  the customer is satisfied that the order is filled correctly (aspect 1).

A2  the customer is satisfied that the billing amount on the invoice is correct (aspect 2).
.
:

A10  the customer is satisfied that the delivery is made on time (aspect 10).

Also, define the event

S  the customer is satisfied with all 10 aspects of customer service.

Since 10 different departments are responsible for the 10 aspects of service being studied, it is

reasonable to assume that all 10 aspects of service are independent of each other. For instance,

billing amounts would be independent of delivery times. Therefore, A1, A2, . . . , A10 are indepen-

dent events, and

If, as the departments claim, each department satisfies its customers 95 percent of the time, then

the probability that the customer is satisfied with all 10 aspects is

This result is almost identical to the 59 percent satisfaction rate reported by the survey participants.

If the company wants to increase the percentage of its customers who are satisfied with all 10

aspects of service, it must improve the quality of service provided by the 10 departments. For

example, to satisfy 95 percent of its customers with all 10 aspects of service, the company must

require each department to raise the fraction of the time it satisfies its customers to x, where

(x)10
 .95

It follows that

and that each department must satisfy its customers 99.49 percent of the time (rather than the cur-

rent 95 percent of the time).

A real-world application of conditional probability, independence, 
and dependence

x  (.95)
1

10
 .9949

P(S)  (.95)(.95)    (.95)  (.95)10
 .5987

 P(A1)P(A2)    P(A10)

P(S )  P(A1  A2      A10)
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EXAMPLE 4.16 The AccuRatings Case: Estimating Radio Station Share by Daypart

In addition to asking each of the 5,528 sampled Los Angeles residents to name which station (if

any) he or she listens to most on an overall basis, AccuRatings asked each resident to name which

station (if any) he or she listens to most during various parts of the day. The various parts of the day

considered by AccuRatings and the results of the survey are given in Figure 4.7. To explain these

results, suppose that 2,827 of the 5,528 sampled residents said that they listen to the radio during

C
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some portion of the 6–10 A.M. daypart. Furthermore, suppose that 201 of these 2,827 residents

named station KIIS as the station that they listen to most during that daypart. It follows that

is an estimate of P(KIIS  6–10 A.M.), the probability that a randomly selected Los Angeles

resident who listens to the radio during the 6–10 A.M. daypart would name KIIS as his or her

primary station during that daypart. Said equivalently, station KIIS has an estimated share of

7.1 percent of the 6–10 A.M. radio listeners. In general, Figure 4.7 gives the estimated shares

during the various dayparts for the five stations that are rated best overall (KPWR, KLAX,

KROQ, KIIS, and KFI). Examination of this figure seems to reveal that a station’s share

depends somewhat on the daypart being considered. For example, note that Figure 4.7 tells us

that the estimate of P(KIIS  6–10 A.M.) is .071, whereas the estimate of P(KIIS  3–7 P.M.) is

.049. This says that station KIIS’s estimated share of the 6–10 A.M. radio listeners is higher

than its estimated share of the 3–7 P.M. radio listeners.

Estimating Probabilities of Radio Station Listenership
AccuRatings provides the sort of estimates given in Figures 4.3 and 4.7 not only for the Los

Angeles market but for other markets as well. In addition, AccuRatings provides (for a given

market) hour-by-hour estimates of the probabilities of different stations being listened to in the

market. How this is done is an excellent real-world application of the general multiplication rule.

As an example, consider how AccuRatings might find an estimate of “the probability that a ran-

domly selected Los Angeles resident will be listening to station KIIS at an average moment from

7 to 8 A.M.” To estimate this probability, AccuRatings estimates

1 The probability that a randomly selected Los Angeles resident will be listening to the radio

at an average moment from 7 to 8 A.M.

and multiplies this estimate by an estimate of

2 The probability that a randomly selected Los Angeles resident who is listening to the radio

at an average moment from 7 to 8 A.M. will be listening to station KIIS at that average

moment.

201

2,827
 .071100106
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to radio during that daypart, 7.1% say that 
their primary station during that daypart is
KIIS.
     Similarly, KFI is the #2 station during
middays (which includes Rush Limbaugh’s
shift), with 6.5% of midday listeners saying
that KFI is the station they listen to most
during that daypart. 

KCBS-FM

KRTH

KABC

KKBT

KFWB

KFI

KIIS-A/F

KROQ

KLAX

KPWR 1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

668,100

531,800

505,100

418,200

386,500

383,500

378,500

346,600

302,300

299,500

8.0    <—

6.4    <—

6.1    <—

5.0    <—

4.7    <—

4.6    <—

4.6    <—

4.2    <—

3.6    <—

3.6    <—

8.4

4.4

5.6

5.6

4.0

3.8

4.1

4.2

3.7

1.3

2:  6.9

6:  5.1

1:  9.0

3:  6.1

1:

5:  5.6

1: 1:

3:  7.13:  5.9

10.0 10.7 10.4

5:  5.2

etc.

3:  5.4 4:  5.6

5:  4.9

2:  6.5

2:  7.5

5:  4.7

13:  

2:  9.1

6:  3.5

10:  2.7  

2:  6.8

4:  4.9

6:  3.7 2.9

1:  7.1

F I G U R E 4.7 Further Portions of an AccuRatings Report on Radio Ratings 

in the Los Angeles Market

Source: Strategic Radio Research, AccuRatings Introduction for Broadcasters.



Because the hour of 7 to 8 A.M. is in the 6–10 A.M. daypart, it is reasonable to estimate the prob-

ability in (2) by using an estimate of P(KIIS  6–10 A.M.), which Figure 4.7 tells us is .071. To find

an estimate of the probability in (1), AccuRatings uses a 2,000-person national study. Here, each

person is interviewed to obtain a detailed, minute-by-minute reconstruction of the times that the

person listened to the radio on the previous day (with no attempt to identify the specific stations

listened to). Then, for each minute of the day the proportion of the 2,000 people who listened to

the radio during that minute is determined. The average of the 60 such proportions for a particu-

lar hour is the estimate of the probability that a randomly selected person will listen to the radio

at an average moment during that hour. Using a national study is reasonable because the detailed

reconstruction made by AccuRatings would be extremely time-consuming to construct for indi-

vidual markets and because AccuRatings’ studies show very consistent hour-by-hour patterns

of radio usage across markets, across seasons, and across demographics. This implies that the

national study applies to individual markets (such as the Los Angeles market). Suppose, then,

that the national study estimate of the 7 to 8 A.M. radio listening probability in (1) is .242. Since

(as previously discussed) an estimate of the station KIIS conditional listening probability in (2)

is .071, it follows than an estimate of the desired probability is .242  .071  .017182  .017.

This says that we estimate that 1.7 percent of all Los Angeles residents will be listening to station

KIIS at an average moment from 7 to 8 A.M. Assuming that there are 8,300,000 Los Angeles

residents, we estimate that

(8,300,000)  (.017)  141,000

of these residents will be listening to station KIIS at an average moment from 7 to 8 A.M. Finally,

note that in making its hour-by-hour radio station listening estimates, AccuRatings makes a sep-

arate set of estimates for the hours on a weekday, for the hours on Saturday, and for the hours on

Sunday. The above 7 to 8 A.M. estimate is for the 7 to 8 A.M. hour on a weekday.

Estimating Song Ratings
In addition to providing AccuRatings reports to radio stations, Strategic Radio Research does

music research for clients such as MTV. Figure 4.8 gives a portion of a title-by-title analysis for

the song “Gangsta’s Paradise” by Coolio. Listeners are surveyed and are asked to rate the song

on a 1 to 5 rating scale with 1 being the lowest possible rating and 5 being the highest. Figure 4.8

gives a histogram of these ratings; notice that UNFAM indicates that the listener was not familiar

with this particular song. The percentages above the bars of the histogram give the percentages

of listeners rating the song 5, 4, 3, 2, 1, and UNFAM, respectively. If we let the symbol denoting
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F I G U R E 4.8 A Portion of a Title-by-Title Analysis for the Song “Gangsta’s Paradise” by Coolio

Source: Strategic Radio Research, Chicago, Illinois.
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a particular rating also denote the event that a randomly selected listener would give the song the

rating, it follows that we estimate that

P(5)  .38 P(4)  .19 P(3)  .20

P(2)  .06 P(1)  .06 P(UNFAM)  .11

The three boxes on the left of Figure 4.8 give recognition, popularity, and fatigue indexes

for the song being analyzed. Although we must wait until Chapter 5 to learn the meaning of the

popularity index, we now explain the meaning of the recognition and fatigue indexes. The

recognition index estimates the probability that a randomly selected listener is familiar with

the song. We have seen that the estimate of P(UNFAM ) is .11, so the recognition index

is 1  .11  .89, which is expressed as the 89 percent in Figure 4.8. This index says we

estimate that 89 percent of all listeners are familiar with the song. The fatigue index,

28 percent, estimates the percentage of listeners who are tired of the song. That is, if T denotes

the event that a randomly selected listener is tired of the song, we estimate that P(T)  .28.

Finally, note that at the bottom of each histogram bar in Figure 4.8, and shaded as the blue por-

tion of each bar, is the fatigue percentage corresponding to the rating described by the bar. This

percentage is an estimate of the conditional probability that a randomly selected listener giving

the song that rating is tired of the song. Therefore, we estimate that P(T  1)  .83, P(T  2)  .67,

P(T  3)  .45, P(T  4)  .26, and P(T  5)  .13. From these conditional probabilities we might

conclude that the higher the song is rated, the lower is its fatigue percentage.

Exercises for Section 4.4
CONCEPTS

4.16 Explain the concept of a conditional probability. Give an example of a conditional probability that

would be of interest to a college student; to a business.

4.17 Explain what it means for two events to be independent.

METHODS AND APPLICATIONS

4.18 Recall from Exercise 4.11 (page 170) that of 10,000 students at a college, 2,500 have a Mastercard

(M), 4,000 have a VISA (V ), and 1,000 have both. Find

a The proportion of Mastercard holders who have VISA cards. Interpret and write this proportion

as a conditional probability.

b The proportion of VISA cardholders who have Mastercards. Interpret and write this proportion

as a conditional probability.

c Are the events having a Mastercard and having a VISA independent? Justify your answer.

4.19 Recall from Exercise 4.13 (page 170) that each month a brokerage house studies various compa-

nies and rates each company’s stock as being either “low risk” or “moderate to high risk.” In a

recent report, the brokerage house summarized its findings about 15 aerospace companies and

25 food retailers in the following table:

Company Type Low Risk Moderate to High Risk

Aerospace company 6 9

Food retailer 15 10

If we randomly select one of the total of 40 companies, find

a The probability that the company’s stock is moderate to high risk given that the firm is an

aerospace company.

b The probability that the company’s stock is moderate to high risk given that the firm is a food

retailer.

c Determine if the company type is independent of the level of risk of the firm’s stock.

4.20 John and Jane are married. The probability that John watches a certain television show is .4. The

probability that Jane watches the show is .5. The probability that John watches the show, given

that Jane does, is .7.

a Find the probability that both John and Jane watch the show.

b Find the probability that Jane watches the show, given that John does.

c Do John and Jane watch the show independently of each other? Justify your answer.

4.21 In Exercise 4.20, find the probability that either John or Jane watches the show.
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4.22 In the July 29, 2001, issue of The Journal News (Hamilton, Ohio), Lynn Elber of the Associated

Press reported that “while 40 percent of American families own a television set with a V-chip

installed to block designated programs with sex and violence, only 17 percent of those parents

use the device.”2

a Use the report’s results to find an estimate of the probability that a randomly selected American

family has used a V-chip to block programs containing sex and violence.

b According to the report, more than 50 percent of parents have used the TV rating system 

(TV-14, etc.) to control their children’s TV viewing. How does this compare to the percentage

using the V-chip?

4.23 According to the Associated Press report (in Exercise 4.22), 47 percent of parents who have

purchased TV sets after V-chips became standard equipment in January 2000 are aware that their

sets have V-chips, and of those who are aware of the option, 36 percent have programmed their

V-chips. Using these results, find an estimate of the probability that a randomly selected parent

who has bought a TV set since January 2000 has programmed the V-chip.

4.24 Fifteen percent of the employees in a company have managerial positions, and 25 percent of the

employees in the company have MBA degrees. Also, 60 percent of the managers have MBA

degrees. Using the probability formulas,

a Find the proportion of employees who are managers and have MBA degrees.

b Find the proportion of MBAs who are managers.

c Are the events being a manager and having an MBA independent? Justify your answer.

4.25 In Exercise 4.24, find the proportion of employees who either have MBAs or are managers.

4.26 Consider Exercise 4.14 (page 170). Using the results in Table 4.4 (page 171), estimate the

probability that a randomly selected 21- to 49-year-old consumer would

a Give the phrase a rating of 4 or 5 given that the consumer is male; give the phrase a rating of

4 or 5 given that the consumer is female. Based on these results, is the appeal of the phrase

among males much different from the appeal of the phrase among females? Explain.

b Give the phrase a rating of 4 or 5, given that the consumer is in the 21–24 age group; given that

the consumer is in the 25–34 age group; given that the consumer is in the 35–49 age group.

Based on these results, which age group finds the phrase most appealing? Least appealing?

4.27 In a survey of 100 insurance claims, 40 are fire claims (FIRE), 16 of which are fraudulent

(FRAUD). Also, there are a total of 40 fraudulent claims.

a Construct a contingency table summarizing the claims data. Use the pairs of events FIRE and

, FRAUD and .

b What proportion of the fire claims are fraudulent?

c Are the events a claim is fraudulent and a claim is a fire claim independent? Use your

probability of part b to prove your answer.

4.28 Recall from Exercise 4.3 (page 163) that two randomly selected customers are each asked to take a

blind taste test and then to state which of three diet colas (marked as A, B, or C) he or she prefers.

Suppose that cola A’s distributor claims that 80 percent of all people prefer cola A and that only

10 percent prefer each of colas B and C.

a Assuming that the distributor’s claim is true and that the two taste test participants make

independent cola preference decisions, find the probability of each sample space outcome.

b Find the probability that neither taste test participant will prefer cola A.

c If, when the taste test is carried out, neither participant prefers cola A, use the probability you

computed in part b to decide whether the distributor’s claim seems valid. Explain.

4.29 A sprinkler system inside an office building has two types of activation devices, D1 and D2, which

operate independently. When there is a fire, if either device operates correctly, the sprinkler system

is turned on. In case of fire, the probability that D1 operates correctly is .95, and the probability

that D2 operates correctly is .92. Find the probability that

a Both D1 and D2 will operate correctly.

b The sprinkler system will come on.

c The sprinkler system will fail.

4.30 A product is assembled using 10 different components, each of which must meet specifications for

five different quality characteristics. Suppose that there is a .9973 probability that each individual

specification will be met.

a Assuming that all 50 specifications are met independently, find the probability that the product

meets all 50 specifications.

FRAUDFIRE

2Source: The Journal News (Hamilton, Ohio), July 29, 2001, p. C5.
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b Suppose that we wish to have a 99.73 percent chance that all 50 specifications will be met.

If each specification will have the same chance of being met, how large must we make the

probability of meeting each individual specification?

4.31 THE ACCURATINGS CASE

Consider the share of core listenership by daypart information given in Figure 4.7 (page 177).

a Find an estimate of P(KPWR  3–7 P.M.), the probability that a randomly selected Los Angeles

resident who listens to the radio during the 3–7 P.M. daypart would name KPWR as his or her

primary station during that daypart.

b Find P(KLAX  3–7 P.M.), P(KROQ  3–7 P.M.), P(KIIS  3–7 P.M.), and P(KFI  3–7 P.M.).

c Suppose that the AccuRatings national survey estimates that the probability that a randomly

selected Los Angeles resident will be listening to the radio at an average moment between

5 and 6 P.M. is .256. Use this survey result and the estimate in part a to estimate the probability

that a randomly selected Los Angeles resident will be listening to station KPWR at an average

moment between 5 and 6 P.M.

d Repeat part c for each of KLAX, KROQ, KIIS, and KFI.

e Find an estimate of the probability that a randomly selected Los Angeles resident will be

listening to one of the five most highly rated stations in the Los Angeles market (KPWR,

KLAX, KROQ, KIIS, or KFI) at an average moment between 5 and 6 P.M.

4.32 THE ACCURATINGS CASE

Figure 4.9 gives a portion of a title-by-title analysis for the song “We’ve Got It Goin’ On” by the

Backstreet Boys. The ratings information given in this figure is the same type given in Figure 4.8

(page 178) and explained in Example 4.16 (pages 176–179). Using the ratings information:

a Find an estimate of the probability that a randomly selected listener would give the song each

of the ratings 5, 4, 3, 2, and 1.

b Find an estimate of the probability that a randomly selected listener is (1) familiar with the

song; (2) tired of the song.

c Find estimates of each of P(T  5), P(T  4), P(T  3), P(T  2), and P(T  1), where T denotes

the event that a listener is tired of the song.

4.33 In a murder trial in Los Angeles, the prosecution claims that the defendant was cut on the left

middle finger at the murder scene, but the defendant claims the cut occurred in Chicago, the day

after the murders had been committed. Because the defendant is a sports celebrity, many people

noticed him before he reached Chicago. Twenty-two people saw him casually, one person on the

plane to Chicago carefully studied his hands looking for a championship ring, and another person

stood with him as he signed autographs and drove him from the airport to the hotel. None of

these 24 people saw a cut on the defendant’s finger. If in fact he was not cut at all, it would be

extremely unlikely that he left blood at the murder scene.

Source: Strategic Radio Research, Chicago, Illinois.
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a Since a person casually meeting the defendant would not be looking for a cut, assume that

the probability is .9 that such a person would not have seen the cut, even if it was there.

Furthermore, assume that the person who carefully looked at the defendant’s hands had a

.5 probability of not seeing the cut even if it was there and that the person who drove the

defendant from the airport to the hotel had a .6 probability of not seeing the cut even if it was

there. Given these assumptions, and also assuming that all 24 people looked at the defendant

independently of each other, what is the probability that all 24 people would not have seen the

cut, even if it was there?

b What is the probability that at least one of the 24 people would have seen the cut if it was there?

c Given the result of part b and given the fact that none of the 24 people saw a cut, do you think

the defendant had a cut on his hand before he reached Chicago?

d How might we estimate what the assumed probabilities in a would actually be? (Note: This

would not be easy.)  

4.5 Bayes’ Theorem (Optional) 
Sometimes we have an initial or prior probability that an event will occur. Then, based on new

information, we revise the prior probability to what is called a posterior probability. This revi-

sion can be done by using a theorem called Bayes’ theorem.
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Use Bayes’
Theorem

to update prior
probabilities to pos-
terior probabilities
(Optional).

LO5

EXAMPLE 4.17

HIV (Human Immunodeficiency Virus) is the virus that causes AIDS. Although many have pro-

posed mandatory testing for HIV, statisticians have frequently spoken against such proposals. In

this example, we use Bayes’ theorem to see why.

Let HIV represent the event that a randomly selected American has the HIV virus, and let  

represent the event that a randomly selected American does not have this virus. Since it is esti-

mated that .6 percent of the American population has the HIV virus,

P(HIV)  .006 and P  .994

Adiagnostic test is used to attempt to detect whether a person has HIV.According to historical data,

99.9 percent of people with HIV receive a positive (POS) result when this test is administered, while

1 percent of people who do not have HIV receive a positive result. That is,

P(POS  HIV)  .999 and  .01

If we administer the test to a randomly selected American (who may or may not have HIV) and

the person receives a positive test result, what is the probability that the person actually has HIV?

This probability is

The idea behind Bayes’ theorem is that we can find P(HIV   POS) by thinking as follows. A per-

son will receive a positive result (POS) if the person receives a positive result and actually has

HIV—that is, (HIV POS )—or if the person receives a positive result and actually does not

have HIV—that is, . Therefore,

P(POS)  P(HIV POS)  

This implies that

  
.006(.999)

.006(.999)  (.994)(.01)
 .38

  
P(HIV )P(POS   HIV )

P(HIV )P(POS   HIV )  P(HIV )P(POS   HIV )
  

P(HIV   POS )
P(HIV   POS )  P(HIV   POS )

 P(HIV   POS )  
P(HIV   POS )

P(POS )
P(HIV   POS )

(HIV   POS )
P(HIV   POS )  

P(HIV   POS )
P(POS )

P(POS   HIV )

(HIV )
HIV
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This probability says that, if all Americans were given a test HIV, only 38 percent of the people

who get a positive result would actually have HIV. That is, 62 percent of Americans identified as

having HIV would actually be free of the virus! The reason for this rather surprising result is that,

because so few people actually have HIV, the majority of people who test positive are people who

are free of HIV and, therefore, erroneously test positive. This is why statisticians have spoken

against proposals for mandatory HIV testing.

In the preceding example, there were two states of nature—HIV and —and two outcomes of

the diagnostic test—POS and . In general, there might be any number of states of nature and any

number of experimental outcomes. This leads to a general statement of Bayes’ theorem.

POS

HIV

EXAMPLE 4.18 The Oil Drilling Case

An oil company is attempting to decide whether to drill for oil on a particular site. There are three

possible states of nature:

1 No oil (state of nature S1, which we will denote as none)

2 Some oil (state of nature S2, which we will denote as some)

3 Much oil (state of nature S3, which we will denote as much)

Based on experience and knowledge concerning the site’s geological characteristics, the oil com-

pany feels that the prior probabilities of these states of nature are as follows:

P(S1  none)   .7 P(S2  some)   .2 P(S3  much)   .1

In order to obtain more information about the potential drilling site, the oil company can

perform a seismic experiment, which has three readings—low, medium, and high. Moreover,

information exists concerning the accuracy of the seismic experiment. The company’s historical

records tell us that

1 Of 100 past sites that were drilled and produced no oil, 4 sites gave a high reading.

Therefore,

P(high   none)  
4

100
 .04

C

Bayes’ Theorem

Let S1, S2, . . . , Sk be k mutually exclusive states of nature, one of which must be true, and suppose that P(S1),

P(S2), . . . , P(Sk) are the prior probabilities of these states of nature. Also, let E be a particular outcome of an

experiment designed to help determine which state of nature is really true. Then, the posterior probability of

a particular state of nature, say Si, given the experimental outcome E, is

where

Specifically, if there are two mutually exclusive states of nature, S1 and S2, one of which must be true, then

P(Si   E)  
P(Si)P(E   Si)

P(S1)P(E   S1)  P(S2)P(E   S2)

  P (S1)P (E   S1)  P (S2 )P (E   S2 )         P (Sk )P (E   Sk ) P (E )  P (S1 ¨  E )  P (S2 ¨  E )         P (Sk ¨  E )
P(Si   E)  

P(Si ¨  E )
P(E )  

P(Si)P(E   Si)

P(E )

We have illustrated Bayes’ theorem when there are two states of nature in Example 4.17. In the

next example, we consider three states of nature.



2 Of 400 past sites that were drilled and produced some oil, 8 sites gave a high reading.

Therefore,

3 Of 300 past sites that were drilled and produced much oil, 288 sites gave a high reading.

Therefore,

Intuitively, these conditional probabilities tell us that sites that produce no oil or some oil seldom

give a high reading, while sites that produce much oil often give a high reading.

Now, suppose that when the company performs the seismic experiment on the site in ques-

tion, it obtains a high reading. The previously given conditional probabilities suggest that, given

this new information, the company might feel that the likelihood of much oil is higher than its

prior probability P(much)  .1, and that the likelihoods of some oil and no oil are lower than

the prior probabilities P(some)  .2 and P(none)  .7. To be more specific, we wish to revise

the prior probabilities of no, some, and much oil to what we call posterior probabilities. We can

do this by using Bayes’ theorem as follows.

If we wish to compute P(none  high), we first calculate

P(high)   P(none   high)   P(some   high)   P(much   high)

 P(none)P(high  none)   P(some)P(high  some)   P(much)P(high  much)

  (.7)(.04)   (.2)(.02)   (.1)(.96)   .128

Then Bayes’ theorem says that

Similarly, we can compute P(some  high) and P(much  high) as follows.

These revised probabilities tell us that, given that the seismic experiment gives a high reading,

the revised probabilities of no, some, and much oil are .21875, .03125, and .75, respectively.

Since the posterior probability of much oil is .75, we might conclude that we should drill on

the oil site. However, this decision should also be based on economic considerations. The science

of decision theory provides various criteria for making such a decision. An introduction to deci-

sion theory can be found in Chapter 19.

In this section we have only introduced Bayes’ theorem. There is an entire subject called

Bayesian statistics, which uses Bayes’ theorem to update prior belief about a probability or pop-

ulation parameter to posterior belief. The use of Bayesian statistics is controversial in the case

where the prior belief is largely based on subjective considerations, because many statisticians do

not believe that we should base decisions on subjective considerations. Realistically, however,

we all do this in our daily lives. For example, how each of us viewed the evidence in the O. J.

Simpson murder trial had a great deal to do with our prior beliefs about both O. J. Simpson and

the police.

 
.1(.96)

.128
 .75 P(much   high)  

P(much   high)

P(high)
 

P(much)P(high   much)

P(high)

 
.2(.02)

.128
 .03125 P(some   high)  

P(some   high)

P(high)
 

P(some)P(high   some)

P(high)

 
.7(.04)

.128
 .21875 P(none   high)  

P(none   high)

P(high)
 

P(none)P(high   none)

P(high)

P(high   much)  
288

300
 .96

P(high   some)  
8

400
 .02
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Exercises for Section 4.5
CONCEPTS

4.34 What is a prior probability? What is a posterior probability?

4.35 Explain the purpose behind using Bayes’ theorem.

METHODS AND APPLICATIONS

4.36 Suppose that A1, A2, and B are events where A1 and A2 are mutually exclusive and

P(A1)   .8 P(B  A1)  .1

P(A2)  .2 P(B  A2)  .3

Use this information to find P(A1  B) and P(A2  B).

4.37 Suppose that A1, A2, A3, and B are events where A1, A2, and A3 are mutually exclusive and

P(A1)   .2 P(A2)   .5 P(A3)   .3

P(B  A1)   .02 P(B  A2)   .05 P(B  A3)   .04

Use this information to find P(A1  B), P(A2  B) and P(A3  B).

4.38 Again consider the diagnostic test for HIV discussed in Example 4.17 (page 182) and recall that

P(POS  HIV)   .999 and P(POS  )   .01, where POS denotes a positive test result. Assuming

that the percentage of people who have HIV is 1 percent, recalculate the probability that a ran-

domly selected person has HIV, given that his or her test result is positive.

4.39 A department store is considering a new credit policy to try to reduce the number of customers de-

faulting on payments. A suggestion is made to discontinue credit to any customer who has been one

week or more late with his/her payment at least twice. Past records show 95 percent of defaults

were late at least twice. Also, 3 percent of all customers default, and 30 percent of those who have

not defaulted have had at least two late payments.

a Find the probability that a customer with at least two late payments will default.

b Based on part a, should the policy be adopted? Explain.

4.40 A company administers an “aptitude test for managers” to aid in selecting new management

trainees. Prior experience suggests that 60 percent of all applicants for management trainee

positions would be successful if they were hired. Furthermore, past experience with the aptitude

test indicates that 85 percent of applicants who turn out to be successful managers pass the test and

90 percent of applicants who turn out not to be successful managers fail the test.

a If an applicant passes the “aptitude test for managers,” what is the probability that the applicant

will succeed in a management position?

b Based on your answer to part a, do you think that the “aptitude test for managers” is a valuable

way to screen applicants for management trainee positions? Explain.

4.41 Three data entry specialists enter requisitions into a computer. Specialist 1 processes 30 percent of

the requisitions, specialist 2 processes 45 percent, and specialist 3 processes 25 percent. The pro-

portions of incorrectly entered requisitions by data entry specialists 1, 2, and 3 are .03, .05, and

.02, respectively. Suppose that a random requisition is found to have been incorrectly

entered. What is the probability that it was processed by data entry specialist 1? By data entry

specialist 2? By data entry specialist 3?

4.42 A truth serum given to a suspect is known to be 90 percent reliable when the person is guilty and

99 percent reliable when the person is innocent. In other words, 10 percent of the guilty are judged

innocent by the serum and 1 percent of the innocent are judged guilty. If the suspect was selected

from a group of suspects of which only 5 percent are guilty of having committed a crime, and the

serum indicates that the suspect is guilty of having committed a crime, what is the probability that

the suspect is innocent?

4.6 Counting Rules (Optional) 
Consider the situation in Example 4.3 (page 158) in which a student takes a pop quiz that con-

sists of three true–false questions. If we consider our experiment to be answering the three

questions, each question can be answered correctly or incorrectly. We will let C denote an-

swering a question correctly and I denote answering a question incorrectly. Figure 4.10 depicts

HIV

Use
elementary

counting rules to
compute probabili-
ties (Optional).

LO6



a tree diagram of the sample space outcomes for the experiment. The diagram portrays the

experiment as a three-step process—answering the first question (correctly or incorrectly, that

is, C or I), answering the second question (correctly or incorrectly, that is, C or I), and an-

swering the third question (correctly or incorrectly, that is, C or I). The tree diagram has eight

different branches, and the eight distinct sample space outcomes are listed at the ends of the

branches.

In general, a rule that is helpful in determining the number of experimental outcomes in a

multiple-step experiment is as follows:
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F I G U R E 4 . 1 0 A Tree Diagram of Answering Three True–False Questions

Sample space

 outcome 

Question 3Question 2 Question 1 

Correct (C)

Incorrect (I)

Correct (C)

Incorrect (I)

Correct (C)

Incorrect (I)

Correct (C
)

Incorrect (I)

Correct (C
)

Corre
ct 

(C
)

Incorrect (I) Incorrect (I)

Correct (C)

Incorrect (I)

CCC

CCI

CIC

CII

ICC

ICI

IIC

III

A Counting Rule for Multiple-Step Experiments

If an experiment can be described as a sequence of k steps in which there are n1 possible outcomes on the first

step, n2 possible outcomes on the second step, and so on, then the total number of experimental outcomes is

given by (n1)(n2)
. . . (nk).

For example, the pop quiz example consists of three steps in which there are n1  2 possible

outcomes on the first step, n2  2 possible outcomes on the second step, and n3  2 possible out-

comes on the third step. Therefore, the total number of experimental outcomes is (n1)(n2)(n3)  

(2)(2)(2)  8, as is shown in Figure 4.10. Now suppose the student takes a pop quiz consisting

of five true–false questions. Then, there are (n1)(n2)(n3)(n4)(n5)  (2)(2)(2)(2)(2)  32 experi-

mental outcomes. If the student is totally unprepared for the quiz and has to blindly guess the

answer to each question, the 32 experimental outcomes might be considered to be equally

likely. Therefore, since only one of these outcomes corresponds to all five questions being

answered correctly, the probability that the student will answer all five questions correctly

is 1 32.
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As another example, suppose a bank has three branches; each branch has two departments,

and each department has four employees. One employee is to be randomly selected to go to a

convention. Since there are (n1)(n2)(n3)   (3)(2)(4)   24 employees, the probability that a par-

ticular one will be randomly selected is 1 24.

Next, consider the population of last year’s percentage returns for six high-risk stocks. This

population consists of the percentage returns  36,  15, 3, 15, 33, and 54 (which we have

arranged in increasing order). Now consider randomly selecting without replacement a sample

of n  3 stock returns from the population of six stock returns. Below we list the 20 distinct

samples of n  3 returns that can be obtained:

Sample n  3 Returns in Sample Sample n  3 Returns in Sample

1  36,  15, 3 11  15,   3, 15

2  36,  15, 15 12  15,   3, 33

3  36,  15, 33 13  15,   3, 54

4  36,  15, 54 14  15, 15, 33

5  36, 3, 15 15  15, 15, 54

6  36, 3, 33 16  15, 33, 54

7  36, 3, 54 17 3, 15, 33

8  36, 15, 33 18 3, 15, 54

9  36, 15, 54 19 3, 33, 54

10  36, 33, 54 20 15, 33, 54

Because each sample is specified only with respect to which returns are contained in the sample,

and therefore not with respect to the different orders in which the returns can be randomly se-

lected, each sample is called a combination of n 3 stock returns selected from N 6 stock

returns. In general, the following result can be proven:

A Counting Rule for Combinations

The number of combinations of n items that can be selected from N items is

where

Note: 0! is defined to be 1.

 n!  n(n  1)(n  2)       1

 N!  N(N  1)(N  2)       1

 Nn  
N!

n! (N  n)!

For example, the number of combinations of n  3 stock returns that can be selected from the

six previously discussed stock returns is

The 20 combinations are listed above. As another example, the Ohio lottery system uses the ran-

dom selection of 6 numbers from a group of 47 numbers to determine each week’s lottery winner.

There are 

combinations of 6 numbers that can be selected from 47 numbers. Therefore, if you buy a

lottery ticket and pick six numbers, the probability that this ticket will win the lottery is

1 10,737,573.

 47  6   
47!

6! (47  6)!
 

47  46  45  44  43  42 (41!) 

6  5  4  3  2  1 (41!) 
  10,737,573

 6

3  
6!

3!(6  3)!
 

6!

3! 3!
 

6  5  4 (3  2  1)

(3  2   1) (3  2  1)
 20
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Chapter Summary

In this chapter we studied probability. We began by defining

an event to be an experimental outcome that may or may not

occur and by defining the probability of an event to be a num-

ber that measures the likelihood that the event will occur. We

learned that a probability is often interpreted as a long-run rel-

ative frequency, and we saw that probabilities can be found by

examining sample spaces and by using probability rules. We

learned several important probability rules—addition rules,

multiplication rules, and the rule of complements. We also

studied a special kind of probability called a conditional

probability, which is the probability that one event will occur

given that another event occurs, and we used probabilities to

define independent events. We concluded this chapter by

studying two optional topics. The first of these was Bayes’ the-

orem, which can be used to update a prior probability to a pos-

terior probability based on receiving new information. Second,

we studied counting rules that are helpful when we wish to

count sample space outcomes.

Glossary of Terms

Bayes’ theorem: A theorem (formula) that is used to compute

posterior probabilities by revising prior probabilities. (page 182)

Bayesian statistics: An area of statistics that uses Bayes’

Theorem to update prior belief about a probability or population

parameter to posterior belief. (page 184)

complement (of an event): If A is an event, the complement of

A is the event that A will not occur. (page 164)

conditional probability: The probability that one event will

occur given that we know that another event occurs. (page 171)

decision theory: An approach that helps decision makers to

make intelligent choices. (page 184)

dependent events: When the probability of one event is influ-

enced by whether another event occurs, the events are said to be

dependent. (page 174)

event: A set of sample space outcomes. (page 158)

experiment: A process of observation that has an uncertain out-

come. (page 155)

independent events: When the probability of one event is not

influenced by whether another event occurs, the events are said to

be independent. (page 174)

mutually exclusive events: Events that have no sample space

outcomes in common, and, therefore, cannot occur simultane-

ously. (page 167)

prior probability: The initial probability that an event will

occur. (page 182)

probability (of an event): A number that measures the chance,

or likelihood, that an event will occur when an experiment is

carried out. (page 155)

Exercises for Section 4.6
CONCEPTS

4.43 Explain why counting rules are useful.

4.44 Explain when it is appropriate to use the counting rule for multiple-step experiments.

4.45 Explain when it is appropriate to use the counting rule for combinations.

METHODS AND APPLICATIONS

4.46 A credit union has two branches; each branch has two departments, and each department has four

employees. How many total people does the credit union employ? If you work for the credit union,

and one employee is randomly selected to go to a convention, what is the probability that you will

be chosen?

4.47 Construct a tree diagram (like Figure 4.10) for the situation described in Exercise 4.46.

4.48 How many combinations of two high-risk stocks could you randomly select from eight high-risk

stocks? If you did this, what is the probability that you would obtain the two highest-returning

stocks?

4.49 A pop quiz consists of three true–false questions and three multiple choice questions. Each multi-

ple choice question has five possible answers. If a student blindly guesses the answer to every

question, what is the probability that the student will correctly answer all six questions?

4.50 A company employs eight people and plans to select a group of three of these employees to re-

ceive advanced training. How many ways can the group of three employees be selected?

4.51 The company of Exercise 4.50 employs Mr. Withrow, Mr. Church, Ms. David, Ms. Henry,

Mr. Fielding, Mr. Smithson, Ms. Penny, and Mr. Butler. If the three employees who will receive

advanced training are selected at random, what is the probability that Mr. Church, Ms. Henry, and

Mr. Butler will be selected for advanced training?
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Supplementary Exercises

Exercises 4.52 through 4.55 are based on the following situation: An investor holds two stocks, each of

which can rise (R), remain unchanged (U), or decline (D) on any particular day.

4.52 Construct a tree diagram showing all possible combined movements for both stocks on a particular

day (for instance, RR, RD, and so on, where the first letter denotes the movement of the first stock,

and the second letter denotes the movement of the second stock).

4.53 If all outcomes are equally likely, find the probability that both stocks rise; that both stocks

decline; that exactly one stock declines.

4.54 Find the probabilities you found in Exercise 4.53 by assuming that for each stock P(R)  .6, P(U)  .1,

and P(D)  .3, and assuming that the two stocks move independently.

4.55 Assume that for the first stock (on a particular day)

P(R)  .4, P(U )  .2, P(D)  .4

and that for the second stock (on a particular day)

P(R)  .8, P(U)  .1, P(D)  .1

Assuming that these stocks move independently, find the probability that both stocks decline; the

probability that exactly one stock rises; the probability that exactly one stock is unchanged; the

probability that both stocks rise.

Women, Age Civilian Labor Force Not in Labor

16 to 24 Employed Unemployed Force Row Total

< High School 662 205 759 1626

HS degree 2050 334 881 3265

Some college 1352 126 321 1799

Bachelors

degree or more 921 55 105 1081

Column Total 4985 720 2066 7771

Men, Age Civilian Labor Force Not in Labor

16 to 24 Employed Unemployed Force Row Total

< High School 1334 334 472 2140

HS degree 3110 429 438 3977

Some college 1425 106 126 1657

Bachelors

degree or more 708 37 38 783

Column Total 6577 906 1074 8557

The Bureau of Labor Statistics reports on a variety of employment statistics. “College Enrollment and Work Activity of 2004 

High School Graduates” provides information on high school graduates by gender, by race, and by labor force participation as of

October 2004.3 (All numbers are in thousands.) The following two tables provide information on the “Labor force status of 

persons 16 to 24 years old by educational attainment and gender, October 2004.” Using the information contained in the tables, 

do Exercises 4.56 through 4.60. LabForceDS

4.56 Find the probability that a randomly selected female aged 16 to 24 is in the civilian labor force, if

she has a high school degree. LabForceDS

3Source: www.bls.gov. College Enrollment and Work Activity of 2004 High School Graduates, Table 2. Labor force status of persons

16 to 24 years old by school enrollment, educational attainment, sex, race, and Hispanic or Latino ethnicity, October 2004.

Important Formulas

Probabilities when all sample space outcomes are equally likely:

page 161

The rule of complements: page 164

The addition rule for two events: page 167

The addition rule for two mutually exclusive events: page 168

The addition rule for N mutually exclusive events: page 169

Conditional probability: page 172

The general multiplication rule: page 173

Independence: page 174

The multiplication rule for two independent events: page 175

The multiplication rule for N independent events: page 175

Bayes’ theorem: page 183

Counting rule for multiple-step experiments: page 186

Counting rule for combinations: page 187

posterior probability: A revised probability obtained by updating

a prior probability after receiving new information. (page 182)

sample space: The set of all possible experimental outcomes

(sample space outcomes). (page 157)

sample space outcome: A distinct outcome of an experiment

(that is, an element in the sample space). (page 157)

subjective probability: A probability assessment that is based

on experience, intuitive judgment, or expertise. (page 156)



4.57 Find the probability that a randomly selected female aged 16 to 24 is in the civilian labor force, if

she has a bachelor’s degree or more. LabForce

4.58 Find the probability that a randomly selected female aged 16 to 24 is employed, if she is in the

civilian labor force and has a high school degree. LabForce

4.59 Find the probability that a randomly selected female aged 16 to 24 is employed, if she is in the

civilian labor force and has a bachelors degree or more. LabForce

4.60 Repeat Exercises 4.56 through 4.59 for a randomly selected male aged 16 to 24. In general, do

the tables on page 189 imply that labor force status and employment status depend upon educa-

tional attainment? Explain your answer. LabForce

Suppose that in a survey of 1,000 U.S. residents, 721 residents believed that the amount of violent televi-

sion programming had increased over the past 10 years, 454 residents believed that the overall quality of

television programming had decreased over the past 10 years, and 362 residents believed both. Use this

information to do Exercises 4.61 through 4.67.

4.61 What proportion of the 1,000 U.S. residents believed that the amount of violent programming had

increased over the past 10 years?

4.62 What proportion of the 1,000 U.S. residents believed that the overall quality of programming had

decreased over the past 10 years?

4.63 What proportion of the 1,000 U.S. residents believed that both the amount of violent programming

had increased and the overall quality of programming had decreased over the past 10 years?

4.64 What proportion of the 1,000 U.S. residents believed that either the amount of violent programming

had increased or the overall quality of programming had decreased over the past 10 years?

4.65 What proportion of the U.S. residents who believed that the amount of violent programming had

increased believed that the overall quality of programming had decreased?

4.66 What proportion of the U.S. residents who believed that the overall quality of programming had

decreased believed that the amount of violent programming had increased?

4.67 What sort of dependence seems to exist between whether U.S. residents believed that the amount

of violent programming had increased and whether U.S. residents believed that the overall quality

of programming had decreased? Explain your answer.

4.68 Enterprise Industries has been running a television advertisement for Fresh liquid laundry

detergent. When a survey was conducted, .21 of the individuals surveyed had purchased Fresh,

.41 of the individuals surveyed had recalled seeing the advertisement, and .13 of the individuals

surveyed had purchased Fresh and recalled seeing the advertisement.

a What proportion of the individuals surveyed who recalled seeing the advertisement had

purchased Fresh?

b Based on your answer to part a, does the advertisement seem to have been effective? Explain.

4.69 A company employs 400 salespeople. Of these, 83 received a bonus last year, 100 attended a

special sales training program at the beginning of last year, and 42 both attended the special sales

training program and received a bonus. (Note: the bonus was based totally on sales performance.)

a What proportion of the 400 salespeople received a bonus last year?

b What proportion of the 400 salespeople attended the special sales training program at the

beginning of last year?

c What proportion of the 400 salespeople both attended the special sales training program and

received a bonus?

d What proportion of the salespeople who attended the special sales training program received a

bonus?

e Based on your answers to parts a and d, does the special sales training program seem to have

been effective? Explain your answer.

Exercises 4.70, 4.71, and 4.72 extend Exercise 4.32 (page 181). Recall that Figure 4.9 (page 181) gives an

AccuRatings analysis for the song “We’ve Got It Goin’ On” by the Backstreet Boys. Also recall that

1 Estimates of the probabilities that a randomly selected listener would give the song the ratings 5, 4,

3, 2, and 1 are P(5)  .18, P(4)  .27, P(3)  .28, P(2)  .08, and P(1)  .10.

2 An estimate of the probability that a randomly selected listener is tired of the song is P(T)  .17.

3 We estimate that P(T  5)  0, P(T  4)  .04, P(T  3)  .25, P(T  2)  .25, and P(T  1)  .70.

4 We estimate that the probability that a randomly selected listener is familiar with the song is 

P(FAM)  .91.

DS

DS

DS

DS
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4.70 Find estimates of P(5  T ), P(4  T ), P(3  T ), P(2  T ), and P(1  T ).

Hint:

and the other probabilities are calculated similarly.

4.71 Let NT denote the event that a randomly selected listener is not tired of the song. Because we

estimate that P(T)  .17 and P(T  1)  .70, we estimate that 

P(NT )  1  P(T)  .83 and P(NT  1)  1  P(T  1)  .30

a Estimate P(NT  5), P(NT  4), P(NT  3), and P(NT  2).

b Estimate P(5  NT ), P(4  NT ), P(3  NT ), P(2  NT ), and P(1  NT ).

Hint:

and the other probabilities are calculated similarly.

c The reason that the probabilities in b do not sum to 1 (with rounding) is that, if a listener is not

tired of the song, the listener could be unfamiliar (UNFAM) with the song. Using the facts that

P(UNFAM)  1  P(FAM)  .09 and P(NT  UNFAM)  1

find P(UNFAM NT ), P(UNFAM  NT ), and P(UNFAM NT).

4.72 In this exercise we estimate the proportions of listeners familiar with the song who would give the

song each rating. Using the definition of conditional probability, we estimate that

Note here that P(5 FAM ) equals P(5) because the event 5 FAM and the event 5 are equivalent.

That is, a randomly selected listener would give the song a rating of 5 if and only if the listener is

familiar with the song and would give the song a rating of 5. By using similar reasoning, find 

P(4  FAM ), P(3  FAM ), P(2  FAM ), and P(1  FAM ).

4.73 Suppose that A and B are events and that P(A) and P(B) are both positive.

a If A and B are mutually exclusive, what is P(A   B)?

b If A and B are independent events, explain why P(A   B) is positive.

c Can two mutually exclusive events, each having a positive probability of occurrence, also be

independent? Prove your answer using your answers to parts a and b.

4.74 Below we give two contingency tables of data from reports submitted by airlines to the U.S.

Department of Transportation. The data concern the numbers of on-time and delayed flights for

Alaska Airlines and America West Airlines at five major airports. AirDelaysDS

P(5  FAM )  
P(5  FAM )

P(FAM )
 

P(5)

P(FAM )
 

.18

.91
 .1978

  

P(1  NT )  
P(1   NT )

P(NT )
 

P(1)P(NT  1)

P(NT )

P(1  T )  
P(1  T )

P(T )
 

P(1)P(T  1)

P(T )

Alaska Airlines
On Time Delayed Total

Los Angeles 497 62 559

Phoenix 221 12 233

San Diego 212 20 232

San Francisco 503 102 605

Seattle 1,841 305 2,146

Total 3,274 501 3,775

America West
On Time Delayed Total

Los Angeles 694 117 811

Phoenix 4,840 415 5,255

San Diego 383 65 448

San Francisco 320 129 449

Seattle 201 61 262

Total 6,438 787 7,225

Source: A. Barnett, “How Numbers Can Trick You,” Technology Review, October 1994, pp. 38–45. Copyright © 1994 MIT

Technology Review. Reprinted by permission of the publisher via Copyright Clearance Center.

a What percentage of all Alaska Airlines flights were delayed? That is, use the data to estimate

the probability that an Alaska Airlines flight will be delayed. Do the same for America West

Airlines. Which airline does best overall?

b For Alaska Airlines find the percentage of delayed flights at each airport. That is, use the

data to estimate each of the probabilities P(delayed  Los Angeles), P(delayed  Phoenix), and

so on. Then do the same for America West Airlines. Which airline does best at each individual

airport?



c We find that America West Airlines does worse at every airport, yet America West does best

overall. This seems impossible, but it is true! By looking carefully at the data, explain how this

can happen. Hint: Consider the weather in Phoenix and Seattle. (This exercise is an example of

what is called Simpson’s paradox.)

4.75 On any given day, the probability that the Ohio River at Cincinnati is polluted by a carbon

tetrachloride spill is .10. Each day, a test is conducted to determine whether the river is polluted

by carbon tetrachloride. This test has proved correct 80 percent of the time. Suppose that on a

particular day the test indicates carbon tetrachloride pollution. What is the probability that such

pollution actually exists?

4.76 A marketing major will interview for an internship with a major consumer products

manufacturer/distributor. Before the interview, the marketing major feels that the chances

of being offered an internship are 40 percent. Suppose that of the students who have been

offered internships with this company, 90 percent had good interviews, and that of the 

students who have not been offered internships, 50 percent had good interviews. If the

marketing major has a good interview, what is the probability that he or she will be offered 

an internship?

4.77 In the book Making Hard Decisions: An Introduction to Decision Analysis, Robert T. Clemen

presents an example in which he discusses the 1982 John Hinckley trial. In describing the case,

Clemen says:

In 1982 John Hinckley was on trial, accused of having attempted to kill President Reagan.

During Hinckley’s trial, Dr. Daniel R. Weinberger told the court that when individuals

diagnosed as schizophrenics were given computerized axial tomography (CAT) scans, the

scans showed brain atrophy in 30% of the cases compared with only 2% of the scans done

on normal people. Hinckley’s defense attorney wanted to introduce as evidence Hinckley’s

CAT scan, which showed brain atrophy. The defense argued that the presence of atrophy

strengthened the case that Hinckley suffered from mental illness.

a Approximately 1.5 percent of the people in the United States suffer from schizophrenia. If we

consider the prior probability of schizophrenia to be .015, use the information given to find

the probability that a person has schizophrenia given that a person’s CAT scan shows brain

atrophy.

b John Hinckley’s CAT scan showed brain atrophy. Discuss whether your answer to part a helps

or hurts the case that Hinckley suffered from mental illness.

c It can be argued that .015 is not a reasonable prior probability of schizophrenia. This is

because .015 is the probability that a randomly selected U.S. citizen has schizophrenia.

However, John Hinckley was not a randomly selected U.S. citizen. Rather, he was accused of

attempting to assassinate the president. Therefore, it might be reasonable to assess a higher

prior probability of schizophrenia. Suppose you are a juror who believes there is only a 

10 percent chance that Hinckley suffers from schizophrenia. Using .10 as the prior probability

of schizophrenia, find the probability that a person has schizophrenia given that a person’s

CAT scan shows brain atrophy.

d If you are a juror with a prior probability of .10 that John Hinckley suffers from schizophrenia

and given your answer to part c, does the fact that Hinckley’s CAT scan showed brain atrophy

help the case that Hinckley suffered from mental illness?

e If you are a juror with a prior probability of .25 that Hinckley suffers from schizophrenia,

find the probability of schizophrenia given that Hinckley’s CAT scan showed brain

atrophy. In this situation, how strong is the case that Hinckley suffered from mental

illness?
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What is the age, gender, and ethnic composition of U.S.
college students? As background for its 1995 study of
college students and their risk behaviors, the Centers
for Disease Control and Prevention collected selected
demographic data—age, gender, and ethnicity—about
college students. A report on the 1995 National Health
Risk Behavior Survey can be found at the CDC website
[http://www.cdc.gov: Data & Statistics; Youth Risk Behav-
ior Surveillance System: Data Products; 1995 National
College Health Risk Behavior Survey or, directly, go to
http://www.cdc.gov/nccdphp/dash/MMWRFile/ss4606.htm.]
This report includes a large number of tables, the first
of which summarizes the demographic information for
the sample of n  4609 college students. An excerpt of
Table 1 is given on the right.

Using conditional probabilities, discuss (a) the depen-
dence between age and gender and (b) the dependence
between age and ethnicity for U.S. college students.

CDCData DS
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4.78 Internet Exercise

TABLE 1. Demographic Characteristics of 

Undergraduate College Students Aged >=18

Years, by Age Group — United States, National

College Health Risk Behavior Survey, 1995

==============================================

Age Group (%)

-----------------------

Category    Total (%)  18–24 Years  >=25 Years

----------------------------------------------

Total         --          63.6        36.4

Sex

Female       55.5        52.0        61.8

Male         44.5        48.0        38.2

Race/ethnicity

White*       72.8        70.9        76.1

Black*       10.3        10.5         9.6

Hispanic      7.1         6.9         7.4

Other         9.9        11.7         6.9
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5.2 Discrete Probability Distributions
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5.4 The Poisson Distribution (Optional)

5.5 The Hypergeometric Distribution (Optional)

Discrete

Random

Variables

Chapter Outline

LO1 Explain the difference between a discrete
random variable and a continuous random
variable.

LO2 Find a discrete probability distribution and
compute its mean and standard deviation.

LO3 Use the binomial distribution to compute
probabilities.

LO4 Use the Poisson distribution to compute
probabilities (Optional).

LO5 Use the hypergeometric distribution to
compute probabilities (Optional).

Learning Objectives

After mastering the material in this chapter, you will be able to:



EXAMPLE 5.1 The Car Mileage Case

e often use what we call random

variables to describe the important

aspects of the outcomes of experiments.

In this chapter we introduce two important types of

random variables—discrete random variables and

continuous random variables—and learn how to find

probabilities concerning discrete random variables.

As one application, we will see in the AccuRatings

case how Strategic Radio Research determines the

popularity index of each song it rates.

W

5.1 Two Types of Random Variables
We begin with the definition of a random variable:

A random variable is a variable that assumes numerical values that are determined by the

outcome of an experiment, where one and only one numerical value is assigned to each experi-

mental outcome.

Before an experiment is carried out, its outcome is uncertain. It follows that, since a random

variable assigns a number to each experimental outcome, a random variable can be thought of as

representing an uncertain numerical outcome.

To illustrate the idea of a random variable, suppose that Sound City sells and installs car stereo

systems. One of Sound City’s most popular stereo systems is the TrueSound-XL, a top-of-the-

line stereo cassette car radio. Consider (the experiment of) selling the TrueSound-XL radio at the

Sound City store during a particular week. If we let x denote the number of radios sold during

the week, then x is a random variable. That is, looked at before the week, the number of radios x

that will be sold is uncertain, and, therefore, x is a random variable.

Notice that x, the number of TrueSound-XL radios sold in a week, might be 0 or 1 or 2 or 3,

and so forth. In general, when the possible values of a random variable can be counted or listed,

we say that the random variable is a discrete random variable. That is, either a discrete random

variable may assume a finite number of possible values or the possible values may take the form

of a countable sequence or list such as 0, 1, 2, 3, 4, . . . (a countably infinite list).

Some other examples of discrete random variables are

1 The number, x, of the next three customers entering a store who will make a purchase. Here

x could be 0, 1, 2, or 3.

2 The number, x, of four patients taking a new antibiotic who experience gastrointestinal

distress as a side effect. Here x could be 0, 1, 2, 3, or 4.

3 The number, x, of television sets in a sample of 8 five-year-old television sets that have not

needed a single repair. Here x could be any of the values 0, 1, 2, 3, 4, 5, 6, 7, or 8.

4 The rating, x, on a 1 through 5 scale given to a song by a listener in an AccuRatings music

survey. Here x could be 1, 2, 3, 4, or 5.

5 The number, x, of major fires in a large city during the last two months. Here x could be 0,

1, 2, 3, and so forth (there is no definite maximum number of fires).

6 The number, x, of dirt specks in a one-square-yard sheet of plastic wrap. Here x could be 0,

1, 2, 3, and so forth (there is no definite maximum number of dirt specks).

The values of the random variables described in examples 1, 2, 3, and 4 are countable and

finite. In contrast, the values of the random variables described in 5 and 6 are countable and infi-

nite (or countably infinite lists). For example, in theory there is no limit to the number of major

fires that could occur in a city in two months.

Not all random variables have values that are countable. When a random variable may assume

any numerical value in one or more intervals on the real number line, then we say that the random

variable is a continuous random variable.

Explain the
difference

between a discrete
random variable
and a continuous
random variable.

LO1

C

Consider the car mileage situation that we have discussed in Chapters 1–3. The EPA combined

city and highway mileage, x, of a randomly selected midsize car is a continuous random variable.

This is because, although we have measured mileages to the nearest one-tenth of a mile per

gallon, technically speaking, the potential mileages that might be obtained correspond (starting



at, perhaps, 26 mpg) to an interval of numbers on the real line. We cannot count or list the num-

bers in such an interval because they are infinitesimally close together. That is, given any two

numbers in an interval on the real line, there is always another number between them. To under-

stand this, try listing the mileages starting with 26 mpg. Would the next mileage be 26.1 mpg?

No, because we could obtain a mileage of 26.05 mpg. Would 26.05 mpg be the next mileage? No,

because we could obtain a mileage of 26.025 mpg. We could continue this line of reasoning

indefinitely. That is, whatever value we would try to list as the next mileage, there would always

be another mileage between this next mileage and 26 mpg.

Some other examples of continuous random variables are

1 The temperature (in degrees Fahrenheit) of a cup of coffee served at a McDonald’s restaurant.

2 The weight (in ounces) of strawberry preserves dispensed by an automatic filling machine

into a 16-ounce jar.

3 The time (in minutes) that a customer in a store must wait to receive a credit card authorization.

4 The interest rate (in percent) charged for mortgage loans at a bank.
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Exercises for Section 5.1
CONCEPTS

5.1 Explain the concept of a random variable.

5.2 Explain how the values of a discrete random variable differ from the values of a continuous random

variable.

5.3 Classify each of the following random variables as discrete or continuous:

a x  the number of girls born to a couple who will have three children.

b x  the number of defects found on an automobile at final inspection.

c x  the weight (in ounces) of the sandwich meat placed on a submarine sandwich.

d x  the number of incorrect lab procedures conducted at a hospital during a particular week.

e x the number of customers served during a given day at a drive-through window.

f x  the time needed by a clerk to complete a task.

g x  the temperature of a pizza oven at a particular time.

5.2 Discrete Probability Distributions
The value assumed by a discrete random variable depends on the outcome of an experiment.

Because the outcome of the experiment will be uncertain, the value assumed by the random

variable will also be uncertain. However, it is often useful to know the probabilities that are

associated with the different values that the random variable can take on. That is, we often wish

to know the random variable’s probability distribution.

The probability distribution of a discrete random variable is a table, graph, or formula that

gives the probability associated with each possible value that the random variable can assume.

We denote the probability distribution of the discrete random variable x as p(x). As will be

demonstrated in the following example, we can sometimes use the sample space of an experi-

ment and probability rules to find the probability distribution of a random variable.

EXAMPLE 5.2

Consider the pop quiz consisting of three true–false questions. Remember that the sample space

when a student takes such a quiz consists of the outcomes

CCC CCI CIC ICC

CII ICI IIC III

We now define the random variable x to be the number of questions that the student answers

correctly. Here x can assume the values 0, 1, 2, or 3. That is, the student could answer

anywhere between 0 and 3 questions correctly. In Examples 4.3 and 4.5 we assumed that the

Find a
discrete

probability distribu-
tion and compute
its mean and
standard deviation.

LO2
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student is totally unprepared for the quiz and thus has only a .5 probability of answering each

question correctly. We now assume that the student studies and has a .9 probability of answering

each question correctly. Table 5.1 summarizes finding the probabilities associated with each of

the values of x (0, 1, 2, and 3). As an example of the calculations, consider finding the probabil-

ity that x equals 2. Two questions will be answered correctly if and only if we obtain one of the

sample space outcomes

CCI CIC ICC

Assuming that the three questions will be answered independently, these sample space outcomes

have probabilities

P(CCI)  (.9)(.9)(.1)  .081

P(CIC)  (.9)(.1)(.9)  .081

P(ICC)  (.1)(.9)(.9)  .081

Therefore,

P(x  2)  P(CCI)  P(CIC)  P(ICC)

 .081  .081  .081

 .243

Similarly, we can obtain probabilities associated with x 0, x 1, and x 3. The probability

distribution of x is summarized as follows:

x, Number of Questions
Answered Correctly p(x), Probability of x

0 p(0) P(x 0) .001

1 p(1) P(x 1) .027

2 p(2) P(x 2) .243

3 p(3) P(x 3) .729

Notice that the probabilities in this probability distribution sum to .001 .027 .243 .729 1.

To show the advantage of studying, note that the above probability distribution says that

if the student has a .9 probability of answering each question correctly, then the probability

that the student will answer all three questions correctly is .729. Furthermore, the probabil-

ity that the student will answer at least two out of three questions correctly is (since the

events x  2 and x  3 are mutually exclusive)

P(x 2)  P(x 2 or x  3)

 P(x 2)  P(x 3)

 .243  .729

 .972

By contrast, we saw in Example 4.5 that if the student is totally unprepared and has only a

.5 probability of answering each question correctly, then the probabilities that the student will

T A B L E 5 . 1 Finding the Probability Distribution of x ⴝ the Number of Questions Answered Correctly 

When the Student Studies and Has a 90 Percent Chance of Answering Each 

Question Correctly

Value of Sample Space Outcomes Probability of
x ⴝ the Number Corresponding Sample Space p(x)ⴝProbability
of Correct Answers to Value of x Outcome of the Value of x

x 0 (no correct answers) III (.1)(.1)(.1) .001 p(0) .001

x 1 (one correct answer) CII (.9)(.1)(.1) .009 p(1) .009 .009 .009 .027

ICI (.1)(.9)(.1) .009

IIC (.1)(.1)(.9) .009

x 2 (two correct answers) CCI (.9)(.9)(.1) .081 p(2) .081 .081 .081 .243

CIC (.9)(.1)(.9) .081

ICC (.1)(.9)(.9) .081

x 3 (three correct answers) CCC (.9)(.9)(.9) .729 p(3) .729



answer zero, one, two, and three questions correctly are, respectively, 1兾8, 3兾8, 3兾8, and 1兾8.

Therefore, the probability that the unprepared student will answer all three questions correctly is

only 1兾8, and the probability that this student will answer at least two out of three questions

correctly is only (3兾8  1兾8)  .5.

In general, a discrete probability distribution p(x) must satisfy two conditions:
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Properties of a Discrete Probability Distribution p(x)

A discrete probability distribution p(x) must be such that

1 p(x)  0 for each value of x

2 a
All x

p(x)  1

The first of these conditions says that each probability in a probability distribution must be zero

or positive. The second condition says that the probabilities in a probability distribution must

sum to 1. Looking at the probability distribution illustrated in Example 5.2, we can see that these

properties are satisfied.

Often it is not possible to examine the entire sample space of an experiment. In such a case we

sometimes collect data that will allow us to estimate the probabilities in a probability distribution.

EXAMPLE 5.3

Recall that Sound City sells the TrueSound-XL car radio, and define the random variable x to be

the number of such radios sold in a particular week. In order to know the true probabilities of the

various values of x, we would have to observe sales during all of the (potentially infinite number

of ) weeks in which the TrueSound-XL radio could be sold. That is, if we consider an experiment

in which we randomly select a week and observe sales of the TrueSound-XL, the sample space

would consist of a potentially infinite number of equally likely weeks. Obviously, it is not possi-

ble to examine this entire sample space.

Suppose, however, that Sound City has kept historical records of TrueSound-XL sales during

the last 100 weeks. These records tell us that

1 No radios have been sold in 3 (that is, 3兾100  .03) of the weeks.

2 One radio has been sold in 20 (that is, .20) of the weeks.

3 Two radios have been sold in 50 (that is, .50) of the weeks.

4 Three radios have been sold in 20 (that is, .20) of the weeks.

5 Four radios have been sold in 5 (that is, .05) of the weeks.

6 Five radios have been sold in 2 (that is, .02) of the weeks.

7 No more than five radios were sold in any of the past 100 weeks.

It follows that we might estimate that the probability distribution of x, the number of TrueSound-

XL radios sold during a particular week at Sound City, is as shown in Table 5.2. A graph of this

distribution is shown in Figure 5.1.

T A B L E 5 . 2 An Estimate (Based on 100 Weeks of Historical Data) of the Probability Distribution of x,

the Number of TrueSound-XL Radios Sold at Sound City in a Week

x, Number of
Radios Sold p(x), the Probability of x

0 p(0) P(x 0) 3兾100 .03

1 p(1) P(x 1) 20兾100 .20

2 p(2) P(x 2) 50兾100 .50

3 p(3) P(x 3) 20兾100 .20

4 p(4) P(x 4) 5兾100 .05

5 p(5) P(x 5) 2兾100 .02
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In the next example we illustrate how to calculate mx, and we reason that the calculation really

does give the mean of all possible observed values of the random variable x.
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.5

0 1 2 3 4 5

Radios sold, x

F I G U R E 5 . 1 A Graph of the Probability Distribution of x, the Number of TrueSound-XL

Radios Sold at Sound City in a Week

The Mean, or Expected Value, of a Discrete Random Variable

The mean, or expected value, of a discrete random variable x is

mx  a
All x

xp(x)

Finally, it is reasonable to use the historical sales data from the past 100 weeks to estimate the

true probabilities associated with the various numbers of radios sold if the sales process remains

stable over time and is not seasonal (that is, if radio sales are not higher at one time of the year

than at others).

Suppose that the experiment described by a random variable x is repeated an indefinitely large

number of times. If the values of the random variable x observed on the repetitions are recorded,

we would obtain the population of all possible observed values of the random variable x. This

population has a mean, which we denote as mx and which we sometimes call the expected value

of x. In order to calculate mx, we multiply each value of x by its probability p(x) and then sum the

resulting products over all possible values of x.

EXAMPLE 5.4

Remember that Table 5.2 gives the probability distribution of x, the number of TrueSound-XL

radios sold in a week at Sound City. Using this distribution, it follows that

To see that such a calculation gives the mean of all possible observed values of x, recall from

Example 5.3 that the probability distribution in Table 5.2 was estimated from historical records

of TrueSound-XL sales during the last 100 weeks. Also recall that these historical records tell us

that during the last 100 weeks Sound City sold

1 Zero radios in 3 of the 100 weeks, for a total of 0(3)  0 radios

2 One radio in 20 of the 100 weeks, for a total of 1(20)  20 radios

  2.1

  0(.03)  1(.20)  2(.50)  3(.20)  4(.05)  5(.02)

  0p(0)  1p(1)  2p(2)  3p(3)  4p(4)  5p(5)

 mx  a
All x

x p(x) 



3 Two radios in 50 of the 100 weeks, for a total of 2(50)  100 radios

4 Three radios in 20 of the 100 weeks, for a total of 3(20)  60 radios

5 Four radios in 5 of the 100 weeks, for a total of 4(5)  20 radios

6 Five radios in 2 of the 100 weeks, for a total of 5(2)  10 radios

In other words, Sound City sold a total of

0  20  100  60  20  10  210 radios

in 100 weeks, or an average of radios per week. Now, the average

can be written as

which can be rewritten as

which equals . That is, if observed sales values occur with relative frequencies equal to

those specified by the probability distribution in Table 5.2, then the average number of radios

sold per week is equal to the expected value of x.

Of course, if we observe radio sales for another 100 weeks, the relative frequencies of the

observed sales values would not (unless we are very lucky) be exactly as specified by the esti-

mated probabilities in Table 5.2. Rather, the observed relative frequencies would differ somewhat

from the estimated probabilities in Table 5.2, and the average number of radios sold per week

would not exactly equal (although the average would likely be close). However, the

point is this: If the probability distribution in Table 5.2 were the true probability distribution of

weekly radio sales, and if we were to observe radio sales for an indefinitely large number of

weeks, then we would observe sales values with relative frequencies that are exactly equal to

those specified by the probabilities in Table 5.2. In this case, when we calculate the expected

value of x to be , we are saying that in the long run (that is, over an indefinitely large

number of weeks) Sound City would average selling 2.1 TrueSound-XL radios per week.

As another example, again consider Example 5.2, and let the random variable x denote the

number of the three true–false questions that the student who studies answers correctly. Using the

probability distribution shown in Table 5.1, the expected value of x is

This expected value says that if a student takes a large number of three-question true–false

quizzes and has a .9 probability of answering any single question correctly, then the student will

average approximately 2.7 correct answers per quiz.

  2.7

 mx  0(.001)  1(.027)  2(.243)  3(.729)

mx  2.1

mx  2.1

mx  2.1

 0(.03)  1(.20)  2(.50)  3(.20)  4(.05)  5(.02)

0冢 3

100冣  1冢 20

100冣  2冢 50

100冣  3冢 20

100冣  4冢 5

100冣  5冢 2

100冣

0(3)  1(20)  2(50)  3(20)  4(5)  5(2)

100

210

100
 

0  20  100  60  20  10

100

210兾100  2.1
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EXAMPLE 5.5 The AccuRatings Case

In this example we will compute the popularity index for the song “Gangsta’s Paradise” by

Coolio. Recall from Example 4.16 (pages 176–179) that Strategic Radio Research had listeners

rate this song as a 5, 4, 3, 2, 1, or UNFAM. Although not discussed in Example 4.16, Strategic

Radio Research also estimated the proportions of listeners familiar with the song who would give

the song ratings of 5, 4, 3, 2, and 1 to be, respectively, .43, .21, .22, .07, and .07. Now, it is

reasonable to assign the numerical values 1 through 5 to the ratings 1 through 5 (this sort of thing

is done when colleges assign the numerical values 4 through 0 to the grades A through F).

C
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Therefore, we can regard the song’s rating, x, by a randomly selected listener who is familiar with

the song to be a discrete random variable having the estimated probability distribution shown in

Table 5.3. It follows that the expected value of this estimated probability distribution is

This estimated expected value is reported as the popularity index in Figure 4.8 (page 178) (the

difference between the 3.86 calculated here and the 3.87 in Figure 4.8 is due to rounding). It says

that Strategic Radio Research estimates that the mean rating of the song that would be given by

all listeners who are familiar with the song is 3.86. As indicated in Figure 4.8, Strategic Radio

Research reports that the song has a “very high popularity” index, which is the highest (#1) of all

the songs rated for the week.

  3.86

 mx  1(.07)  2(.07)  3(.22)  4(.21)  5(.43)

T A B L E 5 . 3 An Estimate of the Probability Distribution of x, the Rating of the Song 

“Gangsta’s Paradise” by a Randomly Selected Listener Who Is Familiar 

with This Song

x, Rating p(x), Probability of x

1 p(1)  .07

2 p(2)  .07

3 p(3)  .22

4 p(4)  .21

5 p(5)  .43

EXAMPLE 5.6

An insurance company sells a $20,000 whole life insurance policy for an annual premium of

$300. Actuarial tables show that a person who would be sold such a policy with this premium has

a .001 probability of death during a year. Let x be a random variable representing the insurance

company’s profit made on one of these policies during a year. The probability distribution of x is

x, Profit p(x), Probability of x

$300 (if the policyholder lives) .999

.001
(a $19,700 loss if the policyholder dies)

The expected value of x (expected profit per year) is

This says that if the insurance company sells a very large number of these policies, it will average

a profit of $280 per policy per year. Since insurance companies actually do sell large numbers of

policies, it is reasonable for these companies to make profitability decisions based on expected

values.

Next, suppose that we wish to find the premium that the insurance company must charge for a

$20,000 policy if the company wishes the average profit per policy per year to be greater than $0.

If we let prem denote the premium the company will charge, then the probability distribution of

the company’s yearly profit x is

x, Profit p(x), Probability of x

prem (if policyholder lives) .999

(if policyholder dies) .001

The expected value of x (expected profit per year) is

  prem  20

 mx  prem(.999)  ( prem  20,000)(.001)

prem  $20,000

  $280

 mx  $300(.999)  ( $19,700)(.001)

$300  $20,000   $19,700



In order for this expected profit to be greater than zero, the premium must be greater than $20. If,

as previously stated, the company charges $300 for such a policy, the $280 charged in excess of

the needed $20 compensates the company for commissions paid to salespeople, administrative

costs, dividends paid to investors, and other expenses.

In general, it is reasonable to base decisions on an expected value if we perform the experi-

ment related to the decision (for example, if we sell the life insurance policy) many times. If we

do not (for instance, if we perform the experiment only once), then it may not be a good idea

to base decisions on the expected value. For example, it might not be wise for you—as an

individual—to sell one person a $20,000 life insurance policy for a premium of $300. To see this,

again consider the probability distribution of yearly profit:

x, Profit p(x), Probability of x

$300 (if policyholder lives) .999

.001
(if policyholder dies)

and recall that the expected profit per year is $280. However, since you are selling only one pol-

icy, you will not receive the $280. You will either gain $300 (with probability .999) or you will

lose $19,700 (with probability .001). Although the decision is personal, and although the chance

of losing $19,700 is very small, many people would not risk such a loss when the potential gain

is only $300.

Just as the population of all possible observed values of a discrete random variable x has a

mean , this population also has a variance and a standard deviation . Recall that the

variance of a population is the average of the squared deviations of the different population

values from the population mean. To find , we calculate for each value of x,

multiply by the probability p(x), and sum the resulting products over all possible

values of x.

(x  mx)
2

(x  mx)
2

sx
2

sxsx
2

mx

$300  $20,000   $19,700
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The Variance and Standard Deviation of a Discrete Random Variable

The variance of a discrete random variable x is

The standard deviation of x is the positive square root of the variance of x. That is,

sx  2sx
2

s
2
x  a

All x

(x  mx)
2 p(x)

EXAMPLE 5.7

Table 5.2 gives the probability distribution of x, the number of TrueSound-XL radios sold in a

week at Sound City. Remembering that we have calculated (in Example 5.4) to be 2.1, it

follows that

and that the standard deviation of x is 

The variance and the standard deviation measure the spread of the population of all pos-

sible observed values of the random variable. To see how to use , remember that Chebyshev’ssx

sxsx
2

sx  1.89  .9434

  .89

  (4.41)(.03)  (1.21)(.20)  (.01)(.50)  (.81)(.20)  (3.61)(.05)  (8.41)(.02)

   (4  2.1)2 p(4)  (5  2.1)2 p(5)

  (0  2.1)2 p(0)  (1  2.1)2 p(1)  (2  2.1)2 p(2)  (3  2.1)2 p(3)

 s2
x  a

All x

(x  mx)
2 p(x)

mx
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Theorem (see Chapter 3, page 116) tells us that, for any value of k that is greater than 1, at least

100 % of all possible observed values of the random variable x lie in the interval

Stated in terms of a probability, we have

For example, consider the probability distribution (in Table 5.2) of x, the number of

TrueSound-XL radios sold in a week at Sound City. If we set k equal to 2, and if we use 

and to calculate the interval

then Chebyshev’s Theorem tells us that

This says that in at least 75 percent of all weeks, Sound City will sell between .2132 and 3.9868

TrueSound-XL radios. As illustrated in Figure 5.2, there are three values of x between .2132 and

3.9868—namely, , , and . Therefore, the exact probability that x will be in the

interval is

This illustrates that, although Chebyshev’s Theorem guarantees us that at least 100 %

of all possible observed values of a random variable x fall in the interval , often the

percentage is considerably higher.

In some cases, the graph of the probability distribution of a discrete random variable has the

symmetrical, bell-shaped appearance of a normal curve. For example, the graph in Figure 5.2

is roughly bell-shaped and symmetrical. In such a situation—and under certain additional

assumptions—the probability distribution can sometimes be approximated by a normal curve.

We will discuss the needed assumptions in Chapter 6. As an example of such assumptions, note

that although the graph in Figure 5.2 is roughly bell-shaped and symmetrical, it can be shown

that there are not enough values of x, and thus not enough probabilities p(x), for us to

approximate the probability distribution by using a normal curve. If, however, the probability

distribution of a discrete random variable x can be approximated by a normal curve, then the

Empirical Rule for normally distributed populations describes the population of all possible

values of x. Specifically, we can say that approximately 68.26 percent, 95.44 percent, and

99.73 percent of all possible observed values of x fall in the intervals , ,

and .[mx  3sx ]

[mx  2sx ][mx  sx ]

[mx  ksx]

(1  1兾k2)

p(1)  p(2)  p(3)  .20  .50  .20  .90

[mx  2sx ]

x  3x  2x  1

P(x falls in the interval [.2132,  3.9868])  1  1兾22
 3兾4

  [.2132,  3.9868]

[mx  2sx]  [2.1  2(.9434)]

sx  .9434

mx  2.1

P(x falls in the interval [mx  ksx])  1  1兾k 2

[mx  ksx].

(1  1兾k 2)

Radios sold, x

x ⫺ 2
⫽ .2132



⫽ 2.1
x ⫹ 2x

⫽ 3.9868
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F I G U R E 5 . 2 The Interval [Mx ⴞ 2Sx] for the Probability Distribution Describing 

TrueSound-XL Radio Sales (see Table 5.2)



To summarize, the standard deviation sx of a discrete random variable measures the spread of

the population of all possible observed values of x. When the probability distribution of x can be

approximated by a normal curve, this spread can be characterized by the Empirical Rule. When

this is not possible, we can use Chebyshev’s Theorem to characterize the spread of x.

To conclude this section, note that in Appendix B on page 877 we discuss various theoretical

properties of the means and variances of random variables. In this appendix we also discuss the

idea of the covariance between two random variables.
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Exercises for Section 5.2
CONCEPTS

5.4 What is a discrete probability distribution? Explain in your own words.

5.5 What conditions must be satisfied by the probabilities in a discrete probability distribution?

Explain what these conditions mean.

5.6 Describe how to compute the mean (or expected value) of a discrete random variable, and interpret

what this quantity tells us about the observed values of the random variable.

5.7 Describe how to compute the standard deviation of a discrete random variable, and interpret what

this quantity tells us about the observed values of the random variable.

METHODS AND APPLICATIONS

5.8 Explain whether each of the following is a valid probability distribution. If the probability

distribution is valid, show why. Otherwise, show which condition(s) of a probability distribution

are not satisfied.

a b c d

5.9 Consider each of the following probability distributions.

a b c

Calculate mx and sx for each distribution. Then explain, using the probabilities, why mx is the mean

of all possible observed values of x.

5.10 For each of the following, write out and graph the probability distribution of x. That is, list all the

possible values of x and also list the corresponding probabilities. Then graph the distribution.

a Refer to Exercise 4.3 (page 163), and let x equal the number of patrons who prefer diet cola A.

b Refer to Exercise 4.4 (page 163), and let x equal the number of girls born to the couple.

c Refer to Exercise 4.5 (page 163), and let x equal the number of people who will purchase a car.

5.11 For each of the following, find mx, s
2
x, and sx. Then interpret in words the meaning of mx, and

employ Chebyshev’s rule to find intervals that contain at least 3兾4 and 8兾9 of the observed values

of x.

a x the number of patrons who prefer diet cola A as defined in Exercise 5.10a.

b x the number of girls born to the couple as defined in Exercise 5.10b.

c x the number of people who will purchase a car as defined in Exercise 5.10c.

5.12 Suppose that the probability distribution of a random variable x can be described by the

formula

for each of the values x  1, 2, 3, 4, and 5. For example, then, P(x 2) p(2) 2兾15.

a Write out the probability distribution of x.

b Show that the probability distribution of x satisfies the properties of a discrete probability

distribution.

c Calculate the mean of x.

d Calculate the variance, s2
x, and the standard deviation, sx.

p(x)  
x

15

x p(x)

 2 .1

0 .3

2 .4

5 .2

x p(x)

0 .25

1 .45

2 .2

3 .1

x p(x)

0 .2

1 .8

x p(x)

.1 2/7

.7 4/7

.9 1/7

x p(x)

2 .25

4 .35

6 .3

x p(x)

1/2  1

3/4 0

1 2

x p(x)

 1 .2

0 .6

1 .2
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5.13 The following table summarizes investment outcomes and corresponding probabilities for a

particular oil well:

x ⴝ the outcome in $ p(x)

 $40,000 (no oil) .25

10,000 (some oil) .7

70,000 (much oil) .05

a Graph p(x); that is, graph the probability distribution of x.

b Find the expected monetary outcome. Mark this value on your graph of part a. Then interpret

this value.

5.14 In the book Foundations of Financial Management (7th ed.), Stanley B. Block and Geoffrey A.

Hirt discuss risk measurement for investments. Block and Hirt present an investment with the

possible outcomes and associated probabilities given in Table 5.4. The authors go on to say that the

probabilities

may be based on past experience, industry ratios and trends, interviews with company execu-

tives, and sophisticated simulation techniques. The probability values may be easy to determine

for the introduction of a mechanical stamping process in which the manufacturer has 10 years

of past data, but difficult to assess for a new product in a foreign market. OutcomeDist

a Use the probability distribution in Table 5.4 to calculate the expected value (mean) and the

standard deviation of the investment outcomes. Interpret the expected value.

b Block and Hirt interpret the standard deviation of the investment outcomes as follows:

“Generally, the larger the standard deviation (or spread of outcomes), the greater is the risk.”

Explain why this makes sense. Use Chebyshev’s Theorem to illustrate your point.

c Block and Hirt compare three investments having the following means and standard deviations

of the investment outcomes:

Which of these investments involves the most risk? The least risk? Explain why by using

Chebyshev’s Theorem to compute an interval for each investment that will contain at least 8兾9

of the investment outcomes.

d Block and Hirt continue by comparing two more investments:

The authors explain that Investment A

appears to have a high standard deviation, but not when related to the expected value of

the distribution. A standard deviation of $600 on an investment with an expected value of

$6,000 may indicate less risk than a standard deviation of $190 on an investment with an

expected value of only $600.

We can eliminate the size difficulty by developing a third measure, the coefficient of

variation (V ). This term calls for nothing more difficult than dividing the standard devia-

tion of an investment by the expected value. Generally, the larger the coefficient of varia-

tion, the greater is the risk.

Coefficient of variation (V)  
s

m

Investment A Investment B

m  $6,000 m  $600

s  $600 s  $190

Investment 1 Investment 2 Investment 3

m  $600 m  $600 m  $600

s  $20 s  $190 s  $300

DS

T A B L E 5 . 4 Probability Distribution of Outcomes for an Investment OutcomeDistDS

Probability of
Outcome Outcome Assumptions

$300 .2 Pessimistic

600 .6 Moderately successful

900 .2 Optimistic

Source: S. B. Block and G. A. Hirt, Foundations of Financial Management,

7th ed., p. 378. Copyright © 1994. Reprinted by permission of 
McGraw-Hill Companies, Inc. 
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F I G U R E 5 . 3 A Tree Diagram of Two Project Choices

Sales Probability

Present Value
of Cash Flow

from Sales
($ millions) 

Initial
Cost

($ millions)

Net Present Value,
 NPV

⫽ (3) ⫺ (4)
($ millions)

(1) (2) (3) (4) (5)

High
Moderate
Low

High
Moderate
Low

.50

.25

.25

$100
75
40

$60
60
60

$40 
15 

                            (20)

.20

.50

.30

$200
75
25

$60
60
60

$140 
15 

(35)

Enter
home

computer
market

Expand
semiconductor

capacity

A

B

Start

Source: S. B. Block and G. A. Hirt, Foundations of Financial Management, 7th ed., p. 387. Copyright © 1994. Reprinted by
permission of McGraw-Hill Companies, Inc.

Calculate the coefficient of variation for investments A and B. Which investment carries the

greater risk?

e Calculate the coefficient of variation for investments 1, 2, and 3 in part c. Based on the

coefficient of variation, which investment involves the most risk? The least risk? Do we obtain

the same results as we did by comparing standard deviations (in part c)? Why?

5.15 An insurance company will insure a $50,000 diamond for its full value against theft at a premium

of $400 per year. Suppose that the probability that the diamond will be stolen is .005, and let x

denote the insurance company’s profit.

a Set up the probability distribution of the random variable x.

b Calculate the insurance company’s expected profit.

c Find the premium that the insurance company should charge if it wants its expected profit to be

$1,000.

5.16 In the book Foundations of Financial Management (7th ed.), Stanley B. Block and Geoffrey A.

Hirt discuss a semiconductor firm that is considering two choices: (1) expanding the production of

semiconductors for sale to end users or (2) entering the highly competitive home computer market.

The cost of both projects is $60 million, but the net present value of the cash flows from sales and

the risks are different.

Figure 5.3 gives a tree diagram of the project choices. The tree diagram gives a probability

distribution of expected sales for each project. It also gives the present value of cash flows from

sales and the net present value (NPV  present value of cash flow from sales minus initial cost)

corresponding to each sales alternative. Note that figures in parentheses denote losses.

a For each project choice, calculate the expected net present value.

b For each project choice, calculate the variance and standard deviation of the net present value.

c Calculate the coefficient of variation for each project choice. See Exercise 5.14d for a 

discussion of the coefficient of variation.

d Which project has the higher expected net present value?

e Which project carries the least risk? Explain.

f In your opinion, which project should be undertaken? Justify your answer.

5.17 Five thousand raffle tickets are to be sold at $10 each to benefit a local community group. The

prizes, the number of each prize to be given away, and the dollar value of winnings for each prize

are as follows: Raffle

Number to Be
Prize Given Away Dollar Value

Automobile 1 $20,000

Entertainment center 2 3,000 each

DVD recorder 5 400 each

Gift certificate 50 20 each

DS
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If you buy one ticket, calculate your expected winnings. (Form the probability distribution of

x  your dollar winnings, and remember to subtract the cost of your ticket.)

5.18 Company A is considering the acquisition of two separate but large companies, Company B and

Company C, having sales and assets equal to its own. Table 5.5 gives the probabilities of returns

for each of the three companies under various economic conditions. The table also gives the 

probabilities of returns for each possible combination: Company A plus Company B, and 

Company A plus Company C. AcqDistributions
a For each of Companies A, B, and C find the mean return and the standard deviation of returns.

b Find the mean return and the standard deviation of returns for the combination of Company A

plus Company B.

c Find the mean return and the standard deviation of returns for the combination of Company A

plus Company C.

d Compare the mean returns for each of the two possible combinations—Company A plus

Company B and Company A plus Company C. Is either mean higher? How do they compare to

Company A’s mean return?

e Compare the standard deviations of the returns for each of the two possible combinations—

Company A plus Company B and Company A plus Company C. Which standard deviation is

smaller? Which possible combination involves less risk? How does the risk carried by this

combination compare to the risk carried by Company A alone?

f Which acquisition would you recommend—Company A plus Company B or Company A plus

Company C?

5.19 THE ACCURATINGS CASE

Again consider Exercise 4.32 (page 181) and the title-by-title analysis of the song “We’ve Got It

Goin’ On” by the Backstreet Boys. Although not discussed in Exercise 4.32, Strategic Radio

Research estimated the proportions of listeners familiar with the song who would give the song

ratings of 5, 4, 3, 2, and 1 to be, respectively, .1978, .2967, .3077, .0879, and .1099. Assign the

numerical values 1 through 5 to the ratings 1 through 5.

a Find an estimate of the probability distribution of this song’s rating, x, by a randomly selected

listener who is familiar with the song.

b Find the popularity index for the song “We’ve Got It Goin’ On” that would be reported by

Strategic Radio Research. That is, find an estimate of the mean rating of this song that would be

given by all listeners who are familiar with this song.

5.3 The Binomial Distribution
In this section we discuss what is perhaps the most important discrete probability distribution—

the binomial distribution. We begin with an example.

DS

T A B L E 5 . 5 Return Distributions for Companies A, B, and C and for Two Possible Acquisitions AcqDistributions

Economic Company A Company B Company C Company A ⴙ B Company A ⴙ C

Condition Probability Returns Returns Returns Returns Returns

1 .2 17% 19% 13% 18% 15%

2 .2 15 17 11 16 13

3 .2 13 15 15 14 14

4 .2 11 13 17 12 14

5 .2 9 11 19 10 14

DS

Use the
binomial

distribution to com-
pute probabilities.

LO3

EXAMPLE 5.8

Suppose that historical sales records indicate that 40 percent of all customers who enter a discount

department store make a purchase. What is the probability that two of the next three customers will

make a purchase?

In order to find this probability, we first note that the experiment of observing three customers

making a purchase decision has several distinguishing characteristics:

1 The experiment consists of three identical trials; each trial consists of a customer making a

purchase decision.



2 Two outcomes are possible on each trial: the customer makes a purchase (which we call a

success and denote as S ), or the customer does not make a purchase (which we call a 

failure and denote as F ).

3 Since 40 percent of all customers make a purchase, it is reasonable to assume that P(S ), the

probability that a customer makes a purchase, is .4 and is constant for all customers. This

implies that P(F), the probability that a customer does not make a purchase, is .6 and is

constant for all customers.

4 We assume that customers make independent purchase decisions. That is, we assume that

the outcomes of the three trials are independent of each other.

It follows that the sample space of the experiment consists of the following eight sample space

outcomes:

SSS FFS

SSF FSF

SFS SFF

FSS FFF

Here the sample space outcome SSS represents all three customers making purchases. On the

other hand, the sample space outcome SFS represents the first customer making a purchase, the

second customer not making a purchase, and the third customer making a purchase.

Two out of three customers make a purchase if one of the sample space outcomes SSF, SFS,

or FSS occurs. Furthermore, since the trials (purchase decisions) are independent, we can simply

multiply the probabilities associated with the different trial outcomes (each of which is S or F) to

find the probability of a sequence of outcomes:

It follows that the probability that two out of the next three customers make a purchase is

We can now generalize the previous result and find the probability that x of the next n cus-

tomers will make a purchase. Here we will assume that p is the probability that a customer

makes a purchase, is the probability that a customer does not make a purchase, and

purchase decisions (trials) are independent. To generalize the probability that two out of the

next three customers make a purchase, which equals

we note that

1 The 3 in this expression is the number of sample space outcomes (SSF, SFS, and FSS)

that correspond to the event “two out of the next three customers make a purchase.”

Note that this number equals the number of ways we can arrange two successes among

the three trials.

2 The .4 is p, the probability that a customer makes a purchase.

3 The .6 is , the probability that a customer does not make a purchase.

Therefore, the probability that two of the next three customers make a purchase is

冢
The number of ways

to arrange 2 successes

among 3 trials 冣 p2q1

q  1  p

3(.4)2(.6)

q  1  p

  3(.4)2(.6)  .288

  (.4)2(.6)  (.4)2(.6)  (.4)2(.6)

P(SSF )  P(SFS)  P(FSS)

 P(FSS )  P(F )P(S)P(S)  (.6)(.4)(.4)  (.4)2(.6)

 P(SFS )  P(S )P(F )P(S)  (.4)(.6)(.4)  (.4)2(.6)

 P(SSF )  P(S )P(S)P(F )  (.4)(.4)(.6)  (.4)2(.6)
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Now, notice that, although each of the sample space outcomes SSF, SFS, and FSS represents a

different arrangement of the two successes among the three trials, each of these sample space out-

comes consists of two successes and one failure. For this reason, the probability of each of these

sample space outcomes equals . It follows that p is raised to a power that equals

the number of successes (2) in the three trials, and q is raised to a power that equals the number

of failures (1) in the three trials.

In general, each sample space outcome describing the occurrence of x successes (purchases)

in n trials represents a different arrangement of x successes in n trials. However, each outcome

consists of x successes and failures. Therefore, the probability of each sample space out-

come is . It follows by analogy that the probability that x of the next n trials are successes

(purchases) is

We can use the expression we have just arrived at to compute the probability of x successes in

the next n trials if we can find a way to calculate the number of ways to arrange x successes

among n trials. It can be shown that:

The number of ways to arrange x successes among n trials equals

where n! is pronounced “n factorial” and is calculated as and where

(by definition) 

For instance, using this formula, we can see that the number of ways to arrange successes

among trials equals

Of course, we have previously seen that the three ways to arrange successes among 

trials are SSF, SFS, and FSS.

Using the preceding formula, we obtain the following general result:

n  3x  2

n!

x! (n  x)!
 

3!

2! (3  2)!
 

3!

2! 1!
 

3  2  1

2  1  1
 3

n  3

x  2

0!  1.

n!  n(n – 1)(n – 2) … (1)

n!

x! (n x)!

冢
The number of ways

to arrange x successes

among n trials 冣pxqn x

pxqn x

n  x

(.4)2(.6)1
 p 2q 1

The Binomial Distribution

A binomial experiment has the following characteristics:

1 The experiment consists of n identical trials.

2 Each trial results in a success or a failure.

3 The probability of a success on any trial is p and remains constant from trial to trial. This implies that the

probability of failure, q, on any trial is and remains constant from trial to trial.

4 The trials are independent (that is, the results of the trials have nothing to do with each other).

Furthermore, if we define the random variable

x   the total number of successes in n trials of a binomial experiment

then we call x a binomial random variable, and the probability of obtaining x successes in n trials is

p(x)  
n!

x! (n  x)!
 pxq n x

1  p



Noting that we sometimes refer to the formula for p(x) as the binomial formula, we illustrate

the use of this formula in the following example.
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EXAMPLE 5.9

Consider the discount department store situation discussed in Example 5.8. In order to find the

probability that three of the next five customers make purchases, we calculate

Here we see that

1 is the number of ways to arrange three successes among five trials. For

instance, two ways to do this are described by the sample space outcomes SSSFF and

SFSSF. There are eight other ways.

2 is the probability of any sample space outcome consisting of three successes and

two failures.

Thus far we have shown how to calculate binomial probabilities. We next give several exam-

ples that illustrate some practical applications of the binomial distribution. As we demonstrate

in the first example, the term success does not necessarily refer to a desirable experimental

outcome. Rather, it refers to an outcome that we wish to investigate.

(.4)3(.6)2

5!
3! (5  3)!  10

  .2304

  10(.064)(.36)

  
5   4   3   2   1

(3   2   1)(2   1)
 (.4)3(.6)2

 p(3)  
5!

3! (5   3)!
 (.4)3(.6)5 3

 
5!

3! 2!
 (.4)3(.6)2

EXAMPLE 5.10

Antibiotics occasionally cause nausea as a side effect. A major drug company has developed a

new antibiotic called Phe-Mycin. The company claims that, at most, 10 percent of all patients

treated with Phe-Mycin would experience nausea as a side effect of taking the drug. Suppose that

we randomly select patients and treat them with Phe-Mycin. Each patient will either

experience nausea (which we arbitrarily call a success) or will not experience nausea (a failure).

We will assume that p, the true probability that a patient will experience nausea as a side effect,

is .10, the maximum value of p claimed by the drug company. Furthermore, it is reasonable to

assume that patients’ reactions to the drug would be independent of each other. Let x denote the

number of patients among the four who will experience nausea as a side effect. It follows that x

is a binomial random variable, which can take on any of the potential values 0, 1, 2, 3, or 4. That

is, anywhere between none of the patients and all four of the patients could potentially experience

nausea as a side effect. Furthermore, we can calculate the probability associated with each possi-

ble value of x as shown in Table 5.6. For instance, the probability that none of the four randomly

selected patients experience nausea is

Because Table 5.6 lists each possible value of x and also gives the probability of each value, we

say that this table gives the binomial probability distribution of x.

  (.9)4
 .6561

  
4!

 (1)(4!) 
 (1)(.9)4

  
4!

0! 4!
 (.1)0(.9)4

 p(0)  P(x  0)  
4!

0! (4  0)!
 (.1)0(.9)4 0

n  4
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The binomial probabilities given in Table 5.6 need not be hand calculated. Excel and

MINITAB can be used to calculate binomial probabilities. For instance, Figure 5.4(a) gives the

Excel output of the binomial probability distribution listed in Table 5.6.1 Figure 5.4(b) shows a

graph of this distribution.

In order to interpret these binomial probabilities, consider administering the antibiotic

Phe-Mycin to all possible samples of four randomly selected patients. Then, for example,

says that none of the four sampled patients would experience nausea in 65.61 percent of all possible

samples. Furthermore, as another example,

says that three out of the four sampled patients would experience nausea in only .36 percent of all

possible samples.

P(x  3)  0.0036

P(x  0)  0.6561

T A B L E 5 . 6 The Binomial Probability Distribution of x, the Number of Four Randomly 

Selected Patients Who Will Experience Nausea as a Side Effect of Being 

Treated with Phe-Mycin

x (Number Who
Experience Nausea)

0

1

2

3

4  p(4)  P(x  4)  
4!

4! (4  4)!
 (.1) 4(.9) 4 4

 .0001

 p(3)  P(x  3)  
4!

3! (4  3)!
 (.1) 3(.9) 4 3

 .0036

 p(2)  P(x  2)  
4!

2! (4  2)!
 (.1) 2(.9) 4 2

 .0486

 p(1)  P(x  1)  
4!

1! (4  1)!
 (.1) 1(.9) 4 1

 .2916

 p(0)  P(x  0)  
4!

0! (4  0)!
 (.1) 0(.9) 4 0

 .6561

 p(x)  
n!

x! (n  x)!
px(1  p)n x

F I G U R E 5 . 4 The Binomial Probability Distribution with p ⴝ .10 and n ⴝ 4

(a) Excel output of the binomial distribution (b) A graph of the distribution

Number of patients experiencing
nausea, x
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Binomial distribution with n = 4
and p = 0.10 

     x        P(X = x)
     0         0.6561 
     1         0.2916 
     2         0.0486 
     3         0.0036 
     4         0.0001 

1As we will see in this chapter’s appendixes, we can use MINITAB to obtain output of the binomial distribution that is
essentially identical to the output given by Excel.

Another way to avoid hand calculating binomial probabilities is to use binomial tables,

which have been constructed to give the probability of x successes in n trials. A table of binomial



probabilities is given in Table A.1 (page 853). A portion of this table is reproduced in Table 5.7(a)

and (b). Part (a) of this table gives binomial probabilities corresponding to trials. Values

of p, the probability of success, are listed across the top of the table (ranging from to

in steps of .05), and more values of p (ranging from to in steps of .05)

are listed across the bottom of the table. When the value of p being considered is one of those

across the top of the table, values of x (the number of successes in four trials) are listed down

the left side of the table. For instance, to find the probabilities that we have computed in

Table 5.6, we look in part (a) of Table 5.7 and read down the column labeled .10. Re-

membering that the values of x are on the left side of the table because is on top of the

table, we find the probabilities in Table 5.6 (they are shaded). For example, the probability that

none of four patients experience nausea is , the probability that one of the four pa-

tients experiences nausea is and so forth. If the value of p is across the bottom of

the table, then we read the values of x from the right side of the table. As an example, if p equals

.60, then the probability of two successes in four trials is (we have shaded this

probability).

p(2)  .3456

p(1)  .2916,

p(0)  .6561

p  .10

(n  4)

p  .95p  .50p  .50

p  .05

n  4

212 Chapter 5 Discrete Random Variables

T A B L E 5 . 7 A Portion of a Binomial Probability Table

(a) A Table for n ⴝ 4 Trials

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Values of p (.05 to .50)

↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .8145 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915 .0625 4

1 .1715 .2916 .3685 .4096 .4219 .4116 .3845 .3456 .2995 .2500 3

Number of 2 .0135 .0486 .0975 .1536 .2109 .2646 .3105 .3456 .3675 .3750 2 Number of
Successes 3 .0005 .0036 .0115 .0256 .0469 .0756 .1115 .1536 .2005 .2500 1 Successes

4 .0000 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 ↑

Values of p (.50 to .95) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(b) A Table for n ⴝ 8 trials

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Values of p (.05 to .50)

↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .6634 .4305 .2725 .1678 .1001 .0576 .0319 .0168 .0084 .0039 8

1 .2793 .3826 .3847 .3355 .2670 .1977 .1373 .0896 .0548 .0313 7

2 .0515 .1488 .2376 .2936 .3115 .2965 .2587 .2090 .1569 .1094 6

Number of 3 .0054 .0331 .0839 .1468 .2076 .2541 .2786 .2787 .2568 .2188 5 Number of
Successes 4 .0004 .0046 .0185 .0459 .0865 .1361 .1875 .2322 .2627 .2734 4 Successes

5 .0000 .0004 .0026 .0092 .0231 .0467 .0808 .1239 .1719 .2188 3

6 .0000 .0000 .0002 .0011 .0038 .0100 .0217 .0413 .0703 .1094 2

7 .0000 .0000 .0000 .0001 .0004 .0012 .0033 .0079 .0164 .0313 1

8 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 ↑

Values of p (.50 to .95) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

EXAMPLE 5.11

Suppose that we wish to investigate whether p, the probability that a patient will experience nau-

sea as a side effect of taking Phe-Mycin, is greater than .10, the maximum value of p claimed by

the drug company. This assessment will be made by assuming, for the sake of argument, that p

equals .10, and by using sample information to weigh the evidence against this assumption and

in favor of the conclusion that p is greater than .10. Suppose that when a sample of ran-

domly selected patients is treated with Phe-Mycin, three of the four patients experience nausea.

Because the fraction of patients in the sample that experience nausea is 3兾4  .75, which is far

greater than .10, we have some evidence contradicting the assumption that p equals .10. To eval-

uate the strength of this evidence, we calculate the probability that at least 3 out of 4 randomly

n  4
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selected patients would experience nausea as a side effect if, in fact, p equals .10. Using the

binomial probabilities in Table 5.7(a), and realizing that the events and are mutually

exclusive, we have

This probability says that, if p equals .10, then in only .37 percent of all possible samples of four

randomly selected patients would at least three of the four patients experience nausea as a side

effect. This implies that, if we are to believe that p equals .10, then we must believe that we have

observed a sample result that is so rare that it can be described as a 37 in 10,000 chance. Because

observing such a result is very unlikely, we have very strong evidence that p does not equal .10

and is, in fact, greater than .10.

Next, suppose that we consider what our conclusion would have been if only one of the four

randomly selected patients had experienced nausea. Because the sample fraction of patients who

experienced nausea is , which is greater than .10, we would have some evidence to

contradict the assumption that p equals .10. To evaluate the strength of this evidence, we calcu-

late the probability that at least one out of four randomly selected patients would experience nau-

sea as a side effect of being treated with Phe-Mycin if, in fact, p equals .10. Using the binomial

probabilities in Table 5.7(a), we have

This probability says that, if p equals .10, then in 34.39 percent of all possible samples of four

randomly selected patients, at least one of the four patients would experience nausea. Since it is

not particularly difficult to believe that a 34.39 percent chance has occurred, we would not have

much evidence against the claim that p equals .10.

Example 5.11 illustrates what is sometimes called the rare event approach to making a

statistical inference. The idea of this approach is that if the probability of an observed sample

result under a given assumption is small, then we have strong evidence that the assumption is

false. Although there are no strict rules, many statisticians judge the probability of an observed

sample result to be small if it is less than .05. The logic behind this will be explained more fully

in Chapter 9.

  .3439

  .2916  .0486  .0036  .0001

  P(x  1)  P(x  2)  P(x  3)  P(x  4)

 P(x  1)  P(x  1 or x  2 or x  3 or x  4)

1兾4  .25

  .0037

  .0036  .0001

  P(x  3)  P(x  4)

 P(x  3)  P(x  3  or  x  4)

x  4x  3

EXAMPLE 5.12

The manufacturer of the ColorSmart-5000 television set claims that 95 percent of its sets last at

least five years without requiring a single repair. Suppose that we contact randomly se-

lected ColorSmart-5000 purchasers five years after they purchased their sets. Each purchaser’s

set will have needed no repairs (a success) or will have been repaired at least once (a failure). We

will assume that p, the true probability that a purchaser’s television set will require no repairs

within five years, is .95, as claimed by the manufacturer. Furthermore, it is reasonable to believe

that the repair records of the purchasers’ sets are independent of each other. Let x denote the num-

ber of the randomly selected sets that have lasted at least five years without a single repair.

Then x is a binomial random variable that can take on any of the potential values 0, 1, 2, 3, 4, 5,

6, 7, or 8. The binomial distribution of x is listed in Table 5.8. Here we have obtained these prob-

abilities from Table 5.7(b). To use the table, we look at the column corresponding to .

Because is listed at the bottom of the table, we read the values of x and theirp  .95

p  .95

n  8

n  8



corresponding probabilities from bottom to top (we have shaded the probabilities). Notice that

the values of x are listed on the right side of the table.

Figure 5.5(a) gives the MINITAB output of the binomial distribution with and 

(that is, the binomial distribution of Table 5.8). This binomial distribution is graphed in 

Figure 5.5(b). Now, suppose that when we actually contact eight randomly selected purchasers,

we find that five out of the eight television sets owned by these purchasers have lasted at least five

years without a single repair. Because the sample fraction, 5兾8  .625, of television sets needing

no repairs is less than .95, we have some evidence contradicting the manufacturer’s claim that p

equals .95. To evaluate the strength of this evidence, we will calculate the probability that five or

fewer of the eight randomly selected televisions would last five years without a single repair if,

in fact, p equals .95. Using the binomial probabilities in Table 5.8, we have

This probability says that, if p equals .95, then in only .58 percent of all possible samples of

eight randomly selected ColorSmart-5000 televisions would five or fewer of the eight televi-

sions last five years without a single repair. Therefore, if we are to believe that p equals .95, we

must believe that a 58 in 10,000 chance has occurred. Since it is difficult to believe that such a

small chance has occurred, we have strong evidence that p does not equal .95, and is, in fact, less

than .95.

  .0058

  .0054  .0004  .0000  .0000  .0000  .0000

  P(x  5)  P(x  4)  P(x  3)  P(x  2)  P(x  1)  P(x  0)

 P(x  5)  P(x  5 or x  4 or x  3 or x  2 or x  1 or x  0)

n  8

p  .95
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T A B L E 5 . 8 The Binomial Distribution of x, the Number of Eight ColorSmart-5000 Television Sets That 

Have Lasted at Least Five Years Without Needing a Single Repair, When p ⴝ .95

x, Number of Sets That
Require No Repairs

0 p(0) .0000

1 p(1) .0000

2 p(2) .0000

3 p(3) .0000

4 p(4) .0004

5 p(5) .0054

6 p(6) .0515

7 p(7) .2793

8 p(8) .6634

p(x) ⴝ
8!

x! (8ⴚ x)!
 (.95)x(.05)8 x

F I G U R E 5 . 5 The Binomial Probability Distribution with p ⴝ .95 and n ⴝ 8

(a) MINITAB output of the binomial distribution (b) A graph of the distribution
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Binomial with n = 8 and p = 0.95 

     x       P( X = x )

     3          0.0000 

     4          0.0004 

     5          0.0054 
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     7          0.2793 

     8          0.6634 
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In Examples 5.10 and 5.12 we have illustrated binomial distributions with different values of

n and p. The values of n and p are often called the parameters of the binomial distribution.

Figure 5.6 shows several different binomial distributions. We see that, depending on the parame-

ters, a binomial distribution can be skewed to the right, skewed to the left, or symmetrical.

We next consider calculating the mean, variance, and standard deviation of a binomial random

variable. If we place the binomial probability formula into the expressions (given in Section 5.2)

for the mean and variance of a discrete random variable, we can derive formulas that allow us to

easily compute , , and for a binomial random variable. Omitting the details of the derivation,

we have the following results:

sxs
2
xmx

F I G U R E 5 . 6 Several Binomial Distributions

Binomial with n = 5 and p = .1

Binomial with n = 20 and p = .2 Binomial with n = 50 and p = .5

Binomial with n = 5 and p = .5 Binomial with n = 5 and p = .9
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The Mean, Variance, and Standard Deviation of a Binomial Random Variable

If x is a binomial random variable, then

where n is the number of trials, p is the probability of success on each trial, and is the probability

of failure on each trial.

q  1  p

mx  np    s2
x  npq    sx  2npq

As a simple example, again consider the television manufacturer, and recall that x is the num-

ber of eight randomly selected ColorSmart-5000 televisions that last five years without a single

repair. If the manufacturer’s claim that p equals .95 is true (which implies that q equals

), it follows that

In order to interpret , suppose that we were to randomly select all possible samples of

eight ColorSmart-5000 televisions and record the number of sets in each sample that last five

years without a repair. If we averaged all of our results, we would find that the average number

of sets per sample that last five years without a repair is equal to 7.6.

mx  7.6

 sx  2npq  2.38  .6164

 s2
x  npq  8(.95)(.05)  .38

 mx  np  8(.95)  7.6

1  p  1  .95  .05
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Exercises for Section 5.3
CONCEPTS

5.20 List the four characteristics of a binomial experiment.

5.21 Suppose that x is a binomial random variable. Explain what the values of x represent. That is, 

how are the values of x defined?

5.22 Explain the logic behind the rare event approach to making statistical inferences.

METHODS AND APPLICATIONS

5.23 Suppose that x is a binomial random variable with , , and .

a Write the binomial formula for this situation and list the possible values of x.

b For each value of x, calculate p(x), and graph the binomial distribution.

c Find .

d Find .

e Find .

f Find .

g Find .

h Use the probabilities you computed in part b to calculate the mean, , the variance, , and the

standard deviation, , of this binomial distribution. Show that the formulas for , , and 

given in this section give the same results.

i Calculate the interval . Use the probabilities of part b to find the probability that x

will be in this interval.

5.24 Thirty percent of all customers who enter a store will make a purchase. Suppose that six customers

enter the store and that these customers make independent purchase decisions.

a Let x  the number of the six customers who will make a purchase. Write the binomial formula

for this situation.

b Use the binomial formula to calculate

(1) The probability that exactly five customers make a purchase.

(2) The probability that at least three customers make a purchase.

(3) The probability that two or fewer customers make a purchase.

(4) The probability that at least one customer makes a purchase.

5.25 The customer service department for a wholesale electronics outlet claims that 90 percent of all

customer complaints are resolved to the satisfaction of the customer. In order to test this claim, a

random sample of 15 customers who have filed complaints is selected.

a Let x  the number of sampled customers whose complaints were resolved to the customer’s

satisfaction. Assuming the claim is true, write the binomial formula for this situation.

b Use the binomial tables (see Table A.1, page 853) to find each of the following if we assume

that the claim is true:

(1)
(2)
(3)
(4)
(5)

c Suppose that of the 15 customers selected, 9 have had their complaints resolved satisfactorily.

Using part b, do you believe the claim of 90 percent satisfaction? Explain.

5.26 The United States Golf Association requires that the weight of a golf ball must not exceed 1.62 oz.

The association periodically checks golf balls sold in the United States by sampling specific brands

stocked by pro shops. Suppose that a manufacturer claims that no more than 1 percent of its brand

of golf balls exceed 1.62 oz. in weight. Suppose that 24 of this manufacturer’s golf balls are

P(x  9).

P(9  x  12).

P(x  14).

P(x  10).

P(x  13).

[mx  2sx]

sxs
2
xmxsx

s
2
xmx

P(x  2)

P(x  4)

P(x 3)

P(x  3)

P(x  3)

q  .7p  .3n  5

To conclude this section, note that in optional Section 5.5, we discuss the hypergeometric

distribution. This distribution is related to the binomial distribution. The main difference

between the two distributions is that in the case of the hypergeometric distribution, the trials are

not independent and the probabilities of success and failure change from trial to trial. This occurs

when we sample without replacement from a finite population. However, when the finite popula-

tion is large compared to the sample, the binomial distribution can be used to approximate the

hypergeometric distribution. The details are explained in Section 5.5.
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randomly selected, and let x denote the number of the 24 randomly selected golf balls that exceed

1.62 oz. Figure 5.7 gives part of an Excel output of the binomial distribution with ,

, and . (Note that, since for values of x from 6 to 24, we omit

these probabilities.) Use this output to

a Find , that is, find the probability that none of the randomly selected golf balls exceeds

1.62 oz. in weight.

b Find the probability that at least one of the randomly selected golf balls exceeds 1.62 oz. in weight.

c Find 

d Find 

e Suppose that 2 of the 24 randomly selected golf balls are found to exceed 1.62 oz. Using your

result from part d, do you believe the claim that no more than 1 percent of this brand of golf

balls exceed 1.62 oz. in weight?

5.27 An industry representative claims that 50 percent of all satellite dish owners subscribe to at least

one premium movie channel. In an attempt to justify this claim, the representative will poll a

randomly selected sample of dish owners.

a Suppose that the representative’s claim is true, and suppose that a sample of four dish owners is

randomly selected. Assuming independence, use an appropriate formula to compute

(1) The probability that none of the dish owners in the sample subscribes to at least one

premium movie channel.

(2) The probability that more than two dish owners in the sample subscribe to at least one

premium movie channel.

b Suppose that the representative’s claim is true, and suppose that a sample of 20 dish owners is

randomly selected. Assuming independence, what is the probability that

(1) Nine or fewer dish owners in the sample subscribe to at least one premium movie

channel?

(2) More than 11 dish owners in the sample subscribe to at least one premium movie channel?

(3) Fewer than five dish owners in the sample subscribe to at least one premium movie

channel?

c Suppose that, when we survey 20 randomly selected dish owners, we find that 4 of the dish

owners actually subscribe to at least one premium movie channel. Using a probability you found

in this exercise as the basis for your answer, do you believe the industry representative’s claim?

Explain.

5.28 For each of the following, calculate , , and by using the formulas given in this section. Then

(1) interpret the meaning of , and (2) find the probability that x falls in the interval

a The situation of Exercise 5.24, where the number of the six customers who will make a

purchase.

b The situation of Exercise 5.25, where x  the number of 15 sampled customers whose com-

plaints were resolved to the customer’s satisfaction.

c The situation of Exercise 5.26, where x  the number of the 24 randomly selected golf balls

that exceed 1.62 oz. in weight.

5.29 The January 1986 mission of the Space Shuttle Challenger was the 25th such shuttle mission. 

It was unsuccessful due to an explosion caused by an O-ring seal failure.

a According to NASA, the probability of such a failure in a single mission was 1兾60,000. Using

this value of p and assuming all missions are independent, calculate the probability of no 

mission failures in 25 attempts. Then calculate the probability of at least one mission failure in

25 attempts.

b According to a study conducted for the Air Force, the probability of such a failure in a single

mission was 1/35. Recalculate the probability of no mission failures in 25 attempts and the

probability of at least one mission failure in 25 attempts.

c Based on your answers to parts a and b, which value of p seems more likely to be true? Explain.

d How small must p be made in order to ensure that the probability of no mission failures in 

25 attempts is .999?

5.4 The Poisson Distribution (Optional)
We now discuss a discrete random variable that describes the number of occurrences of an event

over a specified interval of time or space. For instance, we might wish to describe (1) the number

of customers who arrive at the checkout counters of a grocery store in one hour, or (2) the num-

ber of major fires in a city during the last two months, or (3) the number of dirt specks found in

one square yard of plastic wrap.

x  

[mx  2sx].mx

sxs
2
xmx

P(x  2).

P(x  3).

P(x  0)

P(X  x)  .0000q  .99p  .01

n  24 F I G U R E 5 . 7

Excel Output of

the Binomial 

Distribution with

n ⴝ 24, pⴝ .01,

and qⴝ .99

Use the
Poisson

distribution to
compute probabili-
ties (Optional).

LO4

Binomial distribution
with n = 24 and p = 0.01

x P (X = x)

0 0.7857

1 0.1905

2 0.0221

3 0.0016

4 0.0001

5 0.0000



Such a random variable can often be described by a Poisson distribution. We describe this

distribution and give two assumptions needed for its use in the following box:
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EXAMPLE 5.13

In an article in the August 15, 1998, edition of The Journal News (Hamilton, Ohio),2 the

Associated Press reported that the Cleveland Air Route Traffic Control Center, the busiest in the

nation for guiding planes on cross-country routes, had experienced an unusually high number of

errors since the end of July. An error occurs when controllers direct flights either within five miles

of each other horizontally, or within 2,000 feet vertically at a height of 18,000 feet or more (the

standard is 1,000 feet vertically at heights less than 18,000 feet). The controllers’ union blamed

the errors on a staff shortage, whereas the Federal Aviation Administration (FAA) claimed that

the cause was improved error reporting and an unusual number of thunderstorms.

Suppose that an air traffic control center has been averaging 20.8 errors per year and that the

center experiences 3 errors in a week. The FAA must decide whether this occurrence is unusual

enough to warrant an investigation as to the causes of the (possible) increase in errors. To inves-

tigate this possibility, we will find the probability distribution of x, the number of errors in a

week, when we assume that the center is still averaging 20.8 errors per year.

Arbitrarily choosing a time unit of one week, the average (or expected) number of errors

per week is 20.8兾52  .4. Therefore, we can use the Poisson formula (note that the Poisson

assumptions are probably satisfied) to calculate the probability of no errors in a week to be

Similarly, the probability of three errors in a week is

As with the binomial distribution, tables have been constructed that give Poisson probabilities.

A table of these probabilities is given in Table A.2 (page 857). A portion of this table is reproduced

p(3)  P(x  3)  
e .4 (.4)3

3!
 

e .4 (.4)3

3  2  1
 .0072

p(0)  P(x  0)  
e m m0

0!
 

e .4 (.4)0

1
 .6703

2F. J. Frommer, “Errors on the Rise at Traffic Control Center in Ohio,” The Journal News, August 15, 1998.

The Poisson Distribution

Consider the number of times an event occurs over an interval of time or space, and assume that

1 The probability of the event’s occurrence is the same for any two intervals of equal length, and

2 Whether the event occurs in any interval is independent of whether the event occurs in any other

nonoverlapping interval.

Then, the probability that the event will occur x times in a specified interval is

Here is the mean (or expected) number of occurrences of the event in the specified interval, and

. . . is the base of Napierian logarithms.e  2.71828

m

p(x)  
e mm x

x!

In theory, there is no limit to how large x might be. That is, theoretically speaking, the event

under consideration could occur an indefinitely large number of times during any specified inter-

val. This says that a Poisson random variable might take on any of the values 0, 1, 2, 3, . . . and

so forth. We will now look at an example.
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in Table 5.9. In this table, values of the mean number of occurrences, m, are listed across the top of

the table, and values of x (the number of occurrences) are listed down the left side of the table. In

order to use the table in the traffic control situation, we look at the column in Table 5.9 corre-

sponding to .4, and we find the probabilities of 0, 1, 2, 3, 4, 5, and 6 errors (we have shaded these

probabilities). For instance, the probability of one error in a week is .2681.Also, note that the prob-

ability of any number of errors greater than 6 is so small that it is not listed in the table. Table 5.10

summarizes the Poisson distribution of x, the number of errors in a week. This table also shows

how the probabilities associated with the different values of x are calculated.

M, Mean Number of Occurrences
x, Number of
Occurrences .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

0 .9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066 .3679

1 .0905 .1637 .2222 .2681 .3033 .3293 .3476 .3595 .3659 .3679

2 .0045 .0164 .0333 .0536 .0758 .0988 .1217 .1438 .1647 .1839

3 .0002 .0011 .0033 .0072 .0126 .0198 .0284 .0383 .0494 .0613

4 .0000 .0001 .0003 .0007 .0016 .0030 .0050 .0077 .0111 .0153

5 .0000 .0000 .0000 .0001 .0002 .0004 .0007 .0012 .0020 .0031

6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0005

M, Mean Number of Occurrences
x, Number of
Occurrences 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 .3329 .3012 .2725 .2466 .2231 .2019 .1827 .1653 .1496 .1353

1 .3662 .3614 .3543 .3452 .3347 .3230 .3106 .2975 .2842 .2707

2 .2014 .2169 .2303 .2417 .2510 .2584 .2640 .2678 .2700 .2707

3 .0738 .0867 .0998 .1128 .1255 .1378 .1496 .1607 .1710 .1804

4 .0203 .0260 .0324 .0395 .0471 .0551 .0636 .0723 .0812 .0902

5 .0045 .0062 .0084 .0111 .0141 .0176 .0216 .0260 .0309 .0361

6 .0008 .0012 .0018 .0026 .0035 .0047 .0061 .0078 .0098 .0120

7 .0001 .0002 .0003 .0005 .0008 .0011 .0015 .0020 .0027 .0034

8 .0000 .0000 .0001 .0001 .0001 .0002 .0003 .0005 .0006 .0009

Source: From Brooks/Cole © 1991.

T A B L E 5 . 9 A Portion of a Poisson Probability Table

x, the Number of Errors
in a Week

0

1

2

3

4

5

6 p(6)  
e .4(.4) 6

6!
 .0000

p(5)  
e .4(.4) 5

5!
 .0001

p(4)  
e .4(.4) 4

4!
 .0007

p(3)  
e .4(.4) 3

3!
 .0072

p(2)  
e .4(.4) 2

2!
 .0536

p(1)  
e .4(.4) 1

1!
 .2681

p(0)  
e .4(.4) 0

0!
 .6703

p(x) ⴝ
e
ⴚM
M

x

x!

T A B L E 5 . 1 0 The Poisson Distribution of x, the Number of Errors at an Air Traffic Control 

Center in a Week, When M ⴝ .4
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EXAMPLE 5.14

In the book Modern Statistical Quality Control and Improvement, Nicholas R. Farnum (1994)

presents an example dealing with the quality of computer software. In the example, Farnum

measures software quality by monitoring the number of errors per 1,000 lines of computer

code.

Suppose that the number of errors per 1,000 lines of computer code is described by a Poisson

distribution with a mean of four errors per 1,000 lines of code. If we wish to find the probability

of obtaining eight errors in 2,500 lines of computer code, we must adjust the mean of the Pois-

son distribution. To do this, we arbitrarily choose a space unit of one line of code, and we note

that a mean of four errors per 1,000 lines of code is equivalent to 4兾1,000 of an error per line of

code. Therefore, the mean number of errors per 2,500 lines of code is (4兾1,000)(2,500)  10. It

follows that

p(8)  
e m m8

8!
 

e 10 108

8!
 .1126

(a) MINITAB output of the Poisson distribution (b) A graph of the distribution
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   Poisson with mean = 0.4 

x        P( X = x ) 

       0         0.6703 

       1         0.2681 

       2         0.0536 
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       4         0.0007 

       5         0.0001 

       6         0.0000 

F I G U R E 5 . 8 The Poisson Probability Distribution with M ⴝ .4

Poisson probabilities can also be calculated by using MINITAB and Excel. For instance, Fig-

ure 5.8(a) gives the MINITAB output of the Poisson distribution presented in Table 5.10.3 This

Poisson distribution is graphed in Figure 5.8(b).

Next, recall that there have been three errors at the air traffic control center in the last week.

This is considerably more errors than .4, the expected number of errors assuming the center is

still averaging 20.8 errors per year. Therefore, we have some evidence to contradict this assump-

tion. To evaluate the strength of this evidence, we calculate the probability that at least three

errors will occur in a week if, in fact, m equals .4. Using the Poisson probabilities in Table 5.10

(for m  .4), we obtain

This probability says that, if the center is averaging 20.8 errors per year, then there would be three

or more errors in a week in only .8 percent of all weeks. That is, if we are to believe that the control

center is averaging 20.8 errors per year, then we must believe that an 8 in 1,000 chance has

occurred. Since it is very difficult to believe that such a rare event has occurred, we have strong

evidence that the average number of errors per week has increased. Therefore, an investigation by

the FAA into the reasons for such an increase is probably justified.

P(x  3)  p(3)  p(4)  p(5)  p(6)  .0072  .0007  .0001  .0000  .008

3As we will show in the appendixes to this chapter, we can use Excel and MegaStat to obtain output of the Poisson distribution
that is essentially identical to the output given by MINITAB.
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The Mean, Variance, and Standard Deviation of a Poisson Random Variable

Suppose that x is a Poisson random variable. If is the average number of occurrences of an event over the

specified interval of time or space of interest, then

mx  m    s2
x  m    sx 1m

m

Exercises for Section 5.4
CONCEPTS

5.30 The values of a Poisson random variable are x  0, 1, 2, 3, . . . Explain what these values

represent.

5.31 Explain the assumptions that must be satisfied when a Poisson distribution adequately describes a

random variable x.

METHODS AND APPLICATIONS

5.32 Suppose that x has a Poisson distribution with .

a Write the Poisson formula and describe the possible values of x.

b Starting with the smallest possible value of x, calculate p(x) for each value of x until p(x)

becomes smaller than .001.

c Graph the Poisson distribution using your results of b.

d Find . e Find . f Find .

g Find and . h Find .

i Find . j Find .

5.33 Suppose that x has a Poisson distribution with .

a Use the formulas given in this section to compute the mean, variance, and standard 

deviation, .
b Calculate the intervals and . Then use the probabilities you calculated in

Exercise 5.32 to find the probability that x will be inside each of these intervals.
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The mean, , is often called the parameter of the Poisson distribution. Figure 5.9 shows

several Poisson distributions. We see that, depending on its parameter (mean), a Poisson distrib-

ution can be very skewed to the right or can be quite symmetrical.

Finally, if we place the Poisson probability formula into the general expressions (of Section 5.2)

for and we can derive formulas for calculating the mean, variance, and standard devia-

tion of a Poisson distribution:

sx,mx, s
2
x,

m

Here we see that both the mean and the variance of a Poisson random variable equal the aver-

age number of occurrences of the event of interest over the specified interval of time or space.

For example, in the air traffic control situation, the Poisson distribution of x, the number of errors

at the air traffic control center in a week, has a mean of and a standard deviation of

sx  2.4  .6325.

mx  .4

m



5.34 A bank manager wishes to provide prompt service for customers at the bank’s drive-up window. 

The bank currently can serve up to 10 customers per 15-minute period without significant delay.

The average arrival rate is 7 customers per 15-minute period. Let x denote the number of 

customers arriving per 15-minute period. Assuming x has a Poisson distribution:

a Find the probability that 10 customers will arrive in a particular 15-minute period.

b Find the probability that 10 or fewer customers will arrive in a particular 15-minute period.

c Find the probability that there will be a significant delay at the drive-up window. That is,

find the probability that more than 10 customers will arrive during a particular 15-minute

period.

5.35 A telephone company’s goal is to have no more than five monthly line failures on any 100 miles of

line. The company currently experiences an average of two monthly line failures per 50 miles of

line. Let x denote the number of monthly line failures per 100 miles of line. Assuming x has a

Poisson distribution:

a Find the probability that the company will meet its goal on a particular 100 miles of line.

b Find the probability that the company will not meet its goal on a particular 100 miles of line.

c Find the probability that the company will have no more than five monthly failures on a 

particular 200 miles of line.

d Find the probability that the company will have more than 12 monthly failures on a particular

150 miles of line.

5.36 A local law enforcement agency claims that the number of times that a patrol car passes through a

particular neighborhood follows a Poisson process with a mean of three times per nightly shift.

Let x denote the number of times that a patrol car passes through the neighborhood during a

nightly shift.

a Calculate the probability that no patrol cars pass through the neighborhood during a nightly

shift.

b Suppose that during a randomly selected night shift no patrol cars pass through the neighbor-

hood. Based on your answer in part a, do you believe the agency’s claim? Explain.

c Assuming that nightly shifts are independent and assuming that the agency’s claim is correct,

find the probability that exactly one patrol car will pass through the neighborhood on each of

four consecutive nights.

5.37 When the number of trials, n, is large, binomial probability tables may not be available.

Furthermore, if a computer is not available, hand calculations will be tedious. As an 

alternative, the Poisson distribution can be used to approximate the binomial distribution 

when n is large and p is small. Here the mean of the Poisson distribution is taken to be 

. That is, when n is large and p is small, we can use the Poisson formula with 

to calculate binomial probabilities; we will obtain results close to those we would

obtain by using the binomial formula. A common rule is to use this approximation when

.

To illustrate this approximation, in the movie Coma, a young female intern at a Boston hospital

was very upset when her friend, a young nurse, went into a coma during routine anesthesia at the

hospital. Upon investigation, she found that 10 of the last 30,000 healthy patients at the hospital

had gone into comas during routine anesthesias. When she confronted the hospital administrator

with this fact and the fact that the national average was 6 out of 100,000 healthy patients going

into comas during routine anesthesias, the administrator replied that 10 out of 30,000 was still

quite small and thus not that unusual.

a Use the Poisson distribution to approximate the probability that 10 or more of 30,000 healthy

patients would slip into comas during routine anesthesias, if in fact the true average at the

hospital was 6 in 100,000. Hint: 

b Given the hospital’s record and part a, what conclusion would you draw about the hospital’s

medical practices regarding anesthesia?

(Note: It turned out that the hospital administrator was part of a conspiracy to sell body parts and

was purposely putting healthy adults into comas during routine anesthesias. If the intern had taken

a statistics course, she could have avoided a great deal of danger.)

5.38 Suppose that an automobile parts wholesaler claims that .5 percent of the car batteries in a

shipment are defective. A random sample of 200 batteries is taken, and four are found to be

defective.

a Use the Poisson approximation discussed in Exercise 5.37 to find the probability that four or

more car batteries in a random sample of 200 such batteries would be found to be defective, if

we assume that the wholesaler’s claim is true.

b Based on your answer to part a, do you believe the claim? Explain.

m  np  30,000(6兾100,000)  1.8.

n兾p  500

m  np

m  np
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5.5 The Hypergeometric Distribution (Optional) 223

5.5 The Hypergeometric Distribution (Optional)

The Hypergeometric Distribution

Suppose that a population consists of N items and that r of these items are successes and of these

items are failures. If we randomly select n of the N items without replacement, it can be shown that the

probability that x of the n randomly selected items will be successes is given by the hypergeometric

probability formula

p(x)   
冢r

x冣冢
N  r

n  x冣
冢Nn冣

(N  r)

The Mean and Variance of a Hypergeometric Random Variable

Suppose that x is a hypergeometric random variable. Then

and s
2
x  n冢 r

N冣冢1  r

N冣冢N  n

N  1冣mx  n冢 r

N冣

Here Q R is the number of ways x successes can be selected from the total of r successes in the

population, Q R is the number of ways failures can be selected from the total of 

failures in the pupulation, and Q R is the number of ways a sample of size n can be selected from

a population of size N.

To demonstrate the calculations, suppose that a population of stocks consists of 

stocks having positive returns (that is, there are successes) and 

stocks having negative returns (that is, there are failures). Also suppose that we ran-

domly select of the six stocks in the population without replacement and that we define x

to be the number of the three randomly selected stocks that give a positive return. Then, for 

example, the probability that is 

Similarly, the probability that is

It follows that the probability that at least two of the three randomly selected stocks will give a

positive return is 

If we place the hypergeometric probability formula into the general expressions (of Sec-

tion 5.2) for and , we can derive formulas for the mean and variance of the hypergeometric

distribution.
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In the previous example, we have , , and It follows that

and

and that the standard deviation sx  1.4  .6325.
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To conclude this section, note that, on the first random selection from the population of N

items, the probability of a success is . Since we are making selections without replacement,

the probability of a success changes as we continue to make selections. However, if the popula-

tion size N is “much larger” than the sample size n (say, at least 20 times as large), then making

the selections will not substantially change the probability of a success. In this case, we can as-

sume that the probability of a success stays essentially constant from selection to selection, and

the different selections are essentially independent of each other. Therefore, we can approximate

the hypergeometric distribution by the binomial distribution. That is, we can compute probabili-

ties about the hypergeometric random variable x by using the easier binomial probability formula

where the binomial probability of success equals . The reader will use this approximation in

Exercise 5.45.
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Chapter Summary

In this chapter we began our study of random variables. We

learned that a random variable represents an uncertain

numerical outcome. We also learned that a random variable

whose values can be listed is called a discrete random variable,

while the values of a continuous random variable correspond

to one or more intervals on the real number line. We saw that a

probability distribution of a discrete random variable is a table,

graph, or formula that gives the probability associated with each

of the random variable’s possible values. We also discussed

several descriptive measures of a discrete random variable—its

mean (or expected value), its variance, and its standard devia-

tion. We continued this chapter by studying two important, com-

monly used discrete probability distributions—the binomial

distribution and the Poisson distribution—and we demon-

strated how these distributions can be used to make statistical

inferences. Finally, we studied a third important discrete proba-

bility distribution, the hypergeometric distribution.

Exercises for Section 5.5
CONCEPTS

5.39 In the context of the hypergeometric distribution, explain the meanings of and n.

5.40 When can a hypergeometric distribution be approximated by a binomial distribution? Explain

carefully what this means.

METHODS AND APPLICATIONS

5.41 Suppose that x has a hypergeometric distribution with , , and . Find:

a e
b f
c g
d h

5.42 Suppose that x has a hypergeometric distribution with , , and . 

a Write out the probability distribution of x.

b Find the mean variance and standard deviation of this distribution.

5.43 Among 12 metal parts produced in a machine shop, 3 are defective. If a random sample of three

of these metal parts is selected, find:

a The probability that this sample will contain at least two defectives.

b The probability that this sample will contain at most one defective.

5.44 Suppose that you purchase (randomly select) 3 TV sets from a production run of 10 TV sets. Of

the 10 TV sets, 9 are destined to last at least five years without needing a single repair. What is the

probability that all three of your TV sets will last at least five years without needing a single repair?

5.45 Suppose that you own an electronics store and purchase (randomly select) 15 TV sets from a

production run of 500 TV sets. Of the 500 TV sets, 450 are destined to last at least five years without

needing a single repair. Set up an expression using the hypergeometric distribution for the probability

that at least 14 of your 15 TV sets will last at least five years without needing a single repair. Then,

using the binomial tables (see Table A.1, page 853), approximate this probability by using the bino-

mial distribution. What justifies the approximation? Hint: p  r兾N  450兾500  .9.
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Important Formulas

Glossary of Terms

binomial distribution: The probability distribution that de-

scribes a binomial random variable. (page 209)

binomial experiment: An experiment that consists of n inde-

pendent, identical trials, each of which results in either a success

or a failure and is such that the probability of success on any trial

is the same. (page 209)

binomial random variable: A random variable that is defined to

be the total number of successes in n trials of a binomial experi-

ment. (page 209)

binomial tables: Tables in which we can look up binomial prob-

abilities. (page 212)

continuous random variable: A random variable whose values

correspond to one or more intervals of numbers on the real num-

ber line. (page 195)

discrete random variable: A random variable whose values can

be counted or listed. (page 195)

expected value (of a random variable): The mean of the popu-

lation of all possible observed values of a random variable. That

is, the long-run average value obtained if values of a random

variable are observed a (theoretically) infinite number of times.

(page 199)

hypergeometric distribution: The probability distribution that

describes a hypergeometric random variable. (page 223)

hypergeometric random variable: A random variable that is de-

fined to be the number of successes obtained in a random sample

selected without replacement from a finite population of N ele-

ments that contains r successes and N-r failures. (page 223)

Poisson distribution: The probability distribution that describes

a Poisson random variable. (page 218)

Poisson random variable: A discrete random variable that can

often be used to describe the number of occurrences of an event

over a specified interval of time or space. (page 218)

probability distribution (of a discrete random variable): A

table, graph, or formula that gives the probability associated with

each of the random variable’s values. (page 196)

random variable: A variable that assumes numerical values that

are determined by the outcome of an experiment. That is, a vari-

able that represents an uncertain numerical outcome. (page 195)

standard deviation (of a random variable): The standard devi-

ation of the population of all possible observed values of a

random variable. It measures the spread of the population of all

possible observed values of the random variable. (page 202)

variance (of a random variable): The variance of the popula-

tion of all possible observed values of a random variable. It mea-

sures the spread of the population of all possible observed values

of the random variable. (page 202)

Properties of a discrete probability distribution: page 198

The mean (expected value) of a discrete random variable: page 199

Variance and standard deviation of a discrete random variable:

page 202

Binomial probability formula: page 209

Mean, variance, and standard deviation of a binomial random

variable: page 215

Poisson probability formula: page 218

Mean, variance, and standard deviation of a Poisson random

variable: page 221

Hypergeometric probability formula: page 223

Mean and variance of a hypergeometric random variable:

page 223

Supplementary Exercises

5.46 An investor holds two stocks, each of which can rise (R), remain unchanged (U ), or decline (D)

on any particular day. Let x equal the number of stocks that rise on a particular day.

a Write the probability distribution of x assuming that all outcomes are equally likely.

b Write the probability distribution of x assuming that for each stock P(R) .6,

P(U) .1, and P(D) .3 and assuming that movements of the two stocks are independent.

c Write the probability distribution of x assuming that for the first stock

and that for the second stock

and assuming that movements of the two stocks are independent.

5.47 Repeat Exercise 5.46, letting x equal the number of stocks that decline on the particular day.

5.48 Consider Exercise 5.46, and let x equal the number of stocks that rise on the particular day. Find 

and sx for

a The probability distribution of x in Exercise 5.46a.

b The probability distribution of x in Exercise 5.46b.

c The probability distribution of x in Exercise 5.46c.

d In which case is the largest? Interpret what this means in words.

e In which case is the largest? Interpret what this means in words.sx

mx

mx

P(R)  .8,  P(U )  .1,  P(D)  .1

P(R)  .4,  P(U )  .2,  P(D)  .4
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5.49 Suppose that the probability distribution of a random variable x can be described by the formula

for each of the values , and 2.

a Write the probability distribution of x.

b Show that the probability distribution of x satisfies the properties of a discrete probability

distribution.

c Calculate the mean of x.

d Calculate the variance and standard deviation of x.

5.50 A rock concert promoter has scheduled an outdoor concert on July 4th. If it does not rain, the

promoter will make $30,000. If it does rain, the promoter will lose $15,000 in guarantees made to

the band and other expenses. The probability of rain on the 4th is .4.

a What is the promoter’s expected profit? Is the expected profit a reasonable decision criterion?

Explain.

b How much should an insurance company charge to insure the promoter’s full losses? Explain

your answer.

5.51 The demand (in number of copies per day) for a city newspaper is listed below with corresponding

probabilities:

x ⴝ Demand p(x)

50,000 .1

70,000 .25

90,000 .4

110,000 .2

130,000 .05

a Graph the probability distribution of x.

b Find the expected demand. Interpret this value, and label it on the graph of part a.

c Using Chebyshev’s Theorem, find the minimum percentage of all possible daily demand values

that will fall in the interval .

d Calculate the interval . Illustrate this interval on the graph of part a. According to

the probability distribution of demand x previously given, what percentage of all possible daily

demand values fall in the interval ?

5.52 United Medicine, Inc., claims that a drug, Viro, significantly relieves the symptoms of a certain

viral infection for 80 percent of all patients. Suppose that this drug is given to eight randomly

selected patients who have been diagnosed with the viral infection.

a Let x equal the number of the eight randomly selected patients whose symptoms are signifi-

cantly relieved. What distribution describes the random variable x? Explain.

b Assuming that the company’s claim is correct, find .

c Suppose that of the eight randomly selected patients, three have had their symptoms signifi-

cantly relieved by Viro. Based on the probability in part b, would you believe the claim of

United Medicine, Inc.? Explain.

5.53 A consumer advocate claims that 80 percent of cable television subscribers are not satisfied with

their cable service. In an attempt to justify this claim, a randomly selected sample of cable

subscribers will be polled on this issue.

a Suppose that the advocate’s claim is true, and suppose that a random sample of five cable

subscribers is selected. Assuming independence, use an appropriate formula to compute

the probability that four or more subscribers in the sample are not satisfied with their

service.

b Suppose that the advocate’s claim is true, and suppose that a random sample of 25 cable

subscribers is selected. Assuming independence, find

(1) The probability that 15 or fewer subscribers in the sample are not satisfied with their service.

(2) The probability that more than 20 subscribers in the sample are not satisfied with their

service.

(3) The probability that between 20 and 24 (inclusive) subscribers in the sample are not

satisfied with their service.

(4) The probability that exactly 24 subscribers in the sample are not satisfied with their service.

c Suppose that when we survey 25 randomly selected cable television subscribers, we find that

15 are actually not satisfied with their service. Using a probability you found in this exercise

as the basis for your answer, do you believe the consumer advocate’s claim? Explain.
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5.54 A retail store has implemented procedures aimed at reducing the number of bad checks cashed by its

cashiers. The store’s goal is to cash no more than eight bad checks per week. The average number of

bad checks cashed is three per week. Let x denote the number of bad checks cashed per week.

Assuming that x has a Poisson distribution:

a Find the probability that the store’s cashiers will not cash any bad checks in a particular week.

b Find the probability that the store will meet its goal during a particular week.

c Find the probability that the store will not meet its goal during a particular week.

d Find the probability that the store’s cashiers will cash no more than 10 bad checks per 

two-week period.

e Find the probability that the store’s cashiers will cash no more than five bad checks per 

three-week period.

5.55 Suppose that the number of accidents occurring in an industrial plant is described by a Poisson

process with an average of 1.5 accidents every three months. During the last three months, four

accidents occurred.

a Find the probability that no accidents will occur during the current three-month period.

b Find the probability that fewer accidents will occur during the current three-month period than

occurred during the last three-month period.

c Find the probability that no more than 12 accidents will occur during a particular year.

d Find the probability that no accidents will occur during a particular year.

5.56 A high-security government installation has installed four security systems to detect attempted

break-ins. The four security systems operate independently of each other, and each has a

.85 probability of detecting an attempted break-in. Assume an attempted break-in occurs. Use

the binomial distribution to find the probability that at least one of the four security systems will

detect it.

5.57 A new stain removal product claims to completely remove the stains on 90 percent of all stained

garments. Assume that the product will be tested on 20 randomly selected stained garments, and let

x denote the number of these garments from which the stains will be completely removed. Use the

binomial distribution to find if the stain removal product’s claim is correct. If x actually

turns out to be 13, what do you think of the claim?

5.58 Consider Exercise 5.57, and find if the stain removal product’s claim is correct. If x

actually turns out to be 17, what do you think of the claim?

5.59 A state has averaged one small business failure per week over the past several years. Let x denote

the number of small business failures in the next eight weeks. Use the Poisson distribution to find

if the mean number of small business failures remains what it has been. If x actually

turns out to be 17, what does this imply?

5.60 A candy company claims that its new chocolate almond bar averages 10 almonds per bar. Let x

denote the number of almonds in the next bar that you buy. Use the Poisson distribution to find

if the candy company’s claim is correct. If x actually turns out to be 4, what do you think

of the claim?

5.61 Consider Exercise 5.60, and find if the candy company’s claim is true. If x actually turns

out to be 8, what do you think of the claim?

P(x  8)

P(x  4)

P(x  17)

P(x  17)

P(x  13)



228 Chapter 5 Discrete Random Variables

Appendix 5.1 ■ Binomial and Poisson Probabilities Using Excel

Binomial probabilities in Figure 5.4(a) on page 211:

• Enter the title, “Binomial with n  4 and 
p  0.10,” in the location in which you wish to
place the binomial results. Here we have placed
the title beginning in cell A15 (any other choice
will do). 

• In cell A16, enter the heading, x.

• Enter the values 0 through 4 in cells A17 through
A21.

• In cell B16, enter the heading P(X  x).

• Click in cell B17 (this is where the first binomial
probability will be placed). Click on the Insert 
Function button  on the Excel toolbar.

• In the Insert Function dialog box, select Statistical
from the “Or select a category:” menu, select 
BINOMDIST from the “Select a function:” menu,
and click OK.

• In the BINOMDIST Function Arguments dialog
box, enter the cell location A17 (this cell contains
the value for which the first binomial probability
will be calculated) in the “Number_s” box.

• Enter the value 4 in the Trials box.

• Enter the value 0.10 in the “Probability_s” box.

• Enter the value 0 in the Cumulative box.

• Click OK in the BINOMDIST Function Arguments
dialog box.

• When you click OK, the calculated result (0.6561)
will appear in cell B17. Double-click the drag 
handle (in the lower right corner) of cell B17 to
automatically extend the cell formula to cells B18
through B21. 

• The remaining probabilities will be placed in cells
B18 through B21.

fx



Poisson probabilities similar to Figure 5.8(a) on 
page 220:

• Enter the title “Poisson with mean  0.40” in the
location in which you wish to place the Poisson
results. Here we have placed the title beginning
in cell A13 (any other choice will do).

• In cell A14, enter the heading, x.

• Enter the values 0 through 6 in cells A15 
through A21.

• In cell B14, enter the heading, P(X  x).

• Click in cell B15 (this is where the first Poisson
probability will be placed). Click on the Insert
Function button  on the Excel toolbar.

• In the Insert Function dialog box, select Statistical
from the “Or select a category” menu, select
POISSON from the “Select a function” menu, and
click OK.

• In the POISSON Function Arguments dialog box,
enter the cell location A15 (this cell contains the
value for which the first Poisson probability will
be calculated) in the “X” box.

• Enter the value 0.40 in the Mean box.

• Enter the value 0 in the Cumulative box.

• Click OK in the POISSON Function Arguments 
dialog box.

• The calculated result for the probability of 0
events will appear in cell B15.

• Click on cell B15 and select Home: Format : 
Format Cells.

• In the Format Cells dialog box, click on the 
Number tab, select Number from the Category
menu, enter 4 in the Decimal places box, and 
click OK.

• Double-click the drag handle (in the lower right
corner) of cell B15 to automatically extend the
cell formula to cells B16 through B21.

fx
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Appendix 5.2 ■ Binomial and Poisson Probabilities Using MegaStat

Binomial probabilities similar to those in Figure 5.7 on
page 217:

• Select Add-Ins : MegaStat : Probability :
Discrete Probability Distributions.

• In the “Discrete Probability Distributions” dialog
box, enter the number of trials (here equal to 24)
and the probability of success p (here equal to
.01) in the appropriate windows. 

• Click the Display Graph checkbox if a plot of the 
distribution is desired.

• Click OK in the “Discrete Probability Distributions”
dialog box. 

The binomial output is placed in an output worksheet.

To calculate Poisson probabilities, click on the Poisson
tab and enter the mean of the Poisson distribution.
Then click OK.

To calculate Hypergeometric probabilities, click on the
Hypergeometric tab. Then enter the population size,
the number of successes in the population, and the
sample size in the appropriate windows and click OK.



Appendix 5.3 ■ Binomial and Poisson Probabilities Using MINITAB

Appendix 5.3 Binomial and Poisson Probabilities Using MINITAB 231

Poisson probabilities in Figure 5.8(a) on page 220:

• In the data window, enter the values 0 through 6
into column C1 and name the column x.

• Select Calc : Probability Distributions : Poisson.

• In the Poisson Distribution dialog box, select the
Probability option by clicking.

• In the Mean window, enter 0.4.

• Select the “Input column” option and enter the
variable name x into the “Input column” window.

• Click OK in the Poisson Distribution dialog box.

• The Poisson probabilities will be displayed in the
Session window.

Binomial probabilities similar to Figure 5.4(a) on
page 211:

• In the data window, enter the values 0 through 4
into column C1 and name the column x.

• Select Calc : Probability Distributions : Binomial.

• In the Binomial Distribution dialog box, select the
Probability option by clicking.

• In the “Number of trials” window, enter 4 for the
value of n.

• In the “Event Probability” window, enter 0.1 for
the value of p.

• Select the “Input column” option and enter the
variable name x into the “Input column” window.

• Click OK in the Binomial Distribution dialog box.

• The binomial probabilities will be displayed in the
Session window.
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6.1 Continuous Probability 
Distributions

6.2 The Uniform Distribution

6.3 The Normal Probability Distribution

6.4 Approximating the Binomial Distribution by
Using the Normal Distribution (Optional)

6.5 The Exponential Distribution (Optional)

6.6 The Normal Probability Plot (Optional)

Continuous

Random

Variables

Chapter Outline

LO1 Explain what a continuous probability
distribution is and how it is used.

LO2 Use the uniform distribution to compute
probabilities.

LO3 Describe the properties of the normal
distribution and use a cumulative normal
table.

LO4 Use the normal distribution to compute
probabilities.

LO5 Find population values that correspond to
specified normal distribution probabilities.

LO6 Use the normal distribution to approximate
binomial probabilities (Optional).

LO7 Use the exponential distribution to
compute probabilities (Optional).

LO8 Use a normal probability plot to help
decide whether data come from a normal
distribution (Optional).

Learning Objectives

After mastering the material in this chapter, you will be able to:



n Chapter 5 we defined discrete and

continuous random variables. We also

discussed discrete probability distributions,

which are used to compute the probabilities of

values of discrete random variables. In this chapter

we discuss continuous probability distributions.

These are used to find probabilities concerning

continuous random variables. We begin by

explaining the general idea behind a continuous

probability distribution. Then we present three

important continuous distributions—the uniform,

normal, and exponential distributions. We also

study when and how the normal distribution can be

used to approximate the binomial distribution

(which was discussed in Chapter 5).

In order to illustrate the concepts in this chapter,

we continue one previously discussed case, and we

also introduce two new cases:

The Car Mileage Case: A competitor claims that

its midsize car gets better mileage than an

automaker’s new midsize model. The automaker

uses sample information and a probability based

on the normal distribution to provide strong

evidence that the competitor’s claim is false.

The Coffee Temperature Case: A fast-food

restaurant uses the normal distribution to

estimate the proportion of coffee it serves that

has a temperature (in degrees Fahrenheit) outside

the range 153° to 167°, the customer requirement

for best-tasting coffee.

The Cheese Spread Case: A food processing

company markets a soft cheese spread that is sold

in a plastic container. The company has

developed a new spout for the container.

However, the new spout will be used only if

fewer than 10 percent of all current purchasers

would no longer buy the cheese spread if the

new spout were used. The company uses sample

information and a probability based on

approximating the binomial distribution by the

normal distribution to provide very strong

evidence that fewer than 10 percent of all

current purchasers would stop buying the

spread if the new spout were used. This implies

that the company can use the new spout

without alienating its current customers.

C

6.1 Continuous Probability Distributions 
We have said in Section 5.1 that when a random variable may assume any numerical value in one
or more intervals on the real number line, then the random variable is called a continuous

random variable. For example, as discussed in Section 5.1, the EPA combined city and highway
mileage of a randomly selected midsize car is a continuous random variable. Furthermore, the
temperature (in degrees Fahrenheit) of a randomly selected cup of coffee at a fast-food restaurant
is also a continuous random variable. We often wish to compute probabilities about the range of
values that a continuous random variable x might attain. For example, suppose that marketing re-
search done by a fast-food restaurant indicates that coffee tastes best if its temperature is between
153° F and 167° F. The restaurant might then wish to find the probability that x, the temperature
of a randomly selected cup of coffee at the restaurant, will be between 153° and 167°. This prob-
ability would represent the proportion of coffee served by the restaurant that has a temperature
between 153° and 167°. Moreover, one minus this probability would represent the proportion of
coffee served by the restaurant that has a temperature outside the range 153° to 167°. 

In general, to compute probabilities concerning a continuous random variable x, we assign
probabilities to intervals of values by using what we call a continuous probability distribu-

tion. To understand this idea, suppose that f (x) is a continuous function of the numbers on the
real line, and consider the continuous curve that results when f (x) is graphed. Such a curve is
illustrated in Figure 6.1. Then:

I

Continuous Probability Distributions

The curve f(x) is the continuous probability distribution of the random variable x if the probability that x

will be in a specified interval of numbers is the area under the curve f(x) corresponding to the interval. Some-

times we refer to a continuous probability distribution as a probability curve or as a probability density

function.

Explain
what a con-

tinuous probability
distribution is and
how it is used.

LO1
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Any continuous curve f (x) that satisfies these conditions is a valid continuous probability distri-
bution. Such probability curves can have a variety of shapes—bell-shaped and symmetrical,
skewed to the right, skewed to the left, or any other shape. In a practical problem, the shape of a
probability curve would be estimated by looking at a frequency (or relative frequency) histogram
of observed data (as we have done in Chapter 2). Later in this chapter, we study probability
curves having several different shapes. For example, in the next section we introduce the uniform

distribution, which has a rectangular shape.
We have seen that to calculate a probability concerning a continuous random variable, we

must compute an appropriate area under the curve f (x). In theory, such areas are calculated by
calculus methods and/or numerical techniques. Because these methods are difficult, needed areas
under commonly used probability curves have been compiled in statistical tables. As we need
them, we show how to use the required statistical tables.Also, note that since there is no area under
a continuous curve at a single point, the probability that a continuous random variable x will
attain a single value is always equal to 0. It follows that in Figure 6.1 we have P(x a) 0 and
P(x b) 0. Therefore, P(a  x  b) equals P(a  x  b) because each of the interval end-
points a and b has a probability that is equal to 0.

f(x)

x

a b

The probability
curve f(x)

The shaded area is the probability that
x will be between a and b—that is,

shaded area   P(a ⱕ x ⱕ b) 

F I G U R E 6 . 1 An Example of a Continuous Probability Distribution f(x)

Properties of a Continuous Probability Distribution

The continuous probability distribution (or probability curve) f(x) of a random variable x must satisfy the

following two conditions:

1 f (x) 0 for any value of x.

2 The total area under the curve f (x) is equal to 1.

An area under a continuous probability distribution (or probability curve) is a probability. For
instance, consider the range of values on the number line from the number a to the number b—that
is, the interval of numbers from a to b. If the continuous random variable x is described by the prob-
ability curve f(x), then the area under f(x) corresponding to the interval from a to b is the probabil-
ity that x will attain a value between a and b. Such a probability is illustrated as the shaded area in
Figure 6.1. We write this probability as P(a x b). For example, suppose that the continuous
probability curve f(x) in Figure 6.1 describes the random variable x  the temperature of a ran-
domly selected cup of coffee at the fast-food restaurant. It then follows that —
the probability that the temperature of a randomly selected cup of coffee at the fast-food restaurant
will be between 153° and 167°—is the area under the curve f(x) between 153 and 167.

We know that any probability is 0 or positive, and we also know that the probability assigned
to all possible values of x must be 1. It follows that, similar to the conditions required for a dis-
crete probability distribution, a probability curve must satisfy the following properties:

P(153  x  167)
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6.2 The Uniform Distribution 
Suppose that over a period of several days the manager of a large hotel has recorded the waiting
times of 1,000 people waiting for an elevator in the lobby at dinnertime (5:00 P.M. to 7:00 P.M.).
The observed waiting times range from zero to four minutes. Furthermore, when the waiting
times are arranged into a histogram, the bars making up the histogram have approximately equal
heights, giving the histogram a rectangular appearance. This implies that the relative frequen-
cies of all waiting times from zero to four minutes are about the same. Therefore, it is
reasonable to use the uniform distribution to describe the random variable x, the amount of time
a randomly selected hotel patron spends waiting for the elevator. In general, the equation that
describes the uniform distribution is given in the following box, and this equation is graphed in
Figure 6.2(a).

F I G U R E 6 . 2 The Uniform Distribution

The Uniform Distribution

If c and d are numbers on the real line, the probability curve describing the uniform distribution is

Furthermore, the mean and the standard deviation of the population of all possible observed values of a

random variable x that has a uniform distribution are

mx  
 c  d

2
    and    sx  

d  c

112

f(x)  再 1

d  c

0

for c  x  d

otherwise

(a) A graph of the uniform distribution

x, waiting time

x

1

4

f(x)

1 2 2.50 3 4

(b) A graph of the uniform distribution describing the elevator waiting times

1

d   c

f(x)

c a0  b d

 P(a   x   b)   (b   a)
1

d  c

b  a

d  c

 P(2.5   x   4)   (1.5)           .375
1

4

 

Use the
uniform

distribution to
compute
probabilities.

LO2
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Notice that the total area under the uniform distribution is the area of a rectangle having a base
equal to (d c) and a height equal to 1兾(d c). Therefore, the probability curve’s total area is

(remember that the total area under any continuous probability curve must equal 1). Further-
more, if a and b are numbers that are as illustrated in Figure 6.2(a), then the probability that
x will be between a and b is the area of a rectangle with base (b a) and height 1兾(d c).
That is,

P(a   x   b)   base   height

 
b  a

d  c

 (b  a)冢 1

d  c冣

base  height  (d  c)冢 1

d  c冣  1

EXAMPLE 6.1

In the introduction to this section we have said that the amount of time, x, that a randomly
selected hotel patron spends waiting for the elevator at dinnertime is uniformly distributed
between zero and four minutes. In this case, c 0 and d 4. Therefore,

Noting that this equation is graphed in Figure 6.2(b), suppose that the hotel manager wishes to
find the probability that a randomly selected patron will spend at least 2.5 minutes waiting for the
elevator. This probability is the area under the curve f (x) that corresponds to the interval [2.5, 4].
As shown in Figure 6.2(b), this probability is the area of a rectangle having a base equal to
4 2.5  1.5 and a height equal to 1兾4. That is,

Similarly, the probability that a randomly selected patron will spend less than one minute 
waiting for the elevator is

We next note that the mean waiting time for the elevator at dinnertime is

and that the standard deviation of this waiting time is

Therefore, because

and

mx  sx  2  1.1547  3.1547

mx  sx  2  1.1547  .8453

sx  
d  c

112
 

4  0

112
 1.1547 (minutes)

mx  
c  d

2
 

0  4

2
 2 (minutes)

P(x  1)  P(0  x  1)  base  height  1  
1

4
 .25

P(x  2.5)  P(2.5  x  4)  base  height  1.5  
1

4
 .375

f (x)  再 1

d  c
 

1

4  0
 

1

4

       
0

for 0  x  4

otherwise
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the probability that the waiting time of a randomly selected patron will be within (plus or minus)
one standard deviation of the mean waiting time is

  .57735

 P(.8453  x  3.1547)  (3.1547  .8453)  
1

4

CONCEPTS

6.1 A discrete probability distribution assigns probabilities to individual values. To what are probabilities
assigned by a continuous probability distribution?

6.2 How do we use the continuous probability distribution (or probability curve) of a random variable
x to find probabilities? Explain.

6.3 What two properties must be satisfied by a continuous probability distribution (or probability
curve)?

6.4 Is the height of a probability curve over a given point a probability? Explain.

6.5 When is it appropriate to use the uniform distribution to describe a random variable x?

METHODS AND APPLICATIONS

6.6 Suppose that the random variable x has a uniform distribution with c 2 and d 8.
a Write the formula for the probability curve of x, and write an interval that gives the possible

values of x.
b Graph the probability curve of x.
c Find P(3   x   5).
d Find P(1.5   x   6.5).
e Calculate the mean mx, variance s2

x, and standard deviation sx.
f Calculate the interval [mx  2sx]. What is the probability that x will be in this interval?

6.7 Consider the figure given in the margin. Find the value h that makes the function f (x) a valid
continuous probability distribution.

6.8 Assume that the waiting time x for an elevator is uniformly distributed between zero and six
minutes.
a Write the formula for the probability curve of x.
b Graph the probability curve of x.
c Find P(2   x   4).
d Find P(3   x   6).
e Find P({0   x   2} or {5   x   6}).

6.9 Refer to Exercise 6.8.
a Calculate the mean, mx, the variance, s2

x, and the standard deviation, sx.
b Find the probability that the waiting time of a randomly selected patron will be within one

standard deviation of the mean.

6.10 Consider the figure given in the margin. Find the value k that makes the function f (x) a valid
continuous probability distribution.

6.11 Suppose that an airline quotes a flight time of 2 hours, 10 minutes between two cities. Further-
more, suppose that historical flight records indicate that the actual flight time between the two
cities, x, is uniformly distributed between 2 hours and 2 hours, 20 minutes. Letting the time unit
be one minute,
a Write the formula for the probability curve of x.
b Graph the probability curve of x.
c Find P(125 x 135).
d Find the probability that a randomly selected flight between the two cities will be at least five

minutes late.

6.12 Refer to Exercise 6.11.
a Calculate the mean flight time and the standard deviation of the flight time.
b Find the probability that the flight time will be within one standard deviation of the mean.

6.13 Consider the figure given in the margin. Find the value c that makes the function f (x) a valid
continuous probability distribution.

50 175

f(x)

h

x

0 5

f(x)

K

x

5 10 17

f(x)

c
x

Exercises for Sections 6.1 and 6.2
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6.14 A weather forecaster predicts that the May rainfall in a local area will be between three and 
six inches but has no idea where within the interval the amount will be. Let x be the amount of
May rainfall in the local area, and assume that x is uniformly distributed over the interval three to 
six inches.
a Write the formula for the probability curve of x.
b Graph the probability curve of x.
c What is the probability that May rainfall will be at least four inches? At least five inches? 

At most 4.5 inches?

6.15 Refer to Exercise 6.14.
a Calculate the expected May rainfall.
b What is the probability that the observed May rainfall will fall within two standard deviations

of the mean? Within one standard deviation of the mean?

6.3 The Normal Probability Distribution 
The normal curve The bell-shaped appearance of the normal probability distribution is
illustrated in Figure 6.3. The equation that defines this normal curve is given in the following
box:

The Normal Probability Distribution

The normal probability distribution is defined by the equation

Here m and s are the mean and standard deviation of the population of all possible observed values of the

random variable x under consideration. Furthermore, p  3.14159 . . ., and e 2.71828 . . . is the base of

Napierian logarithms.

f(x)  
1

s12p
 e

 
1
2 冢

x m

s 冣2

  for all values of x on the real line

The normal probability distribution has several important properties:

1 There is an entire family of normal probability distributions; the specific shape of each
normal distribution is determined by its mean m and its standard deviation s.

2 The highest point on the normal curve is located at the mean, which is also the median and
the mode of the distribution.

3 The normal distribution is symmetrical: The curve’s shape to the left of the mean is the
mirror image of its shape to the right of the mean.

4 The tails of the normal curve extend to infinity in both directions and never touch the 
horizontal axis. However, the tails get close enough to the horizontal axis quickly enough 
to ensure that the total area under the normal curve equals 1.

5 Since the normal curve is symmetrical, the area under the normal curve to the right of the
mean (m) equals the area under the normal curve to the left of the mean, and each of these
areas equals .5 (see Figure 6.3).

Intuitively, the mean m positions the normal curve on the real line. This is illustrated in 
Figure 6.4(a). This figure shows two normal curves with different means m1 and m2 (where m1

is greater than m2) and with equal standard deviations. We see that the normal curve with mean
m1 is centered farther to the right.

The variance s2 (and the standard deviation s) measure the spread of the normal curve. This is
illustrated in Figure 6.4(b), which shows two normal curves with the same mean and two different
standard deviations s1 and s2. Because s1 is greater than s2, the normal curve with standard de-
viation s1 is more spread out (flatter) than the normal curve with standard deviation s2. In general,
larger standard deviations result in normal curves that are flatter and more spread out, while
smaller standard deviations result in normal curves that have higher peaks and are less spread out.

Suppose that a random variable x is normally distributed with mean m and standard deviation
s. If a and b are numbers on the real line, we consider the probability that x will attain a value

F I G U R E 6 . 3

The Normal

Probability Curve

x

This area   .5

This area   .5

 

The normal curve is
symmetrical around  ,
and the total area under
the curve equals 1.

f(x)

Describe the
properties

of the normal
distribution and
use a cumulative
normal table.

LO3
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F I G U R E 6 . 4 How the Mean M and Standard Deviation S Affect the Position and Shape of a Normal Probability Curve

x

x

Normal curve with
mean  2 and
standard deviation  

Normal curve with
mean  1 and
standard deviation  

Normal curve with mean  
and standard deviation  1

Normal curve with mean  
and standard deviation  2

 1    2

 1    2

Two normal curves with different means and equal standard deviations.  If 1 is greater 
than 2, the normal curve with mean 1 is centered farther to the right.

(a)

Two normal curves with the same mean and different standard deviations. If 1 is greater
than 2, the normal curve with standard deviation 1 is flatter and more spread out.

(b)

 2  1

 

F I G U R E 6 . 5 An Area under a Normal Curve 

Corresponding to the Interval [a, b]

a b

P(a   x   b)   

The probability that

x will attain a value

between a and b

x

F I G U R E 6 . 6 Three Important Percentages Concerning a

Normally Distributed Random Variable x

with Mean M and Standard Deviation S

    3      
x

        3 

    2     2 

95.44%

99.73%

Percentage of all
possible observed
values of x within
the given interval

68.26%

Three Important Areas under the Normal Curve

observed values of x are within (plus or minus)

two standard deviations of m.

3 P(m   3s   x   m  3s)   .9973

This means that 99.73 percent of all possible 

observed values of x are within (plus or minus)

three standard deviations of m.

1 P(m   s   x   m  s)   .6826

This means that 68.26 percent of all possible

observed values of x are within (plus or minus)

one standard deviation of m.

2 P(m   2s   x   m  2s)   .9544

This means that 95.44 percent of all possible

between a and b. That is, we consider

P(a   x   b)

which equals the area under the normal curve with mean m and standard deviation s correspond-
ing to the interval [a, b]. Such an area is depicted in Figure 6.5. We soon explain how to find such
areas using a statistical table called a normal table. For now, we emphasize three important areas
under a normal curve. These areas form the basis for the Empirical Rule for a normally distrib-
uted population. Specifically, if x is normally distributed with mean m and standard deviation s,
it can be shown (using a normal table) that, as illustrated in Figure 6.6:
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Finding normal curve areas There is a unique normal curve for every combination of m and
s. Since there are many (theoretically, an unlimited number of) such combinations, we would
like to have one table of normal curve areas that applies to all normal curves. There is such a
table, and we can use it by thinking in terms of how many standard deviations a value of interest
is from the mean. Specifically, consider a random variable x that is normally distributed with
mean m and standard deviation s. Then the random variable

expresses the number of standard deviations that x is from the mean M. To understand
this idea, notice that if x equals m (that is, x is zero standard deviations from m), then z  

(m m)兾s 0. However, if x is one standard deviation above the mean (that is, if x equals
m s), then x m   s and z s兾s   1. Similarly, if x is two standard deviations below the
mean (that is, if x equals m   2s), then x m    2s and z  2s兾s    2. Figure 6.7 illus-
trates that for values of x of, respectively, m 3s, m 2s, m s, m, m s, m  2s, and
m 3s, the corresponding values of z are  3, 2, 1, 0, 1, 2, and 3. This figure also illustrates
the following general result:

z  
x  m

s

The Standard Normal Distribution

If a random variable x (or, equivalently, the population of all possible observed values of x) is normally 

distributed with mean m and standard deviation s, then the random variable

(or, equivalently, the population of all possible observed values of z) is normally distributed with mean 0

and standard deviation 1. A normal distribution (or curve) with mean 0 and standard deviation 1 is called a

standard normal distribution (or curve).

z  
x  m

s

Table A.3 (on pages 860 and 861) is a table of cumulative areas under the standard normal curve.
This table is called a cumulative normal table, and it is reproduced as Table 6.1 (on pages 241 and
242). Specifically,

The cumulative normal table gives, for many different values of z, the area under the standard
normal curve to the left of z.

F I G U R E 6 . 7 If x Is Normally Distributed with Mean M and Standard Deviation S, Then z  Is Normally 

Distributed with Mean 0 and Standard Deviation 1

x   M

S

    3       

x

z  

         3 

    2     2 

Normal curve with mean 0

and standard deviation 1

(standard normal curve)

Normal curve with mean  

and standard deviation  

0 1 2 3 1 2 3

x    
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T A B L E 6 . 1 Cumulative Areas under the Standard Normal Curve

0z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

 3.9 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003

 3.8 0.00007 0.00007 0.00007 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00005

 3.7 0.00011 0.00010 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008

 3.6 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011

 3.5 0.00023 0.00022 0.00022 0.00021 0.00020 0.00019 0.00019 0.00018 0.00017 0.00017

 3.4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024

 3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035

 3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050

 3.1 0.00097 0.00094 0.00090 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071

 3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00103 0.00100

 2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

 2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

 2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

 2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

 2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

 2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

 2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

 2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

 2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

 2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

 1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

 1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

 1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

 1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

 1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

 1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

 1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

 1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

 1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

 1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

 0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

 0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

 0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

 0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2482 0.2451

 0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

 0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

 0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

 0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

 0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

 0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7518 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 (Table Continues)

0 z

Two such areas are shown next to Table 6.1—one with a negative z value and one with a
positive z value. The values of z in the cumulative normal table range from  3.99 to 3.99 in
increments of .01. As can be seen from Table 6.1, values of z accurate to the nearest tenth are
given in the far left column (headed z) of the table. Further graduations to the nearest hundredth
(.00, .01, .02, . . . , .09) are given across the top of the table. The areas under the normal curve
are given in the body of the table, accurate to four (or sometimes five) decimal places.
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99897 0.99900

3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929

3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950

3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965

3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976

3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983

3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989

3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992

3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995

3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997

T A B L E 6 . 1 Cumulative Areas under the Standard Normal Curve (Continued)

As an example, suppose that we wish to find the area under the standard normal curve to
the left of a z value of 2.00. This area is illustrated in Figure 6.8. To find this area, we start at
the top of the leftmost column in Table 6.1 (previous page) and scan down the column past the
negative z values. We then scan through the positive z values (which continue on the top of this
page) until we find the z value 2.0—see the red arrow above. We now scan across the row in the
table corresponding to the z value 2.0 until we find the column corresponding to the heading .00.
The desired area (which we have shaded blue) is in the row corresponding to the z value 2.0 and
in the column headed .00. This area, which equals .9772, is the probability that the random
variable z will be less than or equal to 2.00. That is, we have found that P(z  2)  .9772. Note
that, because there is no area under the normal curve at a single value of z, there is no differ-
ence between P(z  2) and P(z  2). As another example, the area under the standard normal
curve to the left of the z value 1.25 is found in the row corresponding to 1.2 and in the col-
umn corresponding to .05. We find that this area (also shaded blue) is .8944. That is,
P(z   1.25)  .8944 (see Figure 6.9).

We now show how to use the cumulative normal table to find several other kinds of normal
curve areas. First, suppose that we wish to find the area under the standard normal curve to the
right of a z value of 2—that is, we wish to find P(z 2). This area is illustrated in Figure 6.10
and is called a right-hand tail area. Since the total area under the normal curve equals 1, the
area under the curve to the right of 2 equals 1 minus the area under the curve to the left of 2.
Because Table 6.1 tells us that the area under the standard normal curve to the left of 2 is .9772,
the area under the standard normal curve to the right of 2 is 1  .9772  .0228. Said in an
equivalent fashion, because P(z  2) .9772, it follows that P(z  2)  1 P(z  2) 
1  .9772 .0228.
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F I G U R E 6 . 8 Finding P(z  2) F I G U R E 6 . 9 Finding P(z  1.25)

F I G U R E 6 . 1 1 Finding P(z   2)F I G U R E 6 . 1 0 Finding P(z  2)

z

0 2

.9772

P(z  2)

  1   .9772

  .0228

z

0 1.25

P(z   1.25)

  .8944

z

0 2

P(z   2)

  .0228

z

0 2

P(z   2)

  .9772

Next, suppose that we wish to find the area under the standard normal curve to the left of a
z value of 2. That is, we wish to find P(z  2). This area is illustrated in Figure 6.11 and is called
a left-hand tail area. The needed area is found in the row of the cumulative normal table corre-
sponding to 2.0 (on page 241) and in the column headed by .00. We find that P(z  2) .0228.
Notice that the area under the standard normal curve to the left of 2 is equal to the area under this
curve to the right of 2. This is true because of the symmetry of the normal curve.

Figure 6.12 illustrates how to find the area under the standard normal curve to the right of  2.
Since the total area under the normal curve equals 1, the area under the curve to the right of  2
equals 1 minus the area under the curve to the left of  2. Because Table 6.1 tells us that the area
under the standard normal curve to the left of  2 is .0228, the area under the standard normal
curve to the right of  2 is 1  .0228  .9772. That is, because P(z   2)  .0228, it follows
that P(z   2)  1  P(z   2)  1  .0228  .9772.

The smallest z value in Table 6.1 is  3.99, and the table tells us that the area under the stan-
dard normal curve to the left of  3.99 is .00003 (see Figure 6.13). Therefore, if we wish to find
the area under the standard normal curve to the left of any z value less than  3.99, the most we
can say (without using a computer) is that this area is less than .00003. Similarly, the area under

F I G U R E 6 . 1 2 Finding P(z   2)

z

0 2

P (z   2)

  1   .0228

  .9772  .0228

F I G U R E 6 . 1 3 Finding P(z   3.99)

z

0 3.99 3.99

P(z  3.99)

  .00003

P(z   3.99)

  .00003
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F I G U R E 6 . 1 5 Some Areas under the Standard Normal Curve

F I G U R E 6 . 1 4 Calculating P(1  z  2)

z

0 2

.9772

z

0 1

.8413

z

0 1 2

P(1  z  2)

  .9772   .8413

  .1359

z

0

(a) P( 1   z   1)   .8413   .1587   .6826

(b) P( 2   z   2)   .9772   .0228   .9544

(c) P( 3   z   3)   .99865   .00135   .9973

(d) P( 1.96   z   1.96)   .9750   .0250   .9500

1

.6826

z

0 2

z

30

z

0 1.96

.9973

.9544 .9500

 1  3

 2  1.96

the standard normal curve to the right of any z value greater than 3.99 is also less than .00003 (see
Figure 6.13).

Figure 6.14 illustrates how to find the area under the standard normal curve between 1 and 2.
This area equals the area under the curve to the left of 2, which the normal table tells us is .9772,
minus the area under the curve to the left of 1, which the normal table tells us is .8413. Therefore,
P(1  z  2)  .9772  .8413  .1359.

To conclude our introduction to using the normal table, we will use this table to justify the em-
pirical rule. Figure 6.15(a) illustrates the area under the standard normal curve between  1 and 1.
This area equals the area under the curve to the left of 1, which the normal table tells us is .8413,
minus the area under the curve to the left of  1, which the normal table tells us is .1587. There-
fore, P( 1  z 1)  .8413  .1587  .6826. Now, suppose that a random variable x is normally
distributed with mean m and standard deviation s, and remember that z is the number of stan-
dard deviations s that x is from m. It follows that when we say that P( 1  z  1) equals .6826,
we are saying that 68.26 percent of all possible observed values of x are between a point that is
one standard deviation below m (where z equals  1) and a point that is one standard deviation
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above m (where z equals 1). That is, 68.26 percent of all possible observed values of x are within
(plus or minus) one standard deviation of the mean m.

Figure 6.15(b) illustrates the area under the standard normal curve between  2 and 2. This
area equals the area under the curve to the left of 2, which the normal table tells us is .9772, minus
the area under the curve to the left of  2, which the normal table tells us is .0228. Therefore,
P( 2  z  2)  .9772  .0228  .9544. That is, 95.44 percent of all possible observed values
of x are within (plus or minus) two standard deviations of the mean m.

Figure 6.15(c) illustrates the area under the standard normal curve between  3 and 3. This
area equals the area under the curve to the left of 3, which the normal table tells us is .99865,
minus the area under the curve to the left of  3, which the normal table tells us is .00135. There-
fore, P( 3  z  3)  . 99865   .00135  .9973. That is, 99.73 percent of all possible observed
values of x are within (plus or minus) three standard deviations of the mean m.

Although the empirical rule gives the percentages of all possible values of a normally dis-
tributed random variable x that are within one, two, and three standard deviations of the mean
m, we can use the normal table to find the percentage of all possible values of x that are within
any particular number of standard deviations of m. For example, in later chapters we will
need to know the percentage of all possible values of x that are within plus or minus 1.96
standard deviations of m. Figure 6.15(d) illustrates the area under the standard normal curve
between  1.96 and 1.96. This area equals the area under the curve to the left of 1.96, which
the normal table tells us is .9750, minus the area under the curve to the left of  1.96, which
the table tells us is .0250. Therefore, P( 1.96  z  1.96)  .9750  .0250  .9500. That
is, 95 percent of all possible values of x are within plus or minus 1.96 standard deviations of
the mean m.

Some practical applications We have seen how to use z values and the normal table to find
areas under the standard normal curve. However, most practical problems are not stated in such
terms. We now consider an example in which we must restate the problem in terms of the stan-
dard normal random variable z before using the normal table.

EXAMPLE 6.2 The Car Mileage Case

Recall from previous chapters that an automaker has recently introduced a new midsize
model and that we have used the sample of 50 mileages to estimate that the population of
mileages of all cars of this type is normally distributed with a mean mileage equal to 31.56 mpg
and a standard deviation equal to .798 mpg. Suppose that a competing automaker produces a
midsize model that is somewhat smaller and less powerful than the new midsize model. The
competitor claims, however, that its midsize model gets better mileages. Specifically, the com-
petitor claims that the mileages of all its midsize cars are normally distributed with a mean
mileage m equal to 33 mpg and a standard deviation s equal to .7 mpg. In the next example we
consider one way to investigate the validity of this claim. In this example we assume that the
claim is true, and we calculate the probability that the mileage, x, of a randomly selected com-
peting midsize car will be between 32 mpg and 35 mpg. That is, we wish to find P(32 x 35).
As illustrated in Figure 6.16 on the next page, this probability is the area between 32 and 35
under the normal curve having mean m 33 and standard deviation s .7. In order to use the
normal table, we must restate the problem in terms of the standard normal random variable z.
The z value corresponding to 32 is

which says that the mileage 32 is 1.43 standard deviations below the mean m 33. The z value
corresponding to 35 is

z  
x  m

s
 

35  33

.7
 

2

.7
 2.86

z  
x  m

s
 

32  33

.7
 

 1

.7
  1.43

C

Use the 
normal

distribution to
compute
probabilities.
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which says that the mileage 35 is 2.86 standard deviations above the mean m 33. Looking at
Figure 6.16, we see that the area between 32 and 35 under the normal curve having mean m 33
and standard deviation s .7 equals the area between  1.43 and 2.86 under the standard normal
curve. This equals the area under the standard normal curve to the left of 2.86, which the normal
table tells us is .9979, minus the area under the standard normal curve to the left of  1.43, which
the normal table tells us is .0764. We summarize this result as follows:

This probability says that, if the competing automaker’s claim is valid, then 92.15 percent of all
of its midsize cars will get mileages between 32 mpg and 35 mpg.

Example 6.2 illustrates the general procedure for finding a probability about a normally
distributed random variable x. We summarize this procedure in the following box:

  P( 1.43  z  2.86)  .9979  .0764  .9215

 P(32  x  35)  P冢32  33

.7
 

x  m

s
 

35  33

.7 冣

F I G U R E 6 . 1 6 Finding P(32  x  35) When M  33 and S  .7 by Using a Normal Table

32 33 35

P(32ⱕ xⱕ 35)

Normal curve with mean    33 and

standard deviation    .7

Mileage, x

0

P( 1.43 ⱕ z ⱕ 2.86)

     .9979   .0764

     .9215

Standard normal curve 

(with    0 and    1)

z

z                   1.43
32  33

.7
z                    2.86

35  33

.7

Finding Normal Probabilities

3 Find the required area under the standard normal

curve by using the normal table.

4 Note that it is always useful to draw a picture

illustrating the needed area before using the

normal table.

1 Formulate the problem in terms of the random

variable x.

2 Calculate relevant z values and restate the prob-

lem in terms of the standard normal random

variable

z  
x  m
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EXAMPLE 6.3 The Car Mileage Case

Recall from Example 6.2 that the competing automaker claims that the population of mileages of
all its midsize cars is normally distributed with mean m 33 and standard deviation s .7.
Suppose that an independent testing agency randomly selects one of these cars and finds that it
gets a mileage of 31.2 mpg when tested as prescribed by the EPA. Because the sample mileage
of 31.2 mpg is less than the claimed mean m 33, we have some evidence that contradicts the
competing automaker’s claim. To evaluate the strength of this evidence, we will calculate the
probability that the mileage, x, of a randomly selected midsize car would be less than or equal to

31.2 if, in fact, the competing automaker’s claim is true. To calculate P(x 31.2) under the
assumption that the claim is true, we find the area to the left of 31.2 under the normal curve with
mean m 33 and standard deviation s .7 (see Figure 6.17). In order to use the normal table,
we must find the z value corresponding to 31.2. This z value is

which says that the mileage 31.2 is 2.57 standard deviations below the mean mileage m 33.
Looking at Figure 6.17, we see that the area to the left of 31.2 under the normal curve having mean
m 33 and standard deviation s .7 equals the area to the left of  2.57 under the standard
normal curve. The normal table tells us that the area under the standard normal curve to the left
of  2.57 is .0051, as shown in Figure 6.17. It follows that we can summarize our calculations as
follows:

This probability says that, if the competing automaker’s claim is valid, then only 51 in 10,000
cars would obtain a mileage of less than or equal to 31.2 mpg. Since it is very difficult to believe
that a 51 in 10,000 chance has occurred, we have very strong evidence against the competing
automaker’s claim. It is probably true that m is less than 33 and/or s is greater than .7 and/or the
population of all mileages is not normally distributed.

  P(z   2.57)  .0051

 P(x  31.2)  P冢x  m

s
 

31.2  33
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z  
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F I G U R E 6 . 1 7 Finding P(x  31.2) When M  33 and S  .7 by Using a Normal Table
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F I G U R E 6 . 1 8 Finding P (x < 153 or x > 167) in the Coffee Temperature Case

153 160.0833 167

P(x   153)
P(x   167)

P(z    1.32)

    .0934

P(z   1.29)

    1   P(z   1.29)

    1   .9015

    .0985

Standard normal curve 

z                          1.32
153   160.0833

5.3724
z                          1.29

167   160.0833

5.3724

0

z

x

Normal curve with mean 160.0833

and standard deviation 5.3724

EXAMPLE 6.4 The Coffee Temperature Case

Marketing research done by a fast-food restaurant indicates that coffee tastes best if its temperature
is between 153 (F) and 167 (F). The restaurant samples the coffee it serves and observes 24 tem-
perature readings over a day. The temperature readings have a mean  160.0833 and a standard
deviation s 5.3724 and are described by a bell-shaped histogram. Using and s as point estimates
of the meanm and the standard deviations of the population of all possible coffee temperatures, we
wish to calculate the probability that x, the temperature of a randomly selected cup of coffee, is out-
side the customer requirements for best testing coffee (that is, less than 153° or greater than 167°).
In order to compute the probability P(x 153 or x 167) we compute the z values

Because the events {x 153} and {x 167} are mutually exclusive, we have

P(x 153 or x 167) P(x 153)  P(x 167)

 P(z  1.32)  P(z 1.29)

 .0934  .0985 .1919

This calculation is illustrated in Figure 6.18. The probability of .1919 says that 19.19 percent of
the coffee temperatures do not meet customer requirements. Therefore, if management believes
that meeting this requirement is important, the coffee-making process must be improved.

z  
153  160.0833

5.3724
  1.32    and    z  

167  160.0833

5.3724
 1.29

x

x

C

Finding a point on the horizontal axis under a normal curve In order to use many of
the formulas given in later chapters, we must be able to find the z value so that the tail area to the
right of z under the standard normal curve is a particular value. For instance, we might need to
find the z value so that the tail area to the right of z under the standard normal curve is .025. This
z value is denoted z.025, and we illustrate z.025 in Figure 6.19(a). We refer to z.025 as the point on

the horizontal axis under the standard normal curve that gives a right-hand tail area equal

to .025. It is easy to use the cumulative normal table to find such a point. For instance, in order
to find z.025, we note from Figure 6.19(b) that the area under the standard normal curve to the left
of z.025 equals .975. Remembering that areas under the standard normal curve to the left of z are

Find
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distribution
probabilities.
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the four-digit (or five-digit) numbers given in the body of Table 6.1, we scan the body of the table
and find the area .9750. We have shaded this area in Table 6.1 on page 242, and we note that the
area .9750 is in the row corresponding to a z of 1.9 and in the column headed by .06. It follows
that the z value corresponding to .9750 is 1.96. Because the z value 1.96 gives an area under the
standard normal curve to its left that equals .975, it also gives a right-hand tail area equal to .025.
Therefore, z.025 1.96.

In general, we let z
 

denote the point on the horizontal axis under the standard normal

curve that gives a right-hand tail area equal to A. With this definition in mind, we consider the
following example.

F I G U R E 6 . 1 9 The Point z.025  1.96

0 z.025   1.96

1   .025

  .975

.025

Standard normal curve

0 z.025

z

z

(a) z.025 is the point on the horizontal axis under the standard normal curve that gives a

     right-hand tail area equal to .025

(b) Finding z.025

.025

EXAMPLE 6.5

A large discount store sells 50 packs of HX-150 blank DVDs and receives a shipment every
Monday. Historical sales records indicate that the weekly demand, x, for HX-150 DVD 50 packs
is normally distributed with a mean of m 100 and a standard deviation of s 10. How many
50 packs should be stocked at the beginning of a week so that there is only a 5 percent chance that
the store will run short during the week?

If we let st equal the number of 50 packs that will be stocked, then st must be chosen to allow
only a .05 probability that weekly demand, x, will exceed st. That is, st must be chosen so that

P(x  st)  .05

Figure 6.20(a) on the next page shows that the number stocked, st, is located under the right-hand
tail of the normal curve having mean m 100 and standard deviation s 10. In order to find st,
we need to determine how many standard deviations st must be above the mean in order to give
a right-hand tail area that is equal to .05.

The z value corresponding to st is

and this z value is the number of standard deviations that st is from m. This z value is illustrated in
Figure 6.20(b), and it is the point on the horizontal axis under the standard normal curve that gives
a right-hand tail area equal to .05. That is, the z value corresponding to st is z.05. Since the area under
the standard normal curve to the left of z.05 is 1  .05 .95—see Figure 6.20(b)—we look for .95
in the body of the normal table. In Table 6.1, we see that the areas closest to .95 are .9495, which has
a corresponding z value of 1.64, and .9505, which has a corresponding z value of 1.65. Although it

z  
st  m

s
 

st  100

10
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would probably be sufficient to use either of these z values, we will (because it is easy to do so) inter-
polate halfway between them and assume that z.05 equals 1.645. To find st, we solve the equation

for st. Doing this yields

st 100 1.645(10)

or

st 100 1.645(10) 116.45

This last equation says that st is 1.645 standard deviations (s 10) above the mean (m 100).
Rounding st 116.45 up so that the store’s chances of running short will be no more than 5 per-
cent, the store should stock 117 of the 50 packs at the beginning of each week.

st  100

10
 1.645

Sometimes we need to find the point on the horizontal axis under the standard normal curve that
gives a particular left-hand tail area (say, for instance, an area of .025). Looking at Figure 6.21, it
is easy to see that, if, for instance, we want a left-hand tail area of .025, the needed z value is
 z.025, where z.025 gives a right-hand tail area equal to .025. To find  z.025, we look for .025 in the
body of the normal table and find that the z value corresponding to .025 is  1.96. Therefore,
 z.025   1.96. In general,  zA is the point on the horizontal axis under the standard normal

curve that gives a left-hand tail area equal to A.

F I G U R E 6 . 2 0 Finding the Number of 50 Packs of DVDs Stocked, st, so That P(x > st)  .05 WhenM  100

andS  10

.05

100 st   Number stocked

.05

Standard normal curve

0

(a) The number stocked, st, must be chosen so that there is a .05 probability that the 

     demand, x, will exceed st 

(b) Finding z.05, the z value corresponding to st

st 100

10
  z.05  1.645

Demand, x

Normal curve with mean     100

and standard deviation     10

z

1   .05

  .95

F I G U R E 6 . 2 1 The z Value  z.025   1.96 Gives a Left-Hand Tail Area of .025 under the Standard Normal Curve

Standard normal curve

0 z.025    1.96 z.025   1.96
z

.025.025
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EXAMPLE 6.6

Extensive testing indicates that the lifetime of the Everlast automobile battery is normally dis-
tributed with a mean of m 60 months and a standard deviation of s 6 months. The Everlast’s
manufacturer has decided to offer a free replacement battery to any purchaser whose Everlast
battery does not last at least as long as the minimum lifetime specified in its guarantee. How can
the manufacturer establish the guarantee period so that only 1 percent of the batteries will need
to be replaced free of charge?

If the battery will be guaranteed to last l months, l must be chosen to allow only a .01 proba-
bility that the lifetime, x, of an Everlast battery will be less than l. That is, we must choose l so that

P(x l ) .01

Figure 6.22(a) shows that the guarantee period, l, is located under the left-hand tail of the normal
curve having mean m 60 and standard deviation s 6. In order to find l, we need to determine
how many standard deviations l must be below the mean in order to give a left-hand tail area that
equals .01. The z value corresponding to l is

and this z value is the number of standard deviations that l is from m. This z value is illustrated in
Figure 6.22(b), and it is the point on the horizontal axis under the standard normal curve that
gives a left-hand tail area equal to .01. That is, the z value corresponding to l is  z.01. To find
 z.01, we look for .01 in the body of the normal table. Doing this, we see that the area closest to
.01 is .0099, which has a corresponding z value of  2.33. Therefore,  z.01 is (roughly)  2.33.
To find l, we solve the equation

for l. Doing this yields

l 60  2.33(6)

or

l 60 2.33(6) 46.02

Note that this last equation says that l is 2.33 standard deviations (s 6) below the mean (m 60).
Rounding l 46.02 down so that no more than 1 percent of the batteries will need to be replaced
free of charge, it seems reasonable to guarantee the Everlast battery to last 46 months.

l  60

6
  2.33

z  
l  m

s
 

l  60

6

F I G U R E 6 . 2 2 Finding the Guarantee Period, l, so That P(x < l)  .01 When M  60 and S  6

(b) Finding  z.01, the z value
      corresponding to l

z

0

Standard
normal curve

.01

l   60
6

   z.01    2.33

(a) The guarantee period, l, must be chosen so that
      there is a .01 probability that the lifetime, x, will
      be less than l

Lifetime, x60l   Guarantee period

Normal curve with mean
   60 and standard
deviation    6

.01
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Whenever we use a normal table to find a z point corresponding to a particular normal curve
area, we will use the halfway interpolation procedure illustrated in Examples 6.5 and 6.7 if
the area we are looking for is exactly halfway between two areas in the table. Otherwise, as
illustrated in Example 6.6, we will use the z value corresponding to the area in the table that is
closest to the desired area.

F I G U R E 6 . 2 3 Finding a Tolerance Interval [M  kS] That Contains 99 Percent of the Measurements in a 

Normally Distributed Population

x
     k     k 

.99

.005 .005

x
     k 

.995

z
0 k   2.575

.995

EXAMPLE 6.7

Consider computing a tolerance interval [m ks] that contains 99 percent of the measurements in
a normally distributed population having mean m and standard deviation s. As illustrated in
Figure 6.23, we must find the value k so that the area under the normal curve having mean m and
standard deviation s between (m ks) and (m ks) is .99. Because the total area under this
normal curve is 1, the area under the normal curve that is not between (m ks) and (m ks) is 
1  .99  .01. This implies, as illustrated in Figure 6.23, that the area under the normal curve to the
left of (m ks) is .01兾2  .005, and the area under the normal curve to the right of (m ks) is also
.01兾2  .005. This further implies, as illustrated in Figure 6.23, that the area under the normal curve
to the left of (m ks) is .995. Because the z value corresponding to a value of x tells us how many
standard deviations x is from m, the z value corresponding to (m ks) is obviously k. It follows that
k is the point on the horizontal axis under the standard normal curve so that the area to the left of k
is .995. Looking up .995 in the body of the normal table, we find that the values closest to .995 are
.9949, which has a corresponding z value of 2.57, and .9951, which has a corresponding z value of
2.58. Although it would be sufficient to use either of these z values, we will interpolate halfway
between them, and we will assume that k equals 2.575. It follows that the interval [m 2.575s]
contains 99 percent of the measurements in a normally distributed population having mean m and
standard deviation s.

Exercises for Section 6.3
CONCEPTS

6.16 List five important properties of the normal probability curve.

6.17 Explain:
a What the mean, m, tells us about a normal curve.
b What the standard deviation, s, tells us about a normal curve.

Earlier in this section we saw that the intervals [m s], [m 2s], and [m 3s] are tolerance

intervals containing, respectively, 68.26 percent, 95.44 percent, and 99.73 percent of the mea-
surements in a normally distributed population having mean m and standard deviation s. In the
following example we demonstrate how to use the normal table to find the value k so that the
interval [m ks] contains any desired percentage of the measurements in a normally distributed
population.
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6.18 If the random variable x is normally distributed, what percentage of all possible observed values
of x will be
a Within one standard deviation of the mean?
b Within two standard deviations of the mean?
c Within three standard deviations of the mean?

6.19 Explain how to compute the z value corresponding to a value of a normally distributed random
variable. What does the z value tell us about the value of the random variable?

6.20 Explain how x relates to the mean m if the z value corresponding to x
a Equals zero.
b Is positive.
c Is negative.

6.21 Why do we compute z values when using the normal table? Explain.

METHODS AND APPLICATIONS

6.22 In each case, sketch the two specified normal curves on the same set of axes:
a A normal curve with m 20 and s 3, and a normal curve with m 20 and s 6.
b A normal curve with m 20 and s 3, and a normal curve with m 30 and s 3.
c A normal curve with m 100 and s 10, and a normal curve with m 200 and s 20.

6.23 Let x be a normally distributed random variable having mean m 30 and standard deviation 
s 5. Find the z value for each of the following observed values of x:
a x 25 d x 40
b x 15 e x 50
c x 30
In each case, explain what the z value tells us about how the observed value of x compares to the
mean, m.

6.24 If the random variable z has a standard normal distribution, sketch and find each of the following
probabilities:
a P(0 z 1.5) d P(z  1) g P( 2.5 z .5)
b P(z 2) e P(z  3) h P(1.5 z 2)
c P(z 1.5) f P( 1 z 1) i P( 2 z  .5)

6.25 Suppose that the random variable z has a standard normal distribution. Sketch each of the 
following z points, and use the normal table to find each z point.
a z.01 d  z.01

b z.05 e  z.05

c z.02 f  z.10

6.26 Suppose that the random variable x is normally distributed with mean m  1,000 and standard 
deviation s  100. Sketch and find each of the following probabilities:
a P(1,000 x 1,200) e P(x 700)
b P(x 1,257) f P(812 x 913)
c P(x 1,035) g P(x 891)
d P(857 x 1,183) h P(1,050 x 1,250)

6.27 Suppose that the random variable x is normally distributed with mean m  500 and standard 
deviation s  100. For each of the following, use the normal table to find the needed value k. In
each case, draw a sketch.
a P(x k) .025 d P(x k) .015 g P(x k) .975
b P(x k) .05 e P(x k) .985 h P(x k) .0228
c P(x k) .025 f P(x k) .95 i P(x k) .9772

6.28 Stanford–Binet IQ Test scores are normally distributed with a mean score of 100 and a standard
deviation of 16.
a Sketch the distribution of Stanford–Binet IQ test scores.
b Write the equation that gives the z score corresponding to a Stanford–Binet IQ test score.

Sketch the distribution of such z scores.
c Find the probability that a randomly selected person has an IQ test score

(1) Over 140.
(2) Under 88.
(3) Between 72 and 128.
(4) Within 1.5 standard deviations of the mean.

d Suppose you take the Stanford–Binet IQ Test and receive a score of 136. What percentage of
people would receive a score higher than yours?
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6.29 Weekly demand at a grocery store for a brand of breakfast cereal is normally distributed with a
mean of 800 boxes and a standard deviation of 75 boxes.
a What is the probability that weekly demand is

(1) 959 boxes or less?
(2) More than 1,004 boxes?
(3) Less than 650 boxes or greater than 950 boxes?

b The store orders cereal from a distributor weekly. How many boxes should the store order for a
week to have only a 2.5 percent chance of running short of this brand of cereal during the week?

6.30 The lifetimes of a particular brand of DVD player are normally distributed with a mean of eight
years and a standard deviation of six months. Find each of the following probabilities where 
x denotes the lifetime in years. In each case, sketch the probability.
a P(7 x 9) e P(x 7)
b P(8.5 x 9.5) f P(x 7)
c P(6.5 x 7.5) g P(x 10)
d P(x 8) h P(x 10)

6.31 United Motors claims that one of its cars, the Starbird 300, gets city driving mileages that are
normally distributed with a mean of 30 mpg and a standard deviation of 1 mpg. Let x denote the
city driving mileage of a randomly selected Starbird 300.
a Assuming that United Motors’ claim is correct, find P(x 27).
b If you purchase (randomly select) a Starbird 300 and your car gets 27 mpg in city driving, what

do you think of United Motors’ claim? Explain your answer.

6.32 An investment broker reports that the yearly returns on common stocks are approximately 
normally distributed with a mean return of 12.4 percent and a standard deviation of 20.6 percent.
On the other hand, the firm reports that the yearly returns on tax-free municipal bonds are 
approximately normally distributed with a mean return of 5.2 percent and a standard deviation of
8.6 percent. Find the probability that a randomly selected
a Common stock will give a positive yearly return.
b Tax-free municipal bond will give a positive yearly return.
c Common stock will give more than a 10 percent return.
d Tax-free municipal bond will give more than a 10 percent return.
e Common stock will give a loss of at least 10 percent.
f Tax-free municipal bond will give a loss of at least 10 percent.

6.33 A filling process is supposed to fill jars with 16 ounces of grape jelly. Specifications state that
each jar must contain between 15.95 ounces and 16.05 ounces. A jar is selected from the process
every half hour until a sample of 100 jars is obtained. When the fills of the jars are measured, it is
found that  16.0024 and s .02454. Using and s as point estimates of m and s, estimate the
probability that a randomly selected jar will have a fill, x, that is out of specification. Assume that
the process is in control and that the population of all jar fills is normally distributed.

6.34 A tire company has developed a new type of steel-belted radial tire. Extensive testing indicates
the population of mileages obtained by all tires of this new type is normally distributed with a
mean of 40,000 miles and a standard deviation of 4,000 miles. The company wishes to offer a
guarantee providing a discount on a new set of tires if the original tires purchased do not exceed 
the mileage stated in the guarantee. What should the guaranteed mileage be if the tire company
desires that no more than 2 percent of the tires will fail to meet the guaranteed mileage?

6.35 Recall from Exercise 6.32 that yearly returns on common stocks are normally distributed with a
mean of 12.4 percent and a standard deviation of 20.6 percent.
a What percentage of yearly returns are at or below the 10th percentile of the distribution of

yearly returns? What percentage are at or above the 10th percentile? Find the 10th percentile of
the distribution of yearly returns.

b Find the first quartile, Q1, and the third quartile, Q3, of the distribution of yearly returns.

6.36 Two students take a college entrance exam known to have a normal distribution of scores. The 
students receive raw scores of 63 and 93, which correspond to z scores (often called the standard-
ized scores) of  1 and 1.5, respectively. Find the mean and standard deviation of the distribution
of raw exam scores.

6.37 THE TRASH BAG CASE TrashBag

Suppose that a population of measurements is normally distributed with mean m and standard 
deviation s.
a Write an expression (involving m and s) for a tolerance interval containing 98 percent of all the

population measurements.

DS

xx
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b Estimate a tolerance interval containing 98 percent of all the trash bag breaking strengths by
using the fact that a random sample of 40 breaking strengths has a mean of  50.575 and a 
standard deviation of s 1.6438.

6.38 Consider the situation of Exercise 6.32.
a Use the investment broker’s report to estimate the maximum yearly return that might be 

obtained by investing in tax-free municipal bonds.
b Find the probability that the yearly return obtained by investing in common stocks will be higher

than the maximum yearly return that might be obtained by investing in tax-free municipal bonds.

6.39 In the book Advanced Managerial Accounting, Robert P. Magee discusses monitoring cost 
variances. A cost variance is the difference between a budgeted cost and an actual cost. Magee 
describes the following situation:

Michael Bitner has responsibility for control of two manufacturing processes. Every week he
receives a cost variance report for each of the two processes, broken down by labor costs,
materials costs, and so on. One of the two processes, which we’ll call process A, involves a
stable, easily controlled production process with a little fluctuation in variances. Process B
involves more random events: the equipment is more sensitive and prone to breakdown, the
raw material prices fluctuate more, and so on.

“It seems like I’m spending more of my time with process B than with process A,” says
Michael Bitner. “Yet I know that the probability of an inefficiency developing and the
expected costs of inefficiencies are the same for the two processes. It’s just the magnitude of
random fluctuations that differs between the two, as you can see in the information below.

At present, I investigate variances if they exceed $2,500, regardless of whether it was
process A or B. I suspect that such a policy is not the most efficient. I should probably set a
higher limit for process B.”

The means and standard deviations of the cost variances of processes A and B, when these
processes are in control, are as follows:

Furthermore, the means and standard deviations of the cost variances of processes A and B, when
these processes are out of control, are as follows:

a Recall that the current policy is to investigate a cost variance if it exceeds $2,500 for either
process. Assume that cost variances are normally distributed and that both Process A and
Process B cost variances are in control. Find the probability that a cost variance for Process A
will be investigated. Find the probability that a cost variance for Process B will be investigated.
Which in-control process will be investigated more often?

b Assume that cost variances are normally distributed and that both Process A and Process B cost
variances are out of control. Find the probability that a cost variance for Process A will be 
investigated. Find the probability that a cost variance for Process B will be investigated. Which
out-of-control process will be investigated more often?

c If both Processes A and B are almost always in control, which process will be investigated
more often?

d Suppose that we wish to reduce the probability that Process B will be investigated (when it is in
control) to .3085. What cost variance investigation policy should be used? That is, how large a
cost variance should trigger an investigation? Using this new policy, what is the probability that
an out-of-control cost variance for Process B will be investigated?

6.40 Suppose that yearly health care expenses for a family of four are normally distributed with a mean 
expense equal to $3,000 and a standard deviation of $500. An insurance company has decided to
offer a health insurance premium reduction if a policyholder’s health care expenses do not exceed
a specified dollar amount. What dollar amount should be established if the insurance company
wants families having the lowest 33 percent of yearly health care expenses to be eligible for the
premium reduction?

6.41 Suppose that the 33rd percentile of a normal distribution is equal to 656 and that the 97.5th per-
centile of this normal distribution is 896. Find the mean m and the standard deviation s of the
normal distribution. Hint: Sketch these percentiles.

Process A Process B

Mean cost variance (out of control) $7,500 $ 7,500

Standard deviation of cost variance (out of control) $5,000 $10,000

Process A Process B

Mean cost variance (in control) $ 0 $ 0

Standard deviation of cost variance (in control) $5,000 $10,000

x
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6.4 Approximating the Binomial Distribution by Using
the Normal Distribution (Optional) 

Figure 6.24 illustrates several binomial distributions. In general, we can see that as n gets
larger and as p gets closer to .5, the graph of a binomial distribution tends to have the sym-
metrical, bell-shaped appearance of a normal curve. It follows that, under conditions given
in the following box, we can approximate the binomial distribution by using a normal
distribution.

F I G U R E 6 . 2 4 Several Binomial Distributions

Binomial with n   20 and p   .2 Binomial with n   20 and p   .5

Binomial with n   50 and p   .3 Binomial with n   50 and p   .5
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The Normal Approximation of the Binomial Distribution

Consider a binomial random variable x, where n is the number of trials performed and p is the probability

of success on each trial. If n and p have values so that np 5 and n(1 p) 5, then x is approximately

normally distributed with mean m np and standard deviation , where q 1 p.s 1npq

1As an alternative to the rule that both np and n(1  p) must be at least 5, some statisticians suggest using the more

conservative rule that both np and n(1  p) must be at least 10.

Use the
normal

distribution to
approximate
binomial
probabilities
(Optional).

LO6

This approximation is often useful because binomial tables for large values of n are often
unavailable. The conditions np 5 and n(1 p) 5 must be met in order for the approximation
to be appropriate. Note that if p is near 0 or near 1, then n must be larger for a good approxima-
tion, while if p is near .5, then n need not be as large.1

When we say that we can approximate the binomial distribution by using a normal distribu-
tion, we are saying that we can compute binomial probabilities by finding corresponding areas
under a normal curve (rather than by using the binomial formula). We illustrate how to do this in
the following example.
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F I G U R E 6 . 2 5 Approximating the Binomial Probability P(x  23) by Using the Normal Curve

When M  np  25 and S   3.53551npq
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successes, x
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23
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Normal curve with 
    np   25 and
     npq   3.5355

z
0
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Standard normal curve

.3372   .2389   .0983

z        .42
23.5   25

3.5355

x    
 

z        .71
x    
 

22.5   25

3.5355

P(x   23) approximately equals

the area between 22.5 and 23.5

EXAMPLE 6.8

Consider the binomial random variable x with n 50 trials and probability of success p .5.
This binomial distribution is one of those illustrated in Figure 6.24. Suppose we want to use the
normal approximation to this binomial distribution to compute the probability of 23 successes
in the 50 trials. That is, we wish to compute P(x 23). Because np (50)(.5) 25 is at least
5, and n(1 p) 50(1 .5) 25 is also at least 5, we can appropriately use the approximation.
Moreover, we can approximate the binomial distribution of x by using a normal distribution
with mean m np 50(.5) 25 and standard deviation  

3.5355.
In order to compute the needed probability, we must make a continuity correction. This is

because a discrete distribution (the binomial) is being approximated by a continuous distribution
(the normal). Because there is no area under a normal curve at the single point x 23, we must
assign an area under the normal curve to the binomial outcome x 23. It is logical to assign the
area corresponding to the interval from 22.5 to 23.5 to the integer outcome x 23. That is, the area
under the normal curve corresponding to all values within .5 units of the integer outcome x 23 is
assigned to the value x 23. So we approximate the binomial probability P(x 23) by calculating
the normal curve area P(22.5 x 23.5). This area is illustrated in Figure 6.25. Calculating the
z values

we find that P(22.5 x 23.5) P( .71 z  .42) .3372 .2389 .0983. Therefore, we
estimate that the binomial probability P(x 23) is .0983.

z  
22.5  25

3.5355
  .71    and    z  

23.5  25

3.5355
  .42

s  1npq  150(.5)(1  .5)

Making the proper continuity correction can sometimes be tricky. A good way to approach
this is to list the numbers of successes that are included in the event for which the binomial
probability is being calculated. Then assign the appropriate area under the normal curve to each
number of successes in the list. Putting these areas together gives the normal curve area that
must be calculated. For example, again consider the binomial random variable x with n 50
and p .5. If we wish to find P(27 x 29), then the event 27 x 29 includes 27, 28, and
29 successes. Because we assign the areas under the normal curve corresponding to the inter-
vals [26.5, 27.5], [27.5, 28.5], and [28.5, 29.5] to the values 27, 28, and 29, respectively, then
the area to be found under the normal curve is P(26.5 x 29.5). Table 6.2 on the next page
gives several other examples.
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EXAMPLE 6.9 The Cheese Spread Case C

A food processing company markets a soft cheese spread that is sold in a plastic container with
an “easy pour” spout. Although this spout works extremely well and is popular with consumers,
it is expensive to produce. Because of the spout’s high cost, the company has developed a new,
less expensive spout. While the new, cheaper spout may alienate some purchasers, a company
study shows that its introduction will increase profits if fewer than 10 percent of the cheese
spread’s current purchasers are lost. That is, if we let p be the true proportion of all current pur-
chasers who would stop buying the cheese spread if the new spout were used, profits will increase
as long as p is less than .10.

Suppose that (after trying the new spout) 63 of 1,000 randomly selected purchasers say that
they would stop buying the cheese spread if the new spout were used. To assess whether p is less
than .10, we will assume for the sake of argument that p equals .10, and we will use the sample
information to weigh the evidence against this assumption and in favor of the conclusion that p
is less than .10. Let the random variable x represent the number of the 1,000 purchasers who say
they would stop buying the cheese spread. Assuming that p equals .10, then x is a binomial ran-
dom variable with n 1,000 and p .10. Since the sample result of 63 is less than m np 

1,000(.1) 100, the expected value of x when p equals .10, we have some evidence to contradict
the assumption that p equals .10. To evaluate the strength of this evidence, we calculate the prob-
ability that 63 or fewer of the 1,000 randomly selected purchasers would say that they would stop
buying the cheese spread if the new spout were used if, in fact, p equals .10.

Since both and are at least 5, we
can use the normal approximation to the binomial distribution to compute the needed probabil-
ity. The appropriate normal curve has mean and standard deviation

. In order to make the continuity correction, we
note that the discrete value is assigned the area under the normal curve corresponding to
the interval from 62.5 to 63.5. It follows that the binomial probability is approximated
by the normal probability . This is illustrated in Figure 6.26. Calculating the z value
for 63.5 to be

z  
63.5  100

9.4868
  3.85

P(x  63.5)
P(x  63)

x  63
s  1npq  11,000(.10)(1  .10)  9.4868

m  np  1,000(.10)  100

n(1  p)  1,000(1  .10)  900np  1,000(.10)  100

F I G U R E 6 . 2 6 Approximating the Binomial Probability P(x ⱕ 63) by Using the Normal Curve When M  np  100

and S   9.48681npq

Normal curve with
   np   100
and    npq   9.4868

Number of 
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   10063.5

P(x  63.5)

z
0 3.85

Standard
normal
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z       3.8563.5   100

9.4868

P(z   3.85)
  .00006

T A B L E 6 . 2 Several Examples of the Continuity Correction (n  50)

Numbers of Successes Normal Curve Area (with
Binomial Probability Included in Event Continuity Correction)

P(25   x   30) 26, 27, 28, 29, 30 P(25.5   x   30.5)

P(x   27) 0, 1, 2, . . . , 26, 27 P(x   27.5)

P(x   30) 31, 32, 33, . . . , 50 P(x   30.5)

P(27   x   31) 28, 29, 30 P(27.5   x   30.5)
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we find that

P(x 63.5) P(z  3.85)

Using the normal table, we find that the area under the standard normal curve to the left of  3.85
is .00006. This says that, if p equals .10, then in only 6 in 100,000 of all possible random samples
of 1,000 purchasers would 63 or fewer say they would stop buying the cheese spread if the new
spout were used. Since it is very difficult to believe that such a small chance (a .00006 chance)
has occurred, we have very strong evidence that p does not equal .10 and is, in fact, less than .10.
Therefore, it seems that using the new spout will be profitable.

Exercises for Section 6.4
CONCEPTS

6.42 Explain why it might be convenient to approximate binomial probabilities by using areas under an
appropriate normal curve.

6.43 Under what condition may we use the normal approximation to the binomial distribution?

6.44 Explain how we make a continuity correction. Why is a continuity correction needed when we
approximate a binomial distribution by a normal distribution?

METHODS AND APPLICATIONS

6.45 Suppose that x has a binomial distribution with n 200 and p .4.
a Show that the normal approximation to the binomial can appropriately be used to calculate

probabilities about x.
b Make continuity corrections for each of the following, and then use the normal approximation

to the binomial to find each probability:
(1) P(x 80)
(2) P(x 95)
(3) P(x 65)
(4) P(x 100)
(5) P(x 100)

6.46 Repeat Exercise 6.45 with n 200 and p .5.

6.47 An advertising agency conducted an ad campaign aimed at making consumers in an Eastern state
aware of a new product. Upon completion of the campaign, the agency claimed that 20 percent 
of consumers in the state had become aware of the product. The product’s distributor surveyed
1,000 consumers in the state and found that 150 were aware of the product.
a Assuming that the ad agency’s claim is true:

(1) Verify that we may use the normal approximation to the binomial.
(2) Calculate the mean, m, and the standard deviation, s, we should use in the normal 

approximation.
(3) Find the probability that 150 or fewer consumers in a random sample of 1,000 consumers

would be aware of the product.
b Should the distributor believe the ad agency’s claim? Explain.

6.48 In order to gain additional information about respondents, some marketing researchers have
used ultraviolet ink to precode questionnaires that promise confidentiality to respondents. Of
205 randomly selected marketing researchers who participated in an actual survey, 117 said
that they disapprove of this practice. Suppose that, before the survey was taken, a marketing
manager claimed that at least 65 percent of all marketing researchers would disapprove of the
practice.
a Assuming that the manager’s claim is correct, calculate the probability that 117 or fewer of 205

randomly selected marketing researchers would disapprove of the practice. Use the normal
approximation to the binomial.

b Based on your result of part a, do you believe the marketing manager’s claim? Explain.

6.49 When a store uses electronic article surveillance (EAS) to combat shoplifting, it places a small
sensor on each item of merchandise. When an item is legitimately purchased, the sales clerk is
supposed to remove the sensor to prevent an alarm from sounding as the customer exits the store.
In an actual survey of 250 consumers, 40 said that if they were to set off an EAS alarm because
store personnel (mistakenly) failed to deactivate merchandise leaving the store, then they would



260 Chapter 6 Continuous Random Variables

never shop at that store again. A company marketing the alarm system claimed that no more than
5 percent of all consumers would say that they would never shop at that store again if they were
subjected to a false alarm.
a Assuming that the company’s claim is valid, use the normal approximation to the binomial to

calculate the probability that at least 40 of the 250 randomly selected consumers would say
that they would never shop at that store again if they were subjected to a false alarm.

b Do you believe the company’s claim based on your answer to part a? Explain.

6.50 A department store will place a sale item in a special display for a one-day sale. Previous 
experience suggests that 20 percent of all customers who pass such a special display will 
purchase the item. If 2,000 customers will pass the display on the day of the sale, and if a 
one-item-per-customer limit is placed on the sale item, how many units of the sale item 
should the store stock in order to have at most a 1 percent chance of running short of the 
item on the day of the sale? Assume here that customers make independent purchase
decisions.

6.5 The Exponential Distribution (Optional) 
In Example 5.13 (pages 218–220), we considered an air traffic control center where controllers
occasionally misdirect pilots onto flight paths dangerously close to those of other aircraft. We
found that the number of these controller errors in a given time period has a Poisson distribution
and that the control center is averaging 20.8 errors per year. However, rather than focusing on the
number of errors occurring in a given time period, we could study the time elapsing between suc-
cessive errors. If we let x denote the number of weeks elapsing between successive errors, then x
is a continuous random variable that is described by what is called the exponential distribution.

Moreover, because the control center is averaging 20.8 errors per year, the center is averaging a
mean, denoted  , of 20.8兾52  .4 errors per week and thus a mean of 52兾20.8  2.5 (that is,
1兾  1兾.4  2.5) weeks between successive errors.

In general, if the number of events occurring per unit of time or space (for example, the num-
ber of controller errors per week or the number of imperfections per square yard of cloth) has a
Poisson distribution with mean  , then the number of units, x, of time or space between succes-
sive events has an exponential distribution with mean 1兾 . The equation of the probability curve
describing the exponential distribution is given in the following formula box.

The Exponential Distribution

If x is described by an exponential distribution with mean 1兾 , then the equation of the probability curve

describing x is 

Using this probability curve, it can be shown that:

P(a x b)   e  a
 e  b

In particular, since e0
 1 and e  

 0, this implies that

P(x b)   1 e  b and P(x a)   e  a

Furthermore, both the mean and the standard deviation of the population of all possible observed values of

a random variable x that has an exponential distribution are equal to 1兾 . That is, mx  sx  1兾 .

f(x)  再le lx

       0

for x  0

otherwise

The graph of the equation describing the exponential distribution and the probability P(a   x   b)
where x is described by this exponential distribution are illustrated in Figure 6.27.

Use the 
exponential

distribution to
compute
probabilities
(Optional).

LO7
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We illustrate the use of the exponential distribution in the following examples.

EXAMPLE 6.10 

We have seen in the air traffic control example that the control center is averaging   .4 errors
per week and 1兾  1兾.4  2.5 weeks between successive errors. It follows that the equation
of the exponential distribution describing x is f (x)  e lx

 .4e .4x. For example, the probabil-
ity that the time between successive errors will be between 1 and 2 weeks is

P(1 x 2) e  a
 e  b

 e  (1)
 e  (2)

 e .4(1)
 e .4(2)

 e .4
 e .8

 .6703 .4493 .221

F I G U R E 6 . 2 7 A Graph of the Exponential Distribution f (x)  e x

b

x

f(x )   e–x

P(a ⱕ x ⱕ b)   e–a
  e–b

a0



EXAMPLE 6.11

Suppose that the number of people who arrive at a hospital emergency room during a given time
period has a Poisson distribution. It follows that the time, x, between successive arrivals of
people to the emergency room has an exponential distribution. Furthermore, historical records
indicate that the mean time between successive arrivals of people to the emergency room is
seven minutes. Therefore, mx 1兾  7, which implies that   1兾7 .14286. Noting that sx 

1兾  7, it follows that

mx sx 7 7 0 and mx sx 7 7 14

Therefore, the probability that the time between successive arrivals of people to the emergency
room will be within (plus or minus) one standard deviation of the mean interarrival time is

P(0 x 14) e  a
 e  b

 e (.14286)(0)
 e (.14286)(14)

 1 .1353

 .8647

To conclude this section we note that the exponential and related Poisson distributions are
useful in analyzing waiting lines, or queues. In general, queueing theory attempts to determine
the number of servers (for example, doctors in an emergency room) that strikes an optimal
balance between the time customers wait for service and the cost of providing service. The reader
is referred to any textbook on management science or operations research for a discussion of
queueing theory.
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Exercises for Section 6.5
CONCEPTS

6.51 Give two examples of situations in which the exponential distribution might be used appropriately.
In each case, define the random variable having an exponential distribution.

6.52 State the formula for the exponential probability curve. Define each symbol in the formula.

6.53 Explain the relationship between the Poisson and exponential distributions.

METHODS AND APPLICATIONS

6.54 Suppose that the random variable x has an exponential distribution with  2.
a Write the formula for the exponential probability curve of x. What are the possible values of x?
b Sketch the probability curve.
c Find P(x 1).
d Find P(.25 x 1).
e Find P(x 2).
f Calculate the mean, mx, the variance, sx

2, and the standard deviation, sx, of the exponential
distribution of x.

g Find the probability that x will be in the interval [mx  2sx].

6.55 Repeat Exercise 6.54 with  3.

6.56 Recall in Exercise 5.34 (page 222) that the number of customer arrivals at a bank’s drive-up
window in a 15-minute period is Poisson distributed with a mean of seven customer arrivals per
15-minute period. Define the random variable x to be the time (in minutes) between successive
customer arrivals at the bank’s drive-up window.
a Write the formula for the exponential probability curve of x.
b Sketch the probability curve of x.
c Find the probability that the time between arrivals is

(1) Between one and two minutes.
(2) Less than one minute.
(3) More than three minutes.
(4) Between 1兾2 and 31兾2 minutes.

d Calculate mx, sx
2, and sx.

e Find the probability that the time between arrivals falls within one standard deviation of the
mean; within two standard deviations of the mean.

6.57 The length of a particular telemarketing phone call, x, has an exponential distribution with mean
equal to 1.5 minutes.
a Write the formula for the exponential probability curve of x.
b Sketch the probability curve of x.
c Find the probability that the length of a randomly selected call will be

(1) No more than three minutes.
(2) Between one and two minutes.
(3) More than four minutes.
(4) Less than 30 seconds.

6.58 The maintenance department in a factory claims that the number of breakdowns of a particular 
machine follows a Poisson distribution with a mean of two breakdowns every 500 hours. Let x
denote the time (in hours) between successive breakdowns.
a Find  and mx.
b Write the formula for the exponential probability curve of x.
c Sketch the probability curve.
d Assuming that the maintenance department’s claim is true, find the probability that the time 

between successive breakdowns is at most five hours.
e Assuming that the maintenance department’s claim is true, find the probability that the time 

between successive breakdowns is between 100 and 300 hours.
f Suppose that the machine breaks down five hours after its most recent breakdown. Based on

your answer to part d, do you believe the maintenance department’s claim? Explain.

6.59 Suppose that the number of accidents occurring in an industrial plant is described by a Poisson 
distribution with an average of one accident per month. Let x denote the time (in months) between
successive accidents.
a Find the probability that the time between successive accidents is

(1) More than two months.
(2) Between one and two months.
(3) Less than one week (1兾4 of a month).
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b Suppose that an accident occurs less than one week after the plant’s most recent accident.

Would you consider this event unusual enough to warrant special investigation? Explain.

6.6 The Normal Probability Plot (Optional) 
The normal probability plot is a graphic that is used to check visually whether sample data

come from a normal distribution. In order to illustrate the construction and interpretation of a

normal probability plot, consider the payment time case and suppose that the trucking company

operates in three regions of the country—the north, central, and south regions. In each region,

24 invoices are randomly selected and the payment time for each sampled invoice is found. The

payment times obtained in each region are given in Table 6.3, along with MINITAB side-by-side

box plots of the data. Examination of the data and box plots indicates that the payment times for

the central region are skewed to the left, while the payment times for the south region are skewed

to the right. The box plot of the payment times for the north region, along with the dot plot of

these payment times in Figure 6.28, indicate that the payment times for the north region are

approximately normally distributed.

We will begin by constructing a normal probability plot for the payment times from the north

region. We first arrange the payment times in order from smallest to largest. The ordered payment

times are shown in column (1) of Table 6.4 on the next page. Next, for each ordered payment time

we compute the quantity i兾(n ⫹ 1), where i denotes the observation’s position in the ordered list

of data and n denotes the sample size. For instance, for the first and second ordered payment times,

we compute 1兾(24 ⫹ 1) ⫽ 1兾25 ⫽ .04 and 2兾(24 ⫹ 1) ⫽ 2兾25 ⫽ .08. Similarly, for the last (24th)

ordered payment time, we compute 24兾(24 ⫹ 1) ⫽ 24兾25 ⫽ .96. The positions (i values) of all

24 payment times are given in column (2) of Table 6.4, and the corresponding values of i兾(n⫹ 1)

are given in column (3) of this table. We continue by computing what is called the standardized

normal quantile value for each ordered payment time. This value (denoted O
i
) is the z value that

T A B L E 6 . 3 Twenty-four Randomly Selected Payment Times for Each of Three Geographical 

Regions in the United States RegPayTimeDS

North Central South
Region Region Region

26 26 28

27 28 31

21 21 21

22 22 23

22 23 23

23 24 24

27 27 29

20 19 20

22 22 22

29 29 36

18 15 19

24 25 25

28 28 33

26 26 27

21 20 21

32 29 44

23 24 24

24 25 26

25 25 27

15 7 19

17 12 19

19 18 20

34 29 50

30 29 39
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F I G U R E 6 . 2 8 Dot Plot of the Payment Times for the 

North Region
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gives an area of i兾(n  1) to its left under the standard normal curve. Figure 6.29 illustrates
finding O1, O2, and O24. For instance, O1—the standardized normal quantile value corresponding
to the first ordered residual—is the z value that gives an area of 1兾(24  1)  .04 to its left under
the standard normal curve. As shown in Figure 6.29(a), the z value (to two decimal places) that
gives a left-hand tail area closest to .04 is O1   1.75. Similarly, O2 is the z value that gives an
area of 2兾(24  1)  .08 to its left under the standard normal curve. As shown in Figure 6.29(b),
the z value (to two decimal places) that gives a left-hand tail area closest to .08 is O2   1.41.
As a final example, Figure 6.29(c) shows that O24, the z value that gives an area of 24兾(24  1)  
.96 to its left under the standard normal curve, is 1.75. The standardized normal quantile values
corresponding to the 24 ordered payment times are given in column (4) of Table 6.4. Finally, we
obtain the normal probability plot by plotting the 24 ordered payment times on the vertical axis
versus the corresponding standardized normal quantile values (Oi values) on the horizontal axis.
Figure 6.30 gives an Excel add-in (MegaStat) output of this normal probability plot.

In order to interpret the normal plot, notice that, although the areas in column (3) of Table 6.4
(that is, the i兾(n  1) values: .04, .08, .12, etc.) are equally spaced, the z values corresponding to

T A B L E 6 . 4 Calculations for Normal Probability Plots in the Payment Time Example

Ordered North Region Observation Area z value Ordered Central Region Ordered South Region
Payment Times Number (i) i兾(n  1) Oi Payment Times Payment Times 
Column (1) Column (2) Column (3) Column (4) Column (5) Column (6)

15 1 0.04  1.75 7 19

17 2 0.08  1.41 12 19

18 3 0.12  1.18 15 19

19 4 0.16  0.99 18 20

20 5 0.2  0.84 19 20

21 6 0.24  0.71 20 21

21 7 0.28  0.58 21 21

22 8 0.32  0.47 22 22

22 9 0.36  0.36 22 23

22 10 0.4  0.25 23 23

23 11 0.44  0.15 24 24

23 12 0.48  0.05 24 24

24 13 0.52 0.05 25 25

24 14 0.56 0.15 25 26

25 15 0.6 0.25 25 27

26 16 0.64 0.36 26 27

26 17 0.68 0.47 26 28

27 18 0.72 0.58 27 29

27 19 0.76 0.71 28 31

28 20 0.8 0.84 28 33

29 21 0.84 0.99 29 36

30 22 0.88 1.18 29 39

32 23 0.92 1.41 29 44

34 24 0.96 1.75 29 50

F I G U R E 6 . 2 9 Calculating Standardized Normal Quantile Values

Tail  area
equals
.04

O1    1.75

(a) Calculating O1 (b) Calculating O2

.08

O2    1.41

(c) Calculating O24

.96

O24   1.75
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these areas are not equally spaced. Because of the mound-shaped nature of the standard normal
curve, the negative z values get closer together as they get closer to the mean (z  0) and the pos-
itive z values get farther apart as they get farther from the mean (more positive). If the distances
between the payment times behave the same way as the distances between the z values—that is,
if the distances between the payment times are proportional to the distances between the 
z values—then the normal probability plot will be a straight line. This would suggest that the
payment times are normally distributed. Examining Figure 6.30, the normal probability plot for
the payment times from the north region is approximately a straight line and, therefore, it is rea-
sonable to assume that these payment times are approximately normally distributed.

Column (5) of Table 6.4 gives the ordered payment times for the central region, and Fig-
ure 6.31 plots these values versus the standardized normal quantile values in column (4). The re-
sulting normal probability plot for the central region has a nonlinear appearance. The plot points
rise more steeply at first and then continue to increase at a decreasing rate. This pattern indicates
that the payment times for the central region are skewed to the left. Here the rapidly rising points
at the beginning of the plot are due to the payment times being farther apart in the left tail of the
distribution. Column (6) of Table 6.4 gives the ordered payment times for the south region, and
Figure 6.32 gives the normal probability plot for this region. This plot also has a nonlinear
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Chapter Summary

In this chapter we have discussed continuous probability distri-

butions. We began by learning that a continuous probability

distribution is described by a continuous probability curve

and that in this context probabilities are areas under the prob-

ability curve. We next studied several important continuous
probability distributions—the uniform distribution, the normal

distribution, and the exponential distribution. In particular,
we concentrated on the normal distribution, which is the most

important continuous probability distribution. We learned about
the properties of the normal curve, and we saw how to use a nor-

mal table to find various areas under a normal curve. We also saw
that the normal curve can be employed to approximate binomial
probabilities, and we demonstrated how we can use a normal
curve probability to make a statistical inference. We concluded
this chapter with an optional section that covers the normal

probability plot.
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appearance. The points rise slowly at first and then increase at an increasing rate. This pattern
indicates that the payment times for the south region are skewed to the right. Here the rapidly
rising points on the right side of the plot are due to the payment times being farther apart in the
right tail of the distribution.

In the following box, we summarize how to construct and interpret a normal probability plot.

Normal Probability Plots 

1 Order the values in the data from smallest to largest.

2 For each observation compute the area i兾(n  1), where i denotes the position of the observation in the

ordered listing and n is the number of observations. 

3 Compute the standardized normal quantile value Oi for each observation. This is the z value that gives

an area of i兾(n  1) to its left under the standard normal curve.

4 Plot the ordered data values versus the standardized normal quantile values.

5 If the resulting normal probability plot has a straight line appearance, it is reasonable to assume that

the data come from a normal distribution.

Exercises for Section 6.6
CONCEPTS

6.60 Discuss how a normal probability plot is constructed.

6.61 If a normal probability plot has the appearance of a straight line, what should we conclude?

METHODS AND APPLICATIONS

6.62 Consider the sample of 12 incomes given in Example 3.2 (page 105). 
a Sort the income data from smallest to largest, and compute i兾(n  1) for each observation.
b Compute the standardized normal quantile value Oi for each observation.
c Graph the normal probability plot for the salary data and interpret this plot. Does the plot

indicate that the data are skewed? Explain. Incomes

6.63 Consider the 20 DVD satisfaction ratings given on page 123. Construct a normal probability plot
for these data and interpret the plot. DVDSat

6.64 Anormal probability plot can be constructed using MINITAB. Use the selections Stat : Basic Statistics :
Normality test, and select the data to be analyzed. Although the MINITAB plot is slightly different
from the plot outlined in this section, its interpretation is the same. Use MINITAB to construct a nor-
mal probability plot of the gas mileage data in Table 3.1 (page 103). Interpret the plot. GasMilesDS

DS

DS

Glossary of Terms

continuous probability distribution (or probability curve): A
curve that is defined so that the probability that a random variable
will be in a specified interval of numbers is the area under the
curve corresponding to the interval. (page 233)

cumulative normal table: A table in which we can look up areas
under the standard normal curve. (pages 240–242)
exponential distribution: A probability distribution that de-
scribes the time or space between successive occurrences of an
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event when the number of times the event occurs over an interval
of time or space is described by a Poisson distribution. (page 260)
normal probability distribution: The most important continu-
ous probability distribution. Its probability curve is the bell-

shaped normal curve. (page 238)
normal probability plot: A graphic used to visually check
whether sample data come from a normal distribution. (page 263)
queueing theory: A methodology that attempts to determine the
number of servers that strikes an optimal balance between the
time customers wait for service and the cost of providing service.
(page 261)
standard normal distribution (or curve): A normal distribution
(or curve) having mean 0 and standard deviation 1. (page 240)

uniform distribution: A continuous probability distribution
having a rectangular shape that says the probability is distrib-
uted evenly (or uniformly) over an interval of numbers. (page 235)
zA point: The point on the horizontal axis under the standard
normal curve that gives a right-hand tail area equal to a. (page 249)
 zA point: The point on the horizontal axis under the standard
normal curve that gives a left-hand tail area equal to a. (page 250)
z value: A value that tells us the number of standard deviations
that a value x is from the mean of a normal curve. If the z value is
positive, then x is above the mean. If the z value is negative, then
x is below the mean. (page 240)

Important Formulas

The uniform probability curve: page 235

Mean and standard deviation of a uniform distribution: page 235

The normal probability curve: page 238

z values: page 240

Finding normal probabilities: page 246

Normal approximation to the binomial distribution: page 256

The exponential probability curve: page 260

Mean and standard deviation of an exponential distribution: 
page 260

Constructing a normal probability plot: page 266

Supplementary Exercises

6.65 In a bottle-filling process, the amount of drink injected into 16 oz bottles is normally distributed
with a mean of 16 oz and a standard deviation of .02 oz. Bottles containing less than 15.95 oz
do not meet the bottler’s quality standard. What percentage of filled bottles do not meet the
standard?

6.66 In a murder trial in Los Angeles, a shoe expert stated that the range of heights of men with a size
12 shoe is 71 inches to 76 inches. Suppose the heights of all men wearing size 12 shoes are
normally distributed with a mean of 73.5 inches and a standard deviation of 1 inch. What is the
probability that a randomly selected man who wears a size 12 shoe
a Has a height outside the range 71 inches to 76 inches?
b Is 74 inches or taller?
c Is shorter than 70.5 inches?

6.67 In the movie Forrest Gump, the public school required an IQ of at least 80 for admittance.
a If IQ test scores are normally distributed with mean 100 and standard deviation 16, what 

percentage of people would qualify for admittance to the school?
b If the public school wishes 95 percent of all children to qualify for admittance, what minimum

IQ test score should be required for admittance?

6.68 The amount of sales tax paid on a purchase is rounded to the nearest cent. Assume that the round-
off error is uniformly distributed in the interval  .5 to .5 cents.
a Write the formula for the probability curve describing the round-off error.
b Graph the probability curve describing the round-off error.
c What is the probability that the round-off error exceeds .3 cents or is less than  .3 cents?
d What is the probability that the round-off error exceeds .1 cent or is less than  .1 cent?
e Find the mean and the standard deviation of the round-off error.
f Find the probability that the round-off error will be within one standard deviation of the mean.

6.69 A consensus forecast is the average of a large number of individual analysts’ forecasts. Suppose
the individual forecasts for a particular interest rate are normally distributed with a mean of
5.0 percent and a standard deviation of 1.2 percent. A single analyst is randomly selected. Find the
probability that his/her forecast is
a At least 3.5 percent.
b At most 6 percent.
c Between 3.5 percent and 6 percent.
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6.70 Recall from Exercise 6.69 that individual forecasts of a particular interest rate are normally
distributed with a mean of 5 percent and a standard deviation of 1.2 percent.
a What percentage of individual forecasts are at or below the 10th percentile of the distribution

of forecasts? What percentage are at or above the 10th percentile? Find the 10th percentile of
the distribution of individual forecasts.

b Find the first quartile, Q1, and the third quartile, Q3, of the distribution of individual forecasts.

6.71 The scores on the entrance exam at a well-known, exclusive law school are normally distributed
with a mean score of 200 and a standard deviation equal to 50. At what value should the lowest
passing score be set if the school wishes only 2.5 percent of those taking the test to pass?

6.72 A machine is used to cut a metal automobile part to its desired length. The machine can be set so
that the mean length of the part will be any value that is desired. The standard deviation of the
lengths always runs at .02 inches. Where should the mean be set if we want only .4 percent of the
parts cut by the machine to be shorter than 15 inches long?

6.73 A motel accepts 325 reservations for 300 rooms on July 1, expecting 10 percent no-shows on 
average from past records. Use the normal approximation to the binomial to find the probability
that all guests who arrive on July 1 will receive a room.

6.74 Suppose a software company finds that the number of errors in its software per 1,000 lines of code is
described by a Poisson distribution. Furthermore, it is found that there is an average of four errors
per 1,000 lines of code. Letting x denote the number of lines of code between successive errors:
a Find the probability that there will be at least 400 lines of code between successive errors in

the company’s software.
b Find the probability that there will be no more than 100 lines of code between successive

errors in the company’s software.

6.75 THE INVESTMENT CASE InvestRet

For each investment class in Table 3.11 (page 143), assume that future returns are normally distributed
with the population mean and standard deviation given in Table 3.11. Based on this assumption:
a For each investment class, find the probability of a return that is less than zero (that is, find the

probability of a loss). Is your answer reasonable for all investment classes? Explain.
b For each investment class, find the probability of a return that is

(1) Greater than 5 percent.
(2) Greater than 10 percent.
(3) Greater than 20 percent.
(4) Greater than 50 percent.

c For which investment classes is the probability of a return greater than 50 percent essentially
zero? For which investment classes is the probability of such a return greater than 1 percent?
Greater than 5 percent?

d For which investment classes is the probability of a loss essentially zero? For which investment
classes is the probability of a loss greater than 1 percent? Greater than 10 percent? Greater than
20 percent?

6.76 The daily water consumption for an Ohio community is normally distributed with a mean 
consumption of 800,000 gallons and a standard deviation of 80,000 gallons. The community water
system will experience a noticeable drop in water pressure when the daily water consumption 
exceeds 984,000 gallons. What is the probability of experiencing such a drop in water pressure?

6.77 Suppose the times required for a cable company to fix cable problems in its customers’ homes are
uniformly distributed between 10 minutes and 25 minutes. What is the probability that a randomly
selected cable repair visit will take at least 15 minutes?

6.78 Suppose the waiting time to get food after placing an order at a fast-food restaurant is exponen-
tially distributed with a mean of 60 seconds. If a randomly selected customer orders food at the
restaurant, what is the probability that the customer will wait at least
a 90 seconds?
b Two minutes?

6.79 Net interest margin—often referred to as spread—is the difference between the rate banks pay on
deposits and the rate they charge for loans. Suppose that the net interest margins for all U.S. banks
are normally distributed with a mean of 4.15 percent and a standard deviation of .5 percent.
a Find the probability that a randomly selected U.S. bank will have a net interest margin that 

exceeds 5.40 percent.
b Find the probability that a randomly selected U.S. bank will have a net interest margin less than

4.40 percent.

DS
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c A bank wants its net interest margin to be less than the net interest margins of 95 percent of all
U.S. banks. Where should the bank’s net interest margin be set?

6.80 In an article in the November 11, 1991, issue of Advertising Age, Nancy Giges studies global spend-
ing patterns. Giges presents data concerning the percentage of adults in various countries who have
purchased various consumer items (such as soft drinks, athletic footware, blue jeans, beer, and so
on) in the past three months.
a Suppose we wish to justify the claim that fewer than 50 percent of adults in Germany have pur-

chased blue jeans in the past three months. The survey reported by Giges found that 45 percent
of the respondents in Germany had purchased blue jeans in the past three months.2

Assume that a random sample of 400 German adults was employed, and let p be the propor-
tion of all German adults who have purchased blue jeans in the past three months. If, for the
sake of argument, we assume that p .5, use the normal approximation to the binomial distri-
bution to calculate the probability that 45 percent or fewer of 400 randomly selected German
adults would have purchased blue jeans in the past three months. Note: Because 45 percent of
400 is 180, you should calculate the probability that 180 or fewer of 400 randomly selected
German adults would have purchased blue jeans in the past three months.

b Based on the probability you computed in part a, would you conclude that p is really less than .5?
That is, would you conclude that fewer than 50 percent of adults in Germany have purchased
blue jeans in the past three months? Explain.

6.81 Assume that the ages for first marriages are normally distributed with a mean of 26 years and a
standard deviation of 4 years. What is the probability that a person getting married for the first
time is in his or her twenties?

2Source: N. Giges, “Global Spending Patterns Emerge,” Advertising Age (November 11, 1991), p. 64.
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Normal probability P(X  153 or X  167) in Exam-
ple 6.4 (page 248):

• Enter the headings—x, P(X  x), P(X  x) – in
the spreadsheet where you wish the results to
be placed. Here we will enter these headings
in cells A16, B16, and C16. The calculated 
results will be placed below the headings.

• In cells A17 and A18, enter the values 153 
and 167.

• Click in cell B17 and select the Insert Function
button from the Excel toolbar.

• In the Insert Function dialog box, select 
Statistical from the “Or select a category:”
menu, select NORMDIST from the “Select a
function:” menu, and click OK.

• In the NORMDIST Function Arguments dialog
box, enter the cell location A17 in the X window.

• Enter the value 160.0833 in the Mean window.

• Enter the value 5.3724 in the Standard_dev
window.

• Enter the value 1 in the Cumulative window.

• Click OK in the NORMDIST Function 
Arguments dialog box. 

• When you click OK, the result for P(X  153)
will be placed in cell B17. Double-click the
drag-handle (in the lower right corner) of cell
B17 to automatically extend the cell formula
of B17 through cell B18.

• In cells C17 and C18, enter the formulas
 1 B17 and  1 B18. The results for 
P(X   153) and P(X   167) will be placed in
cells C17 and C18.

• In cell D19, enter the formula  B17 C18.

fx

Appendix 6.1 ■ Normal Distribution Using Excel

Normal probability P(X  31.2) in Example 6.3
(page 247):

• Click in the cell where you wish to place the
answer. Here we have clicked in cell A15. Then
select the Insert Function button from the
Excel toolbar.

• In the Insert Function dialog box, select 
Statistical from the “Or select a category:”
menu, select NORMDIST from the “Select a
function:” menu, and click OK.

• In the NORMDIST Function Arguments dialog
box, enter the value 31.2 in the X window.

• Enter the value 33 in the Mean window.

• Enter the value 0.7 in the Standard_dev
window.

• Enter the value 1 in the Cumulative window.

• Click OK in the NORMDIST Function 
Arguments dialog box.

• When you click OK in this dialog box, the 
answer will be placed in cell A15. 

fx
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The desired probability is in cell D19, the sum of the lower tail probability for 153 and the upper tail probability for
167. This value differs slightly from the value in Example 6.4 since Excel carries out probability calculations to higher
precision than can be achieved using normal probability tables.

Inverse normal probability st such that P(X  st)  
0.05 in Example 6.5 (pages 249–250):

• Click in the cell where you wish the answer to be
placed. Here we will click in cell A19. Select the
Insert Function button from the Excel toolbar.

• In the Insert Function dialog box, select Statistical
from the “Or select a category:” menu, select
NORMINV from the “Select a function:” menu,
and click OK.

• In the NORMINV Function Arguments dialog box,
enter the value 0.95 in the Probability window;
that is,

[P(X  st)  0.95 when P(X  st)  0.05.]

• Enter the value 100 in the Mean window.

• Enter the value 10 in the Standard_dev window.

• Click OK in the NORMINV Function Arguments 
dialog window. 

• When you click OK, the answer is placed in cell A19.

fx

Appendix 6.2 ■ Normal Distribution Using MegaStat

Normal probability P(X  31.2) in Example 6.3 
(page 247):

• Select Add-ins : MegaStat : Probability :
Continuous Probability Distributions

• In the “Continuous Probability Distributions” 
dialog box, select the normal distribution tab.

• Enter the distribution mean (here equal to 33)
and the distribution standard deviation (here
equal to 0.7) in the appropriate boxes.

• Enter the value of x (here equal to 31.2) into
the “Calculate p given x” window.

• Click OK in the “Continuous Probability 
Distributions” dialog box.

• The output includes P(lower), which is the area
under the specified normal curve below the given
value of x, and P(upper), which is the area under
the specified normal curve above the given value
of x. The value of z corresponding to the speci-
fied value of x is also included. In this case, 
P(X  31.2) equals P(lower)  .0051.

• (Optional) Click on the preview button to see the
values of P(lower) and P(upper) before obtaining
results in the Output worksheet.
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Appendix 6.3 ■ Normal Distribution Using MINITAB

Normal probability P(X  31.2) in Example 6.3
(page 247):

• Select Calc : Probability Distributions : Normal.

• In the Normal Distribution dialog box, select
the Cumulative probability option.

• In the Mean window, enter 33.

• In the Standard deviation window, enter 0.7.

• Click on the “Input constant” option and
enter 31.2 in the “Input constant” window.

• Click OK in Normal Distribution dialog box to
see the desired probability in the Session
window.

Note that if a standard normal distribution is specified, 0 is entered in the mean box and 1 is entered in the stan-
dard deviation box—the “calculate P given X” box will read “Calculate P given z.” In this case, when we enter a
value of z in the “Calculate P given z” box, P(lower) and P(upper) are, respectively, the areas below and above the
specified value of z under the standard normal curve.

Normal probability P(X  153 or X  167) in Example 6.4 on page 248. Enter 160.0833 into the Mean box and enter
5.3724 into the Standard Deviation box. Find P(lower) corresponding to 153 and find P(upper) corresponding to
167. When these values are placed in the output worksheet, use a simple Excel cell formula to add them together.

Inverse normal probability st such that P(X st) 0.05
in Example 6.5 on pages 249–250:

• Select Add-ins : MegaStat : Probability :
Continuous Probability Distributions

• Enter 100 into the Mean box and enter 10 into
the Standard deviation box. 

• Select the “Calculate x given P” option.

• Enter 0.05 into the P box. This is the area under
the normal curve we want to have above st (that is,
above the desired value of x).

• Click OK in the “Continuous Probability 
Distributions” dialog box.

• The output includes P(lower) and P(upper)—as
defined above—as well as the desired value of x
(in this case x equals 116.45).
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Normal probability P(X  153 or X  167) in Exam-
ple 6.4 (page 248):

• In columns C1, C2, and C3, enter the variable
names—x, P(X  x), and P(X  x).

• In column C1, enter the values 153 and 167.

• Select Calc : Probability Distributions : 
Normal.

• In the Normal Distribution dialog box, select
the Cumulative probability option.

• In the Mean window, enter 160.0833.

• In the Standard deviation window, enter
5.3724.

• Click the “Input column” option, enter x in the
“Input column” window, and enter ‘P(X  x)’
in the “Optional storage” window.

• Click OK in Normal Distribution dialog box.

• Select Calc : Calculator.

• In the Calculator dialog box, enter ‘P(X  x)’
in the “Store result in variable” window.

• Enter 1  ‘P(X  x)’ in the Expression window.

• Click OK in the Calculator dialog box.

The desired probability is the sum of the lower tail
probability for 153 and the upper tail probability
for 167 or 0.093675  0.098969  0.192644. This
value differs slightly from the value in Example 6.4
because Minitab carries out probability calcula-
tions to higher precision than can be achieved
using normal probability tables.

Inverse normal probability to find the number of
units stocked, st, such that P(X  st)  0.05 in
Example 6.5 (pages 249–250):

• Select Calc : Probability Distributions : Normal.

• In the Normal Distribution dialog box, select
the Inverse cumulative probability option.

• In the Mean window, enter 100.

• In the Standard deviation window, enter 10.

• Click the “Input constant” option and enter
0.95 in the “Input constant” window. That is,

P(X  st)  0.95 when P(X  st)  0.05.

• Click OK in Normal Distribution dialog box to
see the desired value of st in the Session
window.
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Chapter Outline

LO1 Explain the concept of random sampling
and select a random sample.

LO2 Describe and use the sampling distribution
of the sample mean.

LO3 Explain and use the Central Limit Theorem.

LO4 Describe and use the sampling distribution
of the sample proportion.

LO5 Describe the basic ideas of stratified
random, cluster, and systematic sampling
(Optional).

LO6 Describe basic types of survey questions,
survey procedures, and sources of error
(Optional).

Learning Objectives

After mastering the material in this chapter, you will be able to:



n Chapter 1 we introduced random

sampling. In this chapter we continue our

discussion of random sampling by explaining

what a random sample is and how to select a

random sample. In addition, we discuss two

probability distributions that are related to random

sampling. To understand these distributions, note

that if we select a random sample, then we use

the sample mean as the point estimate of the

population mean and the sample proportion as the

point estimate of the population proportion. Two

probability distributions that help us assess how

accurate the sample mean and sample proportion

are likely to be as point estimates are the sampling

distribution of the sample mean and the sampling

distribution of the sample proportion. After discussing

random sampling in the first section of this chapter,

we consider these sampling distributions in the next

two sections. Moreover, using the car mileage case,

the payment time case, and the cheese spread case,

we demonstrate how sampling distributions can be

used to make statistical inferences.

The discussions of random sampling and of

sampling distributions given in the first three

sections of this chapter are necessary for

understanding the rest of this book. The last two

sections of this chapter consider certain advanced

aspects of sampling and are optional. In the first

optional section, we discuss three alternatives to

random sampling—stratified random sampling,

cluster sampling, and systematic sampling. In the

second optional section, we discuss various issues

related to designing surveys and the errors that can

occur in survey sampling.

I

7.1 Random Sampling 
Selecting a random sample from a population is one of the best ways to ensure that the informa-

tion contained in the sample reflects what is true about the population. To illustrate the idea of a

random sample, consider the cell phone case, and recall that a bank has 2,136 employees on var-

ious 500-minute-per-month calling plans. In order to assess its cellular costs for these 500-minute

plans, the bank will analyze in detail the cell phone bills for a random sample of 100 employees

on these plans. One intuitive procedure for selecting a random sample of 100 employees from a

population of 2,136 employees would begin by numbering the 2,136 employees from 1 to 2,136

and placing 2,136 identical slips of paper numbered from 1 to 2,136 in a suitable container. We

would then thoroughly mix the slips of paper in the container and, blindfolded, choose one. The

number on the chosen slip of paper would identify the first randomly selected employee. Next,

still blindfolded, we would choose another slip of paper from the container. The number on the

second slip would identify the second randomly selected employee. Continuing this process, we

would select a total of 100 slips of paper from the container. The numbers on the 100 selected

slips of paper would identify the 100 employees that make up the random sample.

In practice, numbering 2,136 (or any large number of) slips of paper would be very time con-

suming, and actual experience has shown that thoroughly mixing slips of paper (or the like) can

be difficult. For these reasons, statisticians have developed more efficient and accurate methods

for selecting a random sample. To discuss these methods, we let n, which we call the sample size,

denote the number of elements in a sample. We then define a random sample of n elements—and

explain how to select such a sample—as follows:1

1 If we select n elements from a population in such a way that every set of n elements in the

population has the same chance of being selected, then the n elements we select are said to

be a random sample.

2 In order to select a random sample of n elements from a population, we make n random

selections—one at a time—from the population. On each random selection, we give every

element remaining in the population for that selection the same chance of being chosen.

In making random selections from a population, we can sample with or without replacement.

If we sample with replacement, we place the element chosen on any particular selection back

into the population. Thus, we give this element a chance to be chosen on any succeeding selec-

tion. If we sample without replacement, we do not place the element chosen on a particular se-

lection back into the population. Thus, we do not give this element a chance to be chosen on any

succeeding selection. It is best to sample without replacement. Intuitively, this is because

1Actually, there are several different kinds of random samples. The type we will define is sometimes called a simple random

sample. For brevity’s sake, however, we will use the term random sample.

Explain the
concept of

random sampling
and select a
random sample.

LO1



EXAMPLE 7.1 The Cell Phone Case

choosing the sample without replacement guarantees that all of the elements in the sample will

be different, and thus we will have the fullest possible look at the population.

The first step in selecting a random sample is to obtain or make a numbered list of the popu-

lation elements. Then, as illustrated in the following example, we can use a random number table

or computer-generated random numbers to make random selections from the numbered list.
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C

(b) MINITAB output of 100 different, four-digit
random numbers between 1 and 2136

705 1131 169 1703 1709 609

1990 766 1286 1977 222 43

1007 1902 1209 2091 1742 1152

111 69 2049 1448 659 338

1732 1650 7 388 613 1477

838 272 1227 154 18 320

1053 1466 2087 265 2107 1992

582 1787 2098 1581 397 1099

757 1699 567 1255 1959 407

354 1567 1533 1097 1299 277

663 40 585 1486 1021 532

1629 182 372 1144 1569 1981

1332 1500 743 1262 1759 955

1832 378 728 1102 667 1885

514 1128 1046 116 1160 1333

831 2036 918 1535 660

928 1257 1468 503 468

(a) A portion of a random number table

33276 85590 79936 56865 05859 90106 78188

03427 90511 69445 18663 72695 52180 90322

92737 27156 33488 36320 17617 30015 74952

85689 20285 52267 67689 93394 01511 89868

08178 74461 13916 47564 81056 97735 90707

51259 63990 16308 60756 92144 49442 40719

60268 44919 19885 55322 44819 01188 55157

94904 01915 04146 18594 29852 71585 64951

58586 17752 14513 83149 98736 23495 35749

09998 19509 06691 76988 13602 51851 58104

14346 61666 30168 90229 04734 59193 32812

74103 15227 25306 76468 26384 58151 44592

24200 64161 38005 94342 28728 35806 22851

87308 07684 00256 45834 15398 46557 18510

07351 86679 92420 60952 61280 50001 94953

T A B L E 7 . 1 Random Numbers

In order to select a random sample of 100 employees from the population of 2,136 employees on

500-minute-per-month cell phone plans, the bank will make a numbered list of the 2,136 employ-

ees on 500-minute plans. The bank can then use a random number table, such as Table 7.1(a), to

select the random sample. To see how this is done, note that any single-digit number in the table has

been chosen in such a way that any of the single-digit numbers between 0 and 9 had the same

chance of being chosen. For this reason, we say that any single-digit number in the table is a

random number between 0 and 9. Similarly, any two-digit number in the table is a random number

between 00 and 99, any three digit number in the table is a random number between 000 and 999,

and so forth. Note that the table entries are segmented into groups of five to make the table easier to

read. Because the total number of cell phone users on the 500-minute plans (2,136) is a four-digit

number, we arbitrarily select any set of four digits in the table (we have circled these digits). This

number, which is 0511, identifies the first randomly selected user. Then, moving in any direction

from the 0511 (up, down, right, or left—it does not matter which), we select additional sets of

four digits. These succeeding sets of digits identify additional randomly selected users. Here we

arbitrarily move down from 0511 in the table. The first seven sets of four digits we obtain are

0511 7156 0285 4461 3990 4919 1915

(See Table 7.1(a)—these numbers are enclosed in a rectangle.) Since there are no users numbered

7156, 4461, 3990, or 4919 (remember only 2,136 users are on 500-minute plans), we ignore these

numbers. This implies that the first three randomly selected users are those numbered 0511, 0285,

and 1915. Continuing this procedure, we can obtain the entire random sample of 100 users.

Notice that, because we are sampling without replacement, we should ignore any set of four digits

previously selected from the random number table.

While using a random number table is one way to select a random sample, this approach has a

disadvantage that is illustrated by the current situation.Specifically, since most four-digit random

numbers are not between 0001 and 2136, obtaining 100 different, four-digit random numbers be-

tween 0001 and 2136 will require ignoring a large number of random numbers in the random

number table, and we will in fact need to use a random number table that is larger than
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Table 7.1(a). Although larger random number tables are readily available in books of mathemati-

cal and statistical tables, a good alternative is to use a computer software package, which can gen-

erate random numbers that are between whatever values we specify. For example, Table 7.1(b)

gives the MINITAB output of 100 different, four-digit random numbers that are between 0001 and

2136 (note that the “leading 0’s” are not included in these four-digit numbers). If used, the random

numbers in Table 7.1(b) would identify the 100 employees that form the random sample. For ex-

ample, the first three randomly selected employees would be employees 705, 1990, and 1007.

When the number of cellular minutes used by each randomly selected employee are found and

recorded, we obtain the sample of cellular usages that has been given in Table 1.4 (see page 9).

To conclude this example, note that computer software packages sometimes generate the same

random number twice and thus are sampling with replacement. Because we wished to randomly

select 100 employees without replacement, we had MINITAB generate more than 100 (actually,

110) random numbers. We then ignored the repeated random numbers to obtain the 100 different

random numbers in Table 7.1(b).

Next, consider the marketing research case, and recall that we wish to select a sample of 60

shoppers at a large metropolitan shopping mall on a particular Saturday. Because it is not possi-

ble to list and number all of the shoppers who will be at the mall on this Saturday, we cannot se-

lect a random sample of these shoppers. However, we can select an approximately random sam-

ple of these shoppers. To see one way to do this, note that there are 6 ten-minute intervals during

each hour, and thus there are 60 ten-minute intervals during the 10-hour period from 10 A.M. to

8 P.M.—the time when the shopping mall is open. Therefore, one way to select an approximately

random sample is to choose a particular location at the mall that most shoppers will walk by and

then randomly select—at the beginning of each ten-minute period—one of the first shoppers that

walks by the location. Here, although we could randomly select one person from any reasonable

number of shoppers that walk by, we will (arbitrarily) randomly select one of the first five shop-

pers that walk by. For example, starting in the upper left-hand corner of Table 7.1(a) and pro-

ceeding down the first column, note that the first three random numbers between 1 and 5 are 3, 5,

and 1. This implies that (1) at 10 A.M. we would select the 3rd customer that walks by: (2) at

10:10 A.M. we would select the 5th shopper that walks by: (3) at 10:20 A.M. we would select the

1st customer that walks by, and so forth. Furthermore, assume that the composite score ratings of

the new bottle design that would be given by all shoppers at the mall on the Saturday are repre-

sentative of the composite score ratings that would be given by all possible consumers. It then

follows that the composite score ratings given by the 60 sampled shoppers can be regarded as an

approximately random sample that can be used to make statistical inferences about the popula-

tion of all possible consumer composite score ratings.

As another example, consider the car mileage case, and recall that the automaker has decided

to select a sample of 50 cars by randomly selecting one car from the 100 cars produced on each of

50 consecutive production shifts. If we number the 100 cars produced on a particular production

shift from 00 to 99, we can randomly select a car from the shift by using a random number table

or a computer software package to obtain a random number between 00 and 99. For example, start-

ing in the upper left-hand corner of Table 7.1(a) and proceeding down the first column, we see that

the first three random numbers between 00 and 99 are 33, 3, and 92. This implies that we would

select car 33 from the first production shift, car 3 from the second production shift, car 92 from the

third production shift, and so forth. Moreover, because a new group of 100 cars is produced on

each production shift, repeated random numbers would not be discarded. For example, if the 15th

and 29th random numbers are both 7, we would select the 7th car from the 15th production shift

and the 7th car from the 29th production shift. When the 50 cars are selected and tested as pre-

scribed by the EPA, the sample of 50 mileages that has been given in Table 1.6 (see page 12) is ob-

tained. Furthermore, recall that we waited to randomly select the 50 cars from the 50 production

shifts until the midsize car manufacturing process was operating consistently over time and recall

that the runs plot in Figure 1.3 (page 12) intuitively verifies that the manufacturing process is pro-

ducing consistent car mileages over time. It follows that we can regard the 50 mileages in Table

1.6 as an approximately random sample that can be used to make statistical inferences about the

population of all possible midsize car mileages. (In Chapter 17 we will discuss more precisely how

to assess whether a process is operating consistently over time.)



Random (or approximately random) sampling—as well as the more advanced kinds of

sampling discussed in optional Section 7.4—are types of probability sampling. In general,

probability sampling is sampling where we know the chance (or probability) that each element

in the population will be included in the sample. If we employ probability sampling, the sample

obtained can be used to make valid statistical inferences about the sampled population. However,

if we do not employ probability sampling, we cannot make valid statistical inferences.

One type of sampling that is not probability sampling is convenience sampling, where we se-

lect elements because they are easy or convenient to sample. For example, if we select people to

interview because they look “nice” or “pleasant,” we are using convenience sampling. Another

example of convenience sampling is the use of voluntary response samples, which are fre-

quently employed by television and radio stations and newspaper columnists. In such samples,

participants self-select—that is, whoever wishes to participate does so (usually expressing some

opinion). These samples overrepresent people with strong (usually negative) opinions. For ex-

ample, the advice columnist Ann Landers once asked her readers, “If you had it to do over again,

would you have children?” Of the nearly 10,000 parents who voluntarily responded, 70 percent

said that they would not. A probability sample taken a few months later found that 91 percent of

parents would have children again. 

Another type of sampling that is not probability sampling is judgment sampling, where a

person who is extremely knowledgeable about the population under consideration selects popu-

lation elements that he or she feels are most representative of the population. Because the quality

of the sample depends upon the judgment of the person selecting the sample, it is dangerous to

use the sample to make statistical inferences about the population.

To conclude this section, we consider a classic example where two types of sampling errors

doomed a sample’s ability to make valid statistical inferences. This example occurred prior to the

presidential election of 1936, when the Literary Digest predicted that Alf Landon would defeat

Franklin D. Roosevelt by a margin of 57 percent to 43 percent. Instead, Roosevelt won the election in

a landslide. Literary Digest’s first error was to send out sample ballots (actually, 10 million ballots)

to people who were mainly selected from the Digest’s subscription list and from telephone direc-

tories. In 1936 the country had not yet recovered from the Great Depression, and many unemployed

and low-income people did not have phones or subscribe to the Digest. The Digest’s sampling pro-

cedure excluded these people, who overwhelmingly voted for Roosevelt. Second, only 2.3 million

ballots were returned, resulting in the sample being a voluntary response survey. At the same time,

George Gallup, founder of the Gallup Poll, was beginning to establish his survey business. He used

a probability sample to correctly predict Roosevelt’s victory. In optional Section 7.5 we discuss

various issues related to designing surveys and more about the errors that can occur in survey sam-

ples. Optional Sections 7.4 and 7.5 can now be read at any time and in any order.
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Exercises for Section 7.1
CONCEPTS

7.1 Discuss how we select a random sample.

7.2 Explain why sampling without replacement is preferred to sampling with replacement.

METHODS AND APPLICATIONS

7.3 On the page margin, we list 15 companies that have historically performed well in the food, drink,

and tobacco industries. Consider the random numbers given in the random number table of

Table 7.1(a) on page 276. Starting in the upper left corner of Table 7.1(a) and moving down the

two leftmost columns, we see that the first three two-digit numbers obtained are: 33, 03, and 92.

Starting with these three random numbers, and moving down the two leftmost columns of Table 7.1(a)

to find more two-digit random numbers, use Table 7.1 to randomly select five of these companies

to be interviewed in detail about their business strategies. Hint: Note that we have numbered the

companies from 1 to 15.

7.4 THE VIDEO GAME SATISFACTION RATING CASE VideoGame

A company that produces and markets video game systems wishes to assess its customer’s level of

satisfaction with a relatively new model, the XYZ-Box. In the six months since the introduction of

the model, the company has received 73,219 warranty registrations from purchasers. The company

will randomly select 65 of these registrations and will conduct telephone interviews with the pur-

chasers. Assume that the warranty registrations are numbered from 1 to 73,219 in a computer.

DS

Companies:

1 Altria Group

2 PepsiCo

3 Coca-Cola

4 Archer Daniels

5 Anheuser-Bush

6 General Mills

7 Sara Lee

8 Coca-Cola
Enterprises

9 Reynolds American

10 Kellogg

11 ConAgra Foods

12 HJ Heinz

13 Campbell Soup

14 Pepsi Bottling
Group

15 Tyson Foods
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Starting in the upper left corner of Table 7.1(a) and moving down the five leftmost columns, we

see that the first three five-digit numbers obtained are: 33276, 03427, and 92737. Starting with

these three random numbers and moving down the five leftmost columns of Table 7.1(a) to find

more five-digit random numbers, use Table 7.1 to randomly select the numbers of the first 10 war-

ranty registrations to be included in the sample of 65 registrations.

7.5 THE BANK CUSTOMER WAITING TIME CASE WaitTime

Recall that when the bank manager’s new teller system is operating consistently over time, the

manager decides to record the waiting times of a sample of 100 customers that need teller service

during peak business hours. For each of 100 peak business hours, the first customer that starts

waiting for service at or after a randomly selected time during the hour will be chosen. Consider the

peak business hours from 2:00 P.M. to 2:59 P.M. from 3:00 P.M. to 3:59 P.M., from 4:00 P.M. to

4:59 P.M., and from 5:00 P.M. to 5:59 P.M. on a particular day. Also, assume that a computer soft-

ware system generates the following four random numbers between 00 and 59: 32, 00, 18, and 47.

This implies that the randomly selected times during the first three of the above peak business hours

are 2:32 P.M., 3:00 P.M., and 4:18 P.M. What is the randomly selected time during the fourth of the

above peak business hours?

7.6 In an article entitled “Turned Off” in the June 2–4, 1995, issue of USA Weekend, Don Olmsted and

Gigi Anders reported results of a survey where readers were invited to write in and express their

opinions about sex and violence on television. The results showed that 96 percent of respondents

were very or somewhat concerned about sex on TV, and 97 percent of respondents were very or

somewhat concerned about violence on TV. Do you think that these results could be generalized to

all television viewers in 1995? Why or why not?

7.2 The Sampling Distribution of the Sample Mean 
Introductory ideas and basic properties Suppose that we are about to randomly select a

sample of n elements (for example, cars) from a population of elements. Also, suppose that for

each sampled element we will measure the value of a characteristic of interest. (For example, we

might measure the mileage of each sampled car.) Before we actually select the sample, there are

many different samples of n elements and corresponding measurements that we might potentially

obtain. Because different samples of measurements generally have different sample means, there

are many different sample means that we might potentially obtain. It follows that, before we draw

the sample, the sample mean is a random variable.

The sampling distribution of the sample mean is the probability distribution of the popula-

tion of all possible sample means that could be obtained from all possible samples of the

same size.

In order to illustrate the sampling distribution of the sample mean, we begin with an example

that is based on the authors’conversations with University Chrysler/Jeep of Oxford, Ohio. In order

to keep the example simple, we have used simplified car mileages to help explain the concepts.

x

x

DS
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Describe
and use

the sampling
distribution of the
sample mean.

LO2

This is the first year that the automaker has offered its new midsize model for sale to the public.

However, last year the automaker made six preproduction cars of this new model. Two of these

six cars were randomly selected for testing, and the other four were sent to auto shows at which

the new model was introduced to the news media and the public. As is standard industry practice,

the automaker did not test the four auto show cars before or during the five months these auto

shows were held, because testing can potentially harm the appearance of the cars.

In order to obtain a preliminary estimate—to be reported at the auto shows—of the midsize

model’s combined city and highway driving mileage, the automaker subjected the two cars

selected for testing to the EPA mileage test. When this was done, the cars obtained mileages of

30 mpg and 32 mpg. The mean of this sample of mileages is 

This sample mean is the point estimate of the mean mileage m for the population of six prepro-

duction cars and is the preliminary mileage estimate for the new midsize model that was reported

at the auto shows.

x  
30  32

2
 31 mpg



280 Chapter 7 Sampling and Sampling Distributions

When the auto shows were over, the automaker decided to further study the new midsize

model by subjecting the four auto show cars to various tests. When the EPA mileage test was

performed, the four cars obtained mileages of 29 mpg, 31 mpg, 33 mpg, and 34 mpg. Thus, the

mileages obtained by the six preproduction cars were 29 mpg, 30 mpg, 31 mpg, 32 mpg, 33 mpg,

and 34 mpg. The probability distribution of this population of six individual car mileages is given

in Table 7.2 and graphed in Figure 7.1(a). The mean of the population of car mileages is

Note that the point estimate that was reported at the auto shows is .5 mpg less

than the true population mean m of 31.5 mpg. Of course, different samples of two cars and cor-

responding mileages would have given different sample means. There are, in total, 15 samples of

two mileages that could have been obtained by randomly selecting two cars from the population

of six cars and subjecting the cars to the EPA mileage test. These samples correspond to the 15

combinations of two mileages that can be selected from the six mileages: 29, 30, 31, 32, 33, and

34. The samples are given, along with their means, in Table 7.3(a).

x  31 mpg

m  
29  30  31  32  33  34

6
 31.5 mpg

(b) A probability distribution describing the

population of 15 sample means: the sampling

distribution of the sample mean

Sample
Mean Frequency Probability

29.5 1 1兾15

30 1 1兾15

30.5 2 2兾15

31 2 2兾15

31.5 3 3兾15

32 2 2兾15

32.5 2 2兾15

33 1 1兾15

33.5 1 1兾15

(a) The population of the 15 samples of n  2 car

mileages and corresponding sample means

Car Sample
Sample Mileages Mean

1 29, 30 29.5

2 29, 31 30

3 29, 32 30.5

4 29, 33 31

5 29, 34 31.5

6 30, 31 30.5

7 30, 32 31

8 30, 33 31.5

9 30, 34 32

10 31, 32 31.5

11 31, 33 32

12 31, 34 32.5

13 32, 33 32.5

14 32, 34 33

15 33, 34 33.5

Individual Car Mileage
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(a) A graph of the probability distribution describing the

population of six individual car mileages

(b) A graph of the probability distribution describing the

population of 15 sample means

T A B L E 7 . 2 A Probability Distribution Describing the Population of Six Individual Car Mileages

Individual Car Mileage 29 30 31 32 33 34

Probability 1兾6 1兾6 1兾6 1兾6 1兾6 1兾6

T A B L E 7 . 3 The Population of Sample MeansF I G U R E 7 . 1 A Comparison of Individual Car

Mileages and Sample Means
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In order to find the probability distribution of the population of sample means, note that dif-

ferent sample means correspond to different numbers of samples. For example, since the sample

mean of 31 mpg corresponds to 2 out of 15 samples—the sample (29, 33) and the sample

(30, 32)—the probability of obtaining a sample mean of 31 mpg is 2兾15. If we analyze all of the

sample means in a similar fashion, we find that the probability distribution of the population

of sample means is as given in Table 7.3(b). This distribution is the sampling distribution of the

sample mean. A graph of this distribution is shown in Figure 7.1(b) and illustrates the accuracies

of the different possible sample means as point estimates of the population mean. For example,

whereas 3 out of 15 sample means exactly equal the population mean of 31.5 mpg, other sample

means differ from the population mean by amounts varying from .5 mpg to 2 mpg.

As illustrated in Example 7.2, one of the purposes of the sampling distribution of the sample

mean is to tell us how accurate the sample mean is likely to be as a point estimate of the popula-

tion mean. Because the population of six individual car mileages in Example 7.2 is small, we

were able (after the auto shows were over) to test all six cars, determine the values of the six car

mileages, and calculate the population mean mileage. Often, however, the population of individ-

ual measurements under consideration is very large—either a large finite population or an infinite

population. In this case, it would be impractical or impossible to determine the values of all of the

population measurements and calculate the population mean. Instead, we randomly select a sam-

ple of individual measurements from the population and use the mean of this sample as the point

estimate of the population mean. Moreover, although it would be impractical or impossible to list

all of the many (perhaps trillions of) different possible sample means that could be obtained if the

sampled population is very large, statisticians know various theoretical properties about the sam-

pling distribution of these sample means. Some of these theoretical properties are intuitively il-

lustrated by the sampling distribution of the 15 sample means in Example 7.2. Specifically, sup-

pose that we will randomly select a sample of n individual measurements from a population of

individual measurements having mean m and standard deviation s. Then, it can be shown that:

• In many situations, the distribution of the population of all possible sample means

looks, at least roughly, like a normal curve. For example, consider Figure 7.1. This figure

shows that, while the distribution of the population of six individual car mileages is a uni-

form distribution, the distribution of the population of 15 sample means has a somewhat

bell-shaped appearance. Noting, however, that this rough bell-shaped appearance is not ex-

tremely close to the appearance of a normal curve, we wish to know when the distribution

of all possible sample means is exactly or approximately normally distributed. Answers to

this question are given in the following result.

• If the population from which we will select the sample is normally distributed, then

for any sample size n the population of all possible sample means is also normally

distributed. For example, consider the population of the mileages of all of the new midsize

cars that could potentially be produced by this year’s manufacturing process. As discussed

in Chapter 1, we consider this population to be an infinite population, because the automaker

could always make “one more car.” Moreover, assume that (as will be verified in a later

example) this infinite population of all individual car mileages is normally distributed (see

Figure 7.2), and assume that the automaker will randomly select a sample of n ⫽ 5 cars,

test them as prescribed by the EPA, and calculate the mean of the resulting sample mileages.

It then follows that the population of all possible sample means that the automaker might

obtain is also normally distributed (again, see Figure 7.2). Note that there is nothing special

about the sample size n ⫽ 5. The above boldfaced result holds—as it states—for any sample

size n. Moreover, in the next subsection we will see that, even if the population from which

we will select the sample is not normally distributed, the population of all possible sample

means is approximately normally distributed if the sample size n is large (say, at least 30).

Finally, note that to make Figure 7.2 easier to understand, we have hypothetically assumed

that the true value of the population mean mileagem of all of the new midsize cars is 31.6 mpg.

Of course, no human being would know the true value of m. Our objective is to estimate M.

• The mean, M , of the population of all possible sample means is equal to M, the mean of

the population from which we will select the sample. For example, the mean, , of the

population of 15 sample means in Table 7.3(a) can be calculated by adding up the 15 sample

mx

x
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x2   31.9
x3   30.3
x4   32.1

x1   30.8

x5   31.4



30.4 30.8 31.2 31.6 32.0 32.4 32.8

34.029.2

33.232.431.630.830.0

The normally distributed
population of all possible
sample means



The normally distributed
population of all individual
car mileages

Sample

mean

x   31.3¯

x2   30.7
x3   31.8
x4   31.4

x1   32.3

x5   32.8

Sample

mean

x   31.8¯

x2   31.7 
x3   33.4 
x4   32.4 

x1   33.8 

x5   32.7 

Sample

mean

x   32.8¯

Scale of sample means, x̄

Scale of car

mileages

F I G U R E 7 . 2 The Normally Distributed Population of All Individual Car Mileages and the Normally Distributed 

Population of All Possible Sample Means

means, which gives 472.5, and dividing by 15. That is, , which is

the same as m, the mean of the population of six individual car mileages in Table 7.2. The

fact that equals m is graphically illustrated in Figure 7.1, which shows that the distribu-

tion of the six individual car mileages and the distribution of the 15 sample means are cen-

tered over the same mean of 31.5 mpg. The fact that equals m is also graphically illus-

trated in Figure 7.2, which shows that the normal distribution describing the mileages of all

individual cars that could be produced this year and the normal distribution describing all

possible sample means are centered over the same mean of 31.6 mpg. Furthermore, because

equals m, we call the sample mean an unbiased point estimate of the population mean.

This unbiasedness property says that, although most of the possible sample means that we

might obtain are either above or below the population mean, there is no systematic tendency

for the sample mean to overestimate or underestimate the population mean. That is, although

we will randomly select only one sample, the unbiased sample mean is “correct on the aver-

age” in all possible samples.

• The standard deviation, , of the population of all posssible sample means is less than

ss, the standard deviation of the population from which we will select the sample. This

is illustrated in both Figures 7.1 and 7.2. That is, in each figure the distribution of all possi-

ble sample means is less spread out than the distribution of all individual car mileages. Intu-

itively, we see that is smaller than s because each possible sample mean is an average of

n measurements. Thus, each sample mean averages out high and low sample measure-

ments and can be expected to be closer to the population mean M than many of the

individual population measurements would be. It follows that the different possible sam-

ple means are more closely clustered around m than are the individual population measure-

ments. (Note that we will see that is smaller than s only if the sample size n is greater

than 1.)

s
x

s
x

x

m
x

m
x

m
x

m
x  472.5兾15  31.5
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The following summary box gives a formula for and also summarizes other previously dis-

cussed facts about the probability distribution of the population of all possible sample means.

sx

The Sampling Distribution of –x

Assume that the population from which we will randomly select a sample of n measurements has

mean and standard deviation . Then, the population of all possible sample means

1 Has a normal distribution, if the sampled population has a normal distribution.

2 Has mean .

3 Has standard deviation .

The formula for in (3) holds exactly if the sampled population is infinite. If the sampled population is

finite, this formula holds approximately under conditions to be discussed later in this section.

Stated equivalently, the sampling distribution of has mean has standard deviation 

(if the sampled population is infinite), and is a normal distribution (if the sampled population has a normal

distribution).2 

sx  s兾1nmx  m,x

sx

sx  
s

1n

mx  m

sm

The third result in the summary box says that, if the sampled population is infinite, then 

In words, , the standard deviation of the population of all possible sample means, equals s, the

standard deviation of the sampled population, divided by the square root of the sample size n.

Furthermore, in addition to showing that is smaller than s (assuming that the sample size n is

larger than one), this formula for also says that decreases as n increases. That is, intuitively,

when the sample size is larger, each possible sample averages more observations. Therefore, the

resulting different possible sample means will differ from each other by less and thus will be-

come more closely clustered around the population mean. It follows that, if we take a larger sam-

ple, we are more likely to obtain a sample mean that is near the population mean.

We next use the car mileage case to illustrate the formula for . In this and several other

examples we will assume that, although we do not know the true value of the population mean m,

we do know the true value of the population standard deviation s. Here, knowledge of s might

be based on theory or history related to the population under consideration. For example, because

the automaker has been working to improve gas mileages, we cannot assume that we know the

true value of the population mean mileage m for the new midsize model. However, engineering

data might indicate that the spread of individual car mileages for the automaker’s midsize cars is

the same from model to model and year to year. Therefore, if the mileages for previous models

had a standard deviation equal to .8 mpg., it might be reasonable to assume that the standard

deviation of the mileages for the new model will also equal .8 mpg. Such an assumption would,

of course, be questionable, and in most real-world situations there would probably not be an

actual basis for knowing s. However, assuming that s is known will help us to illustrate sam-

pling distributions, and in later chapters we will see what to do when s is unknown.

sx

sxsx

sx

sx

sx  
s

1n

2In Appendix C on page 880 we derive the formulas and .sx  s兾1nmx  m

C

Part 1: Basic concepts Consider the infinite population of the mileages of all of the new mid-

size cars that could potentially be produced by this year’s manufacturing process. If we assume

that this population is normally distributed with mean and standard deviation (see Fig-

ure 7.3(a)), and if the automaker will randomly select a sample of n cars and test them as

prescribed by the EPA, it follows that the population of all possible sample means is normally

distributed with mean and standard deviation . In order to showsx  s兾1n  .8兾1nmx  m

s  .8m
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that a larger sample is more likely to give a more accurate point estimate of , compare taking

a sample of size with taking a sample of size . If , then

and it follows (by the empirical rule) that 95.44 percent of all possible sample means are within

plus or minus mpg of the population mean . If , then

and it follows that 95.44 percent of all possible sample means are within plus or minus 

mpg of the population mean . Therefore, if , the different possi-

ble sample means that the automaker might obtain will be more closely clustered around than

they will be if (see Figures 7.3(b) and (c)). This implies that the larger sample of size

is more likely to give a sample mean that is near .mxn  50

n  5

m

n  50m.226 2(.113)  2sx

sx  
s

1n
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 .113

n  50m 2(.358)  .7162sx
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Scale of sample means, x
 

(b) The sampling distribution of the sample mean x when n   5

The normal distribution describing the population 
of all possible sample means when the sample
size is 5, where  x     and  x                  .358

 

n
.8

5

.8

50

Scale of gas mileages
 

The normal distribution describing the 
population of all individual car mileages, which
has mean   and standard deviation     .8

(a) The population of individual mileages

Scale of sample means, x

The normal distribution describing the population 
of all possible sample means when the sample size
is 50, where  x     and  x                 .113
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(c) The sampling distribution of the sample mean x when n   50
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F I G U R E 7 . 3 A Comparison of (1) the Population of All Individual Car Mileages, (2) the Sampling Distribution 

of the Sample Mean When n  5, and (3) the Sampling Distribution of the Sample Mean 

When n  50
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Part 2: Statistical inference Recall from Chapter 3 that the automaker has randomly selected

a sample of n 50 mileages, which has mean   31.56. We now ask the following question: If

the population mean mileage exactly equals 31 mpg (the minimum standard for the tax credit),

what is the probability of observing a sample mean mileage that is greater than or equal to

31.56 mpg? To find this probability, recall from Chapter 2 that a histogram of the 50 mileages

indicates that the population of all individual mileages is normally distributed. Assuming that the

population standard deviation s is known to equal .8 mpg, it follows that the sampling distribu-

tion of the sample mean is a normal distribution, with mean and standard deviation

Therefore,

To find P(z  4.96), notice that the largest z value given in Table A.3 (page 860) is 3.99, which

gives a right-hand tail area of .00003. Therefore, since P(z  3.99)  .00003, it follows that 

P(z 4.96) is less than .00003 (see Figure 7.4). The fact that this probability is less than .00003

says that, if m equals 31, then fewer than 3 in 100,000 of all possible sample means are at least

as large as the sample mean  31.56 that we have actually observed. Therefore, if we are to

believe that m equals 31, then we must believe that we have observed a sample mean that can be

described as a smaller than 3 in 100,000 chance. Since it is extremely difficult to believe that such

a small chance would occur, we have extremely strong evidence that m does not equal 31 and that

m is, in fact, larger than 31. This evidence would probably convince the federal government that

the midsize model’s mean mileage m exceeds 31 mpg and thus that the midsize model deserves

the tax credit.

To conclude this subsection, it is important to make two comments. First, the formula

follows, in theory, from the formula for , the variance of the population of all

possible sample means. The formula for is Second, in addition to holding exactly

if the sampled population is infinite, the formula holds approximately if the sam-

pled population is finite and much larger than (say, at least 20 times) the size of the sample.

For example, if we define the population of the mileages of all new midsize cars to be the popu-

lation of the mileages of all cars that will actually be produced this year, then the population is

S
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finite. However, the population would be very large—certainly at least as large as 20 times any

reasonable sample size. For example, if the automaker produces 100,000 new midsize cars this

year, and if we randomly select a sample of n  50 of these cars, then the population size of

100,000 is larger than 20 times the sample size of 50 (which is 1,000). It follows that, even

though the population is finite and thus the formula would not hold exactly, this for-

mula would hold approximately. The exact formula for when the sampled population is finite

is given in a technical note at the end of this section. It is important to use this exact formula if

the sampled population is finite and less than 20 times the size of the sample. However, with the

exception of the populations considered in the technical note and in Section 8.5, we will

assume that all of the remaining populations to be discussed in this book are either infinite

or finite and at least 20 times the size of the sample. Therefore, it will be appropriate to use

the formula

Sampling a nonnormally distributed population: the Central Limit Theorem We

now consider what can be said about the sampling distribution of when the sampled population

is not normally distributed. First, as previously stated, the fact that is still true. Second,

as also previously stated, the formula is exactly correct if the sampled population

is infinite and is approximately correct if the sampled population is finite and much larger than

(say, at least 20 times as large as) the sample size. Third, an extremely important result called the

Central Limit Theorem tells us that, if the sample size n is large, then the sampling

distribution of is approximately normal, even if the sampled population is not normally

distributed.

x
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x

Sx  S兾1n.

sx
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The Central Limit Theorem

If the sample size n is sufficiently large, then the population of all possible sample means is approxi-

mately normally distributed (with mean and standard deviation no matter what

probability distribution describes the sampled population. Furthermore, the larger the sample size n is,

the more nearly normally distributed is the population of all possible sample means.

s x  s兾1n ),mx  m

The Central Limit Theorem is illustrated in Figure 7.5 for several population shapes. Notice

that as the sample size increases (from 2 to 6 to 30), the populations of all possible sample means

become more nearly normally distributed. This figure also illustrates that, as the sample size

increases, the spread of the distribution of all possible sample means decreases (remember that

this spread is measured by , which decreases as the sample size increases).

How large must the sample size be for the sampling distribution of to be approximately

normal? In general, the more skewed the probability distribution of the sampled population, the

larger the sample size must be for the population of all possible sample means to be approximately

normally distributed. For some sampled populations, particularly those described by symmetric

distributions, the population of all possible sample means is approximately normally distributed

for a fairly small sample size. In addition, studies indicate that, if the sample size is at least 30,

then for most sampled populations the population of all possible sample means is approxi-

mately normally distributed. In this book, whenever the sample size n is at least 30, we will

assume that the sampling distribution of is approximately a normal distribution. Of course,

if the sampled population is exactly normally distributed, the sampling distribution of is

exactly normal for any sample size.

We can see the shapes of sampling distributions such as those illustrated in Figure 7.5 by using

computer simulation. Specifically, for a population having a particular probability distribution,

we can have the computer draw a given number of samples of n observations, compute the mean

of each sample, and arrange the sample means into a histogram. To illustrate this, consider the

upper portion of Figure 7.6, which shows the exponential distribution describing the hospital

emergency room interarrival times discussed in Example 6.11 (page 261). Figure 7.6(a) gives the

results of a simulation in which MINITAB randomly selected 1,000 samples of interarrival

times from this exponential distribution, calculated the mean of each sample, and arranged the

1,000 sample means into a histogram. Figure 7.6(b) gives the results of a simulation in which

n  5

x

x

x

sx
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(b) Corresponding populations of all possible sample means for
     different sample sizes

x xx x
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(a) Several sampled populations

F I G U R E 7 . 5 The Central Limit Theorem Says that the Larger the Sample Size Is, the More
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18.1077 19.5

¯
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MINITAB randomly selected 1,000 samples of n 30 interarrival times from the exponential dis-

tribution, calculated the mean of each sample, and arranged the 1,000 sample means into a his-

togram. Note that, whereas the histogram in Figure 7.6(a) is somewhat skewed to the right, the

histogram in Figure 7.6(b) appears approximately bell-shaped. Therefore, we might conclude that

when we randomly select a sample of n observations from an exponential distribution, the sam-

pling distribution of the sample mean is somewhat skewed to the right when n  5 and is

approximately normal when n 30.

C

Recall that a management consulting firm has installed a new computer-based, electronic billing

system in a Hamilton, Ohio, trucking company. Because of the previously discussed advantages

of the new billing system, and because the trucking company’s clients are receptive to using this

system, the management consulting firm believes that the new system will reduce the mean bill

payment time by more than 50 percent. The mean payment time using the old billing system was

approximately equal to, but no less than, 39 days. Therefore, if m denotes the new mean payment

time, the consulting firm believes that m will be less than 19.5 days. To assess whether m is less

than 19.5 days, the consulting firm has randomly selected a sample of n 65 invoices processed

using the new billing system and has determined the payment times for these invoices. The mean

of the 65 payment times is days, which is less than 19.5 days. Therefore, we ask the

following question: If the population mean payment time is 19.5 days, what is the probability of

observing a sample mean payment time that is less than or equal to 18.1077 days? To find this

probability, recall from Chapter 2 that a histogram of the 65 payment times indicates that the

population of all payment times is skewed with a tail to the right. However, the Central Limit

Theorem tells us that, because the sample size n  65 is large, the sampling distribution of is

approximately a normal distribution with mean and standard deviation .

Moreover, whereas this is the first time that the consulting company has installed an electronic

billing system in a trucking company, the firm has installed electronic billing systems in other

types of companies. Analysis of results from these other companies shows that, although the

population mean payment time m varies from company to company, the population standard de-

viation s of payment times is the same for different companies and equals 4.2 days. Assuming

thats also equals 4.2 days for the trucking company, it follows that equals

and that

which is the area under the standard normal curve to the left of  2.67. The normal table tells us

that this area equals .0038. This probability says that, if m equals 19.5, then only .0038 of all

possible sample means are at least as small as the sample mean that we have actually

observed. Therefore, if we are to believe thatm equals 19.5, we must believe that we have observed

a sample mean that can be described as a 38 in 10,000 chance. It is very difficult to believe that such

a small chance would occur, so we have very strong evidence that m does not equal 19.5 and is, in

fact, less than 19.5. We conclude that the new billing system has reduced the mean bill payment

time by more than 50 percent.

Unbiasedness and minimum-variance estimates Recall that a sample statistic is any

descriptive measure of the sample measurements. For instance, the sample mean is a statistic,

and so are the sample median, the sample variance s2, and the sample standard deviation s. Not

only do different samples give different values of , different samples also give different values

of the median, s2, s, or any other statistic. It follows that, before we draw the sample, any sample

statistic is a random variable, and

The sampling distribution of a sample statistic is the probability distribution of the population

of all possible values of the sample statistic.

x

x

x  18.1077

 P(x  18.1077 if m  19.5)  P冢z  18.1077  19.5

.5209
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In general, we wish to estimate a population parameter by using a sample statistic that is what

we call an unbiased point estimate of the parameter.

A sample statistic is an unbiased point estimate of a population parameter if the mean of the

population of all possible values of the sample statistic equals the population parameter.

For example, we use the sample mean as the point estimate of the population mean m

because is an unbiased point estimate of M. That is, . In words, the average of all the

different possible sample means (that we could obtain from all the different possible samples)

equals m.

Although we want a sample statistic to be an unbiased point estimate of the population

parameter of interest, we also want the statistic to have a small standard deviation (and variance).

That is, we wish the different possible values of the sample statistic to be closely clustered

around the population parameter. If this is the case, when we actually randomly select one sam-

ple and compute the sample statistic, its value is likely to be close to the value of the population

parameter. Furthermore, some general results apply to estimating the mean m of a normally dis-

tributed population. In this situation, it can be shown that both the sample mean and the sample

median are unbiased point estimates of m. In fact, there are many unbiased point estimates of m.

However, it can be shown that the variance of the population of all possible sample means is

smaller than the variance of the population of all possible values of any other unbiased point

estimate of m. For this reason, we call the sample mean a minimum-variance unbiased point

estimate of M. When we use the sample mean as the point estimate of m, we are more likely to

obtain a point estimate close to m than if we used any other unbiased sample statistic as the point

estimate of m. This is one reason why we use the sample mean as the point estimate of the

population mean.

We next consider estimating the population variance s2. It can be shown that if the sampled

population is infinite, then s2 is an unbiased point estimate of S2. That is, the average of all

the different possible sample variances that we could obtain (from all the different possible

samples) is equal to s2. This is why we use a divisor equal to n⫺ 1 rather than n when we esti-

mate s2. It can be shown that, if we used n as the divisor when estimating s2, we would not

obtain an unbiased point estimate of s2. When the population is finite, s2 may be regarded as an

approximately unbiased estimate of s2 as long as the population is fairly large (which is usually

the case).

It would seem logical to think that, because s2 is an unbiased point estimate of s2, s should be

an unbiased point estimate of s . This seems plausible, but it is not the case. There is no easy way

to calculate an unbiased point estimate of s . Because of this, the usual practice is to use s as the

point estimate of s (even though it is not an unbiased estimate).

This ends our discussion of the theory of point estimation. It suffices to say that in this book

we estimate population parameters by using sample statistics that statisticians generally agree are

best. Whenever possible, these sample statistics are unbiased point estimates and have small

variances.

Technical Note: If we randomly select a sample of size n without replacement from a finite

population of size N, then it can be shown that , where the

quantity is called the finite population multiplier. If the size of the sampled

population is at least 20 times the size of the sample (that is, if ), then the finite population

multiplier is approximately equal to one, and approximately equals . However, if

the population size N is smaller than 20 times the size of the sample, then the finite population

multiplier is substantially less than one, and we must include this multiplier in the calculation

of . For instance, in Example 7.2, where the standard deviation s of the population of 

car mileages can be calculated to be 1.7078, and where is only three times the sample size

, it follows that

We will see how this formula can be used to make statistical inferences in Section 8.5.
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Exercises for Section 7.2
CONCEPTS

7.7 Suppose that we will randomly select a sample of four measurements from a larger population of

measurements. The sampling distribution of the sample mean is the probability distribution of a

population. In your own words, describe the elements in this population.

7.8 What does the Central Limit Theorem tell us about the sampling distribution of the sample mean?

METHODS AND APPLICATIONS

7.9 Suppose that we will take a random sample of size n from population having mean m and standard

deviation s. For each of the following situations, find the mean, variance, and standard deviation

of the sampling distribution of the sample mean :

a m  10, s  2, n  25 c m  3, s  .1, n  4

b m  500, s  .5, n  100 d m  100, s  1, n  1,600

7.10 For each situation in Exercise 7.9, find an interval that contains (approximately or exactly)

99.73 percent of all the possible sample means. In which cases must we assume that the population

is normally distributed? Why?

7.11 Suppose that we will randomly select a sample of 64 measurements from a population having a

mean equal to 20 and a standard deviation equal to 4.

a Describe the shape of the sampling distribution of the sample mean . Do we need to make any

assumptions about the shape of the population? Why or why not?

b Find the mean and the standard deviation of the sampling distribution of the sample mean .

c Calculate the probability that we will obtain a sample mean greater than 21; that is, calculate

P(   21). Hint: Find the z value corresponding to 21 by using and because we wish to

calculate a probability about . Then sketch the sampling distribution and the probability.

d Calculate the probability that we will obtain a sample mean less than 19.385; that is, calculate

P(   19.385).

THE GAME SHOW CASE

Exercises 7.12 through 7.16 are based on the following situation.

Congratulations! You have just won the question-and-answer portion of a popular game show and will

now be given an opportunity to select a grand prize. The game show host shows you a large revolving drum

containing four identical white envelopes that have been thoroughly mixed in the drum. Each of the en-

velopes contains one of four checks made out for grand prizes of 20, 40, 60, and 80 thousand dollars. Usu-

ally, a contestant reaches into the drum, selects an envelope, and receives the grand prize in the envelope.

Tonight, however, is a special night. You will be given the choice of either selecting one envelope or select-

ing two envelopes and receiving the average of the grand prizes in the two envelopes. If you select one

envelope, the probability is 1兾4 that you will receive any one of the individual grand prizes 20, 40, 60, and

80 thousand dollars. To see what could happen if you select two envelopes, do Exercises 7.12 through 7.16.

7.12 There are six combinations, or samples, of two grand prices that can be randomly selected from

the four grand prizes 20, 40, 60, and 80 thousand dollars. Four of these samples are (20, 40), 

(20, 60), (20, 80), and (40, 60). Find the other two samples.

7.13 Find the mean of each sample in Exercise 7.12.

7.14 Find the probability distribution of the population of six sample mean grand prizes.

7.15 If you select two envelopes, what is the probability that you will receive a sample mean grand

prize of at least 50 thousand dollars?

7.16 Compare the probability distribution of the four individual grand prizes with the probability

distribution of the six sample mean grand prizes. Would you select one or two envelopes? Why?

Note: There is no one correct answer. It is a matter of opinion.

7.17 THE BANK CUSTOMER WAITING TIME CASE WaitTime

Recall that the bank manager wants to show that the new system reduces typical customer waiting

times to less than six minutes. One way to do this is to demonstrate that the mean of the population of

all customer waiting times is less than 6. Letting this mean be m, in this exercise we wish to investigate

whether the sample of 100 waiting times provides evidence to support the claim that m is less than 6.

For the sake of argument, we will begin by assuming that m equals 6, and we will then attempt

to use the sample to contradict this assumption in favor of the conclusion that m is less than 6.
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Recall that the mean of the sample of 100 waiting times is and assume that s, the

standard deviation of the population of all customer waiting times, is known to be 2.47.

a Consider the population of all possible sample means obtained from random samples of

100 waiting times. What is the shape of this population of sample means? That is, what is the

shape of the sampling distribution of Why is this true?

b Find the mean and standard deviation of the population of all possible sample means when we

assume that m equals 6.

c The sample mean that we have actually observed is Assuming that m equals 6, find

the probability of observing a sample mean that is less than or equal to 

d If m equals 6, what percentage of all possible sample means are less than or equal to 5.46?

Since we have actually observed a sample mean of is it more reasonable to believe

that (1) m equals 6 and we have observed one of the sample means that is less than or equal to

5.46 when m equals 6, or (2) that we have observed a sample mean less than or equal to 5.46

because m is less than 6? Explain. What do you conclude about whether the new system has

reduced the typical customer waiting time to less than six minutes?

7.18 THE VIDEO GAME SATISFACTION RATING CASE VideoGame

Recall that a customer is considered to be very satisfied with his or her XYZ Box video game 

system if the customer’s composite score on the survey instrument is at least 42. One way to show

that customers are typically very satisfied is to show that the mean of the population of all satisfac-

tion ratings is at least 42. Letting this mean be m, in this exercise we wish to investigate whether

the sample of 65 satisfaction ratings provides evidence to support the claim that m exceeds 42

(and, therefore, is at least 42).

For the sake of argument, we begin by assuming that m equals 42, and we then attempt to use

the sample to contradict this assumption in favor of the conclusion that m exceeds 42. Recall that

the mean of the sample of 65 satisfaction ratings is , and assume that s, the standard

deviation of the population of all satisfaction ratings, is known to be 2.64.

a Consider the sampling distribution of for random samples of 65 customer satisfaction ratings.

Use the properties of this sampling distribution to find the probability of observing a sample

mean greater than or equal to 42.95 when we assume that m equals 42.

b If m equals 42, what percentage of all possible sample means are greater than or equal to

42.95? Since we have actually observed a sample mean of is it more reasonable to

believe that (1) m equals 42 and we have observed a sample mean that is greater than or equal

to 42.95 when m equals 42, or (2) that we have observed a sample mean that is greater than or

equal to 42.95 because m is greater than 42? Explain. What do you conclude about whether

customers are typically very satisfied with the XYZ Box video game system?

7.19 In an article in the Journal of Management, Joseph Martocchio studied and estimated the costs

of employee absences. Based on a sample of 176 blue-collar workers, Martocchio estimated that

the mean amount of paid time lost during a three-month period was 1.4 days per employee with a

standard deviation of 1.3 days. Martocchio also estimated that the mean amount of unpaid time

lost during a three-month period was 1.0 day per employee with a standard deviation of 1.8 days.

Suppose we randomly select a sample of 100 blue-collar workers. Based on Martocchio’s estimates:

a What is the probability that the average amount of paid time lost during a three-month period

for the 100 blue-collar workers will exceed 1.5 days?

b What is the probability that the average amount of unpaid time lost during a three-month 

period for the 100 blue-collar workers will exceed 1.5 days?

c Suppose we randomly select a sample of 100 blue-collar workers, and suppose the sample

mean amount of unpaid time lost during a three-month period actually exceeds 1.5 days. Would

it be reasonable to conclude that the mean amount of unpaid time lost has increased above the

previously estimated 1.0 days? Explain.

7.20 When a pizza restaurant’s delivery process is operating effectively, pizzas are delivered in an 

average of 45 minutes with a standard deviation of 6 minutes. To monitor its delivery process, 

the restaurant randomly selects five pizzas each night and records their delivery times.

a For the sake of argument, assume that the population of all delivery times on a given

evening is normally distributed with a mean of minutes and a standard deviation of

minutes. (That is, we assume that the delivery process is operating effectively.) Find the

mean and the standard deviation of the population of all possible sample means, and calculate

an interval containing 99.73 percent of all possible sample means.

b Suppose that the mean of the five sampled delivery times on a particular evening is minutes.

Using the interval that you calculated in a, what would you conclude about whether the restaurant’s

delivery process is operating effectively? Why?
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7.3 The Sampling Distribution of the 
Sample Proportion 

A food processing company markets a soft cheese spread that is sold in a plastic container with

an “easy pour” spout. Although this spout works extremely well and is popular with consumers,

it is expensive to produce. Because of the spout’s high cost, the company has developed a new,

less expensive spout. While the new, cheaper spout may alienate some purchasers, a company

study shows that its introduction will increase profits if fewer than 10 percent of the cheese

spread’s current purchasers are lost. That is, if we let p be the true proportion of all current pur-

chasers who would stop buying the cheese spread if the new spout were used, profits will increase

as long as p is less than .10.

Suppose that (after trying the new spout) 63 of 1,000 randomly selected purchasers say that

they would stop buying the cheese spread if the new spout were used. The point estimate of the

population proportion p is the sample proportion p̂⫽ 63兾1,000 ⫽ .063. This sample proportion

says that we estimate that 6.3 percent of all current purchasers would stop buying the cheese

spread if the new spout were used. Since p̂ equals .063, we have some evidence that the popula-

tion proportion p is less than .10. In order to determine the strength of this evidence, we need to

consider the sampling distribution of p̂. In general, assume that we will randomly select a sample

of n elements from a population, and assume that a proportion p of all the elements in the popu-

lation fall into a particular category (for instance, the category of consumers who would stop

buying the cheese spread). Before we actually select the sample, there are many different samples

of n elements that we might potentially obtain. The number of elements that fall into the category

in question will vary from sample to sample, so the sample proportion of elements falling into the

category will also vary from sample to sample. For example, if three possible random samples of

1,000 soft cheese spread purchasers had, respectively, 63, 58, and 65 purchasers say that they

would stop buying the cheese spread if the new spout were used, then the sample proportions

given by the three samples would be and

. In general, before we randomly select the sample, there are many differ-

ent possible sample proportions that we might obtain, and thus the sample proportion p̂ is a

random variable. In the following box we give the properties of the probability distribution of

this random variable, which is called the sampling distribution of the sample proportion p̂.

p̂ ⫽ 65兾1000 ⫽ .065

p̂ ⫽ 58兾1000 ⫽ .058,p̂ ⫽ 63兾1000 ⫽ .063,
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Describe
and use

the sampling
distribution of the
sample proportion.

LO4

The Sampling Distribution of the Sample Proportion p̂

The population of all possible sample proportions

1 Approximately has a normal distribution, if the sample size n is large.

2 Has mean 

3 Has standard deviation 

Stated equivalently, the sampling distribution of has mean has standard deviation 

, and is approximately a normal distribution (if the sample size n is large).31p(1 ⫺ p)兾n
sp̂ ⫽mp̂ ⫽ p,p̂

⫽ A
p(1 ⫺ p)

n
.sp̂

mp̂ ⫽ p.

3In Appendix C on page 880 we derive the formulas for and .
4Some statisticians suggest using the more conservative rule that both np and n(1 ⫺ p) must be at least 10.

sp̂mp̂

Property 1 in the box says that, if n is large, then the population of all possible sample pro-

portions approximately has a normal distribution. Here, it can be shown that n should be con-

sidered large if both np and n(1 ⴚ p) are at least 5.4 Property 2, which says that , is

valid for any sample size and tells us that p̂ is an unbiased estimate of p. That is, although the

sample proportion p̂ that we calculate probably does not equal p, the average of all the different

sample proportions that we could have calculated (from all the different possible samples) is

equal to p. Property 3, which says that

sp̂ ⫽ A
p(1 ⫺ p)

n

mp̂ ⫽ p

p

p

ˇ

ˇ


p ⫽冪 p(1⫺p)

n
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is exactly correct if the sampled population is infinite and is approximately correct if the sampled

population is finite and much larger than (say, at least 20 times as large as) the sample size.

Property 3 tells us that the standard deviation of the population of all possible sample proportions

decreases as the sample size increases. That is, the larger n is, the more closely clustered are all the

different sample proportions around the true population proportion. Finally, note that the formula

for follows, in theory, from the formula for the variance of the population of all possible 

sample proportions. The formula for is s2
p̂  p(1  p)兾n.s

2
p̂

s
2
p̂,sp̂

Exercises for Section 7.3
CONCEPTS

7.21 What population is described by the sampling distribution of p̂?

7.22 Suppose that we will randomly select a sample of n elements from a population and that we will

compute the sample proportion p̂ of these elements that fall into a category of interest. If we con-

sider the sampling distribution of p̂:

a If the sample size n is large, the sampling distribution of p̂ is approximately a normal 

distribution. What condition must be satisfied to guarantee that n is large enough to say that 

p̂ is normally distributed?

b Write formulas that express the central tendency and variability of the population of all

possible sample proportions. Explain what each of these formulas means in your own 

words.

7.23 Describe the effect of increasing the sample size on the population of all possible sample proportions.

z

.00005

 3.90 0

p

.063 .10

ˇ

BI

EXAMPLE 7.5 The Cheese Spread Case

In the cheese spread situation, the food processing company must decide whether p, the propor-

tion of all current purchasers who would stop buying the cheese spread if the new spout were

used, is less than .10. In order to do this, remember that when 1,000 purchasers of the cheese

spread are randomly selected, 63 of these purchasers say they would stop buying the cheese

spread if the new spout were used. Noting that the sample proportion p̂ .063 is less than .10,

we ask the following question. If the true population proportion is .10, what is the probability of

observing a sample proportion that is less than or equal to .063?

If p equals .10, we can assume that the sampling distribution of p̂ is approximately a normal

distribution, because both np  1,000(.10) 100 and n(1 p)  1,000(1  .10)  900 are at

least 5. Furthermore, the mean and standard deviation of the sampling distribution of p̂ are 

mp̂ p  .10 and

Therefore,

which is the area under the standard normal curve to the left of  3.90. The normal table tells us

that this area equals .00005. This probability says that, if p equals .10, then only 5 in 100,000 of

all possible sample proportions are at least as small as the sample proportion p̂ .063 that we

have actually observed. That is, if we are to believe that p equals .10, we must believe that we

have observed a sample proportion that can be described as a 5 in 100,000 chance. It follows that

we have extremely strong evidence that p does not equal .10 and is, in fact, less than .10. In other

words, we have extremely strong evidence that fewer than 10 percent of current purchasers

would stop buying the cheese spread if the new spout were used. It seems that introducing the

new spout will be profitable.

  P(z   3.90)

 P( p̂  .063 if p  .10)  P冢z  .063  mp̂

sp̂
冣  P冢z  .063  .10

.0094868 冣

sp̂  A
p(1  p)

n
 A

(.10)(.90)

1,000
 .0094868

C



METHODS AND APPLICATIONS

7.24 In each of the following cases, determine whether the sample size n is large enough to say that the

sampling distribution of p̂ is a normal distribution.

a p  .4, n  100 d p  .8, n  400

b p  .1, n  10 e p  .98, n  1,000

c p  .1, n  50 f p  .99, n  400

7.25 In each of the following cases, find the mean, variance, and standard deviation of the sampling

distribution of the sample proportion p̂.

a p  .5, n  250 c p  .8, n  400

b p  .1, n  100 d p  .98, n  1,000

7.26 For each situation in Exercise 7.25, find an interval that contains approximately 95.44 percent of

all the possible sample proportions.

7.27 Suppose that we will randomly select a sample of n  100 elements from a population and that we

will compute the sample proportion p̂ of these elements that fall into a category of interest. If the

true population proportion p equals .9:

a Describe the shape of the sampling distribution of p̂. Why can we validly describe the shape?

b Find the mean and the standard deviation of the sampling distribution of p̂.

7.28 For the situation in Exercise 7.27, calculate the following probabilities. In each case sketch the

sampling distribution and the probability.

a
b
c

7.29 In the July 29, 2001, issue of The Journal News (Hamilton, Ohio) Lynn Elber of the Associated Press

reported on a study conducted by the Kaiser Family Foundation regarding parents’ use of television

set V-chips for controlling their childrens’ TV viewing. The study asked parents who own TVs

equipped with V-chips whether they use the devices to block programs with objectionable content.

a Suppose that we wish to use the study results to justify the claim that fewer than 20 percent 

of parents who own TV sets with V-chips use the devices. The study actually found that 

17 percent of the parents polled used their V-chips.5 If the poll surveyed 1,000 parents, and if

for the sake of argument we assume that 20 percent of parents who own V-chips actually use

the devices (that is, p .2), calculate the probability of observing a sample proportion of .17

or less. That is, calculate .

b Based on the probability you computed in part a, would you conclude that fewer than 20 per-

cent of parents who own TV sets equipped with V-chips actually use the devices? Explain.

7.30 On February 8, 2002, the Gallup Organization released the results of a poll concerning American

attitudes toward the 19th Winter Olympic Games in Salt Lake City, Utah. The poll results were

based on telephone interviews with a randomly selected national sample of 1,011 adults, 18 years

and older, conducted February 4–6, 2002.

a Suppose we wish to use the poll’s results to justify the claim that more than 30 percent of

Americans (18 years or older) say that figure skating is their favorite Winter Olympic event.

The poll actually found that 32 percent of respondents reported that figure skating was their

favorite event.6 If, for the sake of argument, we assume that 30 percent of Americans (18 years

or older) say figure skating is their favorite event (that is, p .3), calculate the probability of

observing a sample proportion of .32 or more; that is, calculate .

b Based on the probability you computed in part a, would you conclude that more than 30 percent

of Americans (18 years or older) say that figure skating is their favorite Winter Olympic event?

7.31 Quality Progress, February 2005, reports on improvements in customer satisfaction and loyalty made

by Bank of America. A key measure of customer satisfaction is the response (on a scale from 1 to 10)

to the question: “Considering all the business you do with Bank of America, what is your overall sat-

isfaction with Bank of America?” Here, a response of 9 or 10 represents “customer delight.”

a Historically, the percentage of Bank of America customers expressing customer delight has

been 48%. Suppose that we wish to use the results of a survey of 350 Bank of America cus-

tomers to justify the claim that more than 48% of all current Bank of America customers would

express customer delight. The survey finds that 189 of 350 randomly selected Bank of America

customers express customer delight. If, for the sake of argument, we assume that the proportion

of customer delight is p  .48, calculate the probability of observing a sample proportion

greater than or equal to 189兾350  .54. That is, calculate P( p̂  .54).

P( p̂  .32)

P( p̂  .17)

P( p̂  .915)

P(.855  p̂  .945)

P( p̂  .96)
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b Based on the probability you computed in part a, would you conclude that more than 

48 percent of current Bank of America customers express customer delight? Explain.

7.32 Again consider the survey of 350 Bank of America customers discussed in Exercise 7.31, and

assume that 48% of Bank of America customers would currently express customer delight. That 

is, assume p  .48. Find:

a The probability that the sample proportion obtained from the sample of 350 Bank of America

customers would be within three percentage points of the population proportion. That is, find

b The probability that the sample proportion obtained from the sample of 350 Bank of America

customers would be within six percentage points of the population proportion. That is, find

7.33 Based on your results in Exercise 7.32, would it be reasonable to state that the survey’s “margin of

error” is  3 percentage points?  6 percentage points? Explain.

7.34 A special advertising section in the July 20, 1998, issue of Fortune magazine discusses “outsourc-

ing.” According to the article, outsourcing is “the assignment of critical, but noncore, business

functions to outside specialists.” This allows a company to immediately bring operations up to

best-in-world standards while avoiding huge capital investments. The article includes the results of

a poll of business executives addressing the benefits of outsourcing.

a Suppose we wish to use the poll’s results to justify the claim that fewer than 26 percent of

business executives feel that the benefits of outsourcing are either “less or much less than

expected.” The poll actually found that 15 percent of the respondents felt that the benefits of

outsourcing were either “less or much less than expected.”7 If 1,000 randomly selected

business executives were polled, and if for the sake of argument, we assume that 20 percent of

all business executives feel that the benefits of outsourcing are either less or much less than

expected (that is, p .20), calculate the probability of observing a sample proportion of .15 or

less. That is, calculate 

b Based on the probability you computed in part a, would you conclude that fewer than 

20 percent of business executives feel that the benefits of outsourcing are either “less or much

less than expected”? Explain.

7.35 The July 20, 1998, issue of Fortune magazine reported the results of a survey on executive training

that was conducted by the Association of Executive Search Consultants. The survey showed that

75 percent of 300 polled CEOs believe that companies should have “fast-track training programs”

for developing managerial talent.8

a Suppose we wish to use the results of this survey to justify the claim that more than 70 percent

of CEOs believe that companies should have fast-track training programs. Assuming that the

300 surveyed CEOs were randomly selected, and assuming, for the sake of argument, that

70 percent of CEOs believe that companies should have fast-track training programs (that is,

p .70), calculate the probability of observing a sample proportion of .75 or more. That is,

calculate 

b Based on the probability you computed in part a, would you conclude that more than 

70 percent of CEOs believe that companies should have fast-track training programs? Explain.

7.4 Stratified Random, Cluster, and Systematic
Sampling (Optional) 

Random sampling is not the only kind of sampling. Methods for obtaining a sample are called

sampling designs, and the sample we take is sometimes called a sample survey. In this section

we explain three sampling designs that are alternatives to random sampling—stratified random

sampling, cluster sampling, and systematic sampling.

One common sampling design involves separately sampling important groups within a popu-

lation. Then, the samples are combined to form the entire sample. This approach is the idea

behind stratified random sampling.

In order to select a stratified random sample, we divide the population into nonoverlapping

groups of similar elements (people, objects, etc.). These groups are called strata. Then a random

sample is selected from each stratum, and these samples are combined to form the full sample.

P( p̂  .75).

P( p̂  .15).

P(.42  p̂  .54).

P(.45  p̂  .51).

7Source: M. R. Ozanne and M. F. Corbette, “Outsourcing 98,” Fortune (July 20, 1998), p. 510.
8Source: E. P. Gunn, “The Fast Track Is Where to Be, If You Can Find It,” Fortune (July 20, 1998), p. 152.

Describe
the basic

ideas of stratified
random, cluster,
and systematic 
sampling 
(Optional).
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It is wise to stratify when the population consists of two or more groups that differ with respect

to the variable of interest. For instance, consumers could be divided into strata based on gender,

age, ethnic group, or income.

As an example, suppose that a department store chain proposes to open a new store in a location

that would serve customers who live in a geographical region that consists of (1) an industrial city,

(2) a suburban community, and (3) a rural area. In order to assess the potential profitability of the

proposed store, the chain wishes to study the incomes of all households in the region. In addition,

the chain wishes to estimate the proportion and the total number of households whose members

would be likely to shop at the store. The department store chain feels that the industrial city, the sub-

urban community, and the rural area differ with respect to income and the store’s potential desir-

ability. Therefore, it uses these subpopulations as strata and takes a stratified random sample.

Taking a stratified sample can be advantageous because such a sample takes advantage of the

fact that elements in the same stratum are similar to each other. It follows that a stratified sample

can provide more accurate information than a random sample of the same size. As a simple ex-

ample, if all of the elements in each stratum were exactly the same, then examining only one

element in each stratum would allow us to describe the entire population. Furthermore, stratifi-

cation can make a sample easier (or possible) to select. Recall that, in order to take a random

sample, we must have a list, or frame of all of the population elements. Although a frame might

not exist for the overall population, a frame might exist for each stratum. For example, suppose

nearly all the households in the department store’s geographical region have telephones. Although

there might not be a telephone directory for the overall geographical region, there might be sepa-

rate telephone directories for the industrial city, the suburb, and the rural area. Although we do not

discuss how to analyze data from a stratified random sample in the main body of this text, we

do so in Appendix F (Part I) on this book’s website. For a more complete discussion of stratified

random sampling, see Mendenhall, Schaeffer, and Ott (1986). 

Sometimes it is advantageous to select a sample in stages. This is a common practice when

selecting a sample from a very large geographical region. In such a case, a frame often does not

exist. For instance, there is no single list of all registered voters in the United States. There is also

no single list of all households in the United States. In this kind of situation, we can use multi-

stage cluster sampling. To illustrate this procedure, suppose we wish to take a sample of regis-

tered voters from all registered voters in the United States. We might proceed as follows:

Stage 1: Randomly select a sample of counties from all of the counties in the United States.

Stage 2: Randomly select a sample of townships from each county selected in Stage 1.

Stage 3: Randomly select a sample of voting precincts from each township selected in Stage 2.

Stage 4: Randomly select a sample of registered voters from each voting precinct selected

in Stage 3.

We use the term cluster sampling to describe this type of sampling because at each stage we

“cluster” the voters into subpopulations. For instance, in Stage 1 we cluster the voters into coun-

ties, and in Stage 2 we cluster the voters in each selected county into townships. Also, notice that

the random sampling at each stage can be carried out because there are lists of (1) all counties in

the United States, (2) all townships in each county, (3) all voting precincts in each township, and

(4) all registered voters in each voting precinct.

As another example, consider sampling the households in the United States. We might use

Stages 1 and 2 above to select counties and townships within the selected counties. Then, if there

is a telephone directory of the households in each township, we can randomly sample households

from each selected township by using its telephone directory. Because most households today

have telephones, and telephone directories are readily available, most national polls are now con-

ducted by telephone.

It is sometimes a good idea to combine stratification with multistage cluster sampling. For

example, suppose a national polling organization wants to estimate the proportion of all registered

voters who favor a particular presidential candidate. Because the presidential preferences of vot-

ers might tend to vary by geographical region, the polling organization might divide the United

States into regions (say, Eastern, Midwestern, Southern, and Western regions). The polling orga-

nization might then use these regions as strata, and might take a multistage cluster sample from

each stratum (region).

296 Chapter 7 Sampling and Sampling Distributions



7.5 More about Surveys and Errors in Survey Sampling (Optional) 297

The analysis of data produced by multistage cluster sampling can be quite complicated. We

explain how to analyze data produced by one- and two-stage cluster sampling in Appendix F

(Part 2) on this book’s website. This appendix also includes a discussion of an additional survey

sampling technique called ratio estimation. For a more detailed discussion of cluster sampling

and ratio estimation, see Mendenhall, Schaeffer, and Ott (1986).

In order to select a random sample, we must number the elements in a frame of all the popula-

tion elements. Then we use a random number table (or a random number generator on a computer)

to make the selections. However, numbering all the population elements can be quite time-

consuming. Moreover, random sampling is used in the various stages of many complex sampling

designs (requiring the numbering of numerous populations). Therefore, it is useful to have an

alternative to random sampling. One such alternative is called systematic sampling. In order to

systematically select a sample of n elements without replacement from a frame of N elements, we

divide N by n and round the result down to the nearest whole number. Calling the rounded result

ᐉ, we then randomly select one element from the first ᐉ elements in the frame—this is the first el-

ement in the systematic sample. The remaining elements in the sample are obtained by selecting

every ᐉth element following the first (randomly selected) element. For example, suppose we wish

to sample a population of N  14,327 allergists to investigate how often they have prescribed a

particular drug during the last year. A medical society has a directory listing the 14,327 allergists,

and we wish to draw a systematic sample of 500 allergists from this frame. Here we compute

14,327兾500 28.654, which is 28 when rounded down. Therefore, we number the first 28 aller-

gists in the directory from 1 to 28, and we use a random number table to randomly select one of

the first 28 allergists. Suppose we select allergist number 19. We interview allergist 19 and every

28th allergist in the frame thereafter, so we choose allergists 19, 47, 75, and so forth until we ob-

tain our sample of 500 allergists. In this scheme, we must number the first 28 allergists, but we do

not have to number the rest because we can “count off” every 28th allergist in the directory. Al-

ternatively, we can measure the approximate amount of space in the directory that it takes to list

28 allergists. This measurement can then be used to select every 28th allergist.

Exercises for Section 7.4
CONCEPTS

7.36 When is it appropriate to use stratified random sampling? What are strata, and how should strata 

be selected?

7.37 When is cluster sampling used? Why do we describe this type of sampling by using the term cluster?

7.38 Explain how to take a systematic sample of 100 companies from the 1,853 companies that are

members of an industry trade association.

7.39 Explain how a stratified random sample is selected. Discuss how you might define the strata to

survey student opinion on a proposal to charge all students a $100 fee for a new university-run bus

system that will provide transportation between off-campus apartments and campus locations.

7.40 Marketing researchers often use city blocks as clusters in cluster sampling. Using this fact,

explain how a market researcher might use multistage cluster sampling to select a sample of

consumers from all cities having a population of more than 10,000 in a large state having many

such cities.

7.5 More about Surveys and Errors in Survey 
Sampling (Optional) 

We have seen in Section 1.2 that people in surveys are asked questions about their behaviors,

opinions, beliefs, and other characteristics. In this section we discuss various issues related to de-

signing surveys and the errors that can occur in survey sampling.

Types of survey questions Survey instruments can use dichotomous (“yes or no”), multiple-

choice, or open-ended questions. Each type of question has its benefits and drawbacks.

Dichotomous questions are usually clearly stated, can be answered quickly, and yield data that are

Describe
basic types

of survey questions,
survey procedures,
and sources of error
(Optional).

LO6



easily analyzed. However, the information gathered may be limited by this two option format. If

we limit voters to expressing support or disapproval for stem-cell research, we may not learn the

nuanced reasoning that voters use in weighing the merits and moral issues involved. Similarly, in

today’s heterogeneous world, it would be unusual to use a dichotomous question to categorize a

person’s religious preferences. Asking whether respondents are Christian or non-Christian (or to

use any other two categories like Jewish or non-Jewish; Muslim or non-Muslim) is certain to

make some people feel their religion is being slighted. In addition, this is a crude way and unen-

lightening way to learn about religious preferences.

Multiple-choice questions can assume several different forms. Sometimes respondents are

asked to choose a response from a list (for example, possible answers to the religion question

could be Jewish; Christian; Muslim; Hindu; Agnostic; or Other). Other times, respondents are

asked to choose an answer from a numerical range. We could ask the question:

“In your opinion, how important are SAT scores to a college student’s success?”

Not important at all 1 2 3 4 5 Extremely important

These numerical responses are usually summarized and reported in terms of the average re-

sponse, whose size tells us something about the perceived importance. The Zagat restaurant sur-

vey (http://www.zagat.com) asks diners to rate restaurants’ food, décor, and service, each on a

scale of 1 to 30 points, with a 30 representing an incredible level of satisfaction. Although the

Zagat scale has an unusually wide range of possible ratings, the concept is the same as in the

more common 5-point scale.

Open-ended questions typically provide the most honest and complete information because

there are no suggested answers to divert or bias a person’s response. This kind of question is often

found on instructor evaluation forms distributed at the end of a college course. College students

at Georgetown University are asked the open-ended question, “What comments would you give

to the instructor?” The responses provide the instructor feedback that may be missing from the

initial part of the teaching evaluation survey, which consists of numerical multiple-choice ratings

of various aspects of the course. While these numerical ratings can be used to compare instruc-

tors and courses, there are no easy comparisons of the diverse responses instructors receive to the

open-ended question. In fact, these responses are often seen only by the instructor and are useful,

constructive tools for the teacher despite the fact they cannot be readily summarized.

Survey questionnaires must be carefully constructed so they do not inadvertently bias the re-

sults. Because survey design is such a difficult and sensitive process, it is not uncommon for a

pilot survey to be taken before a lot of time, effort, and financing go into collecting a large

amount of data. Pilot surveys are similar to the beta version of a new electronic product; they are

tested out with a smaller group of people to work out the “kinks” before being used on a larger

scale. Determination of the sample size for the final survey is an important process for many rea-

sons. If the sample size is too large, resources may be wasted during the data collection. On the

other hand, not collecting enough data for a meaningful analysis will obviously be detrimental to

the study. Fortunately, there are several formulas that will help decide how large a sample should

be, depending on the goal of the study and various other factors.

Types of surveys There are several different survey types, and we will explore just a few

of them. The phone survey is particularly well-known (and often despised). A phone survey is

inexpensive and usually conducted by callers who have very little training. Because of this and the

impersonal nature of the medium, the respondent may misunderstand some of the questions. A

further drawback is that some people cannot be reached and that others may refuse to answer some

or all of the questions. Phone surveys are thus particularly prone to have a low response rate.

The response rate is the proportion of all people whom we attempt to contact that actually

respond to a survey. A low response rate can destroy the validity of a survey’s results.

The popular television sit-com Seinfeld parodied the difficulties of collecting data through a

phone survey. After receiving several calls from telemarketers, Jerry replied in exasperation:

“I’m sorry; I’m a little tied up now. Give me your home number and I’ll call you back later. Oh! You

don’t like being called at home? Well, now you know how I feel.”

Numerous complaints have been filed with the Federal Trade Commission (FTC) about the glut

of marketing and survey telephone calls to private residences. The National Do Not Call Registry
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was created as the culmination of a comprehensive, three-year review of the Telemarketing Sales

Rule (TSR) (http://www.ftc.gov/donotcall/). This legislation allows people to enroll their phone

numbers on a website so as to prevent most marketers from calling them.

Self-administered surveys, or mail surveys, are also very inexpensive to conduct. However,

these also have their drawbacks. Often, recipients will choose not to reply unless they receive

some kind of financial incentive or other reward. Generally, after an initial mailing, the response

rate will fall between 20 and 30 percent (http://www.pra.ca/resources/rates.pdf). Response rates

can be raised with successive follow-up reminders, and after three contacts, they might reach

between 65 and 75 percent. Unfortunately, the entire process can take significantly longer than a

phone survey would.

Web-based surveys have become increasingly popular, but they suffer from the same prob-

lems as mail surveys. In addition, as with phone surveys, respondents may record their true reac-

tions incorrectly because they have misunderstood some of the questions posed.

A personal interview provides more control over the survey process. People selected for in-

terviews are more likely to respond because the questions are being asked by someone face-to-

face. Questions are less likely to be misunderstood because the people conducting the interviews

are typically trained employees who can clear up any confusion arising during the process. On

the other hand, interviewers can potentially “lead” a respondent by body language which signals

approval or disapproval of certain sorts of answers. They can also prompt certain replies by pro-

viding too much information. Mall surveys are examples of personal interviews. Interviewers

approach shoppers as they pass by and ask them to answer the survey questions. Response rates

around 50 percent are typical (http://en.wikipedia.org/wiki/Statistical_survey#Survey_methods).

Personal interviews are more costly than mail or phone surveys. Obviously, the objective of the

study will be important in deciding upon the survey type employed.

Errors occurring in surveys In general, the goal of a survey is to obtain accurate informa-

tion from a group, or sample, that is representative of the entire population of interest. We are try-

ing to estimate some aspect (numerical descriptor) of the entire population from a subset of the

population. This is not an easy task, and there are many pitfalls. First and foremost, the target

population must be well defined and a sample frame must be chosen.

The target population is the entire population of interest to us in a particular study.

Are we intending to estimate the average starting salary of students graduating from any college?

Or from four year colleges? Or from business schools? Or from a particular business school?

The sample frame is a list of sampling elements (people or things) from which the sample will

be selected. It should closely agree with the target population.

Consider a study to estimate the average starting salary of students who have graduated from the

business school at Miami University of Ohio over the last five years; the target population is ob-

viously that particular group of graduates. A sample frame could be the Miami University Alumni

Association’s roster of business school graduates for the past five years. Although it will not be a

perfect replication of the target population, it is a reasonable frame.

We now discuss two general classes of survey errors: errors of non-observation and errors of

observation. From the sample frame, units are randomly chosen to be part of the sample. Simply by

virtue of the fact that we are taking a sample instead of a census, we are susceptible to sampling error.

Sampling error is the difference between a numerical descriptor of the population and the 

corresponding descriptor of the sample.

Sampling error occurs because our information is incomplete. We observe only the portion of the

population included in the sample while the remainder is obscured. Suppose, for example, we

wanted to know about the heights of 13-year-old boys. There is extreme variation in boys’heights at

this age. Even if we could overcome the logistical problems of choosing a random sample of 20 boys,

there is nothing to guarantee the sample will accurately reflect heights at this age. By sheer luck of

the draw, our sample could include a higher proportion of tall boys than appears in the population.

We would then overestimate average height at this age (to the chagrin of the shorter boys). Although

samples tend to look more similar to their parent populations as the sample sizes increase, we should

always keep in mind that sample characteristics and population characteristics are not the same.



If a sample frame is not identical to the target population, we will suffer from an error of

coverage.

Undercoverage occurs when some population elements are excluded from the process of selecting

the sample.

Undercoverage was part of the problem dooming the Literary Digest Poll of 1936. Although mil-

lions of Americans were included in the poll, the large sample size could not rescue the poll

results. The sample represented those who could afford phone service and magazine subscrip-

tions in the lean Depression years, but in excluding everyone else, it failed to yield an honest

picture of the entire American populace. Undercoverage often occurs when we do not have a

complete, accurate list of all the population units. If we select our sample from an incomplete list,

like a telephone directory or a list of all Internet subscribers in a region, we automatically elimi-

nate those who cannot afford phone or Internet service. Even today, 7 to 8 percent of the people

in the United States do not own telephones. Low income people are often underrepresented in

surveys. If underrepresented groups differ from the rest of the population with respect to the char-

acteristic under study, the survey results will be biased.

Often, pollsters cannot find all the people they intend to survey, and sometimes people who are

found will refuse to answer the questions posed. Both of these are examples of the nonresponse

problem. Unfortunately, there may be an association between how difficult it is to find and elicit

responses from people and the type of answers they give.

Nonresponse occurs whenever some of the individuals who were supposed to be included in the

sample are not.

For example, universities often conduct surveys to learn how graduates have fared in the work-

place. The alumnus who has risen through the corporate ranks is more likely to have a current ad-

dress on file with his alumni office and to be willing to share career information than a classmate

who has foundered professionally. We should be politely skeptical about reports touting the av-

erage salaries of graduates of various university programs. In some surveys, 35 percent or more

of the selected individuals cannot be contacted—even when several callbacks are made. In such

cases, other participants are often substituted for those who cannot be contacted. If the substitutes

and the originally selected participants differ with respect to the characteristic under study, the

survey will be biased. Furthermore, people who will answer highly sensitive, personal, or em-

barrassing questions might be very different from those who will not.

As discussed in Section 1.2, the opinions of those who bother to complete a voluntary re-

sponse survey may be dramatically different from those who do not. (Recall the “Dear Abby”

question about having children.) The viewer voting on the popular television show American Idol

is another illustration of selection bias, since only those who are interested in the outcome of the

show will bother to phone in or text message their votes. The results of the voting are not repre-

sentative of the performance ratings the country would give as a whole.

Errors of observation occur when data values are recorded incorrectly. Such errors can be

caused by the data collector (the interviewer), the survey instrument, the respondent, or the data

collection process. For instance, the manner in which a question is asked can influence the

response. Or, the order in which questions appear on a questionnaire can influence the survey

results. Or, the data collection method (telephone interview, questionnaire, personal interview, or

direct observation) can influence the results. A recording error occurs when either the respon-

dent or interviewer incorrectly marks an answer. Once data are collected from a survey, the

results are often entered into a computer for statistical analysis. When transferring data from a

survey form to a spreadsheet program like Excel, Minitab, or MegaStat, there is potential for en-

tering them incorrectly. Before the survey is administered, the questions need to be very carefully

worded so that there is little chance of misinterpretation. A poorly framed question might yield

results that lead to unwarranted decisions. Scaled questions are particularly susceptible to this type

of error. Consider the question “How would you rate this course?” Without a proper explanation,

the respondent may not know whether “1” or “5” is the best.

If the survey instrument contains highly sensitive questions and respondents feel compelled to

answer, they may not tell the truth. This is especially true in personal interviews. We then have

what is called response bias. A surprising number of people are reluctant to be candid about what

they like to read or watch on television. People tend to over report “good” activities like reading
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Chapter Summary

We began this chapter by discussing what a random sample is and

how to use a random number table or computer-generated

random numbers to select a random sample. We then discussed

sampling distributions. A sampling distribution is the proba-

bility distribution that describes the population of all possible val-

ues of a sample statistic. In this chapter we studied the properties

of two important sampling distributions—the sampling distribu-

tion of the sample mean, and the sampling distribution of the

sample proportion, p̂.

Because different samples that can be randomly selected from

a population give different sample means, there is a population

of sample means corresponding to a particular sample size. The

probability distribution describing the population of all possible

sample means is called the sampling distribution of the sample

mean, We studied the properties of this sampling distribution

when the sampled population is and is not normally distributed.

We found that, when the sampled population has a normal

distribution, then the sampling distribution of the sample mean is

a normal distribution. Furthermore, the Central Limit Theorem

tells us that, if the sampled population is not normally distributed,

then the sampling distribution of the sample mean is approxi-

mately a normal distribution when the sample size is large (at

least 30). We also saw that the mean of the sampling distribution

of always equals the mean of the sampled population, and we

presented formulas for the variance and the standard deviation of

this sampling distribution. Finally, we explained that the sample

x

x.

x,

mean is a minimum-variance unbiased point estimate of the

mean of a normally distributed population.

We also studied the properties of the sampling distribution of

the sample proportion p̂. We found that, if the sample size is large,

then this sampling distribution is approximately a normal distribu-

tion, and we gave a rule for determining whether the sample size is

large. We found that the mean of the sampling distribution of p̂is the

population proportion p, and we gave formulas for the variance and

the standard deviation of this sampling distribution.

Throughout our discussions of sampling distributions, we

demonstrated that knowing the properties of sampling distribu-

tions can help us make statistical inferences about population pa-

rameters. In fact, we will see that the properties of various sam-

pling distributions provide the foundation for most of the

techniques to be discussed in future chapters.

We concluded this chapter with two optional sections. In the

first optional section, we discussed some advanced sampling de-

signs. Specifically, we introduced stratified random sampling,

in which we divide a population into groups (strata) and then se-

lect a random sample from each group. We also introduced mul-

tistage cluster sampling, which involves selecting a sample in

stages, and we explained how to select a systematic sample. In

the second optional section, we discussed more about surveys, as

well as some potential problems that can occur when conducting

a sample survey—undercoverage, nonresponse, response bias,

and slanted questions.
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respected newspapers and underreport their “bad” activities like delighting in the National

Inquirer’s stories of alien abductions and celebrity meltdowns. Imagine, then, the difficulty in

getting honest answers about people’s gambling habits, drug use, or sexual histories. Response

bias can also occur when respondents are asked slanted questions whose wording influences the

answer received. For example, consider the following question:

Which of the following best describes your views on gun control?

1 The government should take away our guns, leaving us defenseless against heavily armed

criminals.

2 We have the right to keep and bear arms.

This question is biased toward eliciting a response against gun control.

Exercises for Section 7.5
CONCEPTS

7.41 Explain:

a Three types of surveys and discuss their advantages and disadvantages.

b Three types of survey questions and discuss their advantages and disadvantages.

7.42 Explain each of the following terms:

a Undercoverage b Nonresponse c Response bias

7.43 A market research firm sends out a web-based survey to assess the impact of advertisements placed

on a search engine’s results page. About 65% of the surveys were answered and sent back. What

types of errors are possible in this scenario?



302 Chapter 7 Sampling and Sampling Distributions

Glossary of Terms

Central Limit Theorem: A theorem telling us that when the

sample size n is sufficiently large, then the population of all

possible sample means is approximately normally distributed no

matter what probability distribution describes the sampled popu-

lation. (page 286)

cluster sampling (multistage cluster sampling): A sampling

design in which we sequentially cluster population elements into

subpopulations. (page 296)

convenience sampling: Sampling where we select elements be-

cause they are easy or convenient to sample. (page 278)

errors of non-observation: Sampling error related to population

elements that are not observed. (page 299)

errors of observation: Sampling error that occurs when the data

collected in a survey differs from the truth. (page 300)

judgment sampling: Sampling where an expert selects popula-

tion elements that he/she feels are representative of the population.

(page 278)

minimum-variance unbiased point estimate: An unbiased

point estimate of a population parameter having a variance that is

smaller than the variance of any other unbiased point estimate of

the parameter. (page 289)

nonresponse: A situation in which population elements selected

to participate in a survey do not respond to the survey instrument.

(page 300)

probability sampling: Sampling where we know the chance

(probability) that each population element will be included in the

sample. (page 278)

random number table: A table containing random digits that is

often used to select a random sample. (page 276)

random sample: A sample selected in such a way that every set

of n elements in the population has the same chance of being

selected. (page 275)

response bias: Bias in the results obtained when carrying out a

statistical study that is related to how survey participants answer

the survey questions. (page 300)

response rate: The proportion of all people whom we attempt to

contact that actually respond to a survey. (page 298)

sample frame: A list of sampling elements from which a sample

will be selected. It should closely agree with the target popula-

tion. (page 299)

sampling distribution of a sample statistic: The probability

distribution of the population of all possible values of the sample

statistic. (page 288)

sampling distribution of the sample mean : The probability

distribution of the population of all possible sample means

obtained from samples of a particular size n. (page 279)

sampling distribution of the sample proportion p̂: The proba-

bility distribution of the population of all possible sample propor-

tions obtained from samples of a particular size n. (page 292)

sampling error: The difference between the value of a sample

statistic and the population parameter; it occurs because not all of

the elements in the population have been measured. (page 299)

sampling without replacement: A sampling procedure in which

we do not place previously selected elements back into the popu-

lation and, therefore, do not give these elements a chance to be

chosen on succeeding selections. (page 275)

sampling with replacement: A sampling procedure in which we

place any element that has been chosen back into the population

to give the element a chance to be chosen on succeeding selec-

tions. (page 275)

selection bias: Bias in the results obtained when carrying out a

statistical study that is related to how survey participants are

selected. (page 300)

strata: The subpopulations in a stratified sampling design.

(page 295)

stratified random sampling: A sampling design in which we

divide a population into nonoverlapping subpopulations and then

select a random sample from each subpopulation (stratum).

(page 295)

systematic sample: A sample taken by moving systematically

through the population. For instance, we might randomly select

one of the first 200 population elements and then systematically

sample every 200th population element thereafter. (pages 297)

target population: The entire population of interest in a statisti-

cal study. (page 299)

unbiased point estimate: A sample statistic is an unbiased point

estimate of a population parameter if the mean of the population

of all possible values of the sample statistic equals the population

parameter. (page 289)

undercoverage: A situation in sampling in which some groups of

population elements are underrepresented. (page 300)

voluntary response sample: Sampling in which the sample par-

ticipants self select. (page 278)
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Supplementary Exercises

7.44 A company that sells and installs custom designed home theatre systems claims to have sold 977

such systems last year. In order to assess whether these claimed sales are valid, an accountant num-

bers the company’s sales invoices from 1 to 977 and plans to select a random sample of 50 sales in-

voices. The accountant will then contact the purchasers listed on the 50 sampled sales invoices and

determine whether the sales amounts on the invoices are correct. Starting in the upper left-hand cor-

ner of Table 7.1(a) (see page 276), determine which 50 of the 977 sales invoices should be included

in the random sample. Note: There are many possible answers to this exercise.

Important Formulas

The sampling distribution of the sample mean: pages 279 and 283.

when a population is normally distributed (page 283)

Central Limit Theorem (page 286)

The sampling distribution of the sample proportion: page 292.
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7.45 In early 1995, The Milwaukee Sentinel, a morning newspaper in Milwaukee, Wisconsin, and The

Milwaukee Journal, an afternoon newspaper, merged to form The Milwaukee Journal Sentinel.

Several weeks after the merger, a Milwaukee television station, WITI-TV, conducted a telephone

call-in survey asking whether viewers liked the new Journal Sentinel. The survey was “not

scientific” because any viewer wishing to call in could do so.

On April 26, 1995, Tim Cuprisin, in his “Inside TV & Radio” column in the Journal Sentinel,

wrote the following comment:

WE DIDN’T CALL: WITI-TV (Channel 6) did one of those polls—which they admit are

unscientific—last week and found that 388 viewers like the new Journal Sentinel and 2,629

don’t like it.

We did our own unscientific poll on whether those Channel 6 surveys accurately reflect

public opinion. The results: a full 100 percent of the respondents say absolutely, positively not.

Is Cuprisin’s comment justified? Write a short paragraph explaining your answer.

7.46 Each day a manufacturing plant receives a large shipment of drums of Chemical ZX-900. These

drums are supposed to have a mean fill of 50 gallons, while the fills have a standard deviation

known to be .6 gallon.

a Suppose that the mean fill for the shipment is actually 50 gallons. If we draw a random sample

of 100 drums from the shipment, what is the probability that the average fill for the 100 drums

is between 49.88 gallons and 50.12 gallons?

b The plant manager is worried that the drums of Chemical ZX-900 are underfilled. Because

of this, she decides to draw a sample of 100 drums from each daily shipment and will

reject the shipment (send it back to the supplier) if the average fill for the 100 drums is less

than 49.85 gallons. Suppose that a shipment that actually has a mean fill of 50 gallons is

received. What is the probability that this shipment will be rejected and sent back to the

supplier?

7.47 In its October 12, 1992, issue, The Milwaukee Journal published the results of an Ogilvy, Adams,

and Rinehart poll of 1,250 American investors that was conducted in early October 1992. The poll

investigated the stock market’s appeal to investors five years after the market suffered its biggest

one-day decline (in 1987).

Assume that 50 percent of all American investors in 1992 found the stock market less attractive

than it was in 1987 (that is, p  .5). Find the probability that the sample proportion obtained from

the sample of 1,250 investors would be

a Within 4 percentage points of the population proportion—that is, find 

b Within 2 percentage points of the population proportion.

c Within 1 percentage point of the population proportion.

d Based on these probabilities, would it be reasonable to claim a  2 percentage point margin of

error? A 1 percentage point margin of error? Explain.

7.48 Again consider the stock market poll discussed in Exercise 7.47.

a Suppose we wish to use the poll’s results to justify the claim that fewer than 50 percent of

American investors in 1992 found the stock market less attractive than in 1987. The poll

actually found that 41 percent of the respondents said the stock market was less attractive than

in 1987. If, for the sake of argument, we assume that p  .5, calculate the probability of

observing a sample proportion of .41 or less. That is, calculate 

b Based on the probability you computed in part b, would you conclude that fewer than 

50 percent of American investors in 1992 found the stock market to be less attractive than in

1987? Explain.

7.49 Aamco Heating and Cooling, Inc., advertises that any customer buying an air conditioner during

the first 16 days of July will receive a 25 percent discount if the average high temperature for this

16-day period is more than five degrees above normal.

a If daily high temperatures in July are normally distributed with a mean of 84 degrees and a

standard deviation of 8 degrees, what is the probability that Aamco Heating and Cooling will

have to give its customers the 25 percent discount?

b Based on the probability you computed in part a, do you think that Aamco’s promotion is

ethical? Write a paragraph justifying your opinion.

7.50 THE TRASH BAG CASE TrashBag

Recall that the trash bag manufacturer has concluded that its new 30-gallon bag will be the

strongest such bag on the market if its mean breaking strength is at least 50 pounds. In order to

provide statistical evidence that the mean breaking strength of the new bag is at least 50 pounds,

the manufacturer randomly selects a sample of n bags and calculates the mean of the breakingx

DS

P( p̂  .41).

P(.46  p̂  .54).
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strengths of these bags. If the sample mean so obtained is at least 50 pounds, this provides some

evidence that the mean breaking strength of all new bags is at least 50 pounds.

Suppose that (unknown to the manufacturer) the breaking strengths of the new 30-gallon 

bag are normally distributed with a mean of m  50.6 pounds and a standard deviation of 

s  1.62 pounds.

a Find an interval containing 95.44 percent of all possible sample means if the sample size

employed is n  5.

b Find an interval containing 95.44 percent of all possible sample means if the sample size

employed is n  40.

c If the trash bag manufacturer hopes to obtain a sample mean that is at least 50 pounds (so that it

can provide evidence that the population mean breaking strength of the new bags is at least 50),

which sample size (n 5 or n  40) would be best? Explain why.

7.51 THE STOCK RETURN CASE

The year 1987 featured extreme volatility on the stock market, including a loss of over 20 percent

of the market’s value on a single day. Figure 7.7(a) shows the percent frequency histogram of the

percentage returns for the entire year 1987 for the population of all 1,815 stocks listed on the New

York Stock Exchange. The mean and the standard deviation of the population of percentage returns

are  3.5 percent and 26 percent, respectively. Consider drawing a random sample of n  5 stocks

from the population of 1,815 stocks and calculating the mean return, , of the sampled stocks. If

we use a computer, we can generate all the different samples of five stocks that can be obtained

(there are trillions of such samples) and calculate the corresponding sample mean returns. A per-

cent frequency histogram describing the population of all possible sample mean returns is given in

Figure 7.7(b). Comparing Figures 7.7(a) and (b), we see that, although the histogram of individual

stock returns and the histogram of sample mean returns are both bell-shaped and centered over the

same mean of  3.5 percent, the histogram of sample mean returns looks less spread out than the

histogram of individual returns. A sample of 5 stocks is a portfolio of stocks, where the average

return of the 5 stocks is the portfolio’s return if we invest equal amounts of money in each of the

5 stocks. Because the sample mean returns are less spread out than the individual stock returns, we

have illustrated that diversification reduces risk. Find the standard deviation of the population of

all sample mean returns, and assuming that this population is normally distributed, find an interval

that contains 95.44 percent of all sample mean returns.

7.52 THE UNITED KINGDOM INSURANCE CASE

Suppose that we wish to assess whether more than 60 percent of all United Kingdom households

spent on life insurance in 1993. That is, we wish to assess whether the proportion, p, of all United

Kingdom households that spent on life insurance in 1993 exceeds .60. Assume here that the U.K.
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F I G U R E 7 . 7 The New York Stock Exchange in 1987: A Comparison of Individual Stock Returns 

and Sample Mean Returns

Figure 7.7 is adapted with permission from John K. Ford, “A Method for Grading 1987 Stock Recommendations,” The American Association of Individual

Investors Journal, March 1988, pp. 16–17.

(a) The percent frequency histogram describing 
the population of individual stock returns

(b) The percent frequency histogram describing the
population of all possible sample mean returns
when n  5
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The best way to observe, first-hand, the concepts of
sampling distributions is to conduct sampling experi-
ments with real data. However, sampling experiments
can be prohibitively time consuming and tedious. An
excellent alternative is to conduct computer-assisted
sampling experiments or simulations. Visual Statistics by
Doane, Mathieson, and Tracy (Irwin/McGraw-Hill) in-
cludes a simulation module to illustrate sampling distri-
butions and the Central Limit Theorem. In this exercise,
we will download and install the Central Limit Theorem
demonstration module from Visual Statistics and use the
software to demonstrate the Central Limit Theorem.

From the Irwin/McGraw-Hill Business Statistics Center
(http://www.mhhe.com/business/opsci/bstat/), select in
turn—“Visual Statistics and Other Data Visualization
Tools” : “Visual Statistics by Doane” : “Free Stuff”—and
download both the CLT module and the Worktext. When
the download is complete, install the CLT module by
double-clicking the installation file (vs_setup.exe). Study
the overview and orientation sections of the work text
and work through the first four learning exercises on
the Width of Car Hood example.

7.53 Internet Exercise

Appendix 7.1 ■ Generating Random Numbers Using Excel

To create 100 random numbers between 1 and 2136
similar to those in Table 7.1(b) on page 276.

• Type the cell formula 

=RANDBETWEEN(1,2136)

into cell A1 of the Excel worksheet and press
the enter key. This will generate a random 
integer between 1 and 2136, which will be
placed in cell A1.

• Using the mouse, copy the cell formula for cell
A1 down through cell A100. This will generate
100 random numbers between 1 and 2136 in
cells A1 through A100 (note that the random
number in cell A1 will change when this is
done—this is not a problem).

• The random numbers are generated with 
replacement. Repeated numbers would be
skipped if the random numbers are being used
to sample without replacement.

insurance survey is based on 1,000 randomly selected households and that 640 of these households

spent on life insurance in 1993.

a Assuming that p equals .60 and the sample size is 1,000, what is the probability of observing a

sample proportion that is at least .64?

b Based on your answer in part a, do you think more than 60 percent of all United Kingdom 

households spent on life insurance in 1993? Explain.
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Appendix 7.3 ■ Generating Random Numbers and Simulating Sampling
Distributions Using MINITAB

To create 100 random numbers between 1 and 2136
similar to those in Table 7.1(b) on page 276:

• Select Calc : Random Data : Integer

• In the Integer Distribution dialog box, enter
100 into the “Number of rows of data to 
generate” window.

• Enter C1 into the “Store in column(s)” window.

• Enter 1 into the Minimum value box and enter
2136 into the Maximum value box.

• Click OK in the Integer Distribution dialog box.

The 100 random numbers will be placed in the Data
Window in column C1. These numbers are gener-
ated with replacement. Repeated numbers would
be skipped if the random numbers are being used
to sample without replacement.

Appendix 7.2 ■ Generating Random Numbers Using MegaStat

To create 100 random numbers between 1 and 2136
similar to those in Table 7.1(b) on page 276:

• Select Add-Ins : MegaStat : Generate Random
Numbers. . .

• In the Random Number Generation dialog box,
enter 100 into the “Number of values to be
generated” window.

• Click the right arrow button to select 0 Decimal
Places.

• Select the Uniform tab, and enter 1 into the
Minimum box and enter 2136 into the 
Maximum box.

• Click OK in the Random Number Generation 
dialog box.

The 100 random numbers will be placed in the Output
Sheet. These numbers are generated with replace-
ment. Repeated numbers would be skipped for ran-
dom sampling without replacement.
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Histogram of sample means from an exponential 
distribution similar to Figure 7.6(a) on page 287:

In this example we construct a histogram of 1000
sample means from exponential samples of size 5.

• Select Calc : Random Data : Exponential.

• In the Exponential Distribution dialog box, enter
1000 into the “Number of rows of data to 
generate:” window.

• Enter C1–C5 in the “Store in column(s):” window
to request 1000 values per column in columns C1
to C5.

• Be sure that 0.0 is the entry in the Threshold 
window.

• Enter 7 in the Scale window. This specifies the
mean of the exponential distribution when the
Threshold equals 0.

• Click OK in the Exponential Distribution dialog
box. The 1000 exponential samples of size 5 will
be generated in rows 1 through 1000.

• Select Calc : Row Statistics.

• In the Row Statistics dialog box, under “Statistic”
select the Mean option.

• Enter C1–C5 in the “Input variables” window.

• Enter XBar5 in the “Store result in” window.

• Click OK in the Row Statistics dialog box to 
compute the means for the 1000 samples of size 5.

• Select Stat : Basic Statistics : Display Descriptive
Statistics.

• In the Display Descriptive Statistics dialog box,
enter XBar5 into the Variables window.

• Click on the Graphs. . . button.

• In the “Display Descriptive Statistics—Graphs” 
dialog box, check the “Histogram of data, with
normal curve” checkbox.

• Click OK in the “Display Descriptive Statistics—
Graphs” dialog box.

• Click OK in the Display Descriptive Statistics 
dialog box.

• The histogram will appear in a graphics window.
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e have seen that the sample mean is the

point estimate of the population mean

and the sample proportion is the point

estimate of the population proportion. In general,

although a point estimate is a reasonable one-

number estimate of a population parameter (mean,

proportion, or the like), the point estimate will

not—unless we are extremely lucky—equal the true

value of the population parameter. 

In this chapter we study how to use a confidence

interval to estimate a population parameter. A

confidence interval for a population parameter is an

interval, or range of numbers, constructed around

the point estimate so that we are very sure, or

confident, that the true value of the population

parameter is inside the interval.

By computing such an interval, we estimate—with

confidence—the possible values that a population

parameter might equal. This, in turn, can help us to

assess—with confidence—whether a particular

business improvement has been made or is needed.

In order to illustrate confidence intervals, we

revisit several cases introduced in earlier chapters

and also introduce some new cases. For example:

W

In the Car Mileage Case, we use a confidence

interval to provide strong evidence that the mean

EPA combined city and highway mileage for the

automaker’s new midsize model meets the tax

credit standard of 31 mpg.

In the Payment Time Case, we use a confidence

interval to more completely assess the reduction

in mean payment time that was achieved by the

new billing system.

In the Cheese Spread Case, we use a confidence

interval to provide strong evidence that fewer

than 10 percent of all current purchasers will stop

buying the cheese spread if the new spout is

used, and, therefore, that it is reasonable to use

the new spout.

C

Calculate
and inter-

pret a z-based con-
fidence interval for
a population mean
when  is known.

LO18.1 z-Based Confidence Intervals
for a Population Mean: S Known 

An introduction to confidence intervals for a population mean In the car mileage

case, we have seen that an automaker has introduced a new midsize model and wishes to estimate

the mean EPAcombined city and highway mileage,m, that would be obtained by all cars of this type.

In order to estimatem, the automaker has conducted EPA mileage tests on a random sample of 50 of

its new midsize cars and has obtained the sample of mileages in Table 1.6 (page 12). The mean of this

sample of mileages, which is mpg, is the point estimate of m. However, a sample mean

will not—unless we are extremely lucky—equal the true value of a population mean. Therefore, the

sample mean of 31.56 mpg does not, by itself, provide us with any confidence about the true value

of the population mean m. One way to estimate m with confidence is to calculate a confidence in-

terval for this mean.

Aconfidence interval for a population mean is an interval constructed around the sample mean

so that we are reasonably sure, or confident, that this interval contains the population mean. Any

confidence interval for a population mean is based on what is called a confidence level. This con-

fidence level is a percentage (for example, 95 percent or 99 percent) that expresses how confident

we are that the confidence interval contains the population mean. In order to explain the exact

meaning of a confidence level, we will begin in the car mileage case by finding and interpreting a

confidence interval for a population mean that is based on the most commonly used confidence

level—the 95 percent level. Then we will generalize our discussion and show how to find and in-

terpret a confidence interval that is based on any confidence level.

Before the automaker selected the sample of n  50 new midsize cars and tested them as pre-

scribed by the EPA, there were many samples of 50 cars and corresponding mileages that the au-

tomaker might have obtained. Because different samples generally have different sample means, we

consider the probability distribution of the population of all possible sample means that would be

obtained from all possible samples of n  50 car mileages. In Chapter 7 we have seen that such a

probability distribution is called the sampling distribution of the sample mean, and we have studied

various properties of sampling distributions. Several of these properties tell us that, if the population

from which we will select a sample is normally distributed with mean m and standard deviation s,

x  31.56
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then for any sample size n the sampling distribution of the sample mean is a normal distribution with

mean and standard deviation . This allows us to reason as follows:

1 Because the sampling distribution of the sample mean is a normal distribution, we can use

the normal distribution to compute probabilities about the sample mean. In particular, recall

from Chapter 6 (page 244) that the area under the standard normal curve between -1.96 and

1.96 is .95. As illustrated in Figure 8.1, this .95 area is the probability that a standard normal

random variable z will be between -1.96 and 1.96, or, equivalently, the probability that the

sample mean will be within plus or minus 1.96 of the population mean m.

2 Saying

will be within of m

is the same as saying

will be such that the interval  contains m.

To understand this, consider Figure 8.1. This figure shows that, because a particular sample

mean—denoted as —is within plus or minus of m, the interval computed using this

sample mean—[ ]—contains m. The figure also shows that, because another par-

ticular sample mean—denoted as —is not within plus or minus of m, the interval

computed using this sample mean— —does not contain m.

3 In 1 we showed that the probability is .95 that the sample mean will be within plus or

minus 1.96 of the population mean m. In 2 we showed that being within plus or minus

1.96 of m is the same as the interval containing m. Combining these results,

we see that the probability is .95 that the sample mean will be such that the interval

contains the population mean m. This interval is called a 95 percent confidence interval

for the population mean M, and the quantity 1.96 is called the margin of error when

estimating M by .x
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F I G U R E 8 . 2 Three 95 Percent Confidence Intervals for M

x

The probability is .95 that

x will be within plus or minus

1.96 x   .22 of  

Samples of n   50

car mileages

31.631.6   .22 31.6   .22

31.56

31.68

31.2

31.34 31.78

31.46 31.90

31.4230.98

 

.95Population of

all individual

car mileages

 

 n   50

x   31.56

n   50

x   31.68n   50

x   31.2

EXAMPLE 8.1 The Car Mileage Case

Part 1: A 95 percent confidence interval Recall that when the automaker randomly se-

lected the sample of n = 50 cars and tested them as prescribed by the EPA, the automaker ob-

tained the sample of 50 mileages given in Table 1.6. The mean of this sample is mpg,

and a histogram constructed using this sample (see Figure 2.9 on page 46) indicates that the

population of all individual car mileages is normally distributed. In order to find a 95 percent con-

fidence interval for the population mean mileage m of the new midsize model, we assume that the

true value of the population standard deviation s is .8 mpg (as discussed on page 283 of Chapter 7).

It follows that a 95 percent confidence interval for m is

We are 95 percent confident that this confidence interval contains m. That is, we are 95 percent

confident that the new midsize model’s true mean mileage is between 31.34 mpg and 31.78 mpg.

Part 2: The meaning of 95 percent confidence To explain what we mean by the term 

95 percent confident, note that the margin of error in the 95 percent confidence interval

[ ] is , which we have calculated to be . If

we round this margin of error to .22 to simplify our discussions, the 95 percent confidence inter-

val [ ] can be expressed as [ ]. This shows that, although the automaker

obtained the sample mean and thus calculated the confidence interval

[31.34, 31.78], other sample means that the automaker could have obtained

would have given different confidence intervals. Figure 8.2 illustrates three possible samples of

50 mileages and the means of these samples. Also, this figure assumes that (unknown to any

human being) the true value of the population mean m is 31.6. Then, as illustrated in Figure 8.2,

because the sample mean is within .22 of m  31.6, the confidence interval

[31.34, 31.78] contains m. Similarly, because the sample mean isx  31.68[31.56  .22]  

x  31.56

[31.56  .22]  

x  31.56

x  .22x  1.96(s兾1n)

1.96 (.8兾150)  .2221.96(s兾1n)x  1.96(s兾1n)

  [31.34, 31.78]

  [31.56  .222]

 Bx  1.96 
s

1n
R  B31.56  1.96 

.8

150
R

x  31.56

C



within .22 of m  31.6, the confidence interval [ ]  [31.46, 31.90] contains m.

However, because the sample mean is not within .22 of m  31.6, the confidence in-

terval [ ]  [30.98, 31.42] does not contain m. Before the automaker selected the

sample, there was a .95 probability that the automaker would obtain a sample mean that gives a

confidence interval that contains the population mean m. This means that 95 percent of all of the

confidence intervals that the automaker could have obtained contain m, and 5 percent of these

confidence intervals do not contain m. 

In reality, of course, we do not know the true value of the population mean mileage m. There-

fore, we do not know for sure whether the automaker’s confidence interval, [31.34, 31.78], con-

tains m. However, we are 95 percent confident that this confidence interval contains m. What we

mean by this is that we hope that the confidence interval [31.34, 31.78] is one of the 95 percent

of all confidence intervals that contain m and not one of the 5 percent of all confidence intervals

that do not contain m. Here, we say that 95 percent is the confidence level associated with the

confidence interval.

Part 3: A practical application To see a practical application of the automaker’s confidence

interval, recall that the federal government will give a tax credit to any automaker selling a mid-

size model equipped with an automatic transmission that has an EPA combined city and highway

mileage estimate of at least 31 mpg. Furthermore, to ensure that it does not overestimate a car

model’s mileage, the EPA will obtain the model’s mileage estimate by rounding down—to the

nearest mile per gallon—the lower limit of a 95 percent confidence interval for the model’s mean

mileage m. That is, the model’s mileage estimate is an estimate of the smallest that m might

reasonably be. When we round down the lower limit of the automaker’s 95 percent confidence

interval for m, [31.34, 31.78], we find that the new midsize model’s mileage estimate is 31 mpg.

Therefore, the automaker will receive the tax credit.1

31.2  .22

x  31.2

31.68  .22
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A general confidence interval procedure We will next present a general procedure for

finding a confidence interval for a population mean m. To do this, we assume that the sampled

population is normally distributed, or the sample size n is large. Under these conditions, the sam-

pling distribution of the sample mean is exactly (or approximately, by the Central Limit Theo-

rem) a normal distribution with mean and standard deviation In the previ-

ous subsection, we started with the normal points and 1.96. Then we showed that, because

the area under the standard normal curve between and 1.96 is .95, the probability is .95

that the confidence interval [ ] will contain the population mean. Usually, we do not

start with two normal points, but rather we start by choosing the probability (for example, .95 or

.99) that the confidence interval will contain the population mean. This probability is called the

confidence coefficient. Next, we find the normal points that have a symmetrical area between

them under the standard normal curve that is equal to the confidence coefficient. Then, using ,

, and the normal points, we find the confidence interval that is based on the confidence coeffi-

cient. To illustrate this, we will start with a confidence coefficient of .95 and use the following

three-step procedure to find the appropriate normal points and the corresponding 95 percent con-

fidence interval for the population mean:

Step 1: As illustrated in Figure 8.3, place a symmetrical area of .95 under the standard normal

curve and find the area in the normal curve tails beyond the .95 area. Because the entire area

under the standard normal curve is 1, the area in both normal curve tails is 1 .95  .05, and the

area in each tail is .025.

Step 2: Find the normal point z.025 that gives a right-hand tail area under the standard normal

curve equal to .025, and find the normal point  z.025 that gives a left-hand tail area under the

curve equal to .025. As shown in Figure 8.3, the area under the standard normal curve between

 z.025 and z.025 is .95, and the area under this curve to the left of z.025 is .975. Looking up a

cumulative area of .975 in Table A.3 (see page 860) or in Table 8.1 (which shows a portion of

Table A.3), we find that z.025  1.96.

sx

x

x  1.96sx

 1.96

 1.96

s
x  s兾1n.mx  m

x

1 This example is based on the authors’ conversations with the EPA. However, there are approaches for showing that m is at

least 31 mpg that differ from the approach that uses the confidence interval [31.34, 31.78]. We will briefly discuss some of

these different approaches in a technical note at the end of this section.
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Step 3: Form the following 95 percent confidence interval for the population mean.

If all possible samples were used to calculate this interval, then 95 percent of the resulting inter-

vals would contain the population mean.

In general, we let a denote the probability that a confidence interval for a population mean will

not contain the population mean. This implies that 1   a is the probability that the confidence

interval will contain the population mean. In order to find a confidence interval for a population

mean that is based on a confidence coefficient of 1  a—that is, a 100(1  a) percent confidence

interval for the population mean—we do the following:

Step 1: As illustrated in Figure 8.4, place a symmetrical area of 1 a under the standard normal

curve, and find the area in the normal curve tails beyond the 1  a area. Because the entire area

under the standard normal curve is 1, the combined areas in the normal curve tails is a, and the

area in each tail is a兾2.

Step 2: Find the normal point z
a兾2 that gives a right-hand tail area under the standard normal curve

equal to a兾2, and find the normal point z
a兾2 that gives a left-hand tail area under this curve equal

to a兾2. As shown in Figure 8.4, the area under the standard normal curve between z
a兾2 and z

a兾2

is (1 a), and the area under this curve to the left of z
a兾2 is 1 a兾2. This implies that we can find

z
␣兾2 by looking up a cumulative area of 1⫺A兾2 in Table A.3 (page 860).

Step 3: Form the following 100(1  a) percent confidence interval for the population mean.

[x  zs兾2sx]  Bx  zs兾2 
s

1n
R

[x  z.025sx]  Bx  1.96 
s

1n
R

F I G U R E 8 . 3 The Point z.025

0

.95

z.025 z.025

.025 .025

0

.975

.025

1.96

z.025

F I G U R E 8 . 4 The Point z
a兾2

0

1  

z
 /2 z

 /2

 /2  /2

0

1  /2

 /2

z
 /2

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

T A B L E 8 . 1 Cumulative Areas under the Standard Normal Curve



If all possible samples were used to calculate this interval, then 100(1  a) percent of the result-

ing intervals would contain the population mean. Moreover, we call 100(1 ⫺A) percent the

confidence level associated with the confidence interval.

Table 8.2 summarizes finding the values of z
a兾2 for different values of the confidence level

100(1  a) percent. For example, suppose that we wish to find a 99 percent confidence interval

for the population mean. Then, as shown in Table 8.2, 100(1 a)% equals 99%, which implies

that 1 a  .99, a  .01, a兾2  .005, and 1 a兾2  .995. Looking up .995 (see Figure 8.5) in

a cumulative normal table, we find that z
a兾2  z.005  2.575. This normal point is given in

Table 8.2. It follows that a 99 percent confidence interval for the population mean is 

If all possible samples were used to calculate this interval, then 99 percent of the resulting inter-

vals would contain the population mean.

To compare the 95 percent and 99 percent confidence intervals, notice that the margin of error

used to compute the 99 percent interval is larger than the margin of error

used to compute the 95 percent interval. Therefore, the 99 percent interval is the

longer of these intervals. In general, increasing the confidence level (1) has the advantage of

making us more confident that M is contained in the confidence interval, but (2) has the

disadvantage of increasing the margin of error and thus providing a less precise estimate of

the true value of M. Frequently, 95 percent confidence intervals are used to make conclusions. If

conclusions based on stronger evidence are desired, 99 percent intervals are sometimes used.

The following box summarizes the formula used in calculating a 100(1   a) percent confi-

dence interval for a population mean m.

1.96(s兾1n)

2.575(s兾1n)

[x  z.005sx
]  Bx  2.575 

s

1n

R
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100(1  a)% 1  a a a兾2 1  a兾2 z
a兾2

90% .90 .10 .05 .95 z.05   1.645

95% .95 .05 .025 .975 z.025   1.96

98% .98 .02 .01 .99 z.01   2.33

99% .99 .01 .005 .995 z.005   2.575

T A B L E 8 . 2 The Normal Point z
a兾2 for Various Levels of Confidence F I G U R E 8 . 5 The Point z.005

0

.99

z.005

.005 .005

0

.995

 z.005

2.575

z.005

.005

A Confidence Interval for a Population Mean M: S Known

Suppose that the sampled population is normally distributed with mean m and standard deviation s. Then

a 100(1   a) percent confidence interval for m is

Here, z
a兾2 is the normal point that gives a right-hand tail area under the standard normal curve of a兾2. The

normal point z
a兾2 can be found by looking up a cumulative area of 1   a兾2 in Table A.3 (page 860). This confi-

dence interval is also approximately valid for non-normal populations if the sample size is large (at least 30).

Bx  za兾2

s

1n
R  Bx  za兾2

s

1n
, x  za兾2

s
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The confidence interval in the summary box is based on the normal distribution and assumes that

the true value of the population standard deviation is known. Therefore, in the previous exa-

mple and in the next example we assume that we know—through theory or history related to the

population under consideration—the true value of s. Of course, in most real-world situations,

there would not be a basis for knowing s. In the next section we will discuss a confidence inter-

val based on the t distribution that does not assume that s is known. Furthermore, we will revisit

the examples of this section assuming that s is unknown.

s

EXAMPLE 8.2 The Payment Time Case

Recall that a management consulting firm has installed a new computer-based, electronic billing

system in a Hamilton, Ohio, trucking company. The population mean payment time using the

trucking company’s old billing system was approximately equal to, but no less than, 39 days. In

order to assess whether the population mean payment time, m, using the new billing system is

substantially less than 39 days, the consulting firm will use the sample of n  65 payment times

in Table 2.4 to find a 99 percent confidence interval for m. The mean of the 65 payment times is

days, and we will assume that the true value of the population standard deviation s

for the new billing system is 4.2 days (as discussed on page 288 of Chapter 7). Then:

Step 1: Draw the top normal curve and areas in Figure 8.5. 

Step 2: Find z.005 2.575, as in the bottom normal curve in Figure 8.5 (or as given in Table 8.2).

Step 3: Using the normal point z
a兾2  z.005  2.575, it follows that a 99 percent confidence in-

terval for m is

Recalling that the mean payment time using the old billing system is 39 days, this interval says

that we are 99 percent confident that the mean payment time using the new billing system is

between 16.8 days and 19.4 days. Therefore, we are 99 percent confident that the new billing

system reduces the mean payment time by at most 22.2 days and by at least 19.6 days.

In order to compare the 99 percent confidence interval for m with a 95 percent confidence in-

terval, we note that z.025 1.96 (see Table 8.2), and we compute the 95 percent confidence inter-

val as follows

Although the 99 percent confidence interval is a little longer than the 95 percent confidence in-

terval, the fairly large sample size, n   65 produces intervals that differ only slightly.

A technical note (optional) In the car mileage case, we showed that m is no smaller than

31 mpg by using the two-sided confidence interval [31.34, 31.78], which estimates both the

smallest and the largest that m might be. An alternative approach for showing that m is no smaller

than 31 mpg would be to use a confidence interval that estimates only the smallest that m might be.

Such a confidence interval is a type of one-sided confidence interval. The EPA tells the authors,

however, that it would require that a two-sided confidence interval be used to estimate m. The rea-

son is that the EPA—as well as some other users of statistics—believe that, because we know nei-

ther how small nor how large an unknown population mean might be, we should always estimate

this mean by using a two-sided confidence interval. All of the confidence intervals discussed in

this chapter have both a lower limit and an upper limit and thus are two-sided. In Chapter 9 we will

discuss one-sided hypothesis tests, which are similar to one-sided confidence intervals.

  [17.1, 19.1]

  [18.1077  1.0211]

 Bx  z.025 
s

1n
R  B18.1077  1.96 

4.2

165
R

  [16.8, 19.4]

  [18.1077  1.3414]

 Bx  z.005 
s

1n
R  B18.1077  2.575 

4.2
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x  18.1077
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Exercises for Section 8.1

316 Chapter 8 Confidence Intervals

CONCEPTS

8.1 Explain why it is important to calculate a confidence interval.

8.2 Explain the meaning of the term “95 percent confidence.”

8.3 Under what conditions is the confidence interval for m valid?

8.4 For a fixed sample size, what happens to a confidence interval for m when we increase the level of

confidence?

8.5 For a fixed level of confidence, what happens to a confidence interval for m when we increase the

sample size?

METHODS AND APPLICATIONS

8.6 Suppose that, for a sample of size n  100 measurements, we find that . Assuming that s

equals 2, calculate confidence intervals for the population mean m with the following confidence

levels:

a 95% b 99% c 97% d 80% e 99.73% f 92%

8.7 THE TRASH BAG CASE TrashBag

Consider the trash bag problem. Suppose that an independent laboratory has tested trash bags

and has found that no 30-gallon bags that are currently on the market have a mean breaking

strength of 50 pounds or more. On the basis of these results, the producer of the new, improved

trash bag feels sure that its 30-gallon bag will be the strongest such bag on the market if the

new trash bag’s mean breaking strength can be shown to be at least 50 pounds. The mean of the

sample of 40 trash bag breaking strengths in Table 1.9 is . If we let m denote the

mean of the breaking strengths of all possible trash bags of the new type and assume that s

equals 1.65:

a Calculate 95 percent and 99 percent confidence intervals for m.

b Using the 95 percent confidence interval, can we be 95 percent confident that m is at least

50 pounds? Explain.

c Using the 99 percent confidence interval, can we be 99 percent confident that m is at least

50 pounds? Explain.

d Based on your answers to parts b and c, how convinced are you that the new 30-gallon trash

bag is the strongest such bag on the market?

8.8 THE BANK CUSTOMER WAITING TIME CASE WaitTime

Recall that a bank manager has developed a new system to reduce the time customers spend

waiting to be served by tellers during peak business hours. The mean waiting time during peak

business hours under the current system is roughly 9 to 10 minutes. The bank manager hopes

that the new system will have a mean waiting time that is less than six minutes. The mean of

the sample of 100 bank customer waiting times in Table 1.8 is . If we let m denote

the mean of all possible bank customer waiting times using the new system and assume that

s equals 2.47:

a Calculate 95 percent and 99 percent confidence intervals for m.

b Using the 95 percent confidence interval, can the bank manager be 95 percent confident that m

is less than six minutes? Explain.

c Using the 99 percent confidence interval, can the bank manager be 99 percent confident that m

is less than six minutes? Explain.

d Based on your answers to parts b and c, how convinced are you that the new mean waiting time

is less than six minutes?

8.9 THE VIDEO GAME SATISFACTION RATING CASE VideoGame

The mean of the sample of 65 customer satisfaction ratings in Table 1.7 is . If we let m

denote the mean of all possible customer satisfaction ratings for the XYZ Box video game system,

and assume that s equals 2.64:

a Calculate 95 percent and 99 percent confidence intervals for m.

b Using the 95 percent confidence interval, can we be 95 percent confident that m is at least 42

(recall that a very satisfied customer gives a rating of at least 42)? Explain.

c Using the 99 percent confidence interval, can we be 99 percent confident that m is at least 42?

Explain.

d Based on your answers to parts b and c, how convinced are you that the mean satisfaction

rating is at least 42?

x  42.95

DS

x  5.46

DS

x  50.575

DS

x  50

[x  za兾2(s兾1n)]
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8.10 In an article in Marketing Science, Silk and Berndt investigate the output of advertising agencies.

They describe ad agency output by finding the shares of dollar billing volume coming from various

media categories such as network television, spot television, newspapers, radio, and so forth.

a Suppose that a random sample of 400 U.S. advertising agencies gives an average percentage

share of billing volume from network television equal to 7.46 percent, and assume that s

equals 1.42 percent. Calculate a 95 percent confidence interval for the mean percentage share

of billing volume from network television for the population of all U.S. advertising agencies.

b Suppose that a random sample of 400 U.S. advertising agencies gives an average percentage

share of billing volume from spot television commercials equal to 12.44 percent, and assume

that s equals 1.55 percent. Calculate a 95 percent confidence interval for the mean percentage

share of billing volume from spot television commercials for the population of all U.S.

advertising agencies.

c Compare the confidence intervals in parts a and b. Does it appear that the mean percentage

share of billing volume from spot television commercials for U.S. advertising agencies is

greater than the mean percentage share of billing volume from network television? Explain.

8.11 In an article in Accounting and Business Research, Carslaw and Kaplan investigate factors that

influence “audit delay” for firms in New Zealand. Audit delay, which is defined to be the length of

time (in days) from a company’s financial year-end to the date of the auditor’s report, has been

found to affect the market reaction to the report. This is because late reports often seem to be

associated with lower returns and early reports often seem to be associated with higher returns.

Carslaw and Kaplan investigated audit delay for two kinds of public companies—owner-

controlled and manager-controlled companies. Here a company is considered to be owner

controlled if 30 percent or more of the common stock is controlled by a single outside investor 

(an investor not part of the management group or board of directors). Otherwise, a company is

considered manager controlled. It was felt that the type of control influences audit delay. To quote

Carslaw and Kaplan:

Large external investors, having an acute need for timely information, may be expected to

pressure the company and auditor to start and to complete the audit as rapidly as practicable.

a Suppose that a random sample of 100 public owner-controlled companies in New Zealand 

is found to give a mean audit delay of days, and assume that s equals 33 days. 

Calculate a 95 percent confidence interval for the population mean audit delay for all public

owner-controlled companies in New Zealand.

b Suppose that a random sample of 100 public manager-controlled companies in New Zealand is

found to give a mean audit delay of days, and assume that s equals 37 days. Calculate

a 95 percent confidence interval for the population mean audit delay for all public manager-

controlled companies in New Zealand.

c Use the confidence intervals you computed in parts a and b to compare the mean audit delay

for all public owner-controlled companies versus that of all public manager-controlled

companies. How do the means compare? Explain.

8.12 In an article in the Journal of Marketing, Bayus studied the differences between “early replace-

ment buyers” and “late replacement buyers” in making consumer durable good replacement pur-

chases. Early replacement buyers are consumers who replace a product during the early part

of its lifetime, while late replacement buyers make replacement purchases late in the product’s

lifetime. In particular, Bayus studied automobile replacement purchases. Consumers who traded in

cars with ages of zero to three years and mileages of no more than 35,000 miles were classified as

early replacement buyers. Consumers who traded in cars with ages of seven or more years and

mileages of more than 73,000 miles were classified as late replacement buyers. Bayus compared

the two groups of buyers with respect to demographic variables such as income, education, age,

and so forth. He also compared the two groups with respect to the amount of search activity in the

replacement purchase process. Variables compared included the number of dealers visited, the time

spent gathering information, and the time spent visiting dealers.

a Suppose that a random sample of 800 early replacement buyers yields a mean number of dealers

visited of , and assume that s equals .71. Calculate a 99 percent confidence interval for

the population mean number of dealers visited by early replacement buyers.

b Suppose that a random sample of 500 late replacement buyers yields a mean number of dealers

visited of , and assume that s equals .66. Calculate a 99 percent confidence interval for

the population mean number of dealers visited by late replacement buyers.

c Use the confidence intervals you computed in parts a and b to compare the mean number of

dealers visited by early replacement buyers with the mean number of dealers visited by late

replacement buyers. How do the means compare? Explain.

x  4.3

x  3.3

x  93

x  82.6



8.2 t-Based Confidence Intervals 
for a Population Mean: S Unknown 

If we do not know s (which is usually the case), we can use the sample standard deviation s to

help construct a confidence interval for m. The interval is based on the sampling distribution of

If the sampled population is normally distributed, then for any sample size n this sampling

distribution is what is called a t distribution.

The curve of the t distribution has a shape similar to that of the standard normal curve. Two

t curves and a standard normal curve are illustrated in Figure 8.6. A t curve is symmetrical about

zero, which is the mean of any t distribution. However, the t distribution is more spread out, or

variable, than the standard normal distribution. Since the above t statistic is a function of two

random variables, and s, it is logical that the sampling distribution of this statistic is more vari-

able than the sampling distribution of the z statistic, which is a function of only one random

variable, The exact spread, or standard deviation, of the t distribution depends on a parame-

ter that is called the number of degrees of freedom (denoted df ). The number of degrees of

freedom df varies depending on the problem. In the present situation the sampling distribution

of t has a number of degrees of freedom that equals the sample size minus 1. We say that this

sampling distribution is a t distribution with n ⴚ 1 degrees of freedom. As the sample size n

(and thus the number of degrees of freedom) increases, the spread of the t distribution decreases

(see Figure 8.6). Furthermore, as the number of degrees of freedom approaches infinity, the

curve of the t distribution approaches (that is, becomes shaped more and more like) the curve of

the standard normal distribution. 

In order to use the t distribution, we employ a t point that is denoted t
A
. As illustrated in

Figure 8.7, t
A

is the point on the horizontal axis under the curve of the t distribution that

gives a right-hand tail area equal to A. The value of t
a

in a particular situation depends upon

the right-hand tail area a and the number of degrees of freedom of the t distribution. Values of t
a

are tabulated in a t table. Such a table is given in Table A.4 of Appendix A (pages 862 and 863)

and a portion of Table A.4 is reproduced in this chapter as Table 8.3. In this t table, the rows cor-

respond to the different numbers of degrees of freedom (which are denoted as df ). The values

of df are listed down the left side of the table, while the columns designate the right-hand tail

area a. For example, suppose we wish to find the t point that gives a right-hand tail area of .025

under a t curve having df  14 degrees of freedom. To do this, we look in Table 8.3 at the row

labeled 14 and the column labeled t.025. We find that this t.025 point is 2.145 (also see Figure 8.8).

Similarly, when there are df  14 degrees of freedom, we find that t.005  2.977 (see Table 8.3

and Figure 8.9).

x.

x
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x  m
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Describe
the proper-

ties of the t distrib-
ution and use a 
t table.

LO2

0

Curve of the standard 

normal distribution 
Curve of the t distribution 

having 19 degrees of freedom 

Curve of the t distribution 

having 4 degrees of freedom 

F I G U R E 8 . 6 As the Number of Degrees of Freedom Increases, the Spread of the t Distribution Decreases 

and the t Curve Approaches the Standard Normal Curve
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0 t
  

Curve of the t distribution
having df degrees of
freedom

This area is  

F I G U R E 8 . 7 An Example of a t Point Giving a Specified

Right-Hand Tail Area (This t Point Gives a

Right-Hand Tail Area Equal to A).

0

Curve of the t distribution
having 14 degrees of freedom

t.025

2.145

 

.025

F I G U R E 8 . 8 The t Point Giving a Right-Hand Tail

Area of .025 under the t Curve Having

14 Degrees of Freedom: t.025 ⴝ 2.145

Source: E. S. Pearson and H. O. Hartley eds., The Biometrika Tables for Statisticians 1, 3d ed. (Biometrika, 1966). Reproduced

by permission of Oxford University Press Biometrika Trustees.
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T A B L E 8 . 3 A t Table

df t.100 t.050 t.025 t.01 t.005 t.001 t.0005

1 3.078 6.314 12.706 31.821 63.657 318.31 636.62
2 1.886 2.920 4.303 6.965 9.925 22.326 31.598
3 1.638 2.353 3.182 4.541 5.841 10.213 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.767
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 1.310 1.697 2.042 2.457 2.750 3.385 3.646
40 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373
  1.282 1.645 1.960 2.326 2.576 3.090 3.291
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Curve of the t distribution
having 14 degrees of freedom

t.005

2.977
 

0

.005
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 t /2 t /20

1    

Curve of the t distribution
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 /2  /2

F I G U R E 8 . 1 0 The Point t
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n ⴚ 1 Degrees of

Freedom

Table 8.3 gives t points for degrees of freedom df from 1 to 30. The table also gives t points

for 40, 60, 120, and an infinite number of degrees of freedom. Looking at this table, it is useful

to realize that the normal points giving the various right-hand tail areas are listed in the row of the

t table corresponding to an infinite ( ) number of degrees of freedom. Looking at the row corre-

sponding to  , we see that, for example, z.025 1.96. Therefore, we can use this row in the t table

as an alternative to using the normal table when we need to find normal points (such as z
a兾2 in

Section 8.1).

Table A.4 of Appendix A (pages 862 and 863) gives t points for values of df from 1 to 100. We

can use a computer to find t points based on values of df greater than 100. Alternatively, because

a t curve based on more than 100 degrees of freedom is approximately the shape of the standard

normal curve, t points based on values of df greater than 100 can be approximated by their

corresponding z points. That is, when performing hand calculations, it is reasonable to approxi-

mate values of by when df is greater than 100.

We now present the formula for a percent confidence interval for a population

mean m based on the t distribution.

100(1  a)

zata

A t-Based Confidence Interval for a Population Mean M: S Unknown

Here s is the sample standard deviation, t
a 2 is the

t point giving a right-hand tail area of a 2 under the

t curve having n  1 degrees of freedom, and n is

the sample size. This confidence interval is also ap-

proximately valid for non-normal populations if the

sample size is large (at least 30).

I f the sampled population is normally distributed

with mean m, then a 100(1 ⫺ A) percent confidence

interval for M is

Bx  ta兾2 
s

1n
R

Before presenting an example, we need to make a few comments. First, it has been shown that,

even if the sample size is not large, this confidence interval is approximately valid for many pop-

ulations that are not exactly normally distributed. In particular, this interval is approximately valid

for a mound-shaped, or single-peaked, population, even if the population is somewhat skewed to

the right or left. Second, this interval employs the point t
a兾2, which as shown in Figure 8.10, gives a

right-hand tail area equal toa兾2 under the t curve having n  1 degrees of freedom. Herea兾2 is de-

termined from the desired confidence level 100(1  a) percent.

Calculate
and inter-

pret a t-based
confidence interval
for a population
mean when s is
unknown.

LO3



One measure of a company’s financial health is its debt-to-equity ratio. This quantity is defined to

be the ratio of the company’s corporate debt to the company’s equity. If this ratio is too high, it is

one indication of financial instability. For obvious reasons, banks often monitor the financial health

of companies to which they have extended commercial loans. Suppose that, in order to reduce risk,

a large bank has decided to initiate a policy limiting the mean debt-to-equity ratio for its portfolio

of commercial loans to being less than 1.5. In order to estimate the mean debt-to-equity ratio of its

(current) commercial loan portfolio, the bank randomly selects a sample of 15 of its commercial

loan accounts. Audits of these companies result in the following debt-to-equity ratios:

1.31 1.05 1.45 1.21 1.19

1.78 1.37 1.41 1.22 1.11

1.46 1.33 1.29 1.32 1.65

A stem-and-leaf display of these ratios is given on the page margin, and a box plot of the ratios is

given below. The stem-and-leaf display looks reasonably mound-shaped, and both the stem-and-

leaf display and the box plot look reasonably symmetrical. Furthermore, the sample mean and

standard deviation of the ratios can be calculated to be and s  .1921.

Suppose the bank wishes to calculate a 95 percent confidence interval for the loan port-

folio’s mean debt-to-equity ratio, m. Because the bank has taken a sample of size n 15, we have

n  1  15  1  14 degrees of freedom, and the level of confidence 100(1  a)%  95%

implies that 1 a  .95 and a  .05. Therefore, we use the t point t
a兾2  t.05兾2  t.025, which—

as illustrated below—is the t point giving a right-hand tail area of .025 under the t curve having

14 degrees of freedom.

Using Table 8.3 (page 319), we find that t.025 with 14 degrees of freedom is 2.145. It follows that

the 95 percent confidence interval for m is

This interval says the bank is 95 percent confident that the mean debt-to-equity ratio for its port-

folio of commercial loan accounts is between 1.2369 and 1.4497. Based on this interval, the bank

has strong evidence that the portfolio’s mean ratio is less than 1.5 (or that the bank is in compli-

ance with its new policy).

  [1.2369, 1.4497]

  [1.3433  0.1064]

  Bx  t.025 
s

1n
R  B1.3433  2.145

.1921

 115
R

0

.95

df   14

 t.025

.025 .025

2.145

t.025

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Ratio

x  1.3433
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1.0 5

1.1 1 9

1.2 1 2 9

1.3 1 2 3 7

1.4 1 5 6

1.5

1.6 5

1.7 8

DebtEqDS

EXAMPLE 8.3 The Debt-to-Equity Ratio Case C

Recall that in the two cases discussed in Section 8.1 we calculated z-based confidence inter-

vals for m by assuming that the population standard deviation s is known. If s is actually

not known (which would probably be true), we should compute t-based confidence intervals.

Furthermore, recall that in each of these cases the sample size is large (at least 30). As stated in

BI



BI

the summary box, if the sample size is large, the t-based confidence interval for M is approx-

imately valid even if the sampled population is not normally distributed. Therefore, consider

the car mileage case and the sample of 50 mileages in Table 1.6, which has mean and

standard deviation s  .7977. The 95 percent t-based confidence interval for the population mean

mileage m of the new midsize model is

where is based on degrees of freedom—see Table A.4

(page 862). This interval says we are 95 percent confident that the model’s mean mileage m is

between 31.33 mpg and 31.78 mpg. Based on this interval, the model’s EPA mileage estimate is

31 mpg, and the automaker will receive the tax credit.

As another example, the sample of 65 payment times in Table 2.4 has mean and

standard deviation . The 99 percent t-based confidence interval for the population

mean payment time using the new electronic billing system is

where is based on degrees of freedom—see Table A.4

(page 862). Recalling that the mean payment time using the old billing system is 39 days, the

interval says that we are 99 percent confident that the mean payment time using the new billing

system is between 16.8 days and 19.4 days. Therefore, we are 99 percent confident that the new

billing system reduces the mean payment time by at most 22.2 days and by at least 19.6 days.

n  1  65  1  64t.005  2.655

Bx  t.005 

s

1n
R  B18.1077  2.655 

3.9612

165
R  [16.8, 19.4]

s  3.9612

x  18.1077

n  1  50  1  49t.025  2.010

 Bx  t.025 
s

1n
R  B31.56  2.010 

.7977

150
R  [31.33, 31.79]

x  31.56
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df   49
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2.010

t.025

df   64

 t.005
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t.0050

.99
.005 .005

BI
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EXAMPLE 8.4 The Marketing Research Case

Recall that a brand group is considering a new bottle design for a popular soft drink and that

Table 1.5 (page 10) gives a random sample of consumer ratings of this new bottle de-

sign. Let m denote the mean rating of the new bottle design that would be given by all con-

sumers. In order to assess whether m exceeds the minimum standard composite score of 25 for

a successful bottle design, the brand group will calculate a 95 percent confidence interval for m.

The mean and the standard deviation of the 60 bottle design ratings are and

. It follows that a 95 percent confidence interval for m is  

where is based on degrees of freedom—see Table A.4

(page 863). Since the interval says we are 95 percent confident that the mean rating of the new

bottle design is between 29.5 and 31.2, we are 95 percent confident that this mean rating exceeds

the minimum standard of 25 by at least 4.5 points and by at most 6.2 points. 

n  1  60  1  59t.025  2.001

Bx  t.025 
s

1n
R  B30.35  2.001 

3.1073

160
R  [29.5, 31.2]

s  3.1073

x  30.35

n  60

Confidence intervals for m can be computed using Excel and MINITAB. Figure 8.11 gives the

Excel output of the information needed to calculate the t-based 95 percent confidence interval for

the mean debt-to-equity ratio. If we consider the Excel output, we see that (see

“Mean”), (see “Standard Deviation”), (see “Standard Error”), and

[see “Confidence Level (95.0%)”]. The interval, which must be hand

calculated, is The MINITAB output in Figure 8.12 tells

us that the t-based 95 percent confidence interval for the mean debt-to-equity ratio is

. This result is, within rounding, the same interval calculated in Example 8.3 and

using the information given by Excel. The MINITAB output also gives the sample mean

, as well as the sample standard deviation and the quantity 

which is called the standard error of the estimate and denoted “SE Mean” on the MINITAB

output. Finally, the MINITAB output gives a box plot of the sample of 15 debt-to-equity ratios

x

s兾1n  .0496,s  .1921x  1.3433

[1.2370, 1.4497]

[1.3433  .1064]  [1.2369, 1.4497].

t.025 (s兾1n)  .1064

s兾1n  .0496s  .1921

x  1.3433

C

0

.95

df   59

 t.025

.025 .025

2.001

t.025
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and graphically illustrates under the box plot the 95 percent confidence interval for the mean

debt-to-equity ratio.

To conclude this section, we note that if the sample size n is small and the sampled population

is not mound-shaped or is highly skewed, then the t-based confidence interval for the population

mean might not be valid. In this case we can use a nonparametric method—a method that

makes no assumption about the shape of the sampled population and is valid for any sample size.

In Chapter 18 we discuss nonparametric methods.

STATISTICS

Mean 1.343333
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence Level(95.0%)

0.049595
1.32

#N/A
0.192081
0.036895
0.833414
0.805013

0.73
1.05
1.78

15
0.106371

20.15

R a t i o

1 . 81 . 61 . 41 . 21 . 0

X

Variable   N      Mean    StDev    SE Mean        95% CI

Ratio     15    1.3433   0.1921     0.0496    (1.2370, 1.4497)

F I G U R E 8 . 1 1 The Excel Outputs for the Debt-to-Equity Ratio Example

F I G U R E 8 . 1 2 MINITAB Output of a t-Based 95 Percent Confidence Interval for the Mean 

Debt-to-Equity Ratio

Exercises for Section 8.2
CONCEPTS

8.13 Explain how each of the following changes as the number of degrees of freedom describing a

t curve increases:

a The standard deviation of the t curve. b The points t
a

and t
a/2.

8.14 Discuss when it is appropriate to use the t-based confidence interval for m.

METHODS AND APPLICATIONS

8.15 Using Table A.4 (page 862), find t.100, t.025, and t.001 based on 11 degrees of freedom. Also, find

these t points based on 6 degrees of freedom.

8.16 Suppose that for a sample of n  11 measurements, we find that and s  5. Assuming

normality, compute confidence intervals for the population mean m with the following levels of

confidence:

a 95% b 99% c 80% d 90% e 98% f 99.8%

8.17 The bad debt ratio for a financial institution is defined to be the dollar value of loans defaulted

divided by the total dollar value of all loans made. Suppose a random sample of seven Ohio banks

is selected and that the bad debt ratios (written as percentages) for these banks are 7 percent, 

4 percent, 6 percent, 7 percent, 5 percent, 4 percent, and 9 percent. Assuming the bad debt ratios

are approximately normally distributed, the MINITAB output of a 95 percent confidence interval

for the mean bad debt ratio of all Ohio banks is as follows: BadDebt

Variable  N      Mean     StDev   SE Mean        95% CI

D-Ratio 7   6.00000   1.82574   0.69007  (4.31147, 7.68853)

DS

x  72



a Using the and s on the MINITAB output, verify the calculation of the 95 percent confidence

interval, and calculate a 99 percent confidence interval for the mean debt-to-equity ratio.

b Banking officials claim the mean bad debt ratio for all banks in the Midwest region is 

3.5 percent and that the mean bad debt ratio for Ohio banks is higher. Using the 95 percent

confidence interval, can we be 95 percent confident that this claim is true? Using the 99 per-

cent confidence interval, can we be 99 percent confident that this claim is true?

8.18 In an article in Quality Progress, Blauw and During study how long it takes Dutch companies to

complete five stages in the adoption of total quality control (TQC). According to Blauw and

During, the adoption of TQC can be divided into five stages as follows: TQC

1 Knowledge: the organization has heard of TQC.

2 Attitude formation: the organization seeks information and compares advantages and

disadvantages.

3 Decision making: the organization decides to implement TQC.

4 Implementation: the organization implements TQC.

5 Confirmation: the organization decides to apply TQC as a normal business activity.
Suppose a random sample of five Dutch firms that have adopted TQC is selected. Each
firm is asked to report how long it took to complete the implementation stage. The firms report the
following durations (in years) for this stage: 2.5, 1.5, 1.25, 3.5, and 1.25. Assuming that the dura-
tions are approximately normally distributed, calculate a 95 percent confidence interval for the mean
duration of the implementation stage for Dutch Firms. Based on the 95 percent confidence interval,
is there conclusive evidence that the mean duration of the implementation stage exceeds one year?
Explain. What is one possible reason for the lack of conclusive evidence?

8.19 THE AIR TRAFFIC CONTROL CASE AlertTimes

Air traffic controllers have the crucial task of ensuring that aircraft don’t collide. To do this, they

must quickly discern when two planes are about to enter the same air space at the same time. They

are aided by video display panels that track the aircraft in their sector and alert the controller when

two flight paths are about to converge. The display panel currently in use has a mean “alert time”

of 15 seconds. (The alert time is the time elapsing between the instant when two aircraft enter into

a collision course and when a controller initiates a call to reroute the planes.) According to Ralph

Rudd, a supervisor of air traffic controllers at the Greater Cincinnati International Airport, a new

display panel has been developed that uses artificial intelligence to project a plane’s current flight

path into the future. This new panel provides air traffic controllers with an earlier warning that a

collision is likely. It is hoped that the mean “alert time,” m, for the new panel is less than 8 seconds.

In order to test the new panel, 15 randomly selected air traffic controllers are trained to use the

panel and their alert times for a simulated collision course are recorded. The sample alert times 

(in seconds) are: 7.2, 7.5, 8.0, 6.8, 7.2, 8.4, 5.3, 7.3, 7.6, 7.1, 9.4, 6.4, 7.9, 6.2, 8.7.

a Using the fact that and find a 95 percent confidence interval for the mean

alert time, m, for the new panel.

b Can we be 95 percent confident that m is less than 8 seconds?

8.20 Whole Foods is an all-natural grocery chain that has 50,000 square foot stores, up from the industry

average of 34,000 square feet. Sales per square foot of supermarkets average just under $400 per

square foot, as reported by USA Today in an article on “A whole new ballgame in grocery shop-

ping.” Suppose that sales per square foot in the most recent fiscal year are recorded for a random

sample of 10 Whole Foods supermarkets. The data (sales dollars per square foot) are as follows:

854, 858, 801, 892, 849, 807, 894, 863, 829, 815. Using the fact that  846.2 and s 32.866, find

a 95 percent confidence interval for the true mean sales dollars per square foot for all Whole Foods

supermarkets during the most recent fiscal year. Are we 95 percent confident that this mean is

greater than $800, the historical average for Whole Foods? WholeFoods

8.21 A production supervisor at a major chemical company wishes to determine whether a new catalyst,

catalyst XA-100, increases the mean hourly yield of a chemical process beyond the current mean

hourly yield, which is known to be roughly equal to, but no more than, 750 pounds per hour. To

test the new catalyst, five trial runs using catalyst XA-100 are made. The resulting yields for the

trial runs (in pounds per hour) are 801, 814, 784, 836, and 820. Assuming that all factors affecting

yields of the process have been held as constant as possible during the test runs, it is reasonable to

regard the five yields obtained using the new catalyst as a random sample from the population of

all possible yields that would be obtained by using the new catalyst. Furthermore, we will assume

that this population is approximately normally distributed. ChemYield

a Using the Excel output in Figure 8.13, find a 95 percent confidence interval for the mean of all

possible yields obtained using catalyst XA-100.

b Based on the confidence interval, can we be 95 percent confident that the mean yield using

catalyst XA-100 exceeds 750 pounds per hour? Explain.

DS

DS

x

s  1.026,x  7.4

DS

DS

x
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8.22 THE TRASH BAG CASE TrashBag

The mean and the standard deviation of the sample of 40 trash bag breaking strengths in Table 1.9

are  50.575 and s  1.6438. Calculate a t-based 95 percent confidence interval for m, the mean

of the breaking strengths of all possible trash bags of the new type. Also, find this interval using

the Excel output in Figure 8.14. Are we 95 percent confident that m is at least 50 pounds?

8.23 THE BANK CUSTOMER WAITING TIME CASE WaitTime

The mean and the standard deviation of the sample of 100 bank customer waiting times in

Table 1.8 are  5.46 and s  2.475. Calculate a t-based 95 percent confidence interval for m, 

the mean of all possible bank customer waiting times using the new system. Are we 95 percent 

confident that m is less than six minutes?

8.24 THE VIDEO GAME SATISFACTION RATING CASE VideoGame

The mean and the standard deviation of the sample of n  65 customer satisfaction ratings

in Table 1.7 are  42.95 and s  2.6424. Calculate a t-based 95 percent confidence interval

for m, the mean of all possible customer satisfaction ratings for the XYZ Box video game system.

Are we 95 percent confident that m is at least 42, the minimal rating given by a very satisfied 

customer?

8.3 Sample Size Determination 
In Example 8.1 we used a sample of 50 mileages to construct a 95 percent confidence interval

for the midsize model’s mean mileage m. The size of this sample was not arbitrary—it was

planned. To understand this, suppose that before the automaker selected the random sample of

50 mileages, it randomly selected the following sample of five mileages:

30.7 31.9 30.3 32.0 31.6

This sample has mean . Assuming that the population of all mileages is normally dis-

tributed and that the population standard deviation s is known to equal .8, it follows that a 95 per-

cent confidence interval for m is 

  [30.6, 32.0]

  [31.3  .701]

 Bx  z.025 
s

1n
R  B31.3  1.96

.8

 15
R

x  31.3

x

DS

x

DS

x

DS

STATISTICS

Mean 811
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence Level(95.0%)

8.786353
814

#N/A
19.64688

386
 0.12472
 0.23636

52
784
836

5
24.39488

4055

F I G U R E 8 . 1 3 Excel Output for Exercise 8.21

STATISTICS

Mean 50.575
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence Level(95.0%)

0.2599
50.65
50.9

1.643753
2.701923
 0.2151
 0.05493

7.2
46.8

54

40
0.525697

2023

F I G U R E 8 . 1 4 Excel Output for Exercise 8.22

Determine
the appro-

priate sample size
when estimating a
population mean.

LO4
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Determining the Sample Size for a Confidence Interval for M: S Known

A sample of size

makes the margin of error in a percent confidence interval for m equal to E. That is, this sample

size makes us percent confident that is within E units of m. If the calculated value of n is not a

whole number, round this value up to the next whole number (so that the margin of error is at least as small

as desired).

x100(1  a)

100(1  a)

n  冢za兾2s

E 冣
2

Although the sample mean is at least 31, the lower limit of the 95 percent confidence

interval for m is less than 31. Therefore, the midsize model’s EPA mileage estimate would be

30 mpg, and the automaker would not receive its tax credit. One reason that the lower limit of

this 95 percent interval is less than 31 is that the sample size of 5 is not large enough to make

the interval’s margin of error

small enough. We can attempt to make the margin of error in the interval smaller by in-

creasing the sample size. If we feel that the mean of the larger sample will be at least 31.3

mpg (the mean of the small sample we have already taken), then the lower limit of a

percent confidence interval for m will be at least 31 if the margin of error is .3

or less.

We will now explain how to find the size of the sample that will be needed to make the mar-

gin of error in a confidence interval for m as small as we wish. In order to develop a formula for

the needed sample size, we will initially assume that we know s. Then, if the population is nor-

mally distributed or the sample size is large, the z-based 100(1 a) percent confidence interval

for m is

To find the needed sample size, we set equal to the desired margin of error and solve

for n. Letting E denote the desired margin of error, we obtain

Multiplying both sides of this equation by and dividing both sides by E, we obtain

Squaring both sides of this result gives us the formula for n.

  1n  
za兾2s

E

1n

 za兾2 
s

1n
 E

za兾2 (s兾1n)

 Bx  za兾2 

s

1n
R   

100(1  a)

x

 z.025 
s

1n
 1.96 

.8

15
 .701

x  31.3

If we consider the formula for the sample size n, it intuitively follows that the value E is the

farthest that the user is willing to allow to be from m at a given level of confidence, and the nor-

mal point z
a兾2 follows directly from the given level of confidence. Furthermore, because the pop-

ulation standard deviation s is in the numerator of the formula for n, it follows that the more

variable that the individual population measurements are, the larger is the sample size needed to

estimate m with a specified accuracy.

In order to use this formula for n, we must either know s (which is unlikely) or we must com-

pute an estimate of s. We first consider the case where we know s. For example, suppose in the

car mileage situation we wish to find the sample size that is needed to make the margin of error

x



8.3 Sample Size Determination 327

in a 95 percent confidence interval for m equal to .3. Assuming that s is known to equal .8, and

using , the appropriate sample size is

Rounding up, we would employ a sample of size 28.

In most real situations, of course, we do not know the true value of s. If s is not known, we

often estimate s by using a preliminary sample. In this case we modify the above formula for n

by replacing s by the standard deviation s of the preliminary sample and by replacing z
a兾2 by t

a兾2.

Thus we obtain

where the number of degrees of freedom for the t
a兾2 point is the size of the preliminary sample

minus 1. Intuitively, using t
a兾2 compensates for the fact that the preliminary sample’s value of s

might underestimate s.

n  冢ta兾2 s

E 冣
2

n  冢z.025 s

E 冣
2

 冢1.96(.8)

.3 冣
2

 27.32

z.025  1.96

EXAMPLE 8.5 The Car Mileage Case

Suppose that in the car mileage situation we wish to find the sample size that is needed to make the

margin of error in a 95 percent confidence interval for m equal to .3. Assuming we do not know s,

we regard the previously discussed sample of five mileages (see page 325) as a preliminary sam-

ple. Therefore, we replace s by the standard deviation of the preliminary sample, which can be

calculated to be s .7583, and we replace z
a兾2  z.025 1.96 by t.025 2.776, which is based on

n 1 4 degrees of freedom. We find that the appropriate sample size is

Rounding up, we employ a sample of size 50. 

When we make the margin of error in our 95 percent confidence interval for m equal to .3, we

can say we are 95 percent confident that the sample mean is within .3 of m. To understand this,

suppose the true value of m is 31.5. Recalling that the mean of the sample of 50 mileages is

we see that this sample mean is within .3 of m (in fact, it is 31.56 31.5  .06 mpg

from ). Other samples of 50 mileages would give different sample means that would be

different distances from m. When we say that our sample of 50 mileages makes us 95 percent

confident that is within .3 of m, we mean that 95 percent of all possible sample means based

on 50 mileages are within .3 of M and 5 percent of such sample means are not. Therefore, when

we randomly select one sample of size 50 and compute its sample mean we can be

95 percent confident that this sample mean is within .3 of m.

In general, the purpose behind replacing z
a兾2 by t

a兾2 (when we are using a preliminary sample

to obtain an estimate of s) is to be conservative, so that we compute a sample size that is at least

as large as needed. Because of this, as we illustrate in the next example, we often obtain a

margin of error that is even smaller than we have requested.

x  31.56,

x

m  31.5

x  31.56,

x

n  冢t.025s

E 冣
2

 冢2.776(.7583)

.3 冣
2

 49.24

C

0

.95

df   4

 t.025

.025 .025

2.776

t.025

EXAMPLE 8.6 The Car Mileage Case

To see that the sample of 50 mileages has actually produced a 95 percent confidence interval with a

margin of error that is as small as we requested, recall that the 50 mileages have mean 

and standard deviation s  .7977. Therefore, the t-based 95 percent confidence interval for m is

  [31.33, 31.79]

  [31.56  .227]

 Bx  t.025 
s

1n
R  B31.56  2.010 

.7977

150
R

x  31.56

C

0

.95

df   49

 t.025

.025 .025

2.010

t.025
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where t.025  2.010 is based on n  1  50  1  49 degrees of freedom—see Table A.4

(page 862). We see that the margin of error in this interval is .227, which is smaller than the .3 we

asked for. Furthermore, as the automaker had hoped, the sample mean of the sample of

50 mileages turned out to be at least 31.3. Therefore, since the margin of error is less than .3, the

lower limit of the 95 percent confidence interval is higher than 31 mpg, and the midsize model’s

EPA mileage estimate is 31 mpg. Because of this, the automaker will receive its tax credit.

Finally, sometimes we do not know s and we do not have a preliminary sample that can be

used to estimate s. In this case it can be shown that, if we can make a reasonable guess of the

range of the population being studied, then a conservatively large estimate of s is this estimated

range divided by 4. For example, if the automaker’s design engineers feel that almost all of its

midsize cars should get mileages within a range of 5 mpg, then a conservatively large estimate

of s is 5兾4  1.25 mpg. When employing such an estimate of s, it is sufficient to use the 

z-based sample size formula , because a conservatively large estimate of s will

give us a conservatively large sample size.

n  (za兾2s兾E)2

x  31.56

Exercises for Section 8.3
CONCEPTS

8.25 Explain what is meant by the margin of error for a confidence interval. What error are we talking

about in the context of an interval for m?

8.26 Explain exactly what we mean when we say that a sample of size n makes us 99 percent confident

that is within E units of m.

8.27 Why do we often need to take a preliminary sample when determining the size of the sample

needed to make the margin of error of a confidence interval equal to E?

METHODS AND APPLICATIONS

8.28 Consider a population having a standard deviation equal to 10. We wish to estimate the mean of

this population.

a How large a random sample is needed to construct a 95 percent confidence interval for the

mean of this population with a margin of error equal to 1?

b Suppose that we now take a random sample of the size we have determined in part a. If we

obtain a sample mean equal to 295, calculate the 95 percent confidence interval for the

population mean. What is the interval’s margin of error?

8.29 Referring to Exercise 8.11a, assume that equals 33. How large a random sample of public

owner-controlled companies is needed to make us

a 95 percent confident that the sample mean audit delay, is within a margin of error of four

days of m, the true mean audit delay?

b 99 percent confident that is within a margin of error of four days of m?

8.30 Referring to Exercise 8.12b, assume that equals .66. How large a sample of late replacement

buyers is needed to make us

a 99 percent confident that the sample mean number of dealers visited, is within a margin of

error of .04 of m, the true mean number of dealers visited?

b 99.73 percent confident that is within a margin of error of .05 of m?

8.31 Referring to Exercise 8.21, regard the sample of five trial runs for which s  19.65 as a

preliminary sample. Determine the number of trial runs of the chemical process needed to make us

a 95 percent confident that the sample mean hourly yield, is within a margin of error of eight

pounds of the true mean hourly yield m when catalyst XA-100 is used.

b 99 percent confident that is within a margin of error of five pounds of m. ChemYield

8.32 Referring to Exercise 8.20, regard the sample of 10 sales figures for which s  32.866 as a prelim-

inary sample. How large a sample of sales figures is needed to make us 95 percent confident that ,

the sample mean sales dollars per square foot, is within a margin of error of $10 of m, the true

mean sales dollars per square foot for all Whole Foods supermarkets. WholeFoods

8.33 THE AIR TRAFFIC CONTROL CASE AlertTimes

Referring to Exercise 8.19, regard the sample of 15 alert times for which s  1.026 as a pre-

liminary sample. Determine the sample size needed to make us 95 percent confident that the

sample mean alert time, is within a margin of error of .3 seconds of m, the true mean alert time

using the new display panel.
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8.4 Confidence Intervals for a Population Proportion 
In Chapter 7, the soft cheese spread producer decided to replace its current spout with the new

spout if p, the true proportion of all current purchasers who would stop buying the cheese spread

if the new spout were used, is less than .10. Suppose that when 1,000 current purchasers are ran-

domly selected and are asked to try the new spout, 63 say they would stop buying the spread if

the new spout were used. The point estimate of the population proportion p is the sample pro-

portion This sample proportion says we estimate that 6.3 percent of all

current purchasers would stop buying the cheese spread if the new spout were used. Since 

equals .063, we have some evidence that p is less than .10.

In order to see if there is strong evidence that p is less than .10, we can calculate a confi-

dence interval for p. As explained in Chapter 7, if the sample size n is large, then the sampling

distribution of the sample proportion is approximately a normal distribution with mean

and standard deviation By using the same logic we used in de-

veloping confidence intervals for m, it follows that a percent confidence interval

for p is 

Estimating p(1  p) by , it follows that a 100(1  a) percent confidence interval for p

can be calculated as summarized below.

p̂(1  p̂)

 B p̂  za兾2 Ap(1  p)

n
 R

100(1  a )

sp̂  1p(1  p)兾n.mp̂  p

p̂

p̂

p̂  63兾1,000  .063.

Calculate
and inter-

pret a large sample
confidence interval
for a population
proportion.

LO5

A Large Sample Confidence Interval for a Population Proportion p

If the sample size n is large, a 100(1 ⴚ A) percent confidence interval for the population proportion p is

Here n should be considered large if both and are at least 5.2n(1  p̂)np̂

B p̂  za兾2 A p̂(1  p̂)

n
R

2Some statisticians suggest using the more conservative rule that both and must be at least 10. Furthermore,

because is an unbiased point estimate of a more correct percent confidence interval

for p is However, because n is large, there is little difference between intervals obtained by 

using this formula and those obtained by using the formula in the above box.

[p̂  za兾2 1p̂(1  p̂)兾(n  1)].
100(1  a)p(1  p)兾n,p̂(1  p̂)兾(n  1)

n(1   ̂p)np̂

EXAMPLE 8.7 The Cheese Spread Case

Suppose that the cheese spread producer wishes to calculate a 99 percent confidence interval

for p, the population proportion of purchasers who would stop buying the cheese spread if the

new spout were used. To determine whether the sample size n  1,000 is large enough to

enable us to use the confidence interval formula just given, recall that the point estimate 

of p is . Therefore, because and

are both greater than 5, we can use the confidence interval formula. It follows

that the 99 percent confidence interval for p is

This interval says that we are 99 percent confident that between 4.32 percent and 8.28 percent of

all current purchasers would stop buying the cheese spread if the new spout were used. Moreover,

because the upper limit of the 99 percent confidence interval is less than .10, we have very strong

evidence that the true proportion p of all current purchasers who would stop buying the cheese

spread is less than .10. Based on this result, it seems reasonable to use the new spout.

  [.0432, .0828]

  [.063  .0198]

 B p̂  z.025 B p̂(1  p̂)

n
R  B .063  2.575 B (.063)(.937)

1000
R

1,000(.937)  937

n(1 p̂)  np̂  1,000(.063) 63p̂  63兾1,000  .063

C

0

.99

z.005

.005 .005

0

.995

 z.005

2.575

z.005

.005
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In order to compare the 99 percent confidence interval for p with a 95 percent confidence in-

terval, we compute the 95 percent confidence interval as follows:

Although the 99 percent confidence interval is somewhat longer than the 95 percent confidence

interval, the fairly large sample size of n   1,000 produces intervals that differ only slightly.

In the cheese spread example, a sample of 1,000 purchasers gives us a 99 percent confidence

interval for p that has a margin of error of .0198 and a 95 percent confidence interval for p that

has a margin of error of .0151. Both of these margins of errors are reasonably small. Generally,

however, quite a large sample is needed in order to make the margin of error in a confidence in-

terval for p reasonably small. The next two examples demonstrate that a sample size of 200,

which most people would consider quite large, does not necessarily give a 95 percent confidence

interval for p with a small margin of error.

  [.0479, .0781]

  [.063  .0151]

 B p̂  z.025  B p̂(1  p̂)

n
R  B .063  1.96  B (.063)(.937)

1000
R0

.95

z.025 z.025

.025 .025

0

.975

.025

1.96

z.025

EXAMPLE 8.8

Antibiotics occasionally cause nausea as a side effect. Scientists working for a major drug com-

pany have developed a new antibiotic called Phe-Mycin. The company wishes to estimate p, the

proportion of all patients who would experience nausea as a side effect when being treated with

Phe-Mycin. Suppose that a sample of 200 patients is randomly selected. When these patients are

treated with Phe-Mycin, 35 patients experience nausea. The point estimate of the population

proportion p is the sample proportion . This sampleproportionsays thatwees-

timate that17.5percentofallpatientswouldexperiencenauseaas a sideeffectof takingPhe-Mycin.

Furthermore, because and are both at least 5,

we can use the previously given formula to calculate a confidence interval for p. Doing this, we find

that a 95 percent confidence interval for p is

This interval says we are 95 percent confident that between 12.2 percent and 22.8 percent of all

patients would experience nausea as a side effect of taking Phe-Mycin. Notice that the margin of

error (.053) in this interval is rather large. Therefore, this interval is fairly long, and it does not

provide a very precise estimate of p.

  [.122, .228]

  [.175  .053]

 Bp̂  z.025 B p̂(1  p̂)

n
R  B .175  1.96 B (.175)(.825)

200
R

n(1 p̂) 200(.825)  165np̂ 200(.175) 35

p̂  35兾200  .175

EXAMPLE 8.9 The Marketing Ethics Case: Estimating Marketing 

Researchers’ Disapproval Rates

In the book Essentials of Marketing Research, William R. Dillon, Thomas J. Madden, and Neil H.

Firtle discuss a survey of marketing professionals, the results of which were originally published

by Ishmael P. Akoah and Edward A. Riordan in the Journal of Marketing Research. In the study,

randomly selected marketing researchers were presented with various scenarios involving ethical

issues such as confidentiality, conflict of interest, and social acceptability. The marketing

researchers were asked to indicate whether they approved or disapproved of the actions described

C
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in each scenario. For instance, one scenario that involved the issue of confidentiality was

described as follows:

Use of ultraviolet ink A project director went to the marketing research director’s office and re-

quested permission to use an ultraviolet ink to precode a questionnaire for a mail survey. The project di-

rector pointed out that although the cover letter promised confidentiality, respondent identification was

needed to permit adequate cross-tabulations of the data. The marketing research director gave approval.

Of the 205 marketing researchers who participated in the survey, 117 said they disapproved of the

actions taken in the scenario. It follows that a point estimate of p, the proportion of all marketing

researchers who disapprove of the actions taken in the scenario, is Fur-

thermore, because np̂ and are both at least

5, a 95 percent confidence interval for p is

This interval says we are 95 percent confident that between 50.29 percent and 63.85 percent of

all marketing researchers disapprove of the actions taken in the ultraviolet ink scenario. Notice

that since the margin of error (.0678) in this interval is rather large, this interval does not provide

a very precise estimate of p. Below we show the MINITAB output of this interval.

CI  for One  Proportion

X     N     Sample p            95% CI         

117   205     0.570732     (0.502975, 0.638488)

   [.5029, .6385]

  [.5707  .0678]

 Bp̂  z.025 B p̂(1  p̂)

n
R  B.5707  1.96 B (.5707)(.4293)

205
R

n(1  p̂)  205(.4293)  88 205(.5707)  117

p̂  117兾205  .5707.

In order to find the size of the sample needed to estimate a population proportion, we consider

the theoretically correct interval

To obtain the sample size needed to make the margin of error in this interval equal to E, 

we set

and solve for n. When we do this, we get the following result:

za兾2 Bp(1  p)

n
 E

Bp̂  za兾2 Bp(1  p)

n
R

Determine
the appro-

priate sample size
when estimating 
a population 
proportion.

LO6

Determining the Sample Size for a Confidence Interval for p

A sample of size

makes the margin of error in a 100(1   a) percent confidence interval for p equal to E. That is, this sample

size makes us 100(1   a) percent confident that is within E units of p. If the calculated value of n is not a

whole number, round this value up to the next whole number.

p̂

n  p(1  p)冢za兾2

E 冣
2

Looking at this formula, we see that, the larger p(1   p) is, the larger n will be. To make sure

n is large enough, consider Figure 8.15 on the next page, which is a graph of p(1   p) versus p.

This figure shows that p(1   p) equals .25 when p equals .5. Furthermore, p(1   p) is never larger

than .25. Therefore, if the true value of p could be near .5, we should set p(1   p) equal to .25.

This will ensure that n is as large as needed to make the margin of error as small as desired. For



example, suppose we wish to estimate the proportion p of all registered voters who currently

favor a particular candidate for President of the United States. If this candidate is the nominee of

a major political party, or if the candidate enjoys broad popularity for some other reason, then p

could be near .5. Furthermore, suppose we wish to make the margin of error in a 95 percent con-

fidence interval for p equal to .02. If the sample to be taken is random, it should consist of

registered voters. In reality, a list of all registered voters in the United States is not available to

polling organizations. Therefore, it is not feasible to take a (technically correct) random sam-

ple of registered voters. For this reason, polling organizations actually employ other (more

complicated) kinds of samples. We have explained some of the basic ideas behind these more

complex samples in optional Section 7.4. For now, we consider the samples taken by polling

organizations to be approximately random. Suppose, then, that when the sample of voters is ac-

tually taken, the proportion of sampled voters who favor the candidate turns out to be greater

than .52. It follows, because the sample is large enough to make the margin of error in a 95 per-

cent confidence interval for p equal to .02, that the lower limit of such an interval is greater

than .50. This says we have strong evidence that a majority of all registered voters favor the

candidate. For instance, if the sample proportion equals .53, we are 95 percent confident that the

proportion of all registered voters who favor the candidate is between .51 and .55.

Major polling organizations conduct public opinion polls concerning many kinds of issues.

Whereas making the margin of error in a 95 percent confidence interval for p equal to .02 requires

a sample size of 2,401, making the margin of error in such an interval equal to .03 requires a sam-

ple size of only

or 1,068 (rounding up). Of course, these calculations assume that the proportion p being esti-

mated could be near .5. However, for any value of p, increasing the margin of error from .02 to

.03 substantially decreases the needed sample size and thus saves considerable time and money.

For this reason, although the most accurate public opinion polls use a margin of error of .02, the

vast majority of public opinion polls use a margin of error of .03 or larger.

When the news media report the results of a public opinion poll, they express the margin of

error in a 95 percent confidence interval for p in percentage points. For instance, if the margin

of error is .03, the media would say the poll’s margin of error is 3 percentage points. The media

seldom report the level of confidence, but almost all polling results are based on 95 percent

confidence. Sometimes the media make a vague reference to the level of confidence. For in-

stance, if the margin of error is 3 percentage points, the media might say that “the sample re-

sult will be within 3 percentage points of the population value in 19 out of 20 samples.” Here

n  p(1  p)冢za兾2

E 冣
2

 .25冢1.96

.03 冣
2

 1,067.1

p̂

p̂

n  p(1  p)冢za兾2

E 冣
2

 .25冢1.96

.02 冣
2

 2,401
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p(1   p)
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.250

.1875

.125

.0625

F I G U R E 8 . 1 5 The Graph of p(1 ⴚ p) versus p
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the “19 out of 20 samples” is a reference to the level of confidence, which is 100(19兾20)  

100(.95)  95 percent.

As an example, suppose a news report says a recent poll finds that 34 percent of the public

favors military intervention in an international crisis, and suppose the poll’s margin of error is

reported to be 3 percentage points. This means the sample taken is large enough to make us

95 percent confident that the sample proportion  .34 is within .03 (that is, 3 percentage points)

of the true proportion p of the entire public that favors military intervention. That is, we are 95 per-

cent confident that p is between .31 and .37.

If the population proportion we are estimating is substantially different from .5, setting p equal

to .5 will give a sample size that is much larger than is needed. In this case, we should use our intu-

ition or previous sample information—along with Figure 8.16—to determine the largest reason-

able value for p(1  p). Figure 8.16 implies that as p gets closer to .5, p(1  p) increases. It

follows that p(1  p) is maximized by the reasonable value of p that is closest to .5. Therefore,

when we are estimating a proportion that is substantially different from .5, we use the

reasonable value of p that is closest to .5 to calculate the sample size needed to obtain a

specified margin of error.

p̂

p

0 1

p(1   p)

.25 .5 .75

.250

.1875

.125

.0625

F I G U R E 8 . 1 6 As p Gets Closer to .5, p(1 ⴚ p) Increases

Again consider estimating the proportion of all patients who would experience nausea as a side

effect of taking the new antibiotic Phe-Mycin. Suppose the drug company wishes to find the size

of the random sample that is needed in order to obtain a 2 percent margin of error with 95 percent

confidence. In Example 8.8 we employed a sample of 200 patients to compute a 95 percent

confidence interval for p. This interval, which is [.122, .228], makes us very confident that p is

between .122 and .228. Because .228 is the reasonable value of p that is closest to .5, the largest

reasonable value of p(1   p) is .228(1  .228)  .1760, and thus the drug company should take

a sample of

(rounded up)

patients.

n  p(1  p)冢za兾2

E 冣
2

 .1760冢1.96

.02 冣
2

 1,691

EXAMPLE 8.10

Finally, as a last example of choosing p for sample size calculations, suppose that experi-

ence indicates that a population proportion p is at least .75. Then, .75 is the reasonable value

of p that is closest to .5, and we would use the largest reasonable value of p(1  p), which is

.75(1  .75)  .1875.
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Exercises for Section 8.4
CONCEPTS

8.34 a What does a population proportion tell us about the population?

b Explain the difference between p and p̂.

c What is meant when a public opinion poll’s margin of error is 3 percent?

8.35 Suppose we are using the sample size formula in the box on page 331 to find the sample size

needed to make the margin of error in a confidence interval for p equal to E. In each of the 

following situations, explain what value of p would be used in the formula for finding n:

a We have no idea what value p is—it could be any value between 0 and 1.

b Past experience tells us that p is no more than .3.

c Past experience tells us that p is at least .8.

METHODS AND APPLICATIONS

8.36 In each of the following cases, determine whether the sample size n is large enough to use the large

sample formula presented in the box on page 329 to compute a confidence interval for p.

a p̂  .1, n  30 d p̂  .8, n  400

b p̂  .1, n  100 e p̂  .9, n  30

c p̂  .5, n  50 f p̂  .99, n  200

8.37 In each of the following cases, compute 95 percent, 98 percent, and 99 percent confidence intervals

for the population proportion p.

a p̂  .4 and n  100 c p̂  .9 and n  100

b p̂  .1 and n  300 d p̂  .6 and n  50

8.38 Quality Progress, February 2005, reports on the results achieved by Bank of America in improving

customer satisfaction and customer loyalty by listening to the ‘voice of the customer.’A key mea-

sure of customer satisfaction is the response on a scale from 1 to 10 to the question: “Considering

all the business you do with Bank of America, what is your overall satisfaction with Bank of

America?”3 Suppose that a random sample of 350 current customers results in 195 customers with

a response of 9 or 10 representing “customer delight.” Find a 95 percent confidence interval for the

true proportion of all current Bank of America customers who would respond with a 9 or 10. Are

we 95 percent confident that this proportion exceeds .48, the historical proportion of customer

delight for Bank of America?

8.39 THE MARKETING ETHICS CASE: CONFLICT OF INTEREST

Consider the marketing ethics case described in Example 8.9. One of the scenarios presented to 

the 205 marketing researchers is as follows:

A marketing testing firm to which X company gives most of its business recently went pub-

lic. The marketing research director of X company had been looking for a good investment

and proceeded to buy some $20,000 of their stock. The firm continues as X company’s lead-

ing supplier for testing.

Of the 205 marketing researchers who participated in the ethics survey, 111 said that they disap-

proved of the actions taken in the scenario. Use this sample result to show that the 95 percent con-

fidence interval for the proportion of all marketing researchers who disapprove of the actions taken

in the conflict of interest scenario is as given in the MINITAB output below. Interpret this interval.

b On the basis of this interval, is there convincing evidence that a majority of all marketing

researchers disapprove of the actions taken in the conflict of interest scenario? Explain.

8.40 In a news story distributed by the Washington Post, Lew Sichelman reports that a substantial fraction

of mortgage loans that go into default within the first year of the mortgage were approved on the

basis of falsified applications. For instance, loan applicants often exaggerate their income or fail to

declare debts. Suppose that a random sample of 1,000 mortgage loans that were defaulted within the

first year reveals that 410 of these loans were approved on the basis of falsified applications.

a Find a point estimate of and a 95 percent confidence interval for p, the proportion of all 

first-year defaults that are approved on the basis of falsified applications.

b Based on your interval, what is a reasonable estimate of the minimum percentage of first-year

defaults that are approved on the basis of falsified applications?

CI for One Proportion 
X    N     Sample p          95% CI         

111  205     0.541463   (0.473254, 0.609673) 

3Source: “Driving Organic Growth at Bank of America,” Quality Progress (February 2005), pp. 23–27.
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8.41 On January 7, 2000, the Gallup Organization released the results of a poll comparing the

lifestyles of today with yesteryear. The survey results were based on telephone interviews

with a randomly selected national sample of 1,031 adults,18 years and older, conducted

December 20–21, 1999.4

a The Gallup poll found that 42 percent of the respondents said that they spend less than three

hours watching TV on an average weekday. Based on this finding, calculate a 99 percent

confidence interval for the proportion of U.S. adults who say that they spend less than three

hours watching TV on an average weekday. Based on this interval, is it reasonable to conclude

that more than 40 percent of U.S. adults say they spend less than three hours watching TV on

an average weekday?

b The Gallup poll found that 60 percent of the respondents said they took part in some form of

daily activity (outside of work, including housework) to keep physically fit. Based on this

finding, find a 95 percent confidence interval for the proportion of U.S. adults who say they

take part in some form of daily activity to keep physically fit. Based on this interval, is it

reasonable to conclude that more than 50 percent of U.S. adults say they take part in some

form of daily activity to keep physically fit?

c In explaining its survey methods, Gallup states the following: “For results based on this

sample, one can say with 95 percent confidence that the maximum error attributable to

sampling and other random effects is plus or minus 3 percentage points.” Explain how your

calculations for part b verify that this statement is true.

8.42 In an article in the Journal of Advertising, Weinberger and Spotts compare the use of humor in

television ads in the United States and the United Kingdom. They found that a substantially greater

percentage of U.K. ads use humor.

a Suppose that a random sample of 400 television ads in the United Kingdom reveals that 142 of

these ads use humor. Find a point estimate of and a 95 percent confidence interval for the

proportion of all U.K. television ads that use humor.

b Suppose a random sample of 500 television ads in the United States reveals that 122 of these

ads use humor. Find a point estimate of and a 95 percent confidence interval for the proportion

of all U.S. television ads that use humor.

c Do the confidence intervals you computed in parts a and b suggest that a greater percentage of

U.K. ads use humor? Explain. How might an ad agency use this information?

8.43 In an article in CA Magazine, Neil Fitzgerald surveyed Scottish business customers concerning

their satisfaction with aspects of their banking relationships. Fitzgerald reports that, in 418 tele-

phone interviews conducted by George Street Research, 67 percent of the respondents gave their

banks a high rating for overall satisfaction.

a Assuming that the sample is randomly selected, calculate a 99 percent confidence interval for

the proportion of Scottish business customers who give their banks a high rating for overall

satisfaction.

b Based on this interval, can we be 99 percent confident that more than 60 percent of Scottish

business customers give their banks a high rating for overall satisfaction?

8.44 In the March 16, 1998, issue of Fortune magazine, the results of a survey of 2,221 MBA students

from across the United States conducted by the Stockholm-based academic consulting firm

Universum showed that only 20 percent of MBA students expect to stay at their first job five years

or more.5 Assuming that a random sample was employed, find a 95 percent confidence interval for

the proportion of all U.S. MBA students who expect to stay at their first job five years or more.

Based on this interval, is there strong evidence that fewer than one-fourth of all U.S. MBA

students expect to stay?

8.45 Consumer Reports (January 2005) indicates that profit margins on extended warranties are 

much greater than on the purchase of most products.6 In this exercise we consider a major

electronics retailer that wishes to increase the proportion of customers who buy extended

warranties on digital cameras. Historically, 20 percent of digital camera customers have

purchased the retailer’s extended warranty. To increase this percentage, the retailer has

decided to offer a new warranty that is less expensive and more comprehensive. Suppose

that three months after starting to offer the new warranty, a random sample of 500 customer

sales invoices shows that 152 out of 500 digital camera customers purchased the new warranty.

Find a 95 percent confidence interval for the proportion of all digital camera customers who

have purchased the new warranty. Are we 95 percent confident that this proportion exceeds .20?

4Source: www.gallup.com/poll/releases/, The Gallup Organization, January 7, 2000.

5Source: Shelly Branch, “MBAs: What Do They Really Want,” Fortune, March 16, 1998, p. 167.

6Consumer Reports, January 2005, page 51.



8.46 The manufacturer of the ColorSmart-5000 television set claims 95 percent of its sets last

at least five years without needing a single repair. In order to test this claim, a consumer

group randomly selects 400 consumers who have owned a ColorSmart-5000 television

set for five years. Of these 400 consumers, 316 say their ColorSmart-5000 television sets

did not need a repair, whereas 84 say their ColorSmart-5000 television sets did need at least

one repair.

a Find a 99 percent confidence interval for the proportion of all ColorSmart-5000 television sets

that have lasted at least five years without needing a single repair.

b Does this confidence interval provide strong evidence that the percentage of ColorSmart-5000

television sets that last at least five years without a single repair is less than the 95 percent

claimed by the manufacturer? Explain.

8.47 In the book Cases in Finance, Nunnally and Plath present a case in which the estimated percentage

of uncollectible accounts varies with the age of the account. Here the age of an unpaid account is

the number of days elapsed since the invoice date.

Suppose an accountant believes the percentage of accounts that will be uncollectible increases

as the ages of the accounts increase. To test this theory, the accountant randomly selects 

500 accounts with ages between 31 and 60 days from the accounts receivable ledger dated one

year ago. The accountant also randomly selects 500 accounts with ages between 61 and 90 days

from the accounts receivable ledger dated one year ago.

a If 10 of the 500 accounts with ages between 31 and 60 days were eventually classified as

uncollectible, find a point estimate of and a 95 percent confidence interval for the proportion

of all accounts with ages between 31 and 60 days that will be uncollectible.

b If 27 of the 500 accounts with ages between 61 and 90 days were eventually classified as

uncollectible, find a point estimate of and a 95 percent confidence interval for the proportion

of all accounts with ages between 61 and 90 days that will be uncollectible.

c Based on these intervals, is there strong evidence that the percentage of accounts aged between

61 and 90 days that will be uncollectible is higher than the percentage of accounts aged

between 31 and 60 days that will be uncollectible? Explain.

8.48 Consider Exercise 8.41b and suppose we wish to find the sample size n needed in order to be

95 percent confident that the sample proportion of respondents who said they took part in some

sort of daily activity to keep physically fit, is within a margin of error of .02 of p, the true propor-

tion of all U.S. adults who say that they take part in such activity. In order to find an appropriate

value for p(1   p), note that the 95 percent confidence interval for p that you calculated in

Exercise 8.41b was [.57, .63]. This indicates that the reasonable value for p that is closest to .5 is

.57, and thus the largest reasonable value for p(1   p) is .57(1  .57)  .2451. Calculate the

required sample size n.

8.49 Referring to Exercise 8.46, determine the sample size needed in order to be 99 percent confident

that p̂, the sample proportion of ColorSmart-5000 television sets that last at least five years without

a single repair, is within a margin of error of .03 of p, the true proportion of sets that last at least

five years without a single repair.

8.50 Suppose we conduct a poll to estimate the proportion of voters who favor a major presidential

candidate. Assuming that 50 percent of the electorate could be in favor of the candidate, determine

the sample size needed so that we are 95 percent confident that p̂, the sample proportion of voters

who favor the candidate, is within a margin of error of .01 of p, the true proportion of all voters

who are in favor of the candidate.

8.5 Confidence Intervals for Parameters 
of Finite Populations (Optional) 

It is best to use the confidence intervals presented in Sections 8.1 through 8.4 when the sampled

population is either infinite or finite and much larger than (say, at least 20 times as large as) the

sample. Although these previously discussed intervals are sometimes used when a finite popula-

tion is not much larger than the sample, better methods exist for handling such situations. We

present these methods in this section.

As we have explained, we often wish to estimate a population mean. Sometimes we also wish

to estimate a population total.

A population total is the sum of the values of all the population measurements.

p̂,
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EXAMPLE 8.11

A company sells and installs satellite dishes and receivers for both private individuals and com-

mercial establishments (bars, restaurants, and so forth). The company accumulated 2,418 sales

invoices during last year. The total of the sales amounts listed on these invoices (that is, the total

sales claimed by the company) is $5,127,492.17. In order to estimate the true total sales, t, for

last year, an independent auditor randomly selects 242 of the invoices and determines the actual

sales amounts by contacting the purchasers. When the sales amounts are averaged, the mean of

the actual sales amounts for the 242 sampled invoices is This says that a point

estimate of the true total sales t is

This point estimate is considerably lower than the claimed total sales of $5,127,492.17. However,

we cannot expect the point estimate of t to exactly equal the true total sales, so we need to

calculate a confidence interval for t before drawing any unwarranted conclusions.

In order to find a confidence interval for the mean and total of a finite population, we consider

the sampling distribution of the sample mean . It can be shown that, if we randomly select a

large sample of n measurements without replacement from a finite population of N measure-

ments, then the sampling distribution of is approximately normal with mean and stan-

dard deviation

It can also be shown that the appropriate point estimate of is , where s

is the sample standard deviation. This point estimate of is used in the confidence intervals for

m and t, which we summarize as follows:

sx

(s兾1n)(1(N  n)兾N )sx

sx  
s

1n
  BN  n

N  1

mx  mx

x

N x  2,418($1,843.93)  $4,458,622.74

x  $1,843.93.

For example, companies in financial trouble have sometimes falsified their accounts receivable

invoices in order to mislead stockholders. For this reason, independent auditors are often asked

to estimate a company’s true total sales for a given period. The auditor randomly selects a sam-

ple of invoices from the population of all invoices, and then independently determines the actual

amount of each sale by contacting the purchasers. The sample results are used to estimate the

company’s total sales, and this estimate can then be compared with the total sales reported by

the company.

In order to estimate a population total, which we denote as  (pronounced “tau”), we note

that the population mean m is the population total divided by the number, N, of population

measurements. That is, we have m t兾N, which implies that t Nm. It follows, because a point

estimate of the population mean m is the sample mean , that

A point estimate of a population total T is N , where N is the size of the population.x

x

Confidence Intervals for the Population Mean and Population Total
for a Finite Population

2 A 100(1 ⴚ A) percent confidence interval for the

population total T is found by multiplying the

lower and upper limits of the 100(1  a) percent

confidence interval for m by N.

1 A 100(1 ⴚ A) percent confidence interval for the

population mean M is

Bx  za兾2 s

1n  AN  n

N
R

Suppose we randomly select a sample of n measurements without replacement from a finite population

of N measurements. Then, if n is large (say, at least 30)
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The quantity in the confidence intervals for m and t is called the finite popu-

lation correction. If the population size N is much larger than (say, at least 20 times as large as)

the sample size n, then the finite population correction is approximately equal to 1. For example,

if we randomly select (without replacement) a sample of 1,000 from a population of 1 million,

then the finite population correction is . In such a

case, many people believe it is not necessary to include the finite population correction in the

confidence interval calculations. This is because the correction is not far enough below 1 to

meaningfully shorten the confidence intervals for m and t. However, if the population size N

is not much larger than the sample size n (say, if n is more than 5 percent of N), then the

finite population correction is substantially less than 1 and should be included in the confi-

dence interval calculations.

1(1,000,000  1,000)兾1,000,000  .9995

1(N  n)兾N

EXAMPLE 8.12

Recall that the satellite dish dealer claims that its total sales t for last year were $5,127,492.17.

Since the company accumulated 2,418 invoices during last year, the company is claiming that m,

the mean sales amount per invoice, is Suppose when the

independent auditor randomly selects a sample of n  242 invoices, the mean and standard

deviation of the actual sales amounts for these invoices are Here

the sample size percent of the population size N 2,418.

Because n is more than 5 percent of N, we should include the finite population correction in our

confidence interval calculations. It follows that a 95 percent confidence interval for the mean

sales amount m per invoice is

The upper limit of this interval is less than the mean amount of $2,120.55 claimed by the com-

pany, so we have strong evidence that the company is overstating its mean sales per invoice for

last year. A 95 percent confidence interval for the total sales t last year is found by multiplying

the lower and upper limits of the 95 percent confidence interval for m by N  2,418. Therefore,

this interval is [1,782.21(2,418), 1,905.65(2,418)], or [4,309,383.8, 4,607,861.7]. Because the

upper limit of this interval is more than $500,000 below the total sales amount of $5,127,492.17

claimed by the company, we have strong evidence that the satellite dealer is substantially over-

stating its total sales for last year.

We sometimes estimate the total number, t, of population units that fall into a particular

category. For instance, the auditor of Examples 8.11 and 8.12 might wish to estimate the total

number of the 2,418 invoices having incorrect sales amounts. Here the proportion, p, of the

population units that fall into a particular category is the total number, t, of population units

that fall into the category divided by the number, N, of population units. That is, p  t兾N,

which implies that t  Np. Therefore, since a point estimate of the population proportion p is

the sample proportion p̂, a point estimate of the population total t is Np̂. For example, suppose

that 34 of the 242 sampled invoices have incorrect sales amounts. Because the sample propor-

tion is p̂  34兾242  .1405, a point estimate of the total number of the 2,418 invoices that

have incorrect sales amounts is

We now summarize how to find confidence intervals for p and t.

Np̂  2,418(.1405)  339.729

  [1,782.21, 1,905.65]

  [1,843.93  61.723812]

 Bx  z.025   s

1n  BN  n

N
R  B1,843.93  1.96  516.42

1242
  B2,418  242

2,418
R

n  242 is (242兾2,418)100  10.008

x  1,843.93 and s  516.42.

$5,127,492.17兾2,418  $2,120.55.
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Confidence Intervals for the Proportion of and Total Number of Units in a Category 
When Sampling a Finite Population

2 A 100(1 ⴚ A) percent confidence interval for the

population total T is found by multiplying the

lower and upper limits of the 100(1  a) percent

confidence interval for p by N.

1 A 100(1 ⴚ A) percent confidence interval for the

population proportion p is

Bp ˆ  za兾2 B 
p̂(1  p̂)

n  1
 冢N  n

N 冣R

Suppose that we randomly select a sample of n units without replacement from a finite population of N

units. Then, if n is large 

EXAMPLE 8.13

Recall that in Examples 8.11 and 8.12 we found that 34 of the 242 sampled invoices have incor-

rect sales amounts. Since p̂  34兾242  .1405, a 95 percent confidence interval for the

proportion of the 2,418 invoices that have incorrect sales amounts is

This interval says we are 95 percent confident that between 9.89 percent and 18.21 percent of the

invoices have incorrect sales amounts. A 95 percent confidence interval for the total number of

the 2,418 invoices that have incorrect sales amounts is found by multiplying the lower and upper

limits of the 95 percent confidence interval for p by N  2,418. Therefore, this interval is

[.0989(2,418),  .1821(2,418)], or [239.14, 440.32], and we are 95 percent confident that between

(roughly) 239 and 440 of the 2,418 invoices have incorrect sales amounts.

Finally, we can determine the sample size that is needed to make the margin of error in a confi-

dence interval for m, p, or t equal to a desired size E by setting the appropriate margin of error

formula equal to E and by solving the resulting equation for the sample size n. We will not carry out

the details in this book, but the procedure is the same as illustrated in Sections 8.3 and 8.4. Exer-

cise 8.57 gives the reader an opportunity to use the sample size formulas that are obtained.

   [.0989,  .1821]

   [.1405  .0416208]

 B p̂  z.025 B p̂(1  p̂)

n  1
 冢N  n

N 冣R  B .1405  1.96  B (.1405)(.8595)

241
  冢2,418  242

2,418 冣  R

Exercises for Section 8.5
CONCEPTS

8.51 Define a population total. Give an example of a population total that will interest you in your

career when you graduate from college.

8.52 Explain why the finite population correction is unnecessary when the population is

at least 20 times as large as the sample. Give an example using numbers.

METHODS AND APPLICATIONS

8.53 A retailer that sells home entertainment systems accumulated 10,451 sales invoices during the

previous year. The total of the sales amounts listed on these invoices (that is, the total sales

claimed by the company) is $6,384,675. In order to estimate the true total sales for last year, an

independent auditor randomly selects 350 of the invoices and determines the actual sales amounts

by contacting the purchasers. The mean and the standard deviation of the 350 sampled sales

amounts are and s $168.

a Find a 95 percent confidence interval for m, the true mean sales amount per invoice on the

10,451 invoices.

b Find a point estimate of and a 95 percent confidence interval for t, the true total sales for the

previous year.

c What does this interval say about the company’s claim that the true total sales were

$6,384,675? Explain.

x  $532

1(N  n)兾N
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8.54 A company’s manager is considering simplification of a travel voucher form. In order to assess the

costs associated with erroneous travel vouchers, the manager must estimate the total number of such

vouchers that were filled out incorrectly in the last month. In a random sample of 100 vouchers

drawn without replacement from the 1,323 travel vouchers submitted in the last month, 31 vouchers

were filled out incorrectly.

a Find a point estimate of and a 95 percent confidence interval for the true proportion of travel

vouchers that were filled out incorrectly in the last month.

b Find a point estimate of and a 95 percent confidence interval for the total number of travel

vouchers that were filled out incorrectly in the last month.

c If it costs the company $10 to correct an erroneous travel voucher, find a reasonable estimate

of the minimum cost of correcting all of last month’s erroneous travel vouchers. Would it be

worthwhile to spend $5,000 to design a simplified travel voucher that could be used for at

least a year?

8.55 A personnel manager is estimating the total number of person-days lost to unexcused absences by

hourly workers in the last year. In a random sample of 50 employees drawn without replacement

from the 687 hourly workers at the company, records show that the 50 sampled workers had an

average of days of unexcused absences over the past year with a standard deviation of

a Find a point estimate of and a 95 percent confidence interval for the total number of unexcused

absences by hourly workers in the last year.

b Can the personnel manager be 95 percent confident that more than 2,500 person-days were 

lost to unexcused absences last year? Can the manager be 95 percent confident that more than

3,000 person-days were lost to unexcused absences last year? Explain.

8.56 An auditor randomly samples 32 accounts receivable without replacement from a firm’s 600 accounts

and checks to verify that all documents for the accounts comply with company procedures. Ten of the

32 accounts are found to have documents not in compliance. Find a point estimate of and a 95 percent

confidence interval for the total number of accounts having documents that do not comply with

company procedures.

8.57 SAMPLE SIZES WHEN SAMPLING FINITE POPULATIONS

a Estimating m and t

Consider randomly selecting a sample of n measurements without replacement from a finite

population consisting of N measurements and having variance s2. Also consider the sample

size given by the formula

Then, it can be shown that this sample size makes the margin of error in a 100(1   a) percent

confidence interval for m equal to E if we set D equal to (E兾z
a兾2)

2. It can also be shown that this

sample size makes the margin of error in a 100(1   a) percent confidence interval for t equal

to E if we set D equal to [E兾(z
a兾2N)]2. Now consider Exercise 8.55. Using s2  (1.26)2, or

1.5876, as an estimate of s2, determine the sample size that makes the margin of error in a

95 percent confidence interval for the total number of person-days lost to unexcused absences

last year equal to 100 days.

b Estimating p and t

Consider randomly selecting a sample of n units without replacement from a finite population

consisting of N units and having a proportion p of these units fall into a particular category.

Also, consider the sample size given by the formula

It can be shown that this sample size makes the margin of error in a 100(1   a) percent confi-

dence interval for p equal to E if we set D equal to (E兾z
a兾2)

2. It can also be shown that this

sample size makes the margin of error in a 100(1   a) percent confidence interval for t equal

to E if we set D equal to [E兾(z
a兾2 N)]2. Now consider Exercise 8.54. Using p̂ .31 as an

estimate of p, determine the sample size that makes the margin of error in a 95 percent

confidence interval for the proportion of the 1,323 vouchers that were filled out incorrectly

equal to .04.

n  
Np(1  p)

(N  1)D  p(1  p)

n  
Ns2

(N  1)D  s
2

s  1.26.

x  4.3



8.6 A Comparison of Confidence Intervals and 
Tolerance Intervals (Optional) 

In this section we compare confidence intervals with tolerance intervals. We saw in Chapter 3

that a tolerance interval is an interval that is meant to contain a specified percentage (often

68.26 percent, 95.44 percent, or 99.73 percent) of the individual population measurements.

By contrast, a confidence interval for the population mean m is an interval that is meant to

contain one thing—the population mean m—and the confidence level associated with the con-

fidence interval expresses how sure we are that this interval contains m. Often we choose the

confidence level to be 95 percent or 99 percent because such a confidence level is usually con-

sidered high enough to provide convincing evidence about the true value of m.

8.6 A Comparison of Confidence Intervals and Tolerance Intervals (Optional) 341

Distinguish
between

confidence intervals
and tolerance inter-
vals (Optional).

LO8

EXAMPLE 8.14 The Car Mileage Case

Recall in the car mileage case that the mean and the standard deviation of the sample of 50 mileages

are and s  .7977. Also, recall that we have concluded in Example 3.8 (page 114)

that the estimated tolerance intervals , and

imply that approximately (1) 68.26 percent of all individual cars will

obtain mileages between 30.8 mpg and 32.4 mpg; (2) 95.44 percent of all individual cars will ob-

tain mileages between 30.0 mpg and 33.2 mpg; and (3) 99.73 percent of all individual cars will

obtain mileages between 29.2 mpg and 34.0 mpg. By contrast, we have seen in Section 8.2

(page 322) that a 95 percent t-based confidence interval for the mean, m, of the mileages of all in-

dividual cars is This interval says that we are 95 percent

confident that m is between 31.33 mpg and 31.79 mpg. Figure 8.17 graphically depicts the three

[x  2.010 (s兾150)]  [31.33, 31.79].

[29.2, 34.0][ x   3s]  

[x  s]  [30.8, 32.4], [x  2s]  [30.0, 33.2]

x  31.56

C

95 percent confidence interval

for the mean,  , of the mileages
of all individual cars

31.33 31.79

Estimated tolerance interval for
the mileages of 99.73 percent of
all individual cars

29.2 34.0

Estimated tolerance interval for
the mileages of 95.44 percent of
all individual cars

30.0 33.2

Estimated tolerance interval for
the mileages of 68.26 percent of
all individual cars

30.8 32.4

Histogram of the 50 Mileages
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Exercises for Section 8.6
CONCEPTS

8.58 What is a tolerance interval meant to contain?

8.59 What is a confidence interval for the population mean meant to contain?

8.60 Intuitively, why is a tolerance interval longer than a confidence interval?

METHODS AND APPLICATIONS

In Exercises 8.61 through 8.63 we give the mean and the standard deviation of a sample that has been

randomly selected from a population. For each exercise, find estimated tolerance intervals that contain

approximately 68.26 percent, 95.44 percent, and 99.73 percent of the individual population measurements.

Also, find a 95 percent confidence interval for the population mean. Interpret the estimated tolerance

intervals and the confidence interval in the context of the situation related to the exercise.

8.61 THE TRASH BAG CASE TrashBag

The mean and the standard deviation of the sample of 40 trash bag breaking strengths are

and s  1.6438.

8.62 THE BANK CUSTOMER WAITING TIME CASE WaitTime

The mean and the standard deviation of the sample of 100 bank customer waiting times are

and s  2.475.

8.63 THE VIDEO GAME SATISFACTION RATING CASE VideoGame

The mean and the standard deviation of the sample of 65 customer satisfaction ratings are

and s  2.6424.x  42.95

DS

x  5.46

DS

x  50.575

DS

Chapter Summary

In this chapter we discussed confidence intervals for population

means, proportions, and totals. We began by assuming that the

population is either infinite or much larger than (say, at least

20 times as large as) the sample. First, we studied how to compute a

confidence interval for a population mean. We saw that when the

population standard deviation s is known, we can use the normal

distribution to compute a confidence interval for a population

mean. When s is not known, if the population is normally

distributed (or at least mound-shaped) or if the sample size n is

large, we use the t distribution to compute this interval. We also

studied how to find the size of the sample needed if we wish to

compute a confidence interval for a mean with a prespecified con-

fidence level and with a prespecified margin of error. Figure 8.18 is

a flowchart summarizing our discussions concerning how to com-

pute an appropriate confidence interval for a population mean.

Next we saw that we are often interested in estimating the

proportion of population elements falling into a category of inter-

est. We showed how to compute a large sample confidence interval

for a population proportion, and we saw how to find the sample

size needed to estimate a population proportion with a prespeci-

fied confidence level and with a prespecified margin of error.

In optional Section 8.5 we continued by studying how to com-

pute confidence intervals for parameters of finite populations

that are not much larger than the sample. We saw how to com-

pute confidence intervals for a population mean and total when

we are sampling without replacement. We also saw how to com-

pute confidence intervals for a population proportion and for the

total number of units in a category when sampling a finite popu-

lation. In optional Section 8.6 we concluded this chapter by com-

paring confidence intervals with tolerance intervals.

Glossary of Terms

confidence coefficient: The (before sampling) probability that a

confidence interval for a population parameter will contain the

population parameter. (page 312)

confidence interval: An interval of numbers computed so that

we can be very confident (say, 95 percent confident) that a popu-

lation parameter is contained in the interval. (page 309)

confidence level: The percentage of time that a confidence inter-

val would contain a population parameter if all possible samples

were used to calculate the interval. (pages 312 and 314)

degrees of freedom (for a t curve): A parameter that describes

the exact spread of the curve of a t distribution. (page 318)

estimated tolerance intervals and the 95 percent confidence interval, which are shown below a his-

togram of the 50 mileages. Note that the estimated tolerance intervals, which are meant to contain

the many mileages that comprise specified percentages of all individual cars, are longer than the

95 percent confidence interval, which is meant to contain the single population mean m.
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margin of error: The quantity that is added to and subtracted

from a point estimate of a population parameter to obtain a con-

fidence interval for the parameter. It gives the maximum distance

between the population parameter of interest and its point

estimate when we assume the parameter is inside the confidence

interval. (page 310)

population total: The sum of the values of all the population

measurements. (page 336)

standard error of the estimate –x: The point estimate of s–x.

(page 322)

t distribution: A commonly used continuous probability distri-

bution that is described by a distribution curve similar to a normal

curve. The t curve is symmetrical about zero and is more spread

out than a standard normal curve. (page 318)

t point, t
A
: The point on the horizontal axis under a t curve that

gives a right-hand tail area equal to a. (page 318)

t table: A table of t point values listed according to the area in the

tail of the t curve and according to values of the degrees of free-

dom. (pages 318 and 319)

Important Formulas

A z-based confidence interval for a population mean m with s

known: page 314

A t-based confidence interval for a population mean m with s

unknown: page 320

Sample size when estimating m: page 326

A large sample confidence interval for a population proportion

p: page 329

Sample size when estimating p: page 331

Estimation of a mean and a total for a finite population: page 337

Estimation of a proportion and a total for a finite population:

page 339

Supplementary Exercises

8.64 In an article in the Journal of Accounting Research, Ashton, Willingham, and Elliott studied audit

delay (the length of time from a company’s fiscal year-end to the date of the auditor’s report) for

industrial and financial companies. In the study, a random sample of 250 industrial companies

yielded a mean audit delay of 68.04 days with a standard deviation of 35.72 days, while a random



sample of 238 financial companies yielded a mean audit delay of 56.74 days with a standard 

deviation of 34.87 days. Use these sample results to do the following:

a Calculate a 95 percent confidence interval for the mean audit delay for all industrial companies.

Note: when df  249.

b Calculate a 95 percent confidence interval for the mean audit delay for all financial companies.

Note: when df  237.

c By comparing the 95 percent confidence intervals you calculated in parts a and b, is there

strong evidence that the mean audit delay for financial companies is shorter than the mean audit

delay for industrial companies? Explain.

8.65 In an article in Accounting and Business Research, Beattie and Jones investigate the use and abuse

of graphic presentations in the annual reports of United Kingdom firms. The authors found that 

65 percent of the sampled companies graph at least one key financial variable, but that 30 percent

of the graphics are materially distorted (nonzero vertical axis, exaggerated trend, or the like). 

Results for U.S. firms have been found to be similar.

a Suppose that in a random sample of 465 graphics from the annual reports of United Kingdom

firms, 142 of the graphics are found to be distorted. Find a point estimate of and a 95 percent

confidence interval for the proportion of U.K. annual report graphics that are distorted.

b Based on this interval, can we be 95 percent confident that more than 25 percent of all graphics

appearing in the annual reports of U.K. firms are distorted? Explain. Does this suggest that

auditors should understand proper graphing methods?

c Determine the sample size needed in order to be 95 percent confident that p̂, the sample 

proportion of U.K. annual report graphics that are distorted, is within a margin of error of 

.03 of p, the true proportion of U.K. annual report graphics that are distorted.

8.66 On January 4, 2000, the Gallup Organization released the results of a poll dealing with the 

likelihood of computer-related Y2K problems and the possibility of terrorist attacks during the

New Year’s holiday at the turn of the century.7 The survey results were based on telephone 

interviews with a randomly selected national sample of 622 adults, 18 years and older, conducted

December 28, 1999.

a The Gallup poll found that 61 percent of the respondents believed that one or more terrorist

attacks were likely to happen on the New Year’s holiday. Based on this finding, calculate a 

95 percent confidence interval for the proportion of all U.S. adults who believed that one or

more terrorist attacks were likely to happen on the 2000 New Year’s holiday. Based on this 

interval, is it reasonable to conclude that fewer than two-thirds of all U.S. adults believed that

one or more terrorist attacks were likely?

b In explaining its survey methods, Gallup states the following: “For results based on this

sample, one can say with 95 percent confidence that the maximum error attributable to

sampling and other random effects is plus or minus 4 percentage points.” Explain how your

calculations for part a verify that this statement is true.

8.67 The manager of a chain of discount department stores wishes to estimate the total number of

erroneous discounts allowed by sales clerks during the last month. A random sample of 200 of

the chain’s 57,532 transactions for the last month reveals that erroneous discounts were allowed on

eight of the transactions. Use this sample information to find a point estimate of and a 95 percent

confidence interval for the total number of erroneous discounts allowed during the last month.

8.68 THE DISK BRAKE CASE

National Motors has equipped the ZX-900 with a new disk brake system. We define the stopping

distance for a ZX-900 to be the distance (in feet) required to bring the automobile to a complete stop

from a speed of 35 mph under normal driving conditions using this new brake system. In addition, we

define m to be the mean stopping distance of all ZX-900s. One of the ZX-900’s major competitors is

advertised to achieve a mean stopping distance of 60 feet. National Motors would like to claim in a

new advertising campaign that the ZX-900 achieves a shorter mean stopping distance.

Suppose that National Motors randomly selects a sample of n  81 ZX-900s. The company

records the stopping distance of each automobile and calculates the mean and standard deviation of

the sample of n  81 stopping distances to be ft and s  6.02 ft.

a Calculate a 95 percent confidence interval for m. Can National Motors be 95 percent confident

that m is less than 60 ft? Explain.

b Using the sample of n  81 stopping distances as a preliminary sample, find the sample size

necessary to make National Motors 95 percent confident that is within a margin of error of

one foot of m.

x

x  57.8

t.025  1.97

t.025  1.97
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7Source: www.gallup.com/poll/releases/, The Gallup Organization, January 4, 2000.
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8.69 A large construction contractor is building 257 homes, which are in various stages of completion.

For tax purposes, the contractor needs to estimate the total dollar value of its inventory due to

construction in progress. The contractor randomly selects (without replacement) a sample of 40 of

the 257 houses and determines the accumulated costs (the amount of money tied up in inventory)

for each sampled house. The contractor finds that the sample mean accumulated cost is

and that the sample standard deviation is s  $28,865.04.

a Find a point estimate of and a 99 percent confidence interval for the total accumulated costs

(total amount of money tied up in inventory) for all 257 homes that are under construction.

b Using the confidence interval as the basis for your answer, find a reasonable estimate of the

largest possible total dollar value of the contractor’s inventory due to construction in progress.

8.70 In an article in the Journal of Retailing, J. G. Blodgett, D. H. Granbois, and R. G. Walters

investigated negative word-of-mouth consumer behavior. In a random sample of 201 consumers,

150 reported that they engaged in negative word-of-mouth behavior (for instance, they vowed

never to patronize a retailer again). In addition, the 150 respondents who engaged in such

behavior, on average, told 4.88 people about their dissatisfying experience (with a standard

deviation equal to 6.11).

a Use these sample results to compute a 95 percent confidence interval for the proportion of all

consumers who engage in negative word-of-mouth behavior. On the basis of this interval, would

it be reasonable to claim that more than 70 percent of all consumers engage in such behavior?

Explain.

b Use the sample results to compute a 95 percent confidence interval for the mean number of

people who are told about a dissatisfying experience by consumers who engage in negative

word-of-mouth behavior. On the basis of this interval, would it be reasonable to claim that these

dissatisfied consumers tell, on average, at least three people about their bad experience?

Explain. Note: when df  149.

8.71 THE CIGARETTE ADVERTISEMENT CASE ModelAge

A random sample of 50 perceived age estimates for a model in a cigarette advertisement showed

that years and that s  3.7432 years.

a Use this sample to calculate a 95 percent confidence interval for the population mean age

estimate for all viewers of the ad.

b Remembering that the cigarette industry requires that models must appear at least 25 years old,

does the confidence interval make us 95 percent confident that the mean perceived age estimate

is at least 25? Is the mean perceived age estimate much more than 25? Explain.

8.72 In an article in the Journal of Management Information Systems, Mahmood and Mann investigate

how information technology (IT) investment relates to company performance. In particular,

Mahmood and Mann obtain sample data concerning IT investment for companies that use informa-

tion systems effectively. Among the variables studied are the company’s IT budget as a percentage

of company revenue, percentages of the IT budget spent on staff and training, and number of PCs

and terminals as a percentage of total employees.

a Suppose a random sample of 15 companies considered to use information systems effectively

yields a sample mean IT budget as a percentage of company revenue of with a stan-

dard deviation of Assuming that IT budget percentages are approximately normally

distributed, calculate a 99 percent confidence interval for the mean IT budget as a percentage 

of company revenue for all firms that use information systems effectively. Does this interval

provide evidence that a firm can successfully use information systems with an IT budget that is

less than 5 percent of company revenue? Explain.

b Suppose a random sample of 15 companies considered to use information systems effectively

yields a sample mean number of PCs and terminals as a percentage of total employees of

with a standard deviation of s  25.37. Assuming approximate normality, calculate

a 99 percent confidence interval for the mean number of PCs and terminals as a percentage of

total employees for all firms that use information systems effectively. Why is this interval so

wide? What can we do to obtain a narrower (more useful) confidence interval?

8.73 THE INVESTMENT CASE InvestRet

Suppose that random samples of 50 returns for each of the following investment classes give the

indicated sample mean and sample standard deviation:

Fixed annuities:  7.83%, s  .51%

Domestic large cap stocks:  13.42%, s  15.17%

Domestic midcap stocks:  15.03%, s  18.44%

Domestic small cap stocks:  22.51%, s  21.75%x

x

x

x

DS

x  34.76

s  1.64.

x  2.73

x  26.22

DS

t.025  1.98

x  $75,162.70



a For each investment class, compute a 95 percent confidence interval for the population mean

return.

b Do these intervals suggest that the current mean return for each investment class differs from

the historical (1970 to 1994) mean return given in Table 3.11 (page 143)? Explain.

8.74 THE INTERNATIONAL BUSINESS TRAVEL EXPENSE CASE

Recall that the mean and the standard deviation of a random sample of 35 one-day travel expenses

in Moscow are and s  $41. Find a 95 percent confidence interval for the mean, m, of

all one-day travel expenses in Moscow.

8.75 THE UNITED KINGDOM INSURANCE CASE

Assume that the U.K. insurance survey is based on 1,000 randomly selected U.K. households and

that 640 of these households spent money for life insurance in 1993. Find a 95 percent confidence

interval for the proportion, p, of all U.K. households that spent money for life insurance in 1993.

8.76 How safe are child car seats? Consumer Reports (May 2005) tested the safety of child car seats

in 30 mph crashes. They found “slim safety margins” for some child car seats. Suppose that 

Consumer Reports simulates the safety of the market-leading child car seat. Their test consists of

placing the maximum claimed weight in the car seat and simulating crashes at higher and higher

miles per hour until a problem occurs. The following data identify the speed at which a problem

with the car seat (such as the strap breaking, seat shell cracked, strap adjuster broke, detached from

base, etc.) first appeared: 31.0, 29.4, 30.4, 28.9, 29.7, 30.1, 32.3, 31.7, 35.4, 29.1, 31.2, 30.2. Using

the fact that and s  1.7862, find a 95 percent confidence interval for the true mean

speed at which a problem with the car seat first appears. Are we 95 percent confident that this

mean is at least 30 mph? CarSeat

8.77 In Exercise 2.85 (page 77), we briefly described a series of international quality standards called

ISO 9000. In the results of a Quality Systems Update/Deloitte & Touche survey of ISO 9000 

registered companies published by CEEM Information Systems, 515 of 620 companies surveyed 

reported that they are encouraging their suppliers to pursue ISO 9000 registration.8

a Using these survey results, compute a 95.44 percent confidence interval for the proportion

of all ISO 9000 registered companies that encourage their suppliers to pursue ISO 9000

registration. Assume here that the survey participants have been randomly selected.

b Based on this interval, is there conclusive evidence that more than 75 percent of all ISO 9000

registered companies encourage their suppliers to pursue ISO 9000 registration?

DS

x  30.7833

x  $538
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8Source: Is ISO 9000 for You? (Fairfax, VA: CEEM Information Services).

What is the average selling price of a home? The Data
and Story Library (DASL) contains data, including the
sale price, for a random sample of 117 homes sold in
Albuquerque, New Mexico. Go to the DASL website
(http://lib.stat.cmu.edu/DASL/) and retrieve the home
price data set (http://lib.stat.cmu.edu/DASL/Datafiles/
homedat.html.) Use MINITAB, Excel, or MegaStat to pro-
duce appropriate graphical (histogram, stem-and-leaf,
box plot) and numerical summaries of the price data.
Identify, from your numerical summaries, the sample
mean and standard deviation. Use these summaries to
construct a 99% confidence interval for m, the mean
sale price. Use statistical software (MINITAB, Excel, or

MegaStat) to compute a 99% confidence interval for m.
Do the results of your hand calculations agree with
those from your statistical software?

Technical note: There are many ways to capture the
home price data from the DASL site. One simple way is
to select just the rows containing the data values (and
not the labels), copy, paste directly into an Excel or
MINITAB worksheet, add your own variable labels, and
save the resulting worksheet. It is possible to copy the
variable labels from DASL as well, but the differences in
alignment and the intervening blank line add to the
difficulty. AlbHomeDS

8.78 Internet Exercise

Appendix 8.1 ■ Confidence Intervals Using Excel
The instruction block in this section begins by describing the entry of data into an Excel spreadsheet. Alternatively,
the data may be downloaded from this book’s website. The appropriate data file name is given at the top of the in-
struction block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing
results when using Excel.
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Confidence interval for a population mean in Fig-
ure 8.11 on page 323 (data file: DebtEq.xlsx):

• Enter the debt-to-equity ratio data from 
Example 8.3 (page 321) into cells A2 to A16 with
the label Ratio in cell A1.

• Select Data : Data Analysis : Descriptive Statistics.

• Click OK in the Data Analysis dialog box.

• In the Descriptive Statistics dialog box, enter
A1 : A16 into the Input Range window.

• Place a checkmark in the “Labels in first row”
checkbox.

• Under output options, select “New Worksheet
Ply” to have the output placed in a new 
worksheet and enter the name Output for 
the new worksheet.

• Place checkmarks in the Summary Statistics and
“Confidence Level for Mean” checkboxes. This
produces a t-based margin of error for a confi-
dence interval.

• Type 95 in the “Confidence Level for Mean” box.

• Click OK in the Descriptive Statistics dialog box.

• A descriptive statistics summary will be displayed
in cells A3 through B16 in the Output worksheet.
Drag the column borders to reveal complete 
labels for all of the descriptive statistics.

• Type the heading “95% Confidence Interval” into
cells D13 to E13.

• Compute the lower bound of the interval by 
typing the formula  B3  B16 into cell D15. This
subtracts the margin of error of the interval 
(labeled “Confidence Level (95%)”) from the 
sample mean.

• Compute the upper bound of the interval by 
typing the formula  B3  B16 into cell E15.

Confidence interval for the population mean debt-to-
equity ratio in Example 8.3 on page 321:

• Select Add-Ins : MegaStat : Confidence Intervals /
Sample Size

• In the “Confidence Intervals / Sample Size” dialog
box, click on the “Confidence Interval—mean” tab.

• Enter the sample mean (here equal to 1.3433) into
the Mean window.

• Enter the sample standard deviation (here equal to
.1921) into the “Std Dev” window.

• Enter the sample size (here equal to 15) into the
“n” window.

• Select a level of confidence from the pull-down
menu or type a desired percentage.

• Select a t-based or z-based interval by clicking on
“t” or “z.” Here we request a t-based interval.

• Click OK in the “Confidence Intervals / Sample Size”
dialog box.

Appendix 8.2 ■ Confidence Intervals Using MegaStat
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Appendix 8.3 ■ Confidence Intervals Using MINITAB
The instruction blocks in this section each begin by describing the entry of data into the MINITAB data window.
Alternatively, the data may be downloaded from this book’s website. The appropriate data file name is given at the
top of each instruction block. Please refer to Appendix 1.3 for further information about entering data, saving data,
and printing results when using MINITAB.

Confidence interval for a population proportion in
the cheese spread situation of Example 8.7 on 
page 329:

• In the “Confidence Intervals / Sample Size”
dialog box, click on the “Confidence interval—p”
tab.

• Enter the sample proportion (here equal to .063)
into the “p” window.

• Enter the sample size (here equal to 1000) into
the “n” window.

• Select a level of confidence from the pull-down
menu or type a desired percentage.

• Click OK in the “Confidence Intervals / Sample
Size” dialog box.

Sample size determination for a proportion problem
on page 332:

• In the “Confidence Intervals / Sample Size” dia-
log box, click on the “Sample size—p” tab.

• Enter the desired margin of error (here equal to
0.02) into the “E” window and enter an estimate
of the population proportion into the “p” 
window.

• Select a level of confidence from the pull-down
menu or type a desired percentage.

• Click OK in the “Confidence Intervals / Sample
Size” dialog box.

Sample size determination for a population mean
problem is done by clicking on the “Sample Size—
mean” tab. Then enter a desired margin of error, an
estimate of the population standard deviation, and
the desired level of confidence. Click OK.
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Confidence interval for a population mean in Fig-
ure 8.12 on page 323 (data file: Ratio.MTW):

• In the Data window, enter the debt-to-equity
ratio data from Example 8.3 (page 321) into a
single column with variable name Ratio.

• Select Stat : Basic Statistics : 1-Sample t.

• In the “1-Sample t (Test and Confidence Interval)”
dialog box, select “Samples in columns.”

• Select the variable name Ratio into the 
“Samples in columns” window.

• Click the Options... button.

• In the “1-Sample t—Options” dialog box, enter
the desired level of confidence (here 95.0) into
the “Confidence level” window.

• Select “not equal” from the Alternative 
drop-down menu, and click OK in the “1-Sample 
t—Options” dialog box.

• To produce a boxplot of the data with a 
graphical representation of the confidence inter-
val, click the Graphs . . . button, check the “Box-
plot of data” checkbox, and click OK in the 
“1-Sample t—Graphs” dialog box.

• Click OK in “1-Sample t (Test and Confidence 
Interval)” dialog box.

• The confidence interval is given in the Session
window, and the boxplot appears in a graphics
window.

A “1-Sample Z” interval is also available in MINITAB
under Basic Statistics. It requires a user-specified
value of the population standard deviation, which is
rarely known.

Confidence interval for a population proportion in
the marketing ethics situation of Example 8.9 on
pages 330 and 331:

• Select Stat : Basic Statistics : 1 Proportion

• In the “1 Proportion (Test and Confidence 
Interval)” dialog box, select “Summarized data.”

• Enter the number of trials (here equal to 205)
and the number of successes—or events—(here
equal to 117) into the appropriate windows.

• Click on the Options . . . button.

• In the “1 Proportion—Options” dialog box, enter
the desired level of confidence (here 95.0) into
the “Confidence level” window.

• Select “not equal” from the Alternative 
drop-down menu.

• Check the “Use test and interval based on 
normal distribution” checkbox.

• Click OK in the “1 Proportion—Options” dialog
box.

• Click OK in the “1 Proportion (Test and 
Confidence Interval)” dialog box.

• The confidence interval will be displayed in the
Session window.
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Hypothesis
Testing

Chapter Outline

After mastering the material in this chapter, you will be able to:

LO6 Calculate Type II error probabilities and the
power of a test, and determine sample size
(Optional).

LO7 Describe the properties of the chi-square
distribution and use a chi-square table
(Optional).

LO8 Use the chi-square distribution to make
statistical inferences about population
variances (Optional).

Learning Objectives

LO1 Specify appropriate null and alternative
hypotheses.

LO2 Describe Type I and Type II errors and their
probabilities.

LO3 Use critical values and p-values to perform
a z test about a population mean when s
is known.

LO4 Use critical values and p-values to perform
a t test about a population mean when s is
unknown.

LO5 Use critical values and p-values to perform
a large sample z test about a population
proportion.



ypothesis testing is a statistical procedure

used to provide evidence in favor of

some statement (called a hypothesis). For

instance, hypothesis testing might be used to

assess whether a population parameter, such as a

population mean, differs from a specified standard

or previous value. In this chapter we discuss testing

hypotheses about population means, proportions,

and variances.

In order to illustrate how hypothesis testing

works, we revisit several cases introduced in previous

chapters and also introduce some new cases:

The Payment Time Case: The consulting firm

uses hypothesis testing to provide strong evidence

that the new electronic billing system has reduced

the mean payment time by more than 50 percent.

The Cheese Spread Case: The cheese spread 

producer uses hypothesis testing to supply

extremely strong evidence that fewer than 

10 percent of all current purchasers would stop

buying the cheese spread if the new spout were

used.

The Debt-to-Equity Ratio Case: The bank uses

hypothesis testing to provide strong evidence that

the mean debt-to-equity ratio for its portfolio of

commercial loans is less than 1.5.

The Trash Bag Case: A marketer of trash bags uses

hypothesis testing to support its claim that the

mean breaking strength of its new trash bag is

greater than 50 pounds. As a result, a television

network approves use of this claim in a

commercial.

The Valentine’s Day Chocolate Case: A candy

company projects that this year’s sales of its 

special valentine box of assorted chocolates

will be 10 percent higher than last year.

The candy company uses hypothesis testing to

assess whether it is reasonable to plan for a

10 percent increase in sales of the 

valentine box.

C

9.1 The Null and Alternative Hypotheses and 
Errors in Hypothesis Testing 

One of the authors’ former students is employed by a major television network in the standards
and practices division. One of the division’s responsibilities is to reduce the chances that adver-
tisers will make false claims in commercials run on the network. Our former student reports that
the network uses a statistical methodology called hypothesis testing to do this.

To see how this might be done, suppose that a company wishes to advertise a claim, and sup-
pose that the network has reason to doubt that this claim is true. The network assumes for the sake
of argument that the claim is not valid. This assumption is called the null hypothesis. The state-
ment that the claim is valid is called the alternative, or research, hypothesis. The network will
run the commercial only if the company making the claim provides sufficient sample evidence
to reject the null hypothesis that the claim is not valid in favor of the alternative hypothesis that
the claim is valid. Explaining the exact meaning of sufficient sample evidence is quite involved
and will be discussed as we proceed through this chapter.

Specify
appropriate

null and alternative
hypotheses.

LO1

H

The Null Hypothesis and the Alternative Hypothesis

2 The alternative, or research, hypothesis, de-

noted Ha, is a statement that will be accepted

only if there is convincing sample evidence that

it is true.

In hypothesis testing:

1 The null hypothesis, denoted H0, is the statement

being tested. Often, the null hypothesis is a

statement of “no difference” or “no effect.” The

null hypothesis is not rejected unless there is

convincing sample evidence that it is false.

Setting up the null and alternative hypotheses in a practical situation can be tricky. In some sit-
uations there is a statement about a population parameter (such as a population mean) for which
we need to attempt to find supportive evidence. If the statement says that the parameter is



“greater than” a particular number, or if the statement says that the parameter is “less than” a par-
ticular number, then (for reasons to be discussed later) we make the statement the alternative hy-

pothesis, Ha, and we make the opposite of the statement the null hypothesis, H0. We illustrate
these ideas in the following two cases. 
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EXAMPLE 9.1 The Trash Bag Case1

Aleading manufacturer of trash bags produces the strongest trash bags on the market. The company
has developed a new 30-gallon bag using a specially formulated plastic that is stronger and more
biodegradable than other plastics. This plastic’s increased strength allows the bag’s thickness to be
reduced, and the resulting cost savings will enable the company to lower its bag price by 25 percent.
The company also believes the new bag is stronger than its current 30-gallon bag.

The manufacturer wants to advertise the new bag on a major television network. In addition
to promoting its price reduction, the company also wants to claim the new bag is better for the
environment and stronger than its current bag. The network is convinced of the bag’s environ-
mental advantages on scientific grounds. However, the network questions the company’s claim
of increased strength and requires statistical evidence to justify this claim. Although there are
various measures of bag strength, the manufacturer and the network agree to employ “breaking
strength.” A bag’s breaking strength is the amount of a representative trash mix (in pounds) that,
when loaded into a bag suspended in the air, will cause the bag to rip or tear. Tests show that
the current bag has a mean breaking strength that is very close to (but does not exceed) 
50 pounds. The new bag’s mean breaking strength m is unknown and in question. Because the
trash bag manufacturer wishes to show that m is greater than 50 pounds, we make the statement
that m is greater than 50 pounds the alternative hypothesis, Ha, and we make the statement that
m is less than or equal to 50 pounds the null hypothesis, H0. (Note that the null hypothesis says
that the new trash bag is not stronger than the former bag.) We summarize the null and alterna-
tive hypotheses by saying that we are testing

H0: m   50 versus Ha: m   50

The network will run the manufacturer’s commercial if a random sample of n new bags provides
sufficient evidence to reject H0: m   50 in favor of Ha: m   50.

C

EXAMPLE 9.2 The Payment Time Case

Recall that a management consulting firm has installed a new computer-based, electronic billing
system for a Hamilton, Ohio, trucking company. Because of the system’s advantages, and because
the trucking company’s clients are receptive to using this system, the management consulting
firm believes that the new system will reduce the mean bill payment time by more than 50 per-
cent. The mean payment time using the old billing system was approximately equal to, but no less
than, 39 days. Therefore, if m denotes the mean payment time using the new system, the consult-
ing firm believes and wishes to show that m is less than 19.5 days. It follows that we make the
statement that m is less than 19.5 days the alternative hypothesis, Ha, and we make the statement
that m is greater than or equal to 19.5 days the null hypothesis, H0. The consulting firm will ran-
domly select a sample of n invoices and determine if their payment times provide sufficient evi-
dence to reject H0: m 19.5 in favor of Ha: m 19.5. If such evidence exists, the consulting firm
will conclude that the new electronic billing system has reduced the Hamilton trucking com-
pany’s mean bill payment time by more than 50 percent. This conclusion will be used to help
demonstrate the benefits of the new billing system both to the Hamilton company and to other
trucking companies that are considering using such a system.

C

1This case is based on conversations by the authors with several employees working for a leading producer of trash bags. For

purposes of confidentiality, we have agreed to withhold the company’s name.
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In some situations we need to evaluate a statement that says that a population parameter ex-
actly equals a particular number. It then follows that we make the statement that the population
parameter equals the particular number the null hypothesis, H0, and we make the statement that
the population parameter does not equal the particular number the alternative hypothesis, Ha. We
demonstrate this in the following case. 

EXAMPLE 9.3 The Valentine’s Day Chocolate Case2

A candy company annually markets a special 18 ounce box of assorted chocolates to large retail
stores for Valentine’s Day. This year the candy company has designed an extremely attractive
new valentine box and will fill the box with an especially appealing assortment of chocolates. For
this reason, the candy company subjectively projects—based on past experience and knowledge
of the candy market—that sales of its valentine box will be 10 percent higher than last year. How-
ever, since the candy company must decide how many valentine boxes to produce, the company
needs to assess whether it is reasonable to plan for a 10 percent increase in sales.

Before the beginning of each Valentine’s Day sales season, the candy company sends large
retail stores information about its newest valentine box of assorted chocolates. This information
includes a description of the box of chocolates, as well as a preview of advertising displays that
the candy company will provide to help retail stores sell the chocolates. Each retail store then
places a single (nonreturnable) order of valentine boxes to satisfy its anticipated customer
demand for the Valentine’s Day sales season. Last year the mean order quantity of large retail
stores was 300 boxes per store. If the projected 10 percent sales increase will occur, the mean
order quantity, m, of large retail stores this year will equal 330 boxes per store. Therefore, the
candy company will test the null hypothesis H0: m 330 versus the alternative hypothesis Ha:
m 330. Here, the alternative hypothesis, Ha says that m might be greater than or less than 330
boxes. If m turns out to be greater than 330 boxes and the candy company bases its production
on a projected mean order quantity of 330 boxes, the company will fail to satisfy demand for its
valentine box. If m turns out to be less than 330 boxes and the candy company bases its produc-
tion on a projected mean order quantity of 330 boxes, the company will produce more valentine
boxes than it can sell.

To perform the hypothesis test, the candy company will randomly select a sample of n large
retail stores and will make an early mailing to these stores promoting this year’s valentine box.
The candy company will then ask each retail store to report how many valentine boxes it antici-
pates ordering. If the sample data do not provide sufficient evidence to reject H0: m 330 in favor
of Ha: m 330, the candy company will base its production on the projected 10 percent sales in-
crease. On the other hand, if there is sufficient evidence to reject H0: m 330, the candy company
will change its production plans.

We next summarize the sets of null and alternative hypotheses that we have thus far
considered.

H0: m   50 H0: m   19.5 H0: m   330
versus versus versus

Ha: m   50 Ha: m   19.5 Ha: m   330

The alternative hypothesis Ha: m 50 is called a one-sided, greater than alternative hypothesis,
whereas Ha: m 19.5 is called a one-sided, less than alternative hypothesis, and Ha: m 330
is called a two-sided, not equal to alternative hypothesis. Many of the alternative hypotheses
we consider in this book are one of these three types. Also, note that each null hypothesis we
have considered involves an equality. For example, the null hypothesis H0: m 50 says that
m is either less than or equal to 50. We will see that, in general, the approach we use to test a
null hypothesis versus an alternative hypothesis requires that the null hypothesis involve an
equality. For this reason, we always formulate the null and alternative hypotheses so that the
null hypothesis involves an equality.

2Thanks to Krogers of Oxford, Ohio, for helpful discussions concerning this case. 
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The idea of a test statistic Suppose that in the trash bag case the manufacturer randomly
selects a sample of n  40 new trash bags. Each of these bags is tested for breaking strength, and
the sample mean of the 40 breaking strengths is calculated. In order to test H0: m 50 versus

, we utilize the test statistic

The test statistic z measures the distance between and 50. The division by says that this
distance is measured in units of the standard deviation of all possible sample means. For exam-
ple, a value of z equal to, say, 2.4 would tell us that is 2.4 such standard deviations above 50. In
general, a value of the test statistic that is less than or equal to zero results when is less than or
equal to 50. This provides no evidence to support rejecting H0 in favor of Ha because the point
estimate indicates that m is probably less than or equal to 50. However, a value of the test sta-
tistic that is greater than zero results when is greater than 50. This provides evidence to support
rejecting H0 in favor of Ha because the point estimate indicates that mmight be greater than 50.
Furthermore, the farther the value of the test statistic is above 0 (the farther is above 50), the
stronger is the evidence to support rejecting H0 in favor of Ha.

Hypothesis testing and the legal system If the value of the test statistic z is far enough
above zero, we reject H0 in favor of Ha. To see how large z must be in order to reject H0, we must
understand that a hypothesis test rejects a null hypothesis H0 only if there is strong statistical
evidence against H0. This is similar to our legal system, which rejects the innocence of the
accused only if evidence of guilt is beyond a reasonable doubt. For instance, the network will re-
ject H0: m 50 and run the trash bag commercial only if the test statistic z is far enough above
zero to show beyond a reasonable doubt that H0: m 50 is false and Ha: m 50 is true. A test sta-
tistic that is only slightly greater than zero might not be convincing enough. However, because
such a test statistic would result from a sample mean that is slightly greater than 50, it would
provide some evidence to support rejecting , and it certainly would not provide
strong evidence supporting . Therefore, if the value of the test statistic is not large
enough to convince us to reject H0, we do not say that we accept H0. Rather we say that we do
not reject H0 because the evidence against H0 is not strong enough. Again, this is similar to our
legal system, where the lack of evidence of guilt beyond a reasonable doubt results in a verdict
of not guilty, but does not prove that the accused is innocent.

Type I and Type II errors and their probabilities To determine exactly how much statisti-
cal evidence is required to reject H0, we consider the errors and the correct decisions that can be
made in hypothesis testing. These errors and correct decisions, as well as their implications in
the trash bag advertising example, are summarized in Tables 9.1 and 9.2. Across the top of each
table are listed the two possible “states of nature.” Either H0: m 50 is true, which says the manu-
facturer’s claim that m is greater than 50 is false, or H0 is false, which says the claim is true. Down
the left side of each table are listed the two possible decisions we can make in the hypothesis test.
Using the sample data, we will either reject H0:m 50, which implies that the claim will be adver-
tised, or we will not reject H0, which implies that the claim will not be advertised.

In general, the two types of errors that can be made in hypothesis testing are defined as follows:

H0 :m  50
H0 :m  50

x

x

x

x

x

x

x
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Describe
Type I and

Type II errors and
their probabilities.
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Type I and Type II Errors

If we reject H0 when it is true, this is a Type I error.

If we do not reject H0 when it is false, this is a Type II error.

As can be seen by comparing Tables 9.1 and 9.2, if we commit a Type I error, we will advertise
a false claim. If we commit a Type II error, we will fail to advertise a true claim.

We now let the symbol (pronounced alpha) denote the probability of a Type I error,
and we let (pronounced beta) denote the probability of a Type II error. Obviously, weB

A
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would like both a and b to be small. A common (but not the only) procedure is to base a
hypothesis test on taking a sample of a fixed size (for example, n  40 trash bags) and on set-
ting a equal to a small prespecified value. Setting low means there is only a small chance of
rejecting H0 when it is true. This implies that we are requiring strong evidence against H0

before we reject it.
We sometimes choose as high as .10, but we usually choose between .05 and .01. A fre-

quent choice for a is .05. In fact, our former student tells us that the network often tests advertis-
ing claims by setting the probability of a Type I error equal to .05. That is, the network will run a
commercial making a claim if the sample evidence allows it to reject a null hypothesis that says
the claim is not valid in favor of an alternative hypothesis that says the claim is valid with a set
equal to .05. Since a Type I error is deciding that the claim is valid when it is not, the policy of
setting equal to .05 says that, in the long run, the network will advertise only 5 percent of all
invalid claims made by advertisers.

One might wonder why the network does not set a lower—say at .01. One reason is that it can
be shown that, for a fixed sample size, the lower we set , the higher is , and the higher we
set , the lower is . Setting a at .05 means that b, the probability of failing to advertise a true
claim (a Type II error), will be smaller than it would be if were set at .01. As long as (1) the
claim to be advertised is plausible and (2) the consequences of advertising the claim even if it is
false are not terribly serious, then it is reasonable to set a equal to .05. However, if either (1) or
(2) is not true, then we might set a lower than .05. For example, suppose a pharmaceutical
company wishes to advertise that it has developed an effective treatment for a disease that has
formerly been very resistant to treatment. Such a claim is (perhaps) difficult to believe. More-
over, if the claim is false, patients suffering from the disease would be subjected to false hope and
needless expense. In such a case, it might be reasonable for the network to set a at .01 because
this would lower the chance of advertising the claim if it is false. We usually do not set a lower
than .01 because doing so often leads to an unacceptably large value of b. We explain some meth-
ods for computing the probability of a Type II error in optional Section 9.5. However, b can be
difficult or impossible to calculate in many situations, and we often must rely on our intuition
when deciding how to set a.

a

BA

BA

a

aa

a

T A B L E 9 . 1 Type I and Type II Errors

State of Nature
Decision H0: M ⱕ 50 True H0: M ⱕ 50 False

Reject H0: M ⱕ 50 Type I error Correct decision

Do not reject H0: M ⱕ 50 Correct decision Type II error

T A B L E 9 . 2 The Implications of Type I and Type II Errors in the Trash Bag Example

State of Nature
Decision Claim False Claim True

Advertise the claim Advertise a false claim Advertise a true claim

Do not advertise the claim Do not advertise a false claim Do not advertise a true claim

Exercises for Section 9.1
CONCEPTS

9.1 Define each of the following: Type I error, a, Type II error, b.

9.2 When testing a hypothesis, why don’t we set the probability of a Type I error to be extremely 
small? Explain.



METHODS AND APPLICATIONS

9.3 THE VIDEO GAME SATISFACTION RATING CASE VideoGame

Recall that “very satisfied” customers give the XYZ-Box video game system a rating that is at
least 42. Suppose that the manufacturer of the XYZ-Box wishes to use the 65 satisfaction ratings
to provide evidence supporting the claim that the mean composite satisfaction rating for the
XYZ-Box exceeds 42.
a Letting m represent the mean composite satisfaction rating for the XYZ-Box, set up the null

and alternative hypotheses needed if we wish to attempt to provide evidence supporting the
claim that m exceeds 42.

b In the context of this situation, interpret making a Type I error; interpret making a Type II error.

9.4 THE BANK CUSTOMER WAITING TIME CASE WaitTime

Recall that a bank manager has developed a new system to reduce the time customers spend
waiting for teller service during peak hours. The manager hopes the new system will reduce
waiting times from the current 9 to 10 minutes to less than 6 minutes.

Suppose the manager wishes to use the 100 waiting times to support the claim that the mean
waiting time under the new system is shorter than six minutes.
a Letting m represent the mean waiting time under the new system, set up the null and alternative

hypotheses needed if we wish to attempt to provide evidence supporting the claim that m is
shorter than six minutes.

b In the context of this situation, interpret making a Type I error; interpret making a Type II error.

9.5 An automobile parts supplier owns a machine that produces a cylindrical engine part. This part is
supposed to have an outside diameter of three inches. Parts with diameters that are too small or
too large do not meet customer requirements and must be rejected. Lately, the company has
experienced problems meeting customer requirements. The technical staff feels that the mean
diameter produced by the machine is off target. In order to verify this, a special study will
randomly sample 100 parts produced by the machine. The 100 sampled parts will be measured,
and if the results obtained cast a substantial amount of doubt on the hypothesis that the mean
diameter equals the target value of three inches, the company will assign a problem-solving team
to intensively search for the causes of the problem.
a The parts supplier wishes to set up a hypothesis test so that the problem-solving team will be

assigned when the null hypothesis is rejected. Set up the null and alternative hypotheses for
this situation.

b In the context of this situation, interpret making a Type I error; interpret making a Type II error.

9.6 The Crown Bottling Company has just installed a new bottling process that will fill 16-ounce
bottles of the popular Crown Classic Cola soft drink. Both overfilling and underfilling bottles are
undesirable: Underfilling leads to customer complaints and overfilling costs the company
considerable money. In order to verify that the filler is set up correctly, the company wishes to
see whether the mean bottle fill, m, is close to the target fill of 16 ounces. To this end, a random
sample of 36 filled bottles is selected from the output of a test filler run. If the sample results cast
a substantial amount of doubt on the hypothesis that the mean bottle fill is the desired 16 ounces,
then the filler’s initial setup will be readjusted.
a The bottling company wants to set up a hypothesis test so that the filler will be readjusted if the

null hypothesis is rejected. Set up the null and alternative hypotheses for this hypothesis test.
b In the context of this situation, interpret making a Type I error; interpret making a Type II error.

9.7 Consolidated Power, a large electric power utility, has just built a modern nuclear power plant. This
plant discharges waste water that is allowed to flow into the Atlantic Ocean. The Environmental
Protection Agency (EPA) has ordered that the waste water may not be excessively warm so that
thermal pollution of the marine environment near the plant can be avoided. Because of this order,
the waste water is allowed to cool in specially constructed ponds and is then released into the
ocean. This cooling system works properly if the mean temperature of waste water discharged is
60°F or cooler. Consolidated Power is required to monitor the temperature of the waste water. 
A sample of 100 temperature readings will be obtained each day, and if the sample results cast a
substantial amount of doubt on the hypothesis that the cooling system is working properly (the
mean temperature of waste water discharged is 60°F or cooler), then the plant must be shut down
and appropriate actions must be taken to correct the problem.
a Consolidated Power wishes to set up a hypothesis test so that the power plant will be shut down

when the null hypothesis is rejected. Set up the null and alternative hypotheses that should be used.
b In the context of this situation, interpret making a Type I error; interpret making a Type II error.
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c The EPA periodically conducts spot checks to determine whether the waste water being
discharged is too warm. Suppose the EPA has the power to impose very severe penalties (for
example, very heavy fines) when the waste water is excessively warm. Other things being
equal, should Consolidated Power set the probability of a Type I error equal to a   .01 or
a .05? Explain.

9.2 z Tests about a Population Mean: S Known 
In this section we discuss hypothesis tests about a population mean that are based on the normal

distribution. These tests are called z tests, and they require that the true value of the population

standard deviation s is known. Of course, in most real-world situations the true value of s is not
known. However, the concepts and calculations of hypothesis testing are most easily illustrated
using the normal distribution. Therefore, in this section we will assume that—through theory or
history related to the population under consideration—we know s. When s is unknown, we test
hypotheses about a population mean by using the t distribution. In Section 9.3 we study t tests,
and we will revisit the examples of this section assuming that s is unknown.

Testing a “greater than” alternative hypothesis by using a critical value rule In
Section 9.1 we explained how to set up appropriate null and alternative hypotheses. We also
discussed how to specify a value for a, the probability of a Type I error (also called the level of
significance) of the hypothesis test, and we introduced the idea of a test statistic. We can use these
concepts to begin developing a five-step hypothesis-testing procedure. We will introduce these
steps in the context of the trash bag case and testing a “greater than” alternative hypothesis.

Step 1: State the null hypothesis H0 and the alternative hypothesis Ha. In the trash bag case,
we will test H0: m  50 versus Ha: m  50. Here, m is the mean breaking strength of the new
trash bag.
Step 2: Specify the level of significance A. The television network will run the commercial stat-
ing that the new trash bag is stronger than the former bag if we can reject H0: m  50 in favor of
Ha: m  50 by setting a equal to .05.
Step 3: Select the test statistic. In order to test H0: m 50 versus Ha: m 50, we will test the
modified null hypothesis H0: m 50 versus Ha: m 50. The idea here is that if there is suffi-
cient evidence to reject the hypothesis that m equals 50 in favor of m 50, then there is certainly
also sufficient evidence to reject the hypothesis that m is less than or equal to 50. In order to test
H0: m 50 versus Ha: m 50, we will randomly select a sample of n  40 new trash bags and cal-
culate the mean  of the breaking strengths of these bags. We will then utilize the test statistic

A positive value of this test statistic results from an that is greater than 50 and thus provides
evidence against H0: m 50 and in favor of Ha: m 50. Moreover, the manufacturer has
improved its trash bags multiple times in the past. Studies show that the population standard
deviation s of individual trash bag breaking strengths has remained constant for each of these
updates and equals 1.65 pounds.
Step 4: Determine the critical value rule for deciding whether to reject H0. To decide how
large the test statistic z must be to reject H0 in favor of Ha by setting the probability of a Type I
error equal to a, we note that different samples would give different sample means and thus dif-
ferent values of z. Because the sample size n 40 is large, the Central Limit Theorem tells us
that the sampling distribution of z is (approximately) a standard normal distribution if the
null hypothesis H0: M 50 is true. Therefore, we do the following:

• Place the probability of a Type I error, a, in the right-hand tail of the standard normal curve
and use the normal table (see Table A.3, page 860) to find the normal point za. Here za,
which we call a critical value, is the point on the horizontal axis under the standard normal
curve that gives a right-hand tail area equal to a.

• Reject H0: M 50 in favor of Ha: M 50 if and only if the test statistic z is greater than
the critical value zA. (This is the critical value rule.)
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Figure 9.1 illustrates that since we have set a equal to .05, we should use the critical value
za   z.05  1.645 (see Table A.3). This says that we should reject H0 if z   1.645 and we should
not reject H0 if z   1.645.

To better understand the critical value rule, consider the .05 area in the right-hand tail of the
standard normal curve in Figure 9.1. This .05 area is the probability of a Type I error and says
that, if H0: m  50 is true, then only 5 percent of all possible values of the test statistic z are
greater than 1.645 and thus would cause us to wrongly reject H0. Therefore, if the sample that we
will actually select gives a value of the test statistic z that is greater than 1.645 and thus causes us
to reject H0: m  50, we can be intuitively confident that we have made the right decision. This
is because we will have rejected H0 by using a test that allows only a 5 percent chance of wrongly
rejecting H0. In general, if we can reject a null hypothesis in favor of an alternative hypothesis by
setting the probability of a Type I error equal to a, we say that we have statistical significance
at the A level.
Step 5: Collect the sample data, compute the value of the test statistic, and decide whether to
reject H0. Interpret the statistical results. When the sample of n  40 new trash bags is randomly
selected, the mean of the breaking strengths is calculated to be  50.575 pounds. Assuming that
s is 1.65 pounds, the value of the test statistic is 

Because z  2.20 is greater than the critical value z.05  1.645, we can reject H0: m 50 in favor
of Ha: m  50 by setting a equal to .05. Therefore, we conclude (at an a of .05) that the mean
breaking strength of the new trash bag exceeds 50 pounds. Furthermore, this conclusion has
practical importance to the trash bag manufacturer because it means that the television network
will approve running commercials claiming that the new trash bag is stronger than the former
bag. Note, however, that the point estimate of m,  50.575, indicates that m is not much larger
than 50. Therefore, the trash bag manufacturer can claim only that its new bag is slightly stronger
than its former bag. Of course, this might be practically important to consumers who feel that, be-
cause the new bag is 25 percent less expensive and is more environmentally sound, it is definitely
worth purchasing if it has any strength advantage. However, to customers who are looking only
for a substantial increase in bag strength, the statistical results would not be practically important.
Notice that the point estimate of the parameter involved in a hypothesis test can help us to assess
practical importance.

A p-value for testing a “greater than” alternative hypothesis To decide whether to
reject the null hypothesis H0 at level of significance  , steps 4 and 5 of the five-step hypothesis
testing procedure compare the test statistic value to a critical value. Another way to make this
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F I G U R E 9 . 1 The Critical Value for Testing H0: M 50 versus Ha: M 50 by Setting A .05
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decision is to calculate a p-value, which measures the likelihood of the sample results if the null
hypothesis H0 is true. Sample results that are not likely if H0 is true are evidence that H0 is
not true. To test H0 by using a p-value, we use the following steps 4 and 5:

Step 4: Collect the sample data, compute the value of the test statistic, and compute the p-
value. The p-value for testing a null hypothesis H0 versus an alternative hypothesis Ha is defined
as follows:

The p-value is the probability, computed assuming that the null hypothesis H0 is true, of observ-
ing a value of the test statistic that is at least as contradictory to H0 and supportive of Ha as the
value actually computed from the sample data.

In the trash bag case, the value of the test statistic computed from the sample data is z  2.20.
Because we are testing H0: m  50 versus the greater than alternative hypothesis Ha: m  50,
this positive test statistic value contradicts H0 and supports Ha. A value of the test statistic that
is at least as contradictory to H0 and supportive of Ha as z  2.20 is a value of the test statistic
that is greater than or equal to z  2.20. Therefore, the p-value is the probability, computed
assuming that H0: m  50 is true, of observing a value of the test statistic that is greater than or
equal to z  2.20. As illustrated in Figure 9.2(b), this p-value is the area under the standard
normal curve to the right of z  2.20 and equals 1  .9861  .0139 (see Table A.3, page 860).
The p-value of .0139 says that, if H0: m  50 is true, then only 139 in 10,000 of all possible test
statistic values are at least as large, or contradictory to H0, as the value z  2.20. That is, if we
are to believe that H0 is true, we must believe that we have observed a test statistic value that
can be described as having a 139 in 10,000 chance. Because it is difficult to believe that we have
observed a 139 in 10,000 chance, we intuitively have evidence that H0: m 50 is false and Ha:
m 50 is true. Is this evidence strong enough to reject H0: m 50 and run the trash bag com-
mercial? As discussed in step 5, this depends on the level of significance a used by the television
network.
Step 5: Reject H0 if the p-value is less than . Interpret the statistical results. Consider the
two normal curves in Figures 9.2(a) and (b). These normal curves show that if the p-value of
.0139 is less than a particular level of significance a, the test statistic value z  2.20 is greater
than the critical value za, and thus we can reject H0: m 50 at level of significance a. For exam-
ple, recall that the television network has set a equal to .05. Then, because the p-value of .0139
is less than the A of .05, we would reject H0: M  50 at level of significance .05 and thus run
the trash bag commercial on the network.

A

F I G U R E 9 . 2 The p-Value for Testing H0: M 50 versus Ha: M⬎ 50.
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Comparing the critical value and p-value methods Thus far we have seen that we can
reject H0: m 50 in favor of Ha: m  50 at level of significance a if the test statistic z is greater
than the critical value za, or equivalently, the p-value is less than A. Because different televi-
sion networks sometimes have different policies for evaluating an advertising claim, different
television networks sometimes use different values of a when evaluating the same advertising
claim. For example, whereas the network of the previous example used an a value of .05 to
evaluate the trash bag claim, three other networks might use three different a values—say, .04,
.025, and .01—to evaluate this claim. If we use the critical value method to test H0: m 50 ver-
sus Ha: m 50 at each of these a values, we would have to look up a different critical value za for
each different a value. On the  other hand, the p-value of .0139 immediately tells us whether we
can reject H0 at each different a value. Specifically, because the p-value of .0139 is less than each
of the a values .05, .04, and .025, we would reject H0 and thus run the trash bag commercial on
the networks using these a values. However, because the p-value of .0139 is greater than the a
value .01, we would not reject H0 and thus not run the trash bag commercial on the network using
this a value.

The above discussion illustrates that, if there are different decision makers who wish to test a
particular null hypothesis by using different a values, the most efficient way to test the hypothe-
sis is to use the p-value method. In addition, as originally defined, the p-value is a probability that
measures the likelihood of the sample results if the null hypothesis H0 is true. The smaller the 
p-value is, the less likely are the sample results if the null hypothesis H0 is true. Therefore,
the stronger is the evidence that H0 is false and that the alternative hypothesis Ha is true. In-
terpreted in this way, the p-value can be regarded as a measure of the weight of evidence against
the null hypothesis and in favor of the alternative hypothesis. Through statistical practice, statis-
ticians have concluded (somewhat subjectively) that:
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Interpreting the Weight of Evidence against the Null Hypothesis

If the p-value for testing H0 is less than • .01, we have very strong evidence that H0 is

false.

• .001, we have extremely strong evidence that

H0 is false.
• .10, we have some evidence that H0 is false.

• .05, we have strong evidence that H0 is false.

We will frequently use these conclusions in future examples. Understand, however, that there
are really no sharp borders between different weights of evidence. Rather, there is really only in-
creasingly strong evidence against the null hypothesis as the p-value decreases. For example, the
trash bag manufacturer, in addition to deciding whether H0: m 50 can be rejected in favor of Ha:
m 50 at each television network’s chosen value of a, would almost certainly wish to know how
much evidence there is that its new trash bag is stronger than its former trash bag. The p-value for
testing H0: m 50 is .0139, which is less than .05 but not quite less than .01. Therefore, we have
strong evidence, and almost—but not quite—very strong evidence, that H0: m 50 is false and
Ha: m 50 is true. That is, we have strong evidence that the mean breaking strength of the new
trash bag exceeds 50 pounds.

In the real world, in spite of the advantages of the p-value, both critical values and p-values
are used to carry out hypothesis tests. For example, NBC uses critical value rules, whereas CBS
uses p-values, to statistically evaluate advertising claims. Throughout this book we will continue
to present both the critical value and the p-value approaches to hypothesis testing.

Testing a “less than” alternative hypothesis We next consider the payment time case
and testing a “less than” alternative hypothesis: 

Step 1: State the null hypothesis H0 and the alternative hypothesis Ha. In order to study
whether the new electronic billing system reduces the mean bill payment time by more than
50 percent, the management consulting firm will test H0: m 19.5 versus Ha: m 19.5. 
Step 2: Specify the level of significance a. The management consulting firm wants to be very
sure that it truthfully describes the benefits of the new system both to the company in which it has
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been installed and to other companies that are considering installing such a system. Therefore,
the firm will require very strong evidence to conclude that m is less than 19.5, which implies that
it will test H0: m 19.5 versus Ha: m 19.5 by setting a equal to .01.
Step 3: Select the test statistic. In order to test H0: m 19.5 versus Ha: m 19.5, we will test
the modified null hypothesis H0: m 19.5 versus Ha: m 19.5. To do this, we will randomly
select a sample of n  65 invoices paid using the billing system and calculate the mean of the
payment times of these invoices. Since the sample size is large, the Central Limit Theorem ap-
plies, and we will utilize the test statistic

A value of the test statistic z that is less than zero results when is less than 19.5. This provides
evidence to support rejecting H0 in favor of Ha because the point estimate indicates that mmight
be less than 19.5.
Step 4: Determine a critical value rule for deciding whether to reject H0. To decide how
much less than zero the test statistic must be to reject H0 in favor of Ha by setting the probability of
a Type I error equal to a, we do the following:

• Place the probability of a Type I error, a, in the left-hand tail of the standard normal curve
and use the normal table to find the critical value  za. Here  za is the negative of the
normal point za. That is,  za is the point on the horizontal axis under the standard normal
curve that gives a left-hand tail area equal to a.

• Reject H0: M 19.5 in favor of Ha: M 19.5 if and only if the test statistic z is less than
the critical value  zA. Because a equals .01, the critical value  za is  z.01   2.33 [see
Figure. 9.3(a)].

Step 4: Collect the sample data, compute the value of the test statistic, and decide whether to
reject H0. Interpret the statistical results. When the sample of n  65 invoices is randomly se-
lected, the mean of the payment times of these invoices is calculated to be  18.1077 days. As-
suming that the population standard deviation s of payment times for the new electronic billing
system is 4.2 days (as discussed on page 288 of Chapter 7), the value of the test statistic is
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Because z    2.67 is less than the critical value  z.01    2.33, we can reject H0: m 19.5 in
favor of Ha: m 19.5 by setting a equal to .01. Therefore, we conclude (at an a of .01) that the
mean payment time for the new electronic billing system is less than 19.5 days. This, along with
the fact that the sample mean  18.1077 is slightly less than 19.5, implies that it is reasonable
for the management consulting firm to conclude that the new electronic billing system has reduced
the mean payment time by slightly more than 50 percent (a substantial improvement over the old
system). 

A p-value for testing a “less than” alternative hypothesis To test H0: m 19.5 versus
Ha:m 19.5 in the payment time case by using a p-value, we use the following steps 4 and 5:

Step 4: Collect the sample data, compute the value of the test statistic, and compute the 
p-value. In the payment time case, the value of the test statistic computed from the sample data
is z    2.67. Because we are testing H0: m 19.5 versus the less than alternative hypothesis
Ha:m  19.5, a value of the test statistic that is at least as contradictory to H0 and supportive of
Ha as z    2.67 is a value of the test statistic that is less than or equal to z    2.67. There-
fore, the p-value is the probability, computed assuming that H0:m 19.5 is true, of observing a
value of the test statistic that is less than or equal to z    2.67. As illustrated in Figure 9.3(b),
this p-value is the area under the standard normal curve to the left of z    2.67 and equals
.0038 (see Table A.3, page 860). The p-value of .0038 says that, if H0: m 19.5 is true, then only
38 in 10,000 of all possible test statistic values are at least as negative, or contradictory to H0, as
the value z   2.67. That is, if we are to believe that H0 is true, we must believe that we have ob-
served a test statistic value that can be described as having a 38 in 10,000 chance.
Step 5: Reject H0 if the p-value is less than a. Interpret the statistical results. The manage-
ment consulting firm has set a equal to .01. The p-value of .0038 is less than the A of .01.
Therefore, we can reject H0 by setting A equal to .01. Moreover, because the p-value of .0038
is between .01 and .001, we have very strong evidence, but not extremely strong evidence, that
H0: m 19.5 is false and Ha: m 19.5 is true. That is, we have very strong evidence that the new
billing system has reduced the mean payment time by more than 50 percent.

Testing a “not equal to” alternative hypothesis We next consider the Valentine’s Day
chocolate case and testing a “not equal to” alternative hypothesis.

Step 1: State the null hypothesis H0 and the alternative hypothesis Ha. To assess whether
this year’s sales of its valentine box of assorted chocolates will be 10 percent higher than last
year’s, the candy company will test H0: m   330 versus Ha: m   330. Here, m is the mean order
quantity of this year’s valentine box by large retail stores.
Step 2: Specify the level of significance a. If the candy company does not reject H0: m  330
and H0: m  330 is false—a Type II error—the candy company will base its production of valen-
tine boxes on a 10 percent projected sales increase that is not correct. Since the candy company
wishes to have a reasonably small probability of making this Type II error, the company will set
a equal to .05. Setting a equal to .05 rather than .01 makes the probability of a Type II error
smaller than it would be if a were set at .01. Note that in optional Section 9.5 we will verify that
the probability of a Type II error in this situation is reasonably small. Therefore, if the candy com-
pany ends up not rejecting H0: m   330 and therefore decides to base its production of valentine
boxes on the ten percent projected sales increase, the company can be intuitively confident that it
has made the right decision. 
Step 3: Select the test statistic. The candy company will randomly select large retail
stores and will make an early mailing to these stores promoting this year’s valentine box of assorted
chocolates. The candy company will then ask each sampled retail store to report its anticipated order
quantity of valentine boxes and will calculate the mean of the reported order quantities. Since the
sample size is large, the Central Limit Theorem applies, and we will utilize the test statistic

A value of the test statistic that is greater than 0 results when is greater than 330. This provides
evidence to support rejecting H0 in favor of Ha because the point estimate indicates that mmightx

x

z  
x  330

s 1n

x

n  100

x
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be greater than 330. Similarly, a value of the test statistic that is less than 0 results when is less
than 330. This also provides evidence to support rejecting H0 in favor of Ha because the point
estimate indicates that m might be less than 330. 
Step 4: Determine a critical value rule for deciding whether to reject H0. To decide how dif-
ferent from zero (positive or negative) the test statistic must be in order to reject H0 in favor of Ha

by setting the probability of a Type I error equal to a, we do the following:

• Divide the probability of a Type I error, a, into two equal parts, and place the area a 2 in the
right-hand tail of the standard normal curve and the area a 2 in the left-hand tail of the stan-
dard normal curve. Then use the normal table to find the rejection points za 2 and  za 2. Here
za 2 is the point on the horizontal axis under the standard normal curve that gives a right-hand
tail area equal to a 2, and  za 2 is the point giving a left-hand tail area equal to a 2.

• Reject H0: M 330 in favor of Ha: M 330 if and only if the test statistic z is greater
than the critical value zA 2 or less than the critical value  zA 2. Note that this is equivalent
to saying that we should reject H0 if and only if the absolute value of the test statistic, |z|,
is greater than the critical value zA 2. Because a equals .05, the critical values are [see
Figure 9.4(a)]

za 2   z.05 2   z.025   1.96 and  za 2    z.025    1.96

Step 5: Collect the sample data, compute the value of the test statistic, and decide whether
to reject H0. Interpret the statistical results. When the sample of large retail stores is
randomly selected, the mean of their reported order quantities is calculated to be boxes.
Assuming that the population standard deviation s of large retail store order quantities for this
year’s valentine box will be 40 boxes (the same as it was for previous years’ valentine boxes), the
value of the test statistic is 

Because z    1 is between the critical values  z.025    1.96 and z.025   1.96 (or, equivalently,
because |z|  1 is less than z.025   1.96), we cannot reject H0: m 330 in favor of Ha: m 330 by

z  
x  330

s 1n
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p-value   2(.1587)

  .3174

.1587
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setting a equal to .05. Therefore, we cannot conclude (at an a of .05) that the mean order quan-
tity of this year’s valentine box by large retail stores will differ from 330 boxes. It follows that,
the candy company will base its production of valentine boxes on the ten percent projected sales
increase.

A p-value for testing a “not equal to” alternative hypothesis To test H0:m 330 versus
Ha: m 330 in the Valentine’s Day chocolate case by using a p-value, we use the following steps 4
and 5:

Step 4: Collect the sample data, compute the value of the test statistic, and compute the
p-value. In the Valentine’s Day chocolate case, the value of the test statistic computed from the
sample data is z   1. Because the alternative hypothesis Ha: m  330 says that m might be
greater or less than 330, both positive and negative test statistic values contradict H0:m 330 and
support Ha: m  330. It follows that a value of the test statistic that is at least as contradictory to
H0 and supportive of Ha as z   1 is a value of the test statistic that is greater than or equal to 1
or less than or equal to  1. Therefore, the p-value is the probability, computed assuming that H0:
m  330 is true, of observing a value of the test statistic that is greater than or equal to 1 or less
than or equal to  1. As illustrated in Figure 9.4 (b), this p-value equals the area under the stan-
dard normal curve to the right of 1, plus the area under this curve to the left of  1. But, by the
symmetry of the normal curve, the sum of these two areas, and thus the p-value, is twice the area
under the standard normal curve to the right of  z   1, the absolute value of the test statis-
tic. Because the area under the standard normal curve to the right of  z   1 is 1  .8413  .1587
(see Table A.3, page 860), the p-value is 2(.1587)  .3174. The p-value of .3174 says that, if H0:
m  330 is true, then 31.74 percent of all possible test statistic values are at least as contradictory
to H0 as z   1. That is, if we are to believe that H0 is true, we must believe that we have observed
a test statistic value that can be described as having a 31.74 percent chance.
Step 5: Reject H0 if the p-value is less than A. Interpret the statistical results. The candy
company has set a equal to .05. The p-value of .3174 is greater than the A of .05. Therefore, we
cannot reject H0 by setting A equal to .05. Moreover, because the p-value is larger than .10, we
have little evidence that H0: m 330 is false and Ha: m 330 is true. That is, we have little evi-
dence that the increase in the mean order quantity of large retail stores will differ from 10 percent.

A general procedure for testing a hypothesis about a population mean In the trash
bag case we have tested H0: m  50 versus Ha: m  50 by testing H0: m  50 versus Ha: m  50.
In the payment time case we have tested H0: m  19.5 versus Ha: m  19.5 by testing
H0: m 19.5 versus Ha: m 19.5. In general, the usual procedure for testing a “less than or equal
to” null hypothesis or a “greater than or equal to” null hypothesis is to change the null hypothesis
to an equality. We then test the “equal to” null hypothesis versus the alternative hypothesis. Fur-
thermore, the critical value and p-value procedures for testing a null hypothesis versus an alter-
native hypothesis depend on whether the alternative hypothesis is a “greater than,” a “less than,”
or a “not equal to” alternative hypothesis. The summary box in Figure 9.5 gives the appropriate
procedures. Specifically, letting m0 be a particular number, the summary box shows how to test
H0: m  m0 versus Ha: m  m0, Ha: m  m0, or Ha: m  m0. Below the summary box, the five-step
hypothesis testing procedure is presented in a way that emphasizes how to determine an appro-
priate critical value rule and an appropriate p-value by using the summary box.

Using confidence intervals to test hypotheses Confidence intervals can be used to test
hypotheses. Specifically, it can be proven that we can reject H0: m m0 in favor of Ha: m m0 by
setting the probability of a Type I error equal to a if and only if the 100(1  a) percent confidence
interval for m does not contain m0. For example, consider the Valentine’s Day chocolate case and
testing H0: m 330 versus Ha: m 330 by setting a equal to .05. To do this, we use the mean

of the sample of n  100 reported order quantities to calculate the 95 percent confidence
interval for m to be

Because this interval does contain 330, we cannot reject H0: m 330 in favor of Ha: m 330 by
setting a equal to .05.
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Whereas we can use two-sided confidence intervals to test “not equal to” alternative
hypotheses, we must use one-sided confidence intervals to test “greater than” or “less than”
alternative hypotheses. We will not study one-sided confidence intervals in this book. However,
it should be emphasized that we do not need to use confidence intervals (one-sided or two-sided)
to test hypotheses. We can test hypotheses by using test statistics and critical values or p-values,
and these are the approaches that we will feature throughout this book.

The Five Steps of Hypothesis Testing

1 State the null hypothesis H0 and the alternative hypothesis Ha.

2 Specify the level of significance .

3 Select the test statistic.

Using a critical value rule:

4 Use the summary box to find the critical value rule corresponding to the alternative hypothesis.

Use the specified value of A to find the critical value given in the critical value rule.

5 Collect the sample data, compute the value of the test statistic, and decide whether to reject H0. 

Interpret the statistical results.

Using a p-value:

4 Collect the sample data, compute the value of the test statistic, and compute the p-value.

(Use the summary box to find the p-value corresponding to the alternative hypothesis.)

5 Reject H0 at level of significance a if the p-value is less than a. Interpret the statistical results.

a

Testing a Hypothesis about a Population Mean When S Is Known

Define the test statistic 

and assume that the population sampled is normally distributed or that the sample size n is large. We can test

H0: m m0 versus a particular alternative hypothesis at level of significance a by using the appropriate critical

value rule, or equivalently, the corresponding p-value.

z  
x  m0

s 1n

Alternative Critical Value Rule:
Hypothesis Reject H0 if p-Value (Reject H0 if p-Value ⬍ A)

Ha: m   m0 z   za The area under the standard normal curve to the right of z

Ha: m  m0 z    za The area under the standard normal curve to the left of z

Ha: m  m0  z   za/2—that is, Twice the area under the standard normal 
z   za/2 or z    za/2 curve to the right of  z  

F I G U R E 9 . 5 A Summary Box for Testing a Hypothesis about a Population Mean and the Five-Step Hypothesis 

Testing Procedure

Exercises for Section 9.2
CONCEPTS

9.8 Explain what a critical value is, and explain how it is used to test a hypothesis.

9.9 Explain what a p-value is, and explain how it is used to test a hypothesis.



METHODS AND APPLICATIONS

9.10 Suppose that we wish to test H0: m  80 versus Ha: m  80, where s is known to equal 20. Also,
suppose that a sample of n  100 measurements randomly selected from the population has a
mean of 
a Calculate the value of the test statistic z.
b By comparing z with a critical value, test H0 versus Ha at a  .05.
c Calculate the p-value for testing H0 versus Ha.
d Use the p-value to test H0 versus Ha at each of a  .10, .05, .01, and .001.
e How much evidence is there that H0: m  80 is false and Ha: m  80 is true?

9.11 Suppose that we wish to test H0: m  20 versus Ha: m  20, where s is known to equal 7. Also,
suppose that a sample of n  49 measurements randomly selected from the population has a mean
of
a Calculate the value of the test statistic z.
b By comparing z with a critical value, test H0 versus Ha at a  .01.
c Calculate the p-value for testing H0 versus Ha.
d Use the p-value to test H0 versus Ha at each of a  .10, .05, .01, and .001.
e How much evidence is there that H0: m  20 is false and Ha: m  20 is true?

9.12 Suppose that we wish to test H0: m  40 versus Ha: m  40, where s is known to equal 18. Also,
suppose that a sample of n  81 measurements randomly selected from the population has a mean
of
a Calculate the value of the test statistic z.
b By comparing z with a critical value, test H0 versus Ha at a  .05.
c Calculate the p-value for testing H0 versus Ha.
d Use the p-value to test H0 versus Ha at each of a  .10, .05, .01, and .001.
e How much evidence is there that H0: m  40 is false and Ha: m  40 is true?

9.13 THE VIDEO GAME SATISFACTION RATING CASE VideoGame

Recall that “very satisfied” customers give the XYZ-Box video game system a rating that is at
least 42. Suppose that the manufacturer of the XYZ-Box wishes to use the random sample of 65
satisfaction ratings to provide evidence supporting the claim that the mean composite satisfaction
rating for the XYZ-Box exceeds 42.
a Letting m represent the mean composite satisfaction rating for the XYZ-Box, set up the null 

hypothesis H0 and the alternative hypothesis Ha needed if we wish to attempt to provide 
evidence supporting the claim that m exceeds 42.

b The random sample of 65 satisfaction ratings yields a sample mean of . Assuming
that s equals 2.64, use critical values to test H0 versus Ha at each of a .10, .05, .01, and .001.

c Using the information in part b, calculate the p-value and use it to test H0 versus Ha at each of
a .10, .05, .01, and .001.

d How much evidence is there that the mean composite satisfaction rating exceeds 42?

9.14 THE BANK CUSTOMER WAITING TIME CASE WaitTime

Recall that a bank manager has developed a new system to reduce the time customers spend
waiting for teller service during peak hours. The manager hopes the new system will reduce
waiting times from the current 9 to 10 minutes to less than 6 minutes.

Suppose the manager wishes to use the random sample of 100 waiting times to support the
claim that the mean waiting time under the new system is shorter than six minutes.
a Letting m represent the mean waiting time under the new system, set up the null and alternative

hypotheses needed if we wish to attempt to provide evidence supporting the claim that m is
shorter than six minutes.

b The random sample of 100 waiting times yields a sample mean of minutes. Assum-
ing that s  2.47 minutes, use critical values to test H0 versus Ha at each of a  10, .05, .01,
and .001.

c Using the information in part b, calculate the p-value and use it to test H0 versus Ha at each of 
a  .10, .05, .01, and .001.

d How much evidence is there that the new system has reduced the mean waiting time to below
six minutes?

9.15 Consolidated Power, a large electric power utility, has just built a modern nuclear power plant. This
plant discharges waste water that is allowed to flow into the Atlantic Ocean. The Environmental
Protection Agency (EPA) has ordered that the waste water may not be excessively warm so that
thermal pollution of the marine environment near the plant can be avoided. Because of this order,
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the waste water is allowed to cool in specially constructed ponds and is then released into the
ocean. This cooling system works properly if the mean temperature of waste water discharged is
60°F or cooler. Consolidated Power is required to monitor the temperature of the waste water.
A sample of 100 temperature readings will be obtained each day, and if the sample results cast a
substantial amount of doubt on the hypothesis that the cooling system is working properly (the
mean temperature of waste water discharged is 60°F or cooler), then the plant must be shut down
and appropriate actions must be taken to correct the problem.
a Consolidated Power wishes to set up a hypothesis test so that the power plant will be shut down

when the null hypothesis is rejected. Set up the null hypothesis H0 and the alternative hypothesis
Ha that should be used.

b Suppose that Consolidated Power decides to use a level of significance of a   .05, and suppose
a random sample of 100 temperature readings is obtained. If the sample mean of the 100
temperature readings is , test H0 versus Ha and determine whether the power plant
should be shut down and the cooling system repaired. Perform the hypothesis test by using a
critical value and a p-value. Assume s  2.

9.16 Do part b of Exercise 9.15 if .

9.17 Do part b of Exercise 9.15 if .

9.18 An automobile parts supplier owns a machine that produces a cylindrical engine part. This part is
supposed to have an outside diameter of three inches. Parts with diameters that are too small or
too large do not meet customer requirements and must be rejected. Lately, the company has
experienced problems meeting customer requirements. The technical staff feels that the mean
diameter produced by the machine is off target. In order to verify this, a special study will
randomly sample 100 parts produced by the machine. The 100 sampled parts will be measured,
and if the results obtained cast a substantial amount of doubt on the hypothesis that the mean
diameter equals the target value of three inches, the company will assign a problem-solving team
to intensively search for the causes of the problem.
a The parts supplier wishes to set up a hypothesis test so that the problem-solving team will be

assigned when the null hypothesis is rejected. Set up the null and alternative hypotheses for
this situation.

b A sample of 40 parts yields a sample mean diameter of inches. Assuming s equals
.016, use a critical value and a p-value to test H0 versus Ha by setting a equal to .05. Should the
problem-solving team be assigned?

9.19 The Crown Bottling Company has just installed a new bottling process that will fill 16-ounce
bottles of the popular Crown Classic Cola soft drink. Both overfilling and underfilling bottles are
undesirable: Underfilling leads to customer complaints and overfilling costs the company
considerable money. In order to verify that the filler is set up correctly, the company wishes to
see whether the mean bottle fill, m, is close to the target fill of 16 ounces. To this end, a random
sample of 36 filled bottles is selected from the output of a test filler run. If the sample results cast
a substantial amount of doubt on the hypothesis that the mean bottle fill is the desired 16 ounces,
then the filler’s initial setup will be readjusted.
a The bottling company wants to set up a hypothesis test so that the filler will be readjusted

if the null hypothesis is rejected. Set up the null and alternative hypotheses for this
hypothesis test.

b Suppose that Crown Bottling Company decides to use a level of significance of a .01, and
suppose a random sample of 36 bottle fills is obtained from a test run of the filler. For each of the
following four sample means— , , , and —determine
whether the filler’s initial setup should be readjusted. In each case, use a critical value, a
p-value, and a confidence interval. Assume that s equals .1.

9.20 THE DISK BRAKE CASE

National Motors has equipped the ZX-900 with a new disk brake system. We define m to be the
mean stopping distance (from a speed of 35 mph) of all ZX-900s. National Motors would like to
claim that the ZX-900 achieves a shorter mean stopping distance than the 60 ft claimed by a
competitor.
a Set up the null and alternative hypotheses needed to support National Motors’ claim.
b A television network will allow National Motors to advertise its claim if the appropriate

null hypothesis can be rejected at a  .05. If a random sample of 81 ZX-900s have a
mean stopping distance of ft, will National Motors be allowed to advertise the
claim? Assume that s  6.02 ft and justify your answer using both a critical value and a
p-value.

x  57.8

x  15.94x  16.02x  15.96x  16.05

x  3.006

x  60.618

x  60.262

x  60.482



9.3 t Tests about a Population Mean: S Unknown 
If we do not know s (which is usually the case), we can base a hypothesis test about m on the
sampling distribution of

If the sampled population is normally distributed (or if the sample size is large—at least 30), then
this sampling distribution is exactly (or approximately) a t distribution having n  1 degrees of
freedom. This leads to the following results:

x  m

s 1n
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A t Test about a Population Mean: S Unknown

Define the test statistic 

and assume that the population sampled is normally distributed or the sample size is large (at least 30). We

can test H0: m m0 versus a particular alternative hypothesis at level of significance a by using the appropri-

ate critical value rule, or, equivalently, the corresponding p-value.

t  
x  m0

s 1n 

Alternative Critical Value Rule:
Hypothesis Reject H0 if p-Value (reject H0 if p-value  A)

Ha: m  m0 t  ta The area under the t distribution curve to the right of t

Ha: m  m0 t   ta The area under the t distribution curve to the left of t

Ha: m  m0  t   ta 2—that is, Twice the area under the t distribution curve to the
t  ta 2 or t   ta 2 right of  t  

Here ta, ta 2, and the p-values are based on n  1 degrees of freedom.

In the rest of this chapter and in Chapter 10 we will present most of the hypothesis testing
examples by using hypothesis testing summary boxes and the five hypothesis testing steps given
in the previous section. However, to be concise, we will not formally number each hypothesis
testing step. Rather, for each of the five steps, we will set out in boldface font a key phrase that in-
dicates that the step is being carried out. After Chapter 10, we will continue to use hypothesis test-
ing summary boxes, and we will use the five steps more informally.

EXAMPLE 9.4 The Debt-to-Equity Ratio Case

One measure of a company’s financial health is its debt-to-equity ratio. This quantity is defined
to be the ratio of the company’s corporate debt to the company’s equity. If this ratio is too high,
it is one indication of financial instability. For obvious reasons, banks often monitor the financial
health of companies to which they have extended commercial loans. Suppose that, in order to
reduce risk, a large bank has decided to initiate a policy limiting the mean debt-to-equity ratio for
its portfolio of commercial loans to being less than 1.5. In order to assess whether the mean debt-
to-equity ratio m of its (current) commercial loan portfolio is less than 1.5, the bank will test the
null hypothesis H0: M 1.5 versus the alternative hypothesis Ha: M⬍ 1.5. In this situation, a
Type I error—rejecting H0: m  1.5 when H0: m  1.5 is true—would result in the bank con-
cluding that the mean debt-to-equity ratio of its commercial loan portfolio is less than 1.5 when
it is not. Because the bank wishes to be very sure that it does not commit this Type I error, it will
test H0 versus Ha by using a .01 level of significance. To perform the hypothesis test, the bank
randomly selects a sample of 15 of its commercial loan accounts. Audits of these companies re-
sult in the following debt-to-equity ratios (arranged in increasing order): 1.05, 1.11, 1.19, 1.21,
1.22, 1.29, 1.31, 1.32, 1.33, 1.37, 1.41, 1.45, 1.46, 1.65, and 1.78. The mound-shaped stem-and-
leaf display of these ratios is given on the page margin and indicates that the population of all
debt-to-equity ratios is (approximately) normally distributed. It follows that it is appropriate to
calculate the value of the test statistic t in the summary box. Furthermore, since Ha: m 1.5 is
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of the form Ha: m  m0, we should reject H0: M  1.5 if the value of t is less than the critical
value  taa    t.01    2.624. Here,  t.01    2.624 is based on n  1  15  1  14 degrees
of freedom, and this critical value is illustrated in Figure 9.6(a). The mean and the standard devi-
ation of the random sample of n  15 debt-to-equity ratios are and s  .1921. This
implies that the value of the test statistic is

Since t   3.1589 is less than  t.01   2.624, we reject H0: m 1.5 in favor of Ha: m 1.5.
That is, we conclude (at an a of .01) that the mean debt-to-equity ratio of the bank’s commer-

cial loan portfolio is less than 1.5. This, along with the fact that the sample mean is
slightly less than 1.5, implies that it is reasonable for the bank to conclude that the mean debt-to-
equity ratio of its commercial loan portfolio is slightly less than 1.5.

The p-value for testing H0: m 1.5 versus Ha: m 1.5 is the area under the curve of the t dis-
tribution having 14 degrees of freedom to the left of t   3.1589. Tables of t points (such as
Table A.4, page 862) are not complete enough to give such areas for most t statistic values, so we
use computer software packages to calculate p-values that are based on the t distribution. For
example, Excel tells us that the p-value for testing H0: m  1.5 versus Ha: m  1.5 is .00348,
which is given in the rounded form .003 on the MINITAB output at the bottom of Figure 9.6. The
p-value of .00348 says that if we are to believe that H0 is true, we must believe that we have ob-
served a test statistic value that can be described as having a 348 in 100,000 chance. Moreover,
because the p-value of .00348 is between .01 and .001, we have very strong evidence, but not ex-
tremely strong evidence, that H0: m  1.5 is false and Ha: m  1.5 is true. That is, we have very
strong evidence that the mean debt-to-equity ratio of the bank’s commercial loan portfolio is less
than 1.5.
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Ratio   15   1.3433  0.1921   0.0496             –3.16  0.003 
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Recall that in three cases discussed in Section 9.2 we tested hypotheses by assuming that the
population standard deviation s is known and by using z tests. If s is actually not known in these
cases (which would probably be true), we should test the hypotheses under consideration by using
t tests. Furthermore, recall that in each case the sample size is large (at least 30). In general, it
can be shown that if the sample size is large, the t test is approximately valid even if the sam-
pled population is not normally distributed (or mound shaped). Therefore, consider the Valen-
tine’s Day chocolate case and testing H0: M 330 versus Ha: M 330 at the .05 level of signif-
icance. To perform the hypothesis test, assume that we will randomly select n  100 large retail
stores and use their anticipated order quantities to calculate the value of the test statistic t in the
summary box. Then, since the alternative hypothesis Ha: m 330 is of the form Ha: m m0, we
will reject H0: M 330 if the absolute value of t is greater than tA 2  t.025  1.984 (based on
n  1  99 degrees of freedom)—see Figure 9.7(a). Suppose that when the sample is randomly
selected, the mean and the standard deviation of the n  100 reported order quantities are calcu-
lated to be and s = 39.1. The value of the test statistic is

Since | t |   1.023 is less than t.025   1.984, we cannot reject H0: M   330 by setting A equal
to .05. It follows that we cannot conclude (at an a of .05) that this year’s mean order quantity of
the valentine box by large retail stores will differ from 330 boxes. Therefore, the candy company
will base its production of valentine boxes on the ten percent projected sales increase. The 
p-value for the hypothesis test is twice the area under the t distribution curve having 99 degrees
of freedom to the right of  t   1.023. Using a computer, we find that this p-value is .3088 (see
Figure 9.7(b)), which provides little evidence against H0: m 330 and in favor of Ha: m 330.

As another example, consider the trash bag case and note that the sample of n  40 trash
bag breaking strengths has mean  50.575 and standard deviation s  1.6438. The p-value forx

t  
x  330

s 1n
 

326  330

39.1 1100
  1.023

x  326
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F I G U R E 9 . 7 Testing H0: M 330 versus Ha: M 330 by Using Critical Values and the p-Value

Test of mu = 330 vs not = 330    

Variable    N     Mean   StDev  SE Mean       95% CI         T        P 

Boxes  100   326.00   39.10     3.91 (318.24, 333.76)  –1.02   0.309 
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testing H0: m 50 versus Ha: m 50 is the area under the t distribution curve having n  1  39
degrees of freedom to the right of

Using a computer, we find that this p-value is .0164 (see Figure 9.8), which provides strong evi-
dence against H0: m 50 and in favor of Ha: m 50. In particular, suppose that most television
networks would evaluate the claim that the new trash bag has a mean breaking strength that exceeds
50 pounds by choosing an a value between .02 and .05. It follows, since the p-value of .0164 is less
than all these a values, that most networks would allow the trash bag claim to be advertised.

As a third example, consider the payment time case and note that the sample of n  65 pay-
ment times has mean  18.1077 and standard deviation s  3.9612. The p-value for testing
H0: m 19.5 versus Ha: m 19.5 is the area under the t distribution curve having n  1  64
degrees of freedom to the left of

Using a computer, we find that this p-value is .0031 (see Figure 9.9), which is less than the man-
agement consulting firm’s a value of .01. It follows that the consulting firm will claim that the
new electronic billing system has reduced the Hamilton, Ohio, trucking company’s mean bill
payment time by more than 50 percent.

To conclude this section, note that if the sample size is small ( 30) and the sampled popula-
tion is not approximately normally distributed (that is, is not mound-shaped or is highly skewed),
then it might be appropriate to use a nonparametric test about the population median. Such a
test is discussed in Chapter 18.

t  
x  19.5

s 1n
 

18.1077  19.5

3.9612 165
  2.8338

x

t  
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1.6438 140
 2.2123

0
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t
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p-value
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Exercises for Section 9.3
CONCEPTS

9.21 What assumptions must be met in order to carry out the test about a population mean based on the
t distribution?

9.22 How do we decide whether to use a z test or a t test when testing a hypothesis about a population mean?

METHODS AND APPLICATIONS

9.23 Suppose that a random sample of 16 measurements from a normally distributed population gives a
sample mean of  13.5 and a sample standard deviation of s  6. Use critical values to test 
H0: m 10 versus Ha: m 10 using levels of significance a .10, a .05, a .01, and a .001.
What do you conclude at each value of a?

9.24 Suppose that a random sample of nine measurements from a normally distributed population gives
a sample mean of  2.57 and a sample standard deviation of s  .3. Use critical values to testx

x



H0: m 3 versus Ha: m 3 using levels of significance a .10, a .05, a .01, and a .001.
What do you conclude at each value of a?

9.25 THE AIR TRAFFIC CONTROL CASE AlertTimes

Recall that it is hoped that the mean alert time, m, using the new display panel is less than eight
seconds. Formulate the null hypothesis H0 and the alternative hypothesis Ha that would be used
to attempt to provide evidence that m is less than eight seconds. Discuss the meanings of a 
Type I error and a Type II error in this situation. The mean and the standard deviation of the
sample of n   15 alert times are   7.4 and s  1.0261. Perform a t test of H0 versus Ha by set-
ting a equal to .05 and using a critical value. Interpret the results of the test. Assume (as before)
that the population of all alert times using the new display panel is approximately normally
distributed.

9.26 THE AIR TRAFFIC CONTROL CASE AlertTimes

The p-value for the hypothesis test of Exercise 9.25 can be computer calculated to be .0200. How
much evidence is there that m is less than eight seconds?

9.27 The bad debt ratio for a financial institution is defined to be the dollar value of loans defaulted
divided by the total dollar value of all loans made. Suppose that a random sample of seven Ohio
banks is selected and that the bad debt ratios (written as percentages) for these banks are 7%, 4%,
6%, 7%, 5%, 4%, and 9%. BadDebt
a Banking officials claim that the mean bad debt ratio for all Midwestern banks is 3.5 percent and

that the mean bad debt ratio for Ohio banks is higher. Set up the null and alternative hypotheses
needed to attempt to provide evidence supporting the claim that the mean bad debt ratio for
Ohio banks exceeds 3.5 percent. Discuss the meanings of a Type I error and a Type II error in
this situation.

b Assuming that bad debt ratios for Ohio banks are approximately normally distributed, use critical
values and the given sample information to test the hypotheses you set up in part a by setting a
equal to .01.

c Are you qualified to decide whether we have a practically important result? Who would be?
How might practical importance be defined in this situation?

d The p-value for the hypothesis test of part (b) can be computer calculated to be .006. What does
this p-value say about whether the mean bad debt ratio for Ohio banks exceeds 3.5 percent?

9.28 THE VIDEO GAME SATISFACTION RATING CASE VideoGame

Recall that “very satisfied” customers give the XYZ-Box video game system a rating that is at
least 42. Suppose that the manufacturer of the XYZ-Box wishes to use the random sample of 65 
satisfaction ratings to provide evidence supporting the claim that the mean composite satisfaction
rating for the XYZ-Box exceeds 42.
a Letting m represent the mean composite satisfaction rating for the XYZ-Box, set up the null

and alternative hypotheses needed if we wish to attempt to provide evidence supporting the
claim that m exceeds 42.

b The mean and the standard deviation of the sample of customer satisfaction ratings are
and Use a critical value to test the hypotheses you set up in part (a) by

setting a equal to .01. Also, interpret the p-value of .0025 for the hypothesis test.

9.29 THE BANK CUSTOMER WAITING TIME CASE WaitTime

Recall that a bank manager has developed a new system to reduce the time customers spend
waiting for teller service during peak hours. The manager hopes the new system will reduce
waiting times from the current 9 to 10 minutes to less than 6 minutes.

Suppose the manager wishes to use the random sample of 100 waiting times to support the
claim that the mean waiting time under the new system is shorter than six minutes.
a Letting m represent the mean waiting time under the new system, set up the null and alternative

hypotheses needed if we wish to attempt to provide evidence supporting the claim that m is
shorter than six minutes.

b The mean and the standard deviation of the sample of 100 bank customer waiting times are
and Use a critical value to test the hypotheses you set up in part (a) by

setting a equal to .05. Also, interpret the p-value of .0158 for the hypothesis test.

9.30 Consider a chemical company that wishes to determine whether a new catalyst, catalyst XA-100,
changes the mean hourly yield of its chemical process from the historical process mean of
750 pounds per hour. When five trial runs are made using the new catalyst, the following yields
(in pounds per hour) are recorded: 801, 814, 784, 836, and 820. ChemYieldDS

s  2.475.x  5.46

DS

s  2.6424.x  42.95
n  65

DS

DS

DS

x

DS
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a Letting m be the mean of all possible yields using the new catalyst, set up the null and alterna-
tive hypotheses needed if we wish to attempt to provide evidence that m differs from 
750 pounds.

b The mean and the standard deviation of the sample of 5 catalyst yields are and
. Using a critical value and assuming approximate normality, test the hypotheses

you set up in part (a) by setting a equal to .01. The p-value for the hypothesis test is given in
the Excel output on the page margin. Interpret this p-value.

9.31 Recall from Exercise 8.12 that Bayus (1991) studied the mean numbers of auto dealers visited by
early and late replacement buyers. Letting m be the mean number of dealers visited by late
replacement buyers, set up the null and alternative hypotheses needed if we wish to attempt to
provide evidence that m differs from 4 dealers. A random sample of 100 late replacement buyers
yields a mean and a standard deviation of the number of dealers visited of and .
Use critical values to test the hypotheses you set up by setting a equal to .10, .05, .01, and .001.
Do we estimate that m is less than 4 or greater than 4?

9.32 The controller of a large retail chain is concerned about a possible slowdown in payments by cus-
tomers. The controller randomly selects a sample of 25 accounts and finds that the mean and the
standard deviation of the number of days that the accounts have remained unpaid are and

Using critical values and assuming approximate normality, determine if this sample evi-
dence allows us to conclude that the current population mean of the number of days that accounts
have remained unpaid exceeds 50 days, the historical average for the company. Perform the
hypothesis test by setting a equal to .10, .05, .01, and .001.

9.33 In 1991 the average interest rate charged by U.S. credit card issuers was 18.8 percent. Since that time,
there has been a proliferation of new credit cards affiliated with retail stores, oil companies, alumni
associations, professional sports teams, and so on. A financial officer wishes to study whether the in-
creased competition in the credit card business has reduced interest rates. To do this, the officer will
test a hypothesis about the current mean interest rate, m, charged by U.S. credit card issuers. To per-
form the hypothesis test, the officer randomly selects n  15 credit cards and obtains the following
interest rates (arranged in increasing order): 14.0, 14.6, 15.3, 15.6, 15.8, 16.4, 16.6, 17.0, 17.3, 17.6,
17.8, 18.1, 18.4, 18.7, and 19.2. A stem-and-leaf display of the interest rates is given on the page
margin, and the MINITAB and Excel outputs for testing H0: m 18.8 versus Ha: m 18.8 follow.
Interpret these outputs. CreditCd

9.4 z Tests about a Population Proportion 
In this section we study a large sample hypothesis test about a population proportion (that is,
about the fraction of population elements that possess some characteristic). We begin with an
example.

DS

s  8.
x  54

s  .67x  4.32

s  19.647
x  811

EXAMPLE 9.5 The Cheese Spread Case

Recall that the soft cheese spread producer has decided that replacing the current spout with the
new spout is profitable only if p, the true proportion of all current purchasers who would stop
buying the cheese spread if the new spout were used, is less than .10. The producer feels that it is
unwise to change the spout unless it has very strong evidence that p is less than .10. Therefore, the
spout will be changed if and only if the null hypothesis H0: p  .10 can be rejected in favor of the
alternative hypothesis Ha: p  .10 at the .01 level of significance.

In order to see how to test this kind of hypothesis, remember that when n is large, the sampling
distribution of

p̂  p

A
p(1  p)

n

C

Use critical
values and

p-values to perform
a large sample z
test about a popu-
lation proportion.

LO5

14  06 

15  368 

16  46 

17  0368 

18  147 

19  2 

Test of mu = 18.8 vs < 18.8

Variable

Rate

N

15

Mean

16.8267

StDev

1.5378

SE Mean

0.3971

T

–4.97

P

0.000

t-statistic
 4.97

p-value
0.000103

t-statistic

6.942585

p-value

0.002261
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is approximately a standard normal distribution. Let p0 denote a specified value between 0 and 1
(its exact value will depend on the problem), and consider testing the null hypothesis H0: p  p0.
We then have the following result:

374 Chapter 9 Hypothesis Testing

A Large Sample Test about a Population Proportion

Define the test statistic 

If the sample size n is large, we can test H0: p  p0 versus a particular alternative hypothesis at level of signif-

icance a by using the appropriate critical value rule, or, equivalently, the corresponding p-value.

z  
p̂  p0

A
p0(1  p0)

n

Alternative Critical Value Rule:
Hypothesis Reject H0 if p-Value (Reject H0 if p-Value  A)

Ha: p   p0 z   za The area under the standard normal curve to the right of z

Ha: p   p0 z    za The area under the standard normal curve to the left of z

Ha: p   p0  z    za 2—that is, Twice the area under the standard normal curve to the
z   za 2 or z    za 2 right of  z  

Here n should be considered large if both np0 and n(1  p0) are at least 5.3

3Some statisticians suggest using the more conservative rule that both np0 and n(1  p0) must be at least 10.

EXAMPLE 9.6 The Cheese Spread Case

We have seen that the cheese spread producer wishes to test H0: p  .10 versus Ha: p  .10,
where p is the proportion of all current purchasers who would stop buying the cheese spread if
the new spout were used. The producer will use the new spout if H0 can be rejected in favor of
Ha at the .01 level of significance. To perform the hypothesis test, we will randomly select n  

1,000 current purchasers of the cheese spread, find the proportion ( ) of these purchasers who
would stop buying the cheese spread if the new spout were used, and calculate the value of the
test statistic z in the summary box. Then, since the alternative hypothesis Ha: p  .10 is of the
form Ha: p  p0, we will reject H0: p  .10 if the value of z is less than  zA  z.01   2.33.
(Note that using this procedure is valid because np0  1,000(.10)  100 and n(1  p0)  

1,000(1  .10)  900 are both at least 5.) Suppose that when the sample is randomly selected, we
find that 63 of the 1,000 current purchasers say they would stop buying the cheese spread if the
new spout were used. Since p̂   63 1,000  .063, the value of the test statistic is 

Because z   3.90 is less than  z.01   2.33, we reject H0: p  .10 in favor of Ha: p  .10.
That is, we conclude (at an a of .01) that the proportion of current purchasers who would stop
buying the cheese spread if the new spout were used is less than .10. It follows that the com-
pany will use the new spout. Furthermore, the point estimate says we estimate that
6.3 percent of all current customers would stop buying the cheese spread if the new spout
were used.

Although the cheese spread producer has made its decision by setting a equal to a single, pre-
chosen value (.01), it would probably also wish to know the weight of evidence against H0 and in
favor of Ha. The p-value is the area under the standard normal curve to the left of z   3.90.
Table A.3 (page 860) tells us that this area is .00005. Because this p-value is less than .001, we

p̂  .063

z  
p̂  p0

A
p0(1  p0)

n

 
.063  .10

A
.10(1  .10)
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C

0

 2.33

 z.01

␣   .01

0

 3.90

z
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   .00005
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have extremely strong evidence that Ha: p  .10 is true. That is, we have extremely strong
evidence that fewer than 10 percent of current purchasers would stop buying the cheese spread if
the new spout were used.

EXAMPLE 9.7

Recent medical research has sought to develop drugs that lessen the severity and duration of viral
infections. Virol, a relatively new drug, has been shown to provide relief for 70 percent of all pa-
tients suffering from viral upper respiratory infections. A major drug company is developing a
competing drug called Phantol. The drug company wishes to investigate whether Phantol is more
effective than Virol. To do this, the drug company will test a hypothesis about the true proportion,
p, of all patients whose symptoms would be relieved by Phantol. The null hypothesis to be
tested is H0: p  .70, and the alternative hypothesis is Ha: p  .70. If H0 can be rejected in
favor of Ha at the .05 level of significance, the drug company will conclude that Phantol helps
more than the 70 percent of patients helped by Virol. To perform the hypothesis test, we will ran-
domly select n  300 patients having viral upper respiratory infections, find the proportion ( ) of
these patients whose symptoms are relieved by Phantol and calculate the value of the test statis-
tic z in the summary box. Then, since the alternative hypothesis Ha: p  .70 is of the form
Ha: p  p0, we will reject H0: p  .70 if the value of z is greater than zA z.05  1.645. (Note that
using this procedure is valid because np0  300(.70)  210 and n(1  p0)  300(1  .70)  90 are
both at least 5.) Suppose that when the sample is randomly selected, we find that Phantol provides
relief for 231 of the 300 patients. Since  231 300  .77, the value of the test statistic is

Because z  2.65 is greater than z.05  1.645, we reject H0: p  .70 in favor of Ha: p  .70.
That is, we conclude (at an a of .05) that Phantol will provide relief for more than 70 percent of
all patients suffering from viral upper respiratory infections. More specifically, the point estimate

of p says that we estimate that Phantol will provide relief for 77 percent of all such
patients. Comparing this estimate to the 70 percent of patients whose symptoms are relieved
by Virol, we conclude that Phantol is somewhat more effective.

The p-value for testing H0: p  .70 versus Ha: p  .70 is the area under the standard normal
curve to the right of z  2.65. This p-value is (1.0  .9960)  .004 (see Table A.3, page 860), and
it provides very strong evidence against H0: p  .70 and in favor of Ha: p  .70. That is, we have
very strong evidence that Phantol will provide relief for more than 70 percent of all patients
suffering from viral upper respiratory infections.

p̂  .77
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p̂  p0

A
p0(1  p0)
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.77  .70

A
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    .05
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z
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EXAMPLE 9.8 The Electronic Article Surveillance Case

A sports equipment discount store is considering installing an electronic article surveillance de-
vice and is concerned about the proportion, p, of all consumers who would never shop in the store
again if the store subjected them to a false alarm. Suppose that industry data for general discount
stores says that 15 percent of all consumers say that they would never shop in a store again if the
store subjected them to a false alarm. To determine whether this percentage is different for the
sports equipment discount store, the store will test the null hypothesis H0: p  .15 versus the
alternative hypothesis Ha: p  .15 at the .05 level of significance. To perform the hypothesis
test, the store will randomly select n = 500 consumers, find the proportion of these consumers
who say that they would never shop in the store again if the store subjected them to a false alarm,
and calculate the value of the test statistic z in the summary box. Then, since the alternative hy-
pothesis Ha: p  .15 is of the form Ha: p  p0, we will reject H0: p  .15 if |z|, the absolute value
of the test statistic z, is greater than zA/2  z.025  1.96. (Note that using this procedure is
valid because np0  (500)(.15)  75 and n(1  p0)  (500) (1  .15)  425 are both at least 5.)

p̂

C

0

 1.96

 z.025

 /2   .025

0

.63

z

.2643.2643

 /2   .025
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z.025
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z |  |

p-value   2(.2643)   .5286



Suppose that when the sample is randomly selected, we find that 70 out of 500 consumers say
that they would never shop in the store again if the store subjected them to a false alarm. Since

 70 500  .14, the value of the test statistic is 

Because |z|   .63 is less than z.025   1.96, we cannot reject H0: p   .15 in favor of Ha: p   .15.
That is, we cannot conclude (at an ␣ of .05) that the percentage of people who would never shop
in the sports discount store again if the store subjected them to a false alarm differs from the gen-
eral discount store percentage of 15 percent.

The p-value for testing H0: p  .15 versus Ha: p  .15 is twice the area under the standard nor-
mal curve to the right of |z|  .63. Because the area under the standard normal curve to the right
of |z|  .63 is (1  .7357)  .2643 (see Table A.3, page 860), the p-value is 2(.2643)  .5286.
This p-value is large and provides little evidence against H0: p  .15 and in favor of Ha: p  .15.
That is, we have little evidence that the percentage of people who would never shop in the sports
discount store again if the store subjected them to a false alarm differs from the general discount
store percentage of 15 percent.

Technical note Excel often expresses a p-value in scientific notation. For example, suppose
that the test statistic z for testing a “greater than” alternative hypothesis about a population pro-
portion equaled 7.98. If Excel calculated the p-value for the hypothesis test—the area under the
standard normal curve to the right of z = 7.98—Excel would express the p-value as 7.77 E 16.
To get the decimal point equivalent, the “E 16” says that we must move the decimal point 16
places to the left. Therefore, the p-value is .000000000000000777.
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Exercises for Section 9.4
CONCEPTS

9.34 If we wish to test a hypothesis to provide evidence supporting the claim that fewer than 5 percent
of the units produced by a process are defective, formulate the null and alternative hypotheses.

9.35 What condition must be satisfied in order to appropriately use the methods of this section?

METHODS AND APPLICATIONS

9.36 Suppose we test H0: p  .3 versus Ha: p  .3 and that a random sample of n  100 gives a sample
proportion  .20.
a Test H0 versus Ha at the .01 level of significance by using a critical value. What do you conclude?
b Find the p-value for this test.
c Use the p-value to test H0 versus Ha by setting a equal to .10, .05, .01, and .001. What do you

conclude at each value of a?

9.37 THE MARKETING ETHICS CASE: CONFLICT OF INTEREST

Recall that a conflict of interest scenario was presented to a sample of 205 marketing researchers
and that 111 of these researchers disapproved of the actions taken.
a Let p be the proportion of all marketing researchers who disapprove of the actions taken in the

conflict of interest scenario. Set up the null and alternative hypotheses needed to attempt to 
provide evidence supporting the claim that a majority (more than 50 percent) of all marketing
researchers disapprove of the actions taken.

b Assuming that the sample of 205 marketing researchers has been randomly selected, use 
critical values and the previously given sample information to test the hypotheses you set up in
part a at the .10, .05, .01, and .001 levels of significance. How much evidence is there that a
majority of all marketing researchers disapprove of the actions taken?

c Suppose a random sample of 1,000 marketing researchers reveals that 540 of the researchers
disapprove of the actions taken in the conflict of interest scenario. Use critical values to
determine how much evidence there is that a majority of all marketing researchers disapprove
of the actions taken.

p̂
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d Note that in parts b and c the sample proportion is (essentially) the same. Explain why the 
results of the hypothesis tests in parts b and c differ.

9.38 Last year, television station WXYZ’s share of the 11 P.M. news audience was approximately equal
to, but no greater than, 25 percent. The station’s management believes that the current audience
share is higher than last year’s 25 percent share. In an attempt to substantiate this belief, the station
surveyed a random sample of 400 11 P.M. news viewers and found that 146 watched WXYZ.
a Let p be the current proportion of all 11 P.M. news viewers who watch WXYZ. Set up the null

and alternative hypotheses needed to attempt to provide evidence supporting the claim that the
current audience share for WXYZ is higher than last year’s 25 percent share.

b Use critical values and the following MINITAB output to test the hypotheses you set up in 
part a at the .10, .05, .01, and .001 levels of significance. How much evidence is there that the 
current audience share is higher than last year’s 25 percent share?

c Find the p-value for the hypothesis test in part b. Use the p-value to carry out the test by setting
a equal to .10, .05, .01, and .001. Interpret your results.

d Do you think that the result of the station’s survey has practical importance? Why or why not?

9.39 In the book Essentials of Marketing Research, William R. Dillon, Thomas J. Madden, and Neil H.
Firtle discuss a marketing research proposal to study day-after recall for a brand of mouthwash.
To quote the authors:

The ad agency has developed a TV ad for the introduction of the mouthwash. The objective
of the ad is to create awareness of the brand. The objective of this research is to evaluate the
awareness generated by the ad measured by aided- and unaided-recall scores.

A minimum of 200 respondents who claim to have watched the TV show in which the ad
was aired the night before will be contacted by telephone in 20 cities.

The study will provide information on the incidence of unaided and aided recall.

Suppose a random sample of 200 respondents shows that 46 of the people interviewed were able to
recall the commercial without any prompting (unaided recall).
a In order for the ad to be considered successful, the percentage of unaided recall must be above the

category norm for a TV commercial for the product class. If this norm is 18 percent, set up the
null and alternative hypotheses needed to attempt to provide evidence that the ad is successful.

b Use the previously given sample information to compute the p-value for the hypothesis test you
set up in part a. Use the p-value to carry out the test by setting a equal to .10, .05, .01, and
.001. How much evidence is there that the TV commercial is successful?

c Do you think the result of the ad agency’s survey has practical importance? Explain your opinion.

9.40 An airline’s data indicate that 50 percent of people who begin the online process of booking a flight
never complete the process and pay for the flight. To reduce this percentage, the airline is consider-
ing changing its website so that the entire booking process, including flight and seat selection and
payment, can be done on two simple pages rather than the current four pages. A random sample of
300 customers who begin the booking process are provided with the new system, and 117 of them
do not complete the process. Formulate the null and alternative hypotheses needed to attempt to pro-
vide evidence that the new system has reduced the noncompletion percentage. Use critical values
and a p-value to perform the hypothesis test by setting ␣ equal to 10, .05, .01, and .001.

9.41 Suppose that a national survey finds that 73 percent of restaurant employees say that work stress
has a negative impact on their personal lives. A random sample of 200 employees of a large restau-
rant chain finds that 141 employees say that work stress has a negative impact on their personal
lives. Formulate the null and alternative hypotheses needed to attempt to provide evidence that the
percentage of work-stressed employees for the restaurant chain differs from the national 
percentage. Use critical values and a p-value to perform the hypothesis test by setting ␣ equal to
.10, .05, .01, and .001.

9.42 The manufacturer of the ColorSmart-5000 television set claims that 95 percent of its sets last at
least five years without needing a single repair. In order to test this claim, a consumer group ran-
domly selects 400 consumers who have owned a ColorSmart-5000 television set for five years. Of
these 400 consumers, 316 say that their ColorSmart-5000 television sets did not need repair, while
84 say that their ColorSmart-5000 television sets did need at least one repair.

Test of p = 0.25 vs p > 0.25 

Sample    X     N    Sample p    Z-Value    P-Value 

1       146   400    0.365000       5.31      0.000

p̂



a Letting p be the proportion of ColorSmart-5000 television sets that last five years without a
single repair, set up the null and alternative hypotheses that the consumer group should use to
attempt to show that the manufacturer’s claim is false.

b Use critical values and the previously given sample information to test the hypotheses you set
up in part a by setting a equal to .10, .05, .01, and .001. How much evidence is there that the
manufacturer’s claim is false?

c Do you think the results of the consumer group’s survey have practical importance? Explain
your opinion.

9.5 Type II Error Probabilities and Sample 
Size Determination (Optional) 

As we have seen, we often take action (for example, advertise a claim) on the basis of having
rejected the null hypothesis. In this case, we know the chances that the action has been taken
erroneously because we have prespecified a, the probability of rejecting a true null hypothesis.
However, sometimes we must act (for example, decide how many Valentine’s Day boxes of
chocolates to produce) on the basis of not rejecting the null hypothesis. If we must do this, it is
best to know the probability of not rejecting a false null hypothesis (a Type II error). If this prob-
ability is not small enough, we may change the hypothesis testing procedure. In order to discuss
this further, we must first see how to compute the probability of a Type II error.

As an example, the Federal Trade Commission (FTC) often tests claims that companies make
about their products. Suppose coffee is being sold in cans that are labeled as containing three
pounds, and also suppose that the FTC wishes to determine if the mean amount of coffee m in all
such cans is at least three pounds. To do this, the FTC tests H0: m  3 (or m  3) versus Ha: m  3
by setting a  .05. Suppose that a sample of 35 coffee cans yields . Assuming that s
is known to equal .0147, we see that because

is not less than  z.05    1.645, we cannot reject H0: m  3 by setting Since we cannot
reject H0, we cannot have committed a Type I error, which is the error of rejecting a true H0. How-
ever, we might have committed a Type II error, which is the error of not rejecting a false H0.
Therefore, before we make a final conclusion about m, we should calculate the probability of a
Type II error.

A Type II error is not rejecting H0: m  3 when H0 is false. Because any value of m that is less
than 3 makes H0 false, there is a different Type II error (and, therefore, a different Type II error
probability) associated with each value of m that is less than 3. In order to demonstrate how to
calculate these probabilities, we will calculate the probability of not rejecting H0: m  3 when in
fact m equals 2.995. This is the probability of failing to detect an average underfill of .005
pounds. For a fixed sample size (for example, n  35 coffee can fills), the value of b, the proba-
bility of a Type II error, depends upon how we set a, the probability of a Type I error. Since we
have set a .05, we reject H0 if

or, equivalently, if

Therefore, we do not reject H0 if . It follows that b, the probability of not reject-
ing when m equals 2.995, is

  P(z  .37)  1  .6443  .3557

  P z  
2.9959126  2.995

.0147 135  
 b  P(x  2.9959126 when m  2.995)

H0 :m  3
x  2.9959126

x  3  z.05 
s

1n
 3  1.645 

.0147

135
 2.9959126

x  3

s 1n
  z.05

a  .05.

z  
2.9973  3

.0147 135
  1.08

x  2.9973
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This calculation is illustrated in Figure 9.10. Similarly, it follows that b, the probability of not 
rejecting H0: m  3 when m equals 2.99, is

It also follows that b, the probability of not rejecting H0: m  3 when m equals 2.985, is

This probability is less than .00003 (because z is greater than 3.99).
In Figure 9.11 we illustrate the values of b that we have calculated. Notice that the closer an

alternative value of m is to 3 (the value specified by H0: m  3), the larger is the associated value
of b. Although alternative values of m that are closer to 3 have larger associated probabilities of
Type II errors, these values of m have associated Type II errors with less serious consequences.
For example, we are more likely not to reject H0: m  3 when m  2.995 (b  .3557) than we are
not to reject H0: m  3 when m  2.99 (b  .0087). However, not rejecting H0: m  3 when
m  2.995, which means that we are failing to detect an average underfill of .005 pounds, is less
serious than not rejecting H0: m  3 when m  2.99, which means that we are failing to detect a
larger average underfill of .01 pounds. In order to decide whether a particular hypothesis test
adequately controls the probability of a Type II error, we must determine which Type II errors are
serious, and then we must decide whether the probabilities of these errors are small enough. For

  P(z  4.39)

  P z  
2.9959126  2.985

.0147 135  

 b  P (x  2.9959126 when m  2.985)

  P(z  2.38)  1  .9913  .0087

  P z  
2.9959126  2.99

.0147 135  
 b  P(x  2.9959126 when m  2.99)

    .05

2.9959126

2.995 2.9959126

Do not reject H0Reject H0

3

x
_

x
_

.6443

 

    1   .6443   .3557

.370

z  
x
_ 
  2.995

.0147     35

Standard
normal distribution

Sampling distribution
of x

_ 
when H0:     3

is true and     3

Sampling distribution
of x

_
 when H0:     3

is false and     2.995
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example, suppose that the FTC and the coffee producer agree that failing to reject H0: m  3
when m equals 2.99 is a serious error, but that failing to reject H0: m  3 when m equals 2.995 is
not a particularly serious error. Then, since the probability of not rejecting H0: m  3 when m
equals 2.99 is .0087, which is quite small, we might decide that the hypothesis test adequately
controls the probability of a Type II error. To understand the implication of this, recall that the
sample of 35 coffee cans, which has  2.9973, does not provide enough evidence to reject
H0: m 3 by setting a .05. We have just shown that the probability that we have failed to detect
a serious underfill is quite small (.0087), so the FTC might decide that no action should be taken
against the coffee producer. Of course, this decision should also be based on the variability of the
fills of the individual cans. Because  2.9973 and s  .0147, we estimate that 99.73 percent
of all individual coffee can fills are contained in the interval  [2.9973  3(.0147)]  

[2.9532, 3.0414]. If the FTC believes it is reasonable to accept fills as low as (but no lower than)
2.9532 pounds, this evidence also suggests that no action against the coffee producer is needed.

Suppose, instead, that the FTC and the coffee producer had agreed that failing to reject
H0: m  3 when m equals 2.995 is a serious mistake. The probability of this Type II error is .3557,
which is large. Therefore, we might conclude that the hypothesis test is not adequately con-
trolling the probability of a serious Type II error. In this case, we have two possible courses of
action. First, we have previously said that, for a fixed sample size, the lower we set a, the higher
is b, and the higher we set a, the lower is b. Therefore, if we keep the sample size fixed at n  35
coffee cans, we can reduce b by increasing a. To demonstrate this, suppose we increase a to .10.
In this case we reject H0 if

or, equivalently, if

x  3  z.10 
s

1n
 3  1.282 

.0147

135
 2.9968145

x  3

s 1n
  z.10

[x  3s]
x

x
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Therefore, we do not reject H0 if It follows that b, the probability of not reject-
ing when m equals 2.995, is

We thus see that increasing a from .05 to .10 reduces b from .3557 to .2327. However, b is still
too large, and, besides, we might not be comfortable making a larger than .05. Therefore, if
we wish to decrease b and maintain a at .05, we must increase the sample size. We will soon
present a formula we can use to find the sample size needed to make both a and b as small as
we wish.

Once we have computed b, we can calculate what we call the power of the test.

The power of a statistical test is the probability of rejecting the null hypothesis when it is false.

Just as b depends upon the alternative value of m, so does the power of a test. In general, the
power associated with a particular alternative value of M equals 1  B, where b is the prob-
ability of a Type II error associated with the same alternative value of m. For example, we have
seen that, when we set a  .05, the probability of not rejecting H0: m  3 when m equals 2.99
is .0087. Therefore, the power of the test associated with the alternative value 2.99 (that is, the
probability of rejecting H0: m  3 when m equals 2.99) is 1  .0087  .9913.

Thus far we have demonstrated how to calculate b when testing a less than alternative
hypothesis. In the following box we present (without proof) a method for calculating the prob-
ability of a Type II error when testing a less than, a greater than, or a not equal to alternative
hypothesis:

  P(z  .73)  1  .7673  .2327

  P z  
2.9968145  2.995

.0147 135  
 b  P(x  2.9968145 when m  2.995)

H0:m  3
x  2.9968145.

Calculating the Probability of a Type II Error

Here z* equals za if the alternative hypothesis is 

one-sided (m  m0 or m  m0), in which case the

method for calculating b is exact. Furthermore, z*

equals za 2 if the alternative hypothesis is two-sided

(m  m0), in which case the method for calculating b

is approximate.

Assume that the sampled population is normally

distributed, or that a large sample will be taken.

Consider testing H0: m m0 versus one of Ha: m m0,

Ha: m m0, or Ha: m m0. Then, if we set the probabil-

ity of a Type I error equal to a and randomly select a

sample of size n, the probability, b, of a Type II error

corresponding to the alternative value ma of m is

(exactly or approximately) equal to the area under

the standard normal curve to the left of

z*  
 m0  ma  
s 1n

EXAMPLE 9.9 The Valentine’s Day Chocolate Case

In the Valentine’s Day chocolate case we are testing H0: m 330 versus Ha: m 330 by setting 
a .05. We have seen that the mean of the reported order quantities of a random sample of
n  100 large retail stores is . Assuming that s equals 40, it follows that because 

is between  z.025   1.96 and z.025  1.96, we cannot reject H0: m 330 by setting a .05.
Since we cannot reject H0, we might have committed a Type II error. Suppose that the candy
company decides that failing to reject H0: m 330 when m differs from 330 by as many as 15
valentine boxes (that is, when m is 315 or 345) is a serious Type II error. Because we have set a

z  
326  330

40 1100
  1

x  326

C



equal to .05, b for the alternative value ma  315 (that is, the probability of not rejecting
H0: m 330 when m equals 315) is the area under the standard normal curve to the left of

Here z*  za 2  z.05 2  z.025 since the alternative hypothesis (m 330) is two-sided. The area
under the standard normal curve to the left of  1.79 is 1  .9633  .0377. Therefore, b for the
alternative value ma  315 is .0377. Similarly, it can be verified that b for the alternative value
ma  345 is .0377. It follows, because we cannot reject H0: m 330 by setting a .05, and be-
cause we have just shown that there is a reasonably small (.0377) probability that we have failed
to detect a serious (that is, a 15 valentine box) deviation of m from 330, that it is reasonable for
the candy company to base this year’s production of valentine boxes on the projected mean order
quantity of 330 boxes per large retail store.

In the following box we present (without proof) a formula that tells us the sample size needed
to make both the probability of a Type I error and the probability of a Type II error as small as
we wish:

   1.79

  1.96  
 330  315  

40 1100

 z*  
 m0  ma  

s 1n
 z.025  

 m0  ma  

s 1n
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Assume that the sampled population is normally

distributed, or that a large sample will be taken.

Consider testing H0: m m0 versus one of Ha: m m0,

Ha: m m0, or Ha: m m0. Then, in order to make the

probability of a Type I error equal to a and the prob-

ability of a Type II error corresponding to the alterna-

tive value ma of m equal to b, we should take a sample

of size

n  
(z*  zb)

2
s

2

(m0  ma)
2

Here z* equals za if the alternative hypothesis is

one-sided (m  m0 or m  m0), and z* equals za 2 if the

alternative hypothesis is two-sided (m   m0). Also, zb
is the point on the scale of the standard normal

curve that gives a right-hand tail area equal to b.

Again consider the coffee fill example and suppose we wish to test H0: m   3 (or m 3) versus
Ha: m 3. If we wish a to be .05 and b for the alternative value ma  2.995 of m to be .05, we
should take a sample of size

  93.5592  94 (rounding up)

Here, z*  za z.05  1.645 because the alternative hypothesis (m 3) is one-sided, and zb   

z.05  1.645.
Although we have set both a and b equal to the same value in the coffee fill situation, it is not

necessary for a and b to be equal. As an example, again consider the Valentine’s Day chocolate

  
(1.645  1.645)2(.0147)2

(3  2.995)2

  
(z.05  z.05)

2
s
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(m0  ma)
2

 n  
(z*  zb)

2
s

2

(m0  ma)
2  

(za  zb)
2
s

2

(m0  ma)
2

EXAMPLE 9.10



9.5 Type II Error Probabilities and Sample Size Determination (Optional) 383

case, in which we are testing H0: m 330 versus Ha: m 330. Suppose that the candy company
decides that failing to reject H0: m 330 when m differs from 330 by as many as 15 valentine
boxes (that is, when m is 315 or 345) is a serious Type II error. Furthermore, suppose that it is also
decided that this Type II error is more serious than a Type I error. Therefore, a will be set equal
to .05 and b for the alternative value ma  315 (or ma  345) of m will be set equal to .01. It fol-
lows that the candy company should take a sample of size

Here, z*  za 2  z.05 2  z.025  1.96 because the alternative hypothesis (m 330) is two-sided,
and zb z.01  2.326 (see the bottom row of the t table on page 319).

To conclude this section, we point out that the methods we have presented for calculating the
probability of a Type II error and determining sample size can be extended to other hypothesis
tests that utilize the normal distribution. We will not, however, present the extensions in this book.

  130.62  131 (rounding up)

  
(1.96  2.326)2(40)2

(330  315)2

  
(z.025  z.01)

2
s

2

(m0  ma)
2

 n  
(z*  zb)

2
s

2

(m0  ma)
2  

(za 2  zb)
2
s

2

(m0  ma)
2

Exercises for Section 9.5
CONCEPTS

9.43 We usually take action on the basis of having rejected the null hypothesis. When we do this, we
know the chances that the action has been taken erroneously because we have prespecified a, the
probability of rejecting a true null hypothesis. Here, it is obviously important to know (prespecify)
a, the probability of a Type I error. When is it important to know the probability of a Type II error?
Explain why.

9.44 Explain why we are able to compute many different values of b, the probability of a Type II error,
for a single hypothesis test.

9.45 Explain what is meant by
a A serious Type II error.
b The power of a statistical test.

9.46 In general, do we want the power corresponding to a serious Type II error to be near 0 or near 1?
Explain.

METHODS AND APPLICATIONS

9.47 Again consider the Consolidated Power waste water situation. Remember that the power plant
will be shut down and corrective action will be taken on the cooling system if the null hypothesis
H0: m  60 is rejected in favor of Ha: m  60. In this exercise we calculate probabilities of vari-
ous Type II errors in the context of this situation.
a Recall that Consolidated Power’s hypothesis test is based on a sample of n  100 temperature

readings and assume that s equals 2. If the power company sets a  .025, calculate the proba-
bility of a Type II error for each of the following alternative values of m: 60.1, 60.2, 60.3, 60.4,
60.5, 60.6, 60.7, 60.8, 60.9, 61.

b If we want the probability of making a Type II error when m equals 60.5 to be very small, is
Consolidated Power’s hypothesis test adequate? Explain why or why not. If not, and if we wish
to maintain the value of a at .025, what must be done?

c The power curve for a statistical test is a plot of the power  1  b on the vertical axis versus
values of m that make the null hypothesis false on the horizontal axis. Plot the power curve for
Consolidated Power’s test of H0: m  60 versus Ha: m  60 by plotting power  1  b for each
of the alternative values of m in part a. What happens to the power of the test as the alternative
value of m moves away from 60?



9.48 Again consider the automobile parts supplier situation. Remember that a problem-solving team
will be assigned to rectify the process producing the cylindrical engine parts if the null hypothesis
H0: m  3 is rejected in favor of Ha: m 3. In this exercise we calculate probabilities of various
Type II errors in the context of this situation.
a Suppose that the parts supplier’s hypothesis test is based on a sample of n  100 diameters

and that s equals .023. If the parts supplier sets a  .05, calculate the probability of a Type II
error for each of the following alternative values of m: 2.990, 2.995, 3.005, 3.010.

b If we want both the probabilities of making a Type II error when m equals 2.995 and when m
equals 3.005 to be very small, is the parts supplier’s hypothesis test adequate? Explain why or
why not. If not, and if we wish to maintain the value of a at .05, what must be done?

c Plot the power of the test versus the alternative values of m in part a. What happens to the
power of the test as the alternative value of m moves away from 3?

9.49 In the Consolidated Power hypothesis test of H0: m  60 versus Ha: m  60 (as discussed in
Exercise 9.47) find the sample size needed to make the probability of a Type I error equal to .025
and the probability of a Type II error corresponding to the alternative value ma   60.5 equal to
.025. Here, assume s equals 2.

9.50 In the automobile parts supplier’s hypothesis test of H0: m  3 versus Ha: m  3 (as discussed in
Exercise 9.48) find the sample size needed to make the probability of a Type I error equal to
.05 and the probability of a Type II error corresponding to the alternative value ma  3.005 equal to
.05. Here, assume s equals .023.

9.6 The Chi-Square Distribution (Optional) 
Sometimes we can make statistical inferences by using the chi-square distribution. The proba-
bility curve of the x2 (pronounced chi-square) distribution is skewed to the right. Moreover, the
exact shape of this probability curve depends on a parameter that is called the number of
degrees of freedom (denoted df ). Figure 9.12 illustrates chi-square distributions having 2, 5, and 
10 degrees of freedom.

In order to use the chi-square distribution, we employ a chi-square point, which is denoted
. As illustrated in the upper portion of Figure 9.13, is the point on the horizontal axis under

the curve of the chi-square distribution that gives a right-hand tail area equal to a. The value of
in a particular situation depends on the right-hand tail area a and the number of degrees of

freedom (df ) of the chi-square distribution. Values of are tabulated in a chi-square table. Such
a table is given in Table A.10 of Appendix A (page 871); a portion of this table is reproduced as
Table 9.3. Looking at the chi-square table, the rows correspond to the appropriate number of de-
grees of freedom (values of which are listed down the left side of the table), while the columns
designate the right-hand tail area a. For example, suppose we wish to find the chi-square point
that gives a right-hand tail area of .05 under a chi-square curve having 5 degrees of freedom. To

x
2
a

x
2
a

x
2
ax

2
a
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do this, we look in Table 9.3 at the row labeled 5 and the column labeled . We find that this
point is 11.0705 (see the shaded area in Table 9.3 and lower portion of Figure 9.13).

9.7 Statistical Inference for a Population Variance
(Optional) 

A vital part of a V6 automobile engine is the engine camshaft. As the camshaft turns, parts of the
camshaft make repeated contact with engine lifters and thus must have the appropriate hardness
to wear properly. To harden the camshaft, a heat treatment process is used, and a hardened layer
is produced on the surface of the camshaft. The depth of the layer is called the hardness depth
of the camshaft. Suppose that an automaker knows that the mean and the variance of the camshaft
hardness depths produced by its current heat treatment process are, respectively, 4.5 mm and
.2209 mm. To reduce the variance of the camshaft hardness depths, a new heat treatment process
is designed, and a random sample of n  30 camshaft hardness depths produced by using the new
process has a mean of and a variance of s2

 .0885. In order to attempt to show that the
variance, s2, of the population of all camshaft hardness depths that would be produced by using
the new process is less than .2209, we can use the following result:

x  4.50

x
2
.05

x
2
.05

Use the 
chi-square

distribution to
make statistical
inferences about
population
variances (Optional).
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T A B L E 9 . 3 A Portion of the Chi-Square Table

Degrees of
Freedom (df )

1 2.70554 3.84146 5.02389 6.63490 7.87944

2 4.60517 5.99147 7.37776 9.21034 10.5966

3 6.25139 7.81473 9.34840 11.3449 12.8381

4 7.77944 9.48773 11.1433 13.2767 14.8602

5 9.23635 11.0705 12.8325 15.0863 16.7496

6 10.6446 12.5916 14.4494 16.8119 18.5476

7 12.0170 14.0671 16.0123 18.4753 20.2777

8 13.3616 15.5073 17.5346 20.0902 21.9550

9 14.6837 16.9190 19.0228 21.6660 23.5893

10 15.9871 18.3070 20.4831 23.2093 25.1882

X
2
.005X

2
.01X

2
.025X

2
.05X

2
.10

Statistical Inference for a Population Variance

Suppose that s2 is the variance of a sample of n

measurements randomly selected from a normally

distributed population having variance s2. The

sampling distribution of the statistic (n  1)s2 s2 is

a chi-square distribution having n  1 degrees of

freedom. This implies that
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The assumption that the sampled population is normally distributed must hold fairly closely for
the statistical inferences just given about to be valid. When we check this assumption in the
camshaft situation, we find that a histogram (not given here) of the sample of hardness
depths is bell-shaped and symmetrical. In order to compute a 95 percent confidence interval for 
we note that is and is . Table A.10 (page 871) tells us that these points—
based on degrees of freedom—are and (see
Figure 9.14). It follows that a 95 percent confidence interval for is

 [.0561, .1599]

This interval provides strong evidence that s2 is less than .2209.

If we wish to use a hypothesis test, we test the null hypothesis H0: S
2
 .2209 versus the

alternative hypothesis Ha: S
2

 .2209. If H0 can be rejected in favor of Ha at the .05 level of
significance, we will conclude that the new process has reduced the variance of the camshaft
hardness depths. Since the histogram of the sample of n  30 hardness depths is bell shaped and
symmetrical, the appropriate test statistic is given in the summary box. Furthermore, since
Ha: s

2
 .2209 is of the form Ha: s

2
 , we should reject H0: S

2
 .2209 if the value of X2

is less than the critical value . Here is based on
degrees of freedom, and this critical value is illustrated in Figure 9.15.

Since the sample variance is s2 .0885, the value of the test statistic is

Since X2
 11.6184 is less than X2

.95  17.7083, we reject H0: S
2
 .2209 in favor of Ha:

S2
 .2209. That is, we conclude (at an a of .05) that the new process has reduced the variance 

of the camshaft hardness depths.
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Exercises for Sections 9.6 and 9.7

CONCEPTS

9.51 What assumption must hold to use the chi-square distribution to make statistical inferences about a
population variance?

9.52 Define the meaning of the chi-square points and . Hint: Draw a picture.

9.53 Give an example of a situation in which we might wish to compute a confidence interval for s2.

x
2
1 (a 2)x

2
a 2



Chapter Summary

We began this chapter by learning about the two hypotheses that
make up the structure of a hypothesis test. The null hypothesis is
the statement being tested. The null hypothesis is often a state-
ment of “no difference” or “no effect,” and it is not rejected un-
less there is convincing sample evidence that it is false. The
alternative, or, research, hypothesis is a statement that is
accepted only if there is convincing sample evidence that it is true
and that the null hypothesis is false. In some situations, the alter-
native hypothesis is a statement for which we need to attempt to
find supportive evidence. We also learned that two types of errors
can be made in a hypothesis test. A Type I error occurs when we
reject a true null hypothesis, and a Type II error occurs
when we do not reject a false null hypothesis.

We studied two commonly used ways to conduct a hypothesis
test. The first involves comparing the value of a test statistic with
what is called a critical value, and the second employs what is
called a p-value. The p-value measures the weight of evidence
against the null hypothesis. The smaller the p-value, the more we
doubt the null hypothesis.

The specific hypothesis tests we covered in this chapter all
dealt with a hypothesis about one population parameter. First,
we studied a test about a population mean that is based on the
assumption that the population standard deviation S is known.
This test employs the normal distribution. Second, we studied
a test about a population mean that assumes that S is unknown.
We learned that this test is based on the t distribution. Fig-
ure 9.16 presents a flowchart summarizing how to select an ap-
propriate test statistic to test a hypothesis about a population
mean. Then we presented a test about a population proportion
that is based on the normal distribution. Next (in optional
Section 9.5) we studied Type II error probabilities, and we
showed how we can find the sample size needed to make both
the probability of a Type I error and the probability of a serious
Type II error as small as we wish. We concluded this chapter by
discussing (in optional Sections 9.6 and 9.7) the chi-square
distribution and its use in making statistical inferences about a
population variance.

Glossary of Terms 387

METHODS AND APPLICATIONS

Exercises 9.54 through 9.57 relate to the following situation: Consider an engine parts supplier and sup-
pose the supplier has determined that the variance of the population of all cylindrical engine part outside
diameters produced by the current machine is approximately equal to, but no less than, .0005. To reduce
this variance, a new machine is designed, and a random sample of n  25 outside diameters produced by
this new machine has a mean of  3 and a variance of s2

 .00014. Assume the population of all cylin-
drical engine part outside diameters that would be produced by the new machine is normally distributed,
and let s2 denote the variance of this population.

9.54 Find a 95 percent confidence interval for s2.

9.55 Test H0: s
2
 .0005 versus Ha: s

2
 .0005 by setting a .05.

9.56 Find a 99 percent confidence interval for s2.

9.57 Test H0: s
2
 .0005 versus Ha: s

2
 .0005 by setting a .01.

x

Glossary of Terms

alternative (research) hypothesis: A statement that will be ac-
cepted only if there is convincing sample evidence that it is true.
Sometimes it is a statement for which we need to attempt to find
supportive evidence. (page 351)
chi-square distribution: A useful continuous probability distri-
bution. Its probability curve is skewed to the right, and the exact
shape of the probability curve depends on the number of degrees
of freedom associated with the curve. (page 384)
critical value: The value of the test statistic is compared with a
critical value in order to decide whether the null hypothesis can
be rejected. (pages 357, 361, 363)
greater than alternative: An alternative hypothesis that is
stated as a greater than (  ) inequality. (page 353)
less than alternative: An alternative hypothesis that is stated as
a less than (  ) inequality. (page 353)
not equal to alternative: An alternative hypothesis that is stated
as a not equal to (  ) inequality. (page 353)

null hypothesis: The statement being tested in a hypothesis
test. It is often a statement of “no difference” or “no effect,” and
it is not rejected unless there is convincing sample evidence that
it is false. (page 351)
one-sided alternative hypothesis: An alternative hypothesis
that is stated as either a greater than (  ) or a less than (  )
inequality. (page 353)
power (of a statistical test): The probability of rejecting the null
hypothesis when it is false. (page 381)
p-value (probability value): The probability, computed assum-
ing that the null hypothesis H0 is true, of observing a value of the
test statistic that is at least as contradictory to H0 and supportive
of Ha as the value actually computed from the sample data. The p-
value measures how much doubt is cast on the null hypothesis by
the sample data. The smaller the p-value, the more we doubt the
null hypothesis. (pages 359, 360, 362, 364)
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F I G U R E 9 . 1 6 Selecting an Appropriate Test Statistic to Test a Hypothesis about a Population Mean

Important Formulas and Tests

Hypothesis Testing steps: page 365

A hypothesis test about a population mean (s known): 
page 365

A t test about a population mean (s unknown): page 368

A large sample hypothesis test about a population proportion:
page 374

Calculating the probability of a Type II error: page 381

Sample size determination to achieve specified values of a and
b: page 382

Statistical inference about a population variance: page 385

Supplementary Exercises

9.58 The auditor for a large corporation routinely monitors cash disbursements. As part of this process,
the auditor examines check request forms to determine whether they have been properly approved.
Improper approval can occur in several ways. For instance, the check may have no approval, the
check request might be missing, the approval might be written by an unauthorized person, or the
dollar limit of the authorizing person might be exceeded.
a Last year the corporation experienced a 5 percent improper check request approval rate. Since

this was considered unacceptable, efforts were made to reduce the rate of improper approvals.

test statistic: A statistic computed from sample data in a hypoth-
esis test. It is either compared with a critical value or used to
compute a p-value. (pages 354, 357)
two-sided alternative hypothesis: An alternative hypothesis
that is stated as a not equal to (  ) inequality. (page 353)

Type I error: Rejecting a true null hypothesis. (page 354)
Type II error: Failing to reject a false null hypothesis.
(page 354)
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Letting p be the proportion of all checks that are now improperly approved, set up the null and
alternative hypotheses needed to attempt to demonstrate that the current rate of improper
approvals is lower than last year’s rate of 5 percent.

b Suppose that the auditor selects a random sample of 625 checks that have been approved in the
last month. The auditor finds that 18 of these 625 checks have been improperly approved. Use
critical values and this sample information to test the hypotheses you set up in part a at the .10,
.05, .01, and .001 levels of significance. How much evidence is there that the rate of improper
approvals has been reduced below last year’s 5 percent rate?

c Find the p-value for the test of part b. Use the p-value to carry out the test by setting a equal to
.10, .05, .01, and .001. Interpret your results.

d Suppose the corporation incurs a $10 cost to detect and correct an improperly approved check.
If the corporation disburses at least 2 million checks per year, does the observed reduction of
the rate of improper approvals seem to have practical importance? Explain your opinion.

9.59 THE CIGARETTE ADVERTISEMENT CASE ModelAge

Recall that the cigarette industry requires that models in cigarette ads must appear to be at least
25 years old. Also recall that a sample of 50 people is randomly selected at a shopping mall. Each
person in the sample is shown a “typical cigarette ad” and is asked to estimate the age of the model
in the ad.
a Let m be the mean perceived age estimate for all viewers of the ad, and suppose we consider

the industry requirement to be met if m is at least 25. Set up the null and alternative hypotheses
needed to attempt to show that the industry requirement is not being met.

b Suppose that a random sample of 50 perceived age estimates gives a mean of years
and a standard deviation of years. Use these sample data and critical values to test
the hypotheses of part a at the .10, .05, .01, and .001 levels of significance.

c How much evidence do we have that the industry requirement is not being met?
d Do you think that this result has practical importance? Explain your opinion.

9.60 THE CIGARETTE ADVERTISEMENT CASE ModelAge

Consider the cigarette ad situation discussed in Exercise 9.59. Using the sample information given
in that exercise, the p-value for testing H0 versus Ha can be calculated to be .0057.
a Determine whether H0 would be rejected at each of a .10, a .05, a .01, and a .001.
b Describe how much evidence we have that the industry requirement is not being met.

9.61 In an article in the Journal of Retailing, Kumar, Kerwin, and Pereira study factors affecting
merger and acquisition activity in retailing. As part of the study, the authors compare the
characteristics of “target firms” (firms targeted for acquisition) and “bidder firms” (firms
attempting to make acquisitions). Among the variables studied in the comparison were earnings
per share, debt-to-equity ratio, growth rate of sales, market share, and extent of diversification.
a Let m be the mean growth rate of sales for all target firms (firms that have been targeted for

acquisition in the last five years and that have not bid on other firms), and assume growth rates
are approximately normally distributed. Furthermore, suppose a random sample of 25 target
firms yields a sample mean sales growth rate of  0.16 with a standard deviation of s  0.12.
Use critical values and this sample information to test H0: m .10 versus Ha: m .10 by setting
a equal to .10, .05, .01, and .001. How much evidence is there that the mean growth rate
of sales for target firms exceeds .10 (that is, exceeds 10 percent)?

b Now let m be the mean growth rate of sales for all firms that are bidders (firms that have bid
to acquire at least one other firm in the last five years), and again assume growth rates are
approximately normally distributed. Furthermore, suppose a random sample of 25 bidders
yields a sample mean sales growth rate of  0.12 with a standard deviation of s  0.09. Use
critical values and this sample information to test H0: m .10 versus Ha: m .10 by setting
a equal to .10, .05, .01, and .001. How much evidence is there that the mean growth rate of
sales for bidders exceeds .10 (that is, exceeds 10 percent)?

9.62 A consumer electronics firm has developed a new type of remote control button that is designed
to operate longer before becoming intermittent. A random sample of 35 of the new buttons is
selected and each is tested in continuous operation until becoming intermittent. The resulting
lifetimes are found to have a sample mean of  1,241.2 hours and a sample standard deviation
of s  110.8.
a Independent tests reveal that the mean lifetime (in continuous operation) of the best remote

control button on the market is 1,200 hours. Letting m be the mean lifetime of the population
of all new remote control buttons that will or could potentially be produced, set up the null and
alternative hypotheses needed to attempt to provide evidence that the new button’s mean
lifetime exceeds the mean lifetime of the best remote button currently on the market.

x

x

x

DS

s  3.596
x  23.663

DS



390 Chapter 9 Hypothesis Testing

b Using the previously given sample results, use critical values to test the hypotheses you set up in
part a by setting a equal to .10, .05, .01, and .001. What do you conclude for each value of a?

c Suppose that  1,241.2 and s  110.8 had been obtained by testing a sample of 100 buttons.
Use critical values to test the hypotheses you set up in part a by setting a equal to .10, .05, .01,
and .001. Which sample (the sample of 35 or the sample of 100) gives a more statistically 
significant result? That is, which sample provides stronger evidence that Ha is true?

d If we define practical importance to mean that m exceeds 1,200 by an amount that would be
clearly noticeable to most consumers, do you think that the result has practical importance?
Explain why the samples of 35 and 100 both indicate the same degree of practical importance.

e Suppose that further research and development effort improves the new remote control button
and that a random sample of 35 buttons gives  1,524.6 hours and s  102.8 hours. Test your
hypotheses of part a by setting a equal to .10, .05, .01, and .001.
(1) Do we have a highly statistically significant result? Explain.
(2) Do you think we have a practically important result? Explain.

9.63 Again consider the remote control button lifetime situation discussed in Exercise 9.62. Using the
sample information given in the introduction to Exercise 9.62, the p-value for testing H0 versus
Ha can be calculated to be .0174.
a Determine whether H0 would be rejected at each of a .10, a .05, a .01, and a .001.
b Describe how much evidence we have that the new button’s mean lifetime exceeds the mean

lifetime of the best remote button currently on the market.

9.64 Several industries located along the Ohio River discharge a toxic substance called carbon
tetrachloride into the river. The state Environmental Protection Agency monitors the amount
of carbon tetrachloride pollution in the river. Specifically, the agency requires that the carbon
tetrachloride contamination must average no more than 10 parts per million. In order to
monitor the carbon tetrachloride contamination in the river, the agency takes a daily sample of
100 pollution readings at a specified location. If the mean carbon tetrachloride reading for this
sample casts substantial doubt on the hypothesis that the average amount of carbon tetrachloride
contamination in the river is at most 10 parts per million, the agency must issue a shutdown
order. In the event of such a shutdown order, industrial plants along the river must be closed
until the carbon tetrachloride contamination is reduced to a more acceptable level. Assume that
the state Environmental Protection Agency decides to issue a shutdown order if a sample
of 100 pollution readings implies that H0: m 10 can be rejected in favor of Ha: m 10 by set-
ting a .01. If s equals 2, calculate the probability of a Type II error for each of the following
alternative values of m: 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, and 11.0.

9.65 THE INVESTMENT CASE InvestRet

Suppose that random samples of 50 returns for each of the following investment classes give the
indicated sample mean and sample standard deviation:

Fixed annuities:  7.83%, s  .51%
Domestic large-cap stocks:  13.42%, s  15.17%
Domestic midcap stocks:  15.03%, s  18.44%
Domestic small-cap stocks:  22.51%, s  21.75%

a For each investment class, set up the null and alternative hypotheses needed to test whether
the current mean return differs from the historical (1970 to 1994) mean return given in 
Table 3.11 (page 143).

b Test each hypothesis you set up in part a at the .05 level of significance. What do you conclude?
For which investment classes does the current mean return differ from the historical mean?

9.66 THE UNITED KINGDOM INSURANCE CASE

Assume that the U.K. insurance survey is based on 1,000 randomly selected United Kingdom
households and that 640 of these households spent money to buy life insurance in 1993.
a If p denotes the proportion of all U.K. households that spent money to buy life insurance in

1993, set up the null and alternative hypotheses needed to attempt to justify the claim that
more than 60 percent of U.K. households spent money to buy life insurance in 1993.

b Test the hypotheses you set up in part a by setting a  .10, .05, .01, and .001. How much evi-
dence is there that more than 60 percent of U.K. households spent money to buy life insurance
in 1993?

9.67 How safe are child car seats? Consumer Reports (May 2005) tested the safety of child car seats
in 30 mph crashes. They found “slim safety margins” for some child car seats. Suppose that
Consumer Reports simulates the safety of the market-leading child car seat. Their test consists of
placing the maximum claimed weight in the car seat and simulating crashes at higher and higher
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x

x
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miles per hour until a problem occurs. The following data identify the speed at which a problem
with the car seat (such as the strap breaking, seat shell cracked, strap adjuster broke, detached
from base, etc.) first appeared: 31.0, 29.4, 30.4, 28.9, 29.7, 30.1, 32.3, 31.7, 35.4, 29.1, 31.2, 
30.2. Let m denote the true mean speed at which a problem with the car seat first appears. The
following MINITAB output gives the results of using the sample data to test H0: m 30 versus
Ha: m 30. CarSeat

How much evidence is there that m exceeds 30 mph?

9.68 Consumer Reports (January 2005) indicates that profit margins on extended warranties are much
greater than on the purchase of most products.4 In this exercise we consider a major electronics
retailer that wishes to increase the proportion of customers who buy extended warranties on
digital cameras. Historically, 20 percent of digital camera customers have purchased the retailer’s
extended warranty. To increase this percentage, the retailer has decided to offer a new warranty
that is less expensive and more comprehensive. Suppose that three months after starting to offer
the new warranty, a random sample of 500 customer sales invoices shows that 152 out of 500
digital camera customers purchased the new warranty. Letting p denote the proportion of all
digital camera customers who have purchased the new warranty, calculate the p-value for testing
H0: p  .20 versus Ha: p  .20. How much evidence is there that p exceeds .20? Does the
difference between and .2 seem to be practically important? Explain your opinion.

9.69 Fortune magazine has periodically reported on the rise of fees and expenses charged by stock funds.
a Suppose that 10 years ago the average annual expense for stock funds was 1.19 percent. Let
m be the current mean annual expense for all stock funds, and assume that stock fund annual
expenses are approximately normally distributed. If a random sample of 12 stock funds gives
a sample mean annual expense of  1.63% with a standard deviation of s  .31%, use
critical values and this sample information to test H0: m 1.19% versus Ha: m 1.19% by
setting a equal to .10, .05, .01, and .001. How much evidence is there that the current mean
annual expense for stock funds exceeds the average of 10 years ago?

b Do you think that the result in part a has practical importance? Explain your opinion.

x

p̂

Test of mu = 30 vs > 30  

Variable   N     Mean   StDev  SE Mean     T      P 

mph       12  30.7833  1.7862   0.5156  1.52  0.078 

DS

re American consumers comfortable using their credit
cards to make purchases over the Internet? Suppose
that a noted authority suggests that credit cards will be
firmly established on the Internet once the “80 percent
barrier” is broken; that is, as soon as more than 80 per-
cent of those who make purchases over the Internet are
willing to use a credit card to pay for their transactions.
A recent Gallup Poll (story, survey results, and analysis
can be found at http://www.gallup.com/poll/releases/
pr000223.asp) found that, out of n  302 Internet
purchasers surveyed, 267 have paid for Internet pur-
chases using a credit card. Based on the results of the
Gallup survey, is there sufficient evidence to conclude
that the proportion of Internet purchasers willing to

use a credit card now exceeds 0.80? Set up the appropri-
ate null and alternative hypotheses, test at the 0.05 and
0.01 levels of significance, and calculate a p-value for
your test.

Go to the Gallup Organization website (http://www.
gallup.com). Select an interesting current poll and
prepare a brief written summary of the poll or some
aspect thereof. Include a statistical test for the
significance of a proportion (you may have to make up
your own value for the hypothesized proportion p0) as
part of your report. For example, you might select a
political poll and test whether a particular candidate is
preferred by a majority of voters (p  0.50).

9.70 Internet Exercise

4Consumer Reports, January 2005, page 51.
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The instruction block in this section begins by describing the entry of data into an Excel spreadsheet. Alternatively,
the data may be downloaded from this book’s website. The appropriate data file name is given at the top of the in-
struction block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing
results.

Hypothesis test for a population mean in Exercise 9.33
on page 373 (data file: CreditCd.xlsx):

The Data Analysis ToolPak in Excel does not explicitly
provide for one-sample tests of hypotheses. A one-
sample test can be conducted using the Descriptive
Statistics component of the Analysis ToolPak and a
few additional computations using Excel.

Descriptive statistics:

• Enter the interest rate data from Exercise 9.33 
(page 373) into cells A2:A16 with the label Rate
in cell A1.

• Select Data : Data Analysis : Descriptive 
Statistics.

• Click OK in the Data Analysis dialog box.

• In the Descriptive Statistics dialog box, enter
A1.A16 into the Input Range box.

• Place a checkmark in the “Labels in first row”
check box.

• Under output options, select “New Worksheet
Ply” to have the output placed in a new 
worksheet and enter the name Output for the
new worksheet.

• Place a checkmark in the Summary Statistics
checkbox.

• Click OK in the Descriptive Statistics dialog box.

The resulting block of descriptive statistics is dis-
played in the Output worksheet and the entries
needed to carry out the test computations have been
entered into the range D3:E6. 

Computation of the test statistic and p-value:

• In cell E7, use the formula 

 (E3  E4) (E5 SQRT(E6))

to compute the test statistic t (  4.970).

• Click on cell E8 and then select the Insert
Function button  on the Excel toolbar.

• In the Insert Function dialog box, select Statistical
from the “Or select a category:” menu, select
TDIST from the “Select a function:” menu, and
click OK in the Insert Function dialog box.

• In the TDIST Function Arguments dialog box,
enter abs(E7) in the X window.

• Enter 14 in the Deg_freedom window.

• Enter 1 in the Tails window to select a one-tailed
test.

• Click OK in the TDIST Function Arguments dialog 
box.

• The p-value related to the test will be placed in 
cell E8.

fx

Appendix 9.1 ■ One-Sample Hypothesis Testing Using Excel



The instructions in this section begin by describing the entry of data into an Excel worksheet. Alternatively, the data
may be downloaded from this book’s website. The appropriate data file name is given at the top of each instruc-
tion block. Please refer to Appendix 1.1 for further information about entering data and saving and printing results
in Excel. Please refer to Appendix 1.2 for more information about using MegaStat.

Hypothesis test for a population mean in Exer-
cise 9.33 on page 373 (data file: CreditCd.xlsx):

• Enter the interest rate data from Exercise 9.33
(page 373) into cells A2:A16 with the label
Rate in cell A1.

• Select Add-Ins : MegaStat : Hypothesis Tests :
Mean vs. Hypothesized Value

• In the “Hypothesis Test: Mean vs. Hypothe-
sized Value” dialog box, click on “data input”
and use the autoexpand feature to enter the
range A1: A16 into the Input Range window.

• Enter the hypothesized value (here equal to
18.8) into the Hypothesized Mean window.

• Select the desired alternative (here “less
than”) from the drop-down menu in the
Alternative box.

• Click on t-test and click OK in the “Hypothesis
Test: Mean vs. Hypothesized Value” dialog box.

• A hypothesis test employing summary data
can be carried out by clicking on “summary
data,” and by entering a range into the Input
Range window that contains the following—
label; sample mean; sample standard
deviation; sample size n.

A z test can be carried out (in the unlikely event
that the population standard deviation is known)
by clicking on “z-test.”

Hypothesis test for a population proportion. Consider
testing H0: p  .05 versus Ha: p  .05, where n  250
and  .16.

• Select Add-Ins : MegaStat : Hypothesis Tests :
Proportion vs. Hypothesized Value

• In the “Hypothesis Test: Proportion vs.
Hypothesized Value” dialog box, enter the
hypothesized value (here equal to 0.05) into the
“Hypothesized p” window.

• Enter the observed sample proportion (here
equal to 0.16) into the “Observed p” window.

• Enter the sample size (here equal to 250) into the
“n” window.

• Select the desired alternative (here “greater
than”) from the drop-down menu in the
Alternative box.

• Check the “Display confidence interval” 
checkbox (if desired), and select or type the 
appropriate level of confidence.

• Click OK in the “Hypothesis Test: Proportion vs. 
Hypothesized Value” dialog box.

p̂

Appendix 9.2 One-Sample Hypothesis Testing Using MegaStat 393

Appendix 9.2 ■ One-Sample Hypothesis Testing Using MegaStat
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The first instruction block in this section begins by describing the entry of data into the MINITAB data window.
Alternatively, the data may be downloaded from this book’s website. The appropriate data file name is given at the
top of the instruction block. Please refer to Appendix 1.3 for further information about entering data, saving data,
and printing results when using MINITAB.

Appendix 9.3 ■ One-Sample Hypothesis Testing Using MINITAB

Hypothesis test for a population variance in the
camshaft situation of Section 9.7 on pages 385
and 386:

• Enter a label (in this case Depth) into cell A1,
the sample variance (here equal to .0885) into
cell A2, and the sample size (here equal to 30)
into cell A3.

• Select Add-Ins : MegaStat : Hypothesis Tests :
Chi-square Variance Test

• Click on “summary input.”

• Enter the range A1:A3 into the Input Range
window—that is, enter the range containing
the data label, the sample variance, and the
sample size.

• Enter the hypothesized value (here equal to
0.2209) into the “Hypothesized variance”
window.

• Select the desired alternative (in this case “less
than”) from the drop-down menu in the 
Alternative box.

• Check the “Display confidence interval” 
checkbox (if desired) and select or type the 
appropriate level of confidence.

• Click OK in the “Chi-square Variance Test”
dialog box.

• A chi-square variance test may be carried out
using data input by entering the observed 
sample values into a column in the Excel 
worksheet, and by then using the autoexpand
feature to enter the range containing the
label and sample values into the Input Range 
window.
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Hypothesis test for a population mean in Exer-
cise 9.33 on page 373 (data file: CreditCd.MTW):

• In the Data window, enter the interest rate data
from Exercise 9.33 (page 373) into a single
column with variable name Rate.

• Select Stat : Basic Statistics : 1-Sample t.

• In the “1-Sample t (Test and Confidence Interval)”
dialog box, select the “Samples in columns”
option.

• Select the variable name Rate into the “Samples
in columns” window.

• Place a checkmark in the “Perform hypothesis
test” checkbox.

• Enter the hypothesized mean (here 18.8) into the
“Hypothesized mean” window.

• Click the Options... button, select the desired 
alternative (in this case “less than”) from the 
Alternative drop-down menu, and click OK in the
“1-Sample t-Options” dialog box.

• To produce a boxplot of the data with a graphical
representation of the hypothesis test, click the
Graphs… button in the “1-Sample t (Test and
Confidence Interval)” dialog box, check the 
“Boxplot of data” checkbox, and click OK in the
“1-Sample t—Graphs” dialog box.

• Click OK in the “1-Sample t (Test and Confidence
Interval)” dialog box.

• The t test results are given in the Session
window, and the boxplot is displayed in a 
graphics window.

A “1-Sample Z” test is also available in MINITAB under 
Basic Statistics. It requires a user-specified value of the 
population standard deviation, which is rarely known.

Hypothesis test for a population proportion in Exer-
cise 9.38 on page 377:

• Select Stat : Basic Statistics : 1 Proportion

• In the “1 Proportion (Test and Confidence 
Interval)” dialog box, select the “Summarized
data” option.

• Enter the sample number of successes (here equal
to 146) into the “Number of events” window.

• Enter the sample size (here equal to 400) into the
“Number of trials” window.

• Place a checkmark in the “Perform hypothesis
test” checkbox.

• Enter the hypothesized proportion (here equal to
0.25) into the “Hypothesized proportion” window.

• Click on the Options… button.

• In the “1 Proportion—Options” dialog box, select
the desired alternative (in this case “greater
than”) from the Alternative drop-down menu.

• Place a checkmark in the “Use test and interval
based on normal distribution” checkbox.

• Click OK in the “1 Proportion—Options” dialog
box and click OK in the “1 Proportion (Test and
Confidence Interval)” dialog box.

• The hypothesis test results are given in the 
Session window.
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After mastering the material in this chapter, you will be able to:

LO4 Compare two population means when the
data are paired.

LO5 Compare two population proportions
using large independent samples.

LO6 Describe the properties of the F
distribution and use an F table.

LO7 Compare two population variances when
the samples are independent.
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LO1 Compare two population means when the
samples are independent and the
population variances are known.

LO2 Compare two population means when the
samples are independent and the
population variances are unknown.

LO3 Recognize when data come from
independent samples and when they are
paired.



usiness improvement often requires making

comparisons. For example, to increase

consumer awareness of a product or service,

it might be necessary to compare different types of

advertising campaigns. Or to offer more profitable

investments to its customers, an investment firm

might compare the profitability of different

investment portfolios. As a third example, a

manufacturer might compare different production

methods in order to minimize or eliminate out-of-

specification product.

In this chapter we discuss using confidence

intervals and hypothesis tests to compare two

populations. Specifically, we compare two

population means, two population variances, and

two population proportions. We make these

comparisons by studying differences and ratios.

For instance, to compare two population means,

say m1 and m2, we consider the difference between

these means, m1  m2. If, for example, we use a

confidence interval or hypothesis test to conclude

that m1  m2 is a positive number, then we conclude

that m1 is greater than m2. On the other hand, if a

confidence interval or hypothesis test shows that

m1 m2 is a negative number, then we conclude that

m1 is less than m2. As another example, if we

compare two population variances, say and ,

we might consider the ratio . If a hypothesis

test shows that this ratio exceeds 1, then we can

conclude that is greater than .

We explain many of this chapter’s methods in the

context of three new cases:
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The Catalyst Comparison Case: The production

supervisor at a chemical plant uses confidence

intervals and hypothesis tests for the difference

between two population means to determine

which of two catalysts maximizes the hourly yield

of a chemical process. By maximizing yield, the

plant increases its productivity and improves its

profitability.

The Repair Cost Comparison Case: In order to

reduce the costs of automobile accident claims, an

insurance company uses confidence intervals and

hypothesis tests for the difference between two

population means to compare repair cost estimates

for damaged cars at two different garages.

The Advertising Media Case: An advertising

agency is test marketing a new product by using

one advertising campaign in Des Moines, Iowa,

and a different campaign in Toledo, Ohio. The

agency uses confidence intervals and hypothesis

tests for the difference between two population

proportions to compare the effectiveness of the

two advertising campaigns.

Compare
two

population means
when the samples
are independent and
the population vari-
ances are known.

LO1

B

C

1Each sample in this chapter is a random sample. As has been our practice throughout this book, for brevity we sometimes
refer to “random samples” as “samples.”

10.1 Comparing Two Population Means by Using
Independent Samples: Variances Known

A bank manager has developed a new system to reduce the time customers spend waiting to be
served by tellers during peak business hours. We let m1 denote the mean customer waiting time
during peak business hours under the current system. To estimate m1, the manager randomly
selects n1 100 customers and records the length of time each customer spends waiting for ser-
vice. The manager finds that the sample mean waiting time for these 100 customers is  

8.79 minutes. We let m2 denote the mean customer waiting time during peak business hours for
the new system. During a trial run, the manager finds that the mean waiting time for a random
sample of customers is minutes.

In order to compare m1 and m2, the manager estimates the difference between m1 and
m2. Intuitively, a logical point estimate of is the difference between the sample means

This says we estimate that the current mean waiting time is 3.65 minutes longer than the mean
waiting time under the new system. That is, we estimate that the new system reduces the mean
waiting time by 3.65 minutes.

To compute a confidence interval for m1 m2 (or to test a hypothesis about m1 m2), we need
to know the properties of the sampling distribution of . To understand this sampling dis-
tribution, consider randomly selecting a sample1 of n1 measurements from a population having
mean m1 and variance . Let be the mean of this sample. Also consider randomly selecting a x 1s1

2

x 1  x 2

x 1  x 2  8.79  5.14  3.65 minutes

m1  m2

m1  m2,
x2  5.14n2  100

x 1
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sample of n2 measurements from another population having mean m2 and variance . Let be
the mean of this sample. Different samples from the first population would give different values
of , and different samples from the second population would give different values of —so
different pairs of samples from the two populations would give different values of . In
the following box we describe the sampling distribution of , which is the probability
distribution of all possible values of :x 1  x 2

x 1  x 2

x 1  x 2

x 2x 1

x 2s2
2

 1    2

x1   x2
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F I G U R E 1 0 . 1 The Sampling Distribution of Has Mean and Standard Deviation Sx
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M1  M2x1  x2

The Sampling Distribution of x1  x2

If the randomly selected samples are independent of each other,2 then the population of all possible values

of 

1 Has a normal distribution if each sampled population has a normal distribution, or has approximately a

normal distribution if the sampled populations are not normally distributed and each of the sample sizes

n1 and n2 is large.

2 Has mean 

3 Has standard deviation sx1 x2
 B
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n2

mx1 x2
 m1  m2

x1  x2

A z-Based Confidence Interval for the Difference between Two Population Means, 
When S1 and S2 Are Known

Let be the mean of a sample of size n1 that has been randomly selected from a population with mean m1

and standard deviation s1, and let be the mean of a sample of size n2 that has been randomly selected

from a population with mean m2 and standard deviation s2. Furthermore, suppose that each sampled popu-

lation is normally distributed, or that each of the sample sizes n1 and n2 is large. Then, if the samples are

independent of each other, a 100(1 ␣) percent confidence interval for 1 2 is

B ( x1  x2)  z#a兾2 B
s

2
1

n1

 
s

2
2

n2

R

x2

x1

Figure 10.1 illustrates the sampling distribution of . Using this sampling distribution,
we can find a confidence interval for and test a hypothesis about Although the interval
and test assume that the true values of the population variances are known, we believe
that they are worth presenting because they provide a simple introduction to the basic idea of com-
paring two population means. Readers who wish to proceed more quickly to the more practical
t-based procedures of the next section may skip the rest of this section without loss of continuity. 

s
2
1 and s2

2

m1  m2.
x 1  x 2

2This means that there is no relationship between the measurements in one sample and the measurements in the other sample.
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EXAMPLE 10.1 The Bank Customer Waiting Time Case

Suppose the random sample of n1   100 waiting times observed under the current system gives
a sample mean and the random sample of waiting times observed during the
trial run of the new system yields a sample mean . Assuming that is known to equal
4.7 and is known to equal 1.9, and noting that each sample is large, a 95 percent confidence
interval for is

This interval says we are 95 percent confident that the new system reduces the mean waiting time
by between 3.15 minutes and 4.15 minutes.

 [3.15, 4.15]

 [3.65  .5035]

 B (x 1  x 2)  z .025B
s

2
1

n 1

 
s

2
2

n 2

R  B (8.79  5.14)  1.96 B
4.7

100
 

1.9

100
R

m1  m2

s
2
2

s
2
1x 2  5.14

n2  100x 1  8.79

Suppose we wish to test a hypothesis about m1 m2. In the following box we describe how
this can be done. Here we test the null hypothesis H0: m1 m2 D0, where D0 is a number whose
value varies depending on the situation.

A z Test about the Difference between Two Population Means 
When S1 and S2 Are Known

Let all notation be as defined in the preceding box, and define the test statistic

Assume that each sampled population is normally distributed, or that each of the sample sizes n1 and n2 is

large. Then, if the samples are independent of each other, we can test versus a particular

alternative hypothesis at level of significance a by using the appropriate critical value rule, or, equivalently,

the corresponding p-value.

Alternative Critical Value Rule:
Hypothesis Reject H0 if p-Value (reject H0 if p-value  A)

The area under the standard normal
curve to the right of z

The area under the standard normal
curve to the left of z

—that is, Twice the area under the standard
or normal curve to the right of 0 z 0z   z a兾2z  z a兾2

0 z 0  za兾2Ha: m1  m2 Z D0

z   z aHa: m1  m2  D0

z  zaHa: m1  m2  D0

H0: m1  m2  D0

z  
(x1  x2)  D0

B
s1

2

n1

 
s2

2

n2

Often D0 will be the number 0. In such a case, the null hypothesis H0: m1 m2 0 says there
is no difference between the population means m1 and m2. For example, in the bank customer
waiting time situation, the null hypothesis H0: m1 m2 0 says there is no difference between
the mean customer waiting times under the current and new systems. When D0 is 0, each alter-
native hypothesis in the box implies that the population means m1 and m2 differ. For instance, in
the bank waiting time situation, the alternative hypothesis Ha: m1 m2 0 says that the current
mean customer waiting time is longer than the new mean customer waiting time. That is, this
alternative hypothesis says that the new system reduces the mean customer waiting time.

C

0

.95

z.025 z.025

.025 .025

0

.975

.025

1.96

z.025
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To attempt to provide evidence supporting the claim that the new system reduces the mean bank
customer waiting time, we will test H0: M1 M2 0 versus Ha: M1 M2 0 at the .05 level of

significance. To perform the hypothesis test, we will use the sample information in Example 10.1
to calculate the value of the test statistic z in the summary box. Then, since Ha: m1 m2 0 is
of the form Ha: m1 m2 D0, we will reject H0: M1 M2 0 if the value of z is greater than

z
A
 z.05  1.645. Assuming that the value of the test statistic is

Because z 14.21 is greater than z.05 1.645, we reject H0: M1  M2  0 in favor of Ha:

M1  M2  0. We conclude (at an a of .05) that m1  m2 is greater than 0 and, therefore, that the
new system reduces the mean customer waiting time. Furthermore, the point estimate

says we estimate that the new system reduces mean waiting time by 3.65 min-
utes. The p-value for the test is the area under the standard normal curve to the right of 
Because this p-value is less than .00003, it provides extremely strong evidence that H0 is false
and that Ha is true. That is, we have extremely strong evidence that m1 m2 is greater than 0 and,
therefore, that the new system reduces the mean customer waiting time. 

Next, suppose that because of cost considerations, the bank manager wants to implement the
new system only if it reduces mean waiting time by more than three minutes. In order to demon-
strate that m1 m2 is greater than 3, the manager (setting D0 equal to 3) will attempt to reject the
null hypothesis H0: m1 m2 3 in favor of the alternative hypothesis Ha: m1 m2 3 at the .05
level of significance. To perform the hypothesis test, we compute

Because z 2.53 is greater than z.05 1.645, we can reject H0: m1  m2  3 in favor of Ha:
m1  m2  3. The p-value for the test is the area under the standard normal curve to the right of
z 2.53. Table A.3 (page 860) tells us that this area is 1 .9943 .0057. Therefore, we have
very strong evidence against H0: m1 m2 3 and in favor of Ha: m1 m2 3. In other words, we
have very strong evidence that the new system reduces mean waiting time by more than
three minutes.

z  
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EXAMPLE 10.2 The Bank Customer Waiting Time Case C

CONCEPTS

10.1 Suppose we compare two population means, m1 and m2, and consider the difference m1 m2. In
each case, indicate how m1 relates to m2. (That is, is m1 greater than, less than, equal to, or not equal
to m2?)
a m1 m2 0 d m1 m2 0
b m1 m2 0 e m1 m2 20
c m1 m2  10 f m1 m2 0

10.2 Suppose we compute a 95 percent confidence interval for m1 m2. If the interval is
a [3, 5], can we be 95 percent confident that m1 is greater than m2? Why or why not?
b [3, 5], can we be 95 percent confident that m1 is not equal to m2? Why or why not?
c [ 20,  10], can we be 95 percent confident that m1 is not equal to m2? Why or why not?
d [ 20,  10], can we be 95 percent confident that m1 is greater than m2? Why or why not?
e [ 3, 2], can we be 95 percent confident that m1 is not equal to m2? Why or why not?
f [ 10, 10], can we be 95 percent confident that m1 is less than m2? Why or why not?
g [ 10, 10], can we be 95 percent confident that m1 is greater than m2? Why or why not?

Exercises for Section 10.1

0

.95
␣   .05

1.645

z.05

0

.9943

2.53

z

p-value

   .0057
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10.3 In order to employ the formulas and tests of this section, the samples that have been randomly
selected from the populations being compared must be independent of each other. In such a case,
we say that we are performing an independent samples experiment. In your own words, explain
what it means when we say that samples are independent of each other.

10.4 Describe the assumptions that must be met in order to validly use the methods of Section 10.1.

METHODS AND APPLICATIONS

10.5 Suppose we randomly select two independent samples from populations having means m1 and m2.
If , , s1 3, s2 4, n1 100, and n2 100:

a Calculate a 95 percent confidence interval for Can we be 95 percent confident that m1

is greater than m2? Explain.
b Test the null hypothesis H0: m1 m2 0 versus Ha: m1 m2 0 by setting a .05. What do

you conclude about how m1 compares to m2?
c Find the p-value for testing H0: m1 m2 4 versus Ha: m1 m2 4. Use the p-value to test

these hypotheses by setting equal to .10, .05, .01, and .001.

10.6 Suppose we select two independent random samples from populations having means m1 and m2. If
, , s1 6, s2 8, n1 625, and n2 625:

a Calculate a 95 percent confidence interval for m1 m2. Can we be 95 percent confident that m2

is greater than m1? By how much? Explain.
b Test the null hypothesis H0: m1 m2  10 versus Ha: m1 m2  10 by setting .

What do you conclude?
c Test the null hypothesis H0: m1 m2  10 versus Ha: m1 m2  10 by setting equal to

.01. What do you conclude?
d Find the p-value for testing H0: m1 m2  10 versus Ha: m1 m2  10. Use the p-value to

test these hypotheses by setting a equal to .10, .05, .01, and .001.

10.7 In an article in Accounting and Business Research, Carslaw and Kaplan study the effect of control
(owner versus manager control) on audit delay (the length of time from a company’s financial year-
end to the date of the auditor’s report) for public companies in New Zealand. Suppose a random
sample of 100 public owner-controlled companies in New Zealand gives a mean audit delay of

days, while a random sample of 100 public manager-controlled companies in New
Zealand gives a mean audit delay of . Assuming the samples are independent and that

a Let m1 be the mean audit delay for all public owner-controlled companies in New Zealand, and
let m2 be the mean audit delay for all public manager-controlled companies in New Zealand.
Calculate a 95 percent confidence interval for m1 m2. Based on this interval, can we be
95 percent confident that the mean audit delay for all public owner-controlled companies in
New Zealand is less than that for all public manager-controlled companies in New Zealand? If
so, by how much?

b Consider testing the null hypothesis H0: m1 m2 0 versus Ha: m1 m2 0. Interpret (in 
writing) the meaning (in practical terms) of each of H0 and Ha.

c Use a critical value to test the null hypothesis H0: m1 m2 0 versus Ha: m1 m2 0 at the .05
level of significance. Based on this test, what do you conclude about how m1 and m2 compare?
Write your conclusion in practical terms.

d Find the p-value for testing H0: m1 m2 0 versus Ha: m1 m2 0. Use the p-value to test H0

versus Ha by setting a equal to .10, .05, .025, .01, and .001. How much evidence is there that 
m1 is less than m2?

10.8 In an article in the Journal of Management, Wright and Bonett study the relationship between
voluntary organizational turnover and such factors as work performance, work satisfaction, and
company tenure. As part of the study, the authors compare work performance ratings for
“stayers” (employees who stay in their organization) and “leavers” (employees who voluntarily
quit their jobs). Suppose that a random sample of 175 stayers has a mean performance rating 
(on a 20-point scale) of , and that a random sample of 140 leavers has a mean
performance rating of . Assuming these random samples are independent and that 

a Let m1 be the mean performance rating for stayers, and let m2 be the mean performance rating
for leavers. Use the sample information to calculate a 99 percent confidence interval for
m1 m2. Based on this interval, can we be 99 percent confident that the mean performance
rating for leavers is greater than the mean performance rating for stayers? What are the
managerial implications of this result?

b Set up the null and alternative hypotheses needed to try to establish that the mean performance
rating for leavers is higher than the mean performance rating for stayers.

s1  3.7 and s2  4.5 :
x 2  14.7
x 1  12.8

s1  32.83 and s2  37.18 :
x 2  93 days

x 1  82.6

a

a  .05

x 2  162x 1  151

a

m1  m2.

x 2  20x 1  25



c Use critical values to test the hypotheses you set up in part b by setting a equal to .10, .05,
.01, and .001. How much evidence is there that leavers have a higher mean performance 
rating than do stayers?

10.9 An Ohio university wishes to demonstrate that car ownership is detrimental to academic achieve-
ment. A random sample of 100 students who do not own cars had a mean grade point average
(GPA) of 2.68, while a random sample of 100 students who own cars had a mean GPA of 2.55.
a Assuming that the independence assumption holds, and letting m1 the mean GPA for all

students who do not own cars, and m2 the mean GPA for all students who own cars, use the
above data to compute a 95 percent confidence interval for m1 m2. Assume here that s1  .7
and s2  .6.

b On the basis of the interval calculated in part a, can the university claim that car ownership is
associated with decreased academic achievement? That is, can the university justify that m1

is greater than m2? Explain.
c Set up the null and alternative hypotheses that should be used to attempt to justify that the

mean GPA for non–car owners is higher than the mean GPA for car owners.
d Test the hypotheses that you set up in part c with a .05. Again assume that s1  .7 and 

s2  .6. Interpret the results of this test. That is, what do your results say about whether car
ownership is associated with decreased academic achievement?

10.10 In the Journal of Marketing, Bayus studied differences between “early replacement buyers” and “late
replacement buyers.” Suppose that a random sample of 800 early replacement buyers yields a mean
number of dealers visited of , and that a random sample of 500 late replacement buyers
yields a mean number of dealers visited of . Assuming that these samples are independent:
a Let m1 be the mean number of dealers visited by early replacement buyers, and let m2 be the

mean number of dealers visited by late replacement buyers. Calculate a 95 percent confidence
interval for m2 m1. Assume here that s1  .71 and s2  .66. Based on this interval, can we
be 95 percent confident that on average late replacement buyers visit more dealers than do
early replacement buyers?

b Set up the null and alternative hypotheses needed to attempt to show that the mean number of
dealers visited by late replacement buyers exceeds the mean number of dealers visited by
early replacement buyers by more than 1.

c Test the hypotheses you set up in part b by using critical values and by setting a equal to .10,
.05, .01, and .001. How much evidence is there that H0 should be rejected?

d Find the p-value for testing the hypotheses you set up in part b. Use the p-value to test these
hypotheses with a equal to .10, .05, .01, and .001. How much evidence is there that H0 should
be rejected? Explain your conclusion in practical terms.

e Do you think that the results of the hypothesis tests in parts c and d have practical significance?
Explain and justify your answer.

10.11 In the book Essentials of Marketing Research, William R. Dillon, Thomas J. Madden, and Neil 
H. Firtle discuss a corporate image study designed to find out whether perceptions of technical
support services vary depending on the position of the respondent in the organization. The
management of a company that supplies telephone cable to telephone companies commissioned 
a media campaign primarily designed to

(1) increase awareness of the company and (2) create favorable perceptions of the com-
pany’s technical support. The campaign was targeted to purchasing managers and technical
managers at independent telephone companies with greater than 10,000 trunk lines.

Perceptual ratings were measured with a nine-point agree–disagree scale. Suppose the results
of a telephone survey of 175 technical managers and 125 purchasing managers reveal that the
mean perception score for technical managers is 7.3 and that the mean perception score for 
purchasing managers is 8.2.
a Let m1 be the mean perception score for all purchasing managers, and let m2 be the mean

perception score for all technical managers. Set up the null and alternative hypotheses needed
to establish whether the mean perception scores for purchasing managers and technical 
managers differ. Hint: If m1 and m2 do not differ, what does m1 m2 equal?

b Assuming that the samples of 175 technical managers and 125 purchasing managers are
independent random samples, test the hypotheses you set up in part a by using a critical value
with a .05. Assume here that s1  1.6 and s2  1.4. What do you conclude about whether
the mean perception scores for purchasing managers and technical managers differ?

c Find the p-value for testing the hypotheses you set up in part a. Use the p-value to test these
hypotheses by setting a equal to .10, .05, .01, and .001. How much evidence is there that the
mean perception scores for purchasing managers and technical managers differ?

d Calculate a 99 percent confidence interval for m1 m2. Interpret this interval.

x 2  4.5
x 1  3.3
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10.2 Comparing Two Population Means by Using
Independent Samples: Variances Unknown

Suppose that (as is usually the case) the true values of the population variances are not
known. We then estimate by using and the variances of the samples randomly
selected from the populations being compared. There are two approaches to doing this. The first
approach assumes that the population variances and are equal. Denoting the common value
of these variances as s2, it follows that

Because we are assuming that , we do not need separate estimates of and .
Instead, we combine the results of the two independent random samples to compute a single
estimate of s2. This estimate is called the pooled estimate of s2, and it is a weighted average of
the two sample variances and . Denoting the pooled estimate as , it is computed using the
formula

Using , the estimate of is

and we form the statistic

It can be shown that, if we have randomly selected independent samples from two normally
distributed populations having equal variances, then the sampling distribution of this statistic is
a t distribution having (n1 n2 2) degrees of freedom. Therefore, we can obtain the following
confidence interval for m1 m2:
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A t-Based Confidence Interval for the Difference between Two
Population Means: Equal Variances

Suppose we have randomly selected independent samples from two normally distributed populations hav-

ing equal variances. Then, a 100(1  A) percent confidence interval for M1  M2 is

where

and is based on degrees of freedom.(n1  n2  2)ta兾2

s2
p  

(n1  1)s2
1  (n2  1)s2

2

n1  n2  2
B ( x1  x2 
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p冢 1
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1
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A production supervisor at a major chemical company must determine which of two catalysts,
catalyst XA-100 or catalyst ZB-200, maximizes the hourly yield of a chemical process. In order
to compare the mean hourly yields obtained by using the two catalysts, the supervisor runs the
process using each catalyst for five one-hour periods. The resulting yields (in pounds per hour)

EXAMPLE 10.3 The Catalyst Comparison Case C



for each catalyst, along with the means, variances, and box plots3 of the yields, are given in
Table 10.1. Assuming that all other factors affecting yields of the process have been held as con-
stant as possible during the test runs, it seems reasonable to regard the five observed yields for
each catalyst as a random sample from the population of all possible hourly yields for the cata-
lyst. Furthermore, since the sample variances and do not differ substantially
(notice that and differ by even less), it might be reasonable to conclude
that the population variances are approximately equal.4 It follows that the pooled estimate

is a point estimate of the common variance s2.
We define m1 as the mean hourly yield obtained by using catalyst XA-100, and we define m2 as

the mean hourly yield obtained by using catalyst ZB-200. If the populations of all possible hourly
yields for the catalysts are normally distributed, then a 95 percent confidence interval form1 m2 is

Here t.025   2.306 is based on n1   n2   2   5   5   2   8 degrees of freedom. This interval
tells us that we are 95 percent confident that the mean hourly yield obtained by using catalyst
XA-100 is between 30.38 and 91.22 pounds higher than the mean hourly yield obtained by using
catalyst ZB-200.

Suppose we wish to test a hypothesis about m1  m2. In the following box we describe how
this can be done. Here we test the null hypothesis H0: m1 m2 D0, where D0 is a number whose
value varies depending on the situation. Often D0 will be the number 0. In such a case, the null
hypothesis H0: m1 m2 0 says there is no difference between the population means m1 and m2.
In this case, each alternative hypothesis in the box implies that the population means m1 and m2

differ in a particular way.

  [30.38, 91.22]

  [60.8  30.4217]

  B (811  750.2)  2.306 B435.1冢1
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Catalyst XA-100 Catalyst ZB-200

801 752

814 718

784 776

836 742

820 763

s2
2   484.2s1

2   386

x2   750.2x1   811

Y
ie

ld

XA -100 ZB-200

820

770

720

Boxplot of XA-100, ZB-200

3All of the box plots presented in this chapter and in Chapter 11 have been obtained using MINITAB.
4We describe how to test the equality of two variances in Section 10.5 (although, as we will explain, this test has drawbacks).

0

.95

df   8

 t.025

.025 .025

2.306

t.025
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In order to compare the mean hourly yields obtained by using catalysts XA-100 and ZB-200, we
will test H0: M1  M2  0 versus Ha: M1  M2  0 at the .05 level of significance. To perform
the hypothesis test, we will use the sample information in Table 10.1 to calculate the value of the
test statistic t in the summary box. Then, because Ha: m1 m2 0 is of the form Ha: m1 m2 

D0, we will reject H0:M1 M2 0 if the absolute value of t is greater than t
A兾2 t.025 2.306.

Here the t
a兾2 point is based on n1 n2 2  5  5  2  8 degrees of freedom. Using the data

in Table 10.1, the value of the test statistic is

Because is greater than t.025 2.306, we can reject H0: M1 M2 0 in favor of

Ha: We conclude (at an a of .05) that the mean hourly yields obtained by using the
two catalysts differ. Furthermore, the point estimate says we
estimate that the mean hourly yield obtained by using catalyst XA-100 is 60.8 pounds higher than
the mean hourly yield obtained by using catalyst ZB-200.

Figure 10.2(a) gives the Excel output for using the equal variance t statistic to test H0 versus
Ha. The outputs tell us that t 4.6087 and that the associated p-value is .001736. This very small
p-value tells us that we have very strong evidence against H0: m1 m2 0 and in favor of
Ha: m1 m2 0. In other words, we have very strong evidence that the mean hourly yields ob-
tained by using the two catalysts differ. (Note that in Figure 10.2(b) we give the Excel output
for using an unequal variances t statistic, which is discussed on the following pages, to per-
form the hypothesis test.)

x1  x2  811  750.2  60.8
 M1  M2   0.

冷 t 冷  4.6087

 t  
( x1  x2)  D0

As2
p冢 1

n1

 
1

n2
冣
 

(811  750.2)  0

A435.1冢1

5
 

1

5冣
 4.6087

EXAMPLE 10.4 The Catalyst Comparison Case C

A t Test about the Difference between Two Population Means: 
Equal Variances

Define the test statistic

and assume that the sampled populations are normally distributed with equal variances. Then, if the sam-

ples are independent of each other, we can test H0: m1 m2 D0 versus a particular alternative hypothesis

at level of significance a by using the appropriate critical value rule, or, equivalently, the corresponding

p-value.

t  
( x1  x2)  D0

 As2
p冢 1

n1

 
1

n2
冣 

Alternative Critical Value Rule:
Hypothesis Reject H0 if p-Value (reject H0 if p-value  A)

Ha: m1 m2 D0 t   t
a

The area under the t distribution curve
to the right of t

Ha: m1 m2 D0 t    t
a

The area under the t distribution curve
to the left of t

Ha: m1 m2 D0 —that is, Twice the area under the t distribution
or curve to the right of .0 t 0t   t a兾2t  t a兾2

0 t 0  t a兾2

Here , , and the p-values are based on degrees of freedom.n1  n2  2ta兾2ta

df   8

 t.025

2.306

t.0250

␣/2   .025 ␣/2   .025

p-value

   2(.000868)   .001736

 2.306

 4.6087

4.6087

t
0

.000868.000868

|  |



When the sampled populations are normally distributed and the population variances and
differ, the following can be shown.s

2
2

s
2
1
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(b) The Excel Output Assuming Unequal Variances

t-Test: Two-Sample Assuming Unequal Variances

XA-100 ZB-200

Mean 811 750.2

Variance 386 484.2

Observations 5 5

Hypothesized Mean Diff 0

df 8

t Stat 4.608706

P(T  t) one-tail 0.000868

t Critical one-tail 1.859548

P(T  t) two-tail 0.001736

t Critical two-tail 2.306004

t-Based Confidence Intervals for M1 M2, and t Tests
about M1 M2: Unequal Variances

1 When the sample sizes n1 and n2 are equal, the

“equal variances” t-based confidence interval

and hypothesis test given in the preceding two

boxes are approximately valid even if the popu-

lation variances and differ substantially. As

a rough rule of thumb, if the larger sample vari-

ance is not more than three times the smaller

sample variance when the sample sizes are

equal, we can use the equal variances interval

and test.

2 Suppose that the larger sample variance is more

than three times the smaller sample variance

when the sample sizes are equal or, suppose that

both the sample sizes and the sample variances

differ substantially. Then, we can use an approx-

imate procedure that is sometimes called an

“unequal variances” procedure. This procedure

says that an approximate percent

confidence interval for isM1  M2

100(1  A)

s
2
2s

2
1

Furthermore, we can test by

using the test statistic

and by using the previously given critical value

and p-value conditions.

For both the interval and the test, the degrees

of freedom are equal to

Here, if df is not a whole number, we can round

df down to the next smallest whole number.
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In general, both the “equal variances” and the “unequal variances” procedures have been shown
to be approximately valid when the sampled populations are only approximately normally distrib-
uted (say, if they are mound-shaped). Furthermore, although the above summary box might seem
to imply that we should use the unequal variances procedure only if we cannot use the equal vari-
ances procedure, this is not necessarily true. In fact, since the unequal variances procedure can be
shown to be a very accurate approximation whether or not the population variances are equal and
for most sample sizes (here, both n1 and n2 should be at least 5), many statisticians believe that

it is best to use the unequal variances procedure in almost every situation. If each of n1 and n2

is large (at least 30), both the equal variances procedure and the unequal variances procedure are
approximately valid, no matter what probability distributions describe the sampled populations.

(a) The Excel Output Assuming Equal Variances

t-Test: Two-Sample Assuming Equal Variances

XA-100 ZB-200

Mean 811 750.2

Variance 386 484.2

Observations 5 5

Pooled Variance 435.1

Hypothesized Mean Diff 0

df 8

t Stat 4.608706

P(T  t) one-tail 0.000868

t Critical one-tail 1.859548

P(T  t) two-tail 0.001736

t Critical two-tail 2.306004
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To illustrate the unequal variances procedure, consider the bank customer waiting time situ-
ation, and recall that m1  m2 is the difference between the mean customer waiting time under
the current system and the mean customer waiting time under the new system. Because of cost
considerations, the bank manager wants to implement the new system only if it reduces the
mean waiting time by more than three minutes. Therefore, the manager will test the null

hypothesis H0: M1 M2 3 versus the alternative hypothesis Ha: M1 M2 3. If H0 can be
rejected in favor of Ha at the .05 level of significance, the manager will implement the new
system. Suppose that a random sample of n1  100 waiting times observed under the current
system gives a sample mean and a sample variance . Further, suppose a
random sample of waiting times observed during the trial run of the new system
yields a sample mean and a sample variance . Since each sample is large,
we can use the unequal variances test statistic t in the summary box. The degrees of freedom
for this statistic are

which we will round down to 163. Therefore, because Ha: m1  m2  3 is of the form Ha: 
m1 m2 D0, we will reject H0: M1 M2 3 if the value of the test statistic t is greater than

t
A
 t.05  1.65 (which is based on 163 degrees of freedom and has been found using a com-

puter). Using the sample data, the value of the test statistic is

Because t  2.53 is greater than t.05  1.65, we reject H0: M1  M2  3 in favor of Ha: M1  

M2  3. We conclude (at an a of .05) that m1  m2 is greater than 3 and, therefore, that the new
system reduces the mean customer waiting time by more than 3 minutes. Therefore, the bank
manager will implement the new system. Furthermore, the point estimate says
that we estimate that the new system reduces mean waiting time by 3.65 minutes.

Figure 10.3 gives the MINITAB output of using the unequal variances procedure to test 
H0: m1 m2 3 versus Ha: m1 m2 3. The output tells us that t 2.53 and that the associated
p-value is .006. The very small p-value tells us that we have very strong evidence against 
H0: m1  m2  3 and in favor of Ha: m1  m2  3. That is, we have very strong evidence that 
m1 m2 is greater than 3 and, therefore, that the new system reduces the mean customer waiting
time by more than 3 minutes. To find a 95 percent confidence interval for m1  m2, note that we
can use a computer to find that t.025 based on 163 degrees of freedom is 1.97. It follows that the
95 percent confidence interval for m1  m2 is

This interval says that we are 95 percent confident that the new system reduces the mean
customer waiting time by between 3.14 minutes and 4.16 minutes.
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In general, the degrees of freedom for the unequal variances procedure will always be less
than or equal to n1  n2  2, the degrees of freedom for the equal variances procedure. For ex-
ample, if we use the unequal variances procedure to analyze the catalyst comparison data in
Table 10.1, we can calculate df to be 7.9. This is slightly less than n1 n2 2  5  5  2  8,
the degrees of freedom for the equal variances procedure. Figure 10.2(b) gives the Excel output,
and Figure 10.4 gives the MINITAB output, of the unequal variances analysis of the catalyst
comparison data. Note that the Excel unequal variances procedure rounds df  7.9 up to 8 and
obtains the same results as did the equal variances procedure (see Figure 10.2(a). On the other
hand, MINITAB rounds df  7.9 down to 7 and finds that a 95 percent confidence interval for 
m1 m2 is [29.6049, 91.9951]. MINITAB also finds that the test statistic for testing H0: m1 m2 

0 versus Ha: m1 m2 0 is t 4.61 and that the associated p-value is .002. These results do not
differ by much from the results given by the equal variances procedure.

To conclude this section, it is important to point out that if the sample sizes n1 and n2 are not
large (at least 30), and if we fear that the sampled populations might be far from normally dis-
tributed, we can use a nonparametric method. One nonparametric method for comparing pop-
ulations when using independent samples is the Wilcoxon rank sum test. This test is discussed
in Section 18.2 (pages 808–814).
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F I G U R E 1 0 . 3 MINITAB Output of the Unequal Variances 

Procedure for the Bank Customer Waiting 

Time Situation

F I G U R E 1 0 . 4 MINITAB Output of the Unequal

Variances Procedure for the 

Catalyst Comparison Case

Two-Sample T-Test and CI: XA-100, ZB-200  

N     Mean    StDev    SE Mean 

XA-100    5    811.0     19.6        8.8 

ZB-200    5    750.2     22.0        9.8 

Difference = mu (XA-100) - mu (ZB-200) 

Estimate for difference:  60.8000 

95% CI for difference:  (29.6049, 91.9951) 

T-Test of difference = 0 (vs not =):

  T-Value = 4.61    P-Value = 0.002  DF = 7 

CONCEPTS

For each of the formulas described below, list all of the assumptions that must be satisfied in order to validly
use the formula.

10.12 The confidence interval formula in the formula box on page 403.

10.13 The confidence interval formula in the formula box on page 406.

10.14 The hypothesis test described in the formula box on page 405.

10.15 The hypothesis test described in the formula box on page 406.

METHODS AND APPLICATIONS

Suppose we have taken independent, random samples of sizes n1 7 and n2 7 from two normally distrib-

uted populations having means m1 and m2, and suppose we obtain , s1 5, and s2 6.

Using the equal variances procedure do Exercises 10.16, 10.17, and 10.18.

10.16 Calculate a 95 percent confidence interval for m1 m2. Can we be 95 percent confident that m1 m2

is greater than 20? Explain why we can use the equal variances procedure here.

10.17 Use critical values to test the null hypothesis H0: m1 m2 20 versus the alternative hypothesis
Ha: m1 m2 20 by setting a equal to .10, .05, .01, and .001. How much evidence is there that
the difference between m1 and m2 exceeds 20?

10.18 Use critical values to test the null hypothesis H0: m1 m2 20 versus the alternative hypothesis
Ha: m1 m2 20 by setting a equal to .10, .05, .01, and .001. How much evidence is there that
the difference between m1 and m2 is not equal to 20?

10.19 Repeat Exercises 10.16 through 10.18 using the unequal variances procedure. Compare your 
results to those obtained using the equal variances procedure.

x 2  210,x 1  240

Exercises for Section 10.2

Two-Sample T-Test and CI

Sample N Mean StDev SE Mean 

 100 8.79 2.20 0.22 

 100 5.14 1.34 0.13 

Current

New

Difference = mu(1) - mu(2) 

Estimate for difference:  3.650 

95% lower bound for difference:  3.224

T-Test of difference = 3 (vs >):

T-Value = 2.53    P-Value = 0.006  DF = 163 
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10.20 The October 7, 1991, issue of Fortune magazine reported on the rapid rise of fees and expenses
charged by mutual funds. Assuming that stock fund expenses and municipal bond fund expenses
are each approximately normally distributed, suppose a random sample of 12 stock funds gives a
mean annual expense of 1.63 percent with a standard deviation of .31 percent, and an indepen-
dent random sample of 12 municipal bond funds gives a mean annual expense of 0.89 percent
with a standard deviation of .23 percent. Let m1 be the mean annual expense for stock funds, and
let m2 be the mean annual expense for municipal bond funds. Do parts (a), (b), and (c) by using
the equal variances procedure. Then repeat (a), (b), and (c) using the unequal variances proce-
dure. Compare your results.
a Set up the null and alternative hypotheses needed to attempt to establish that the mean annual

expense for stock funds is larger than the mean annual expense for municipal bond funds. Test
these hypotheses at the .05 level of significance. What do you conclude?

b Set up the null and alternative hypotheses needed to attempt to establish that the mean annual
expense for stock funds exceeds the mean annual expense for municipal bond funds by more
than .5 percent. Test these hypotheses at the .05 level of significance. What do you conclude?

c Calculate a 95 percent confidence interval for the difference between the mean annual expenses
for stock funds and municipal bond funds. Can we be 95 percent confident that the mean annual
expense for stock funds exceeds that for municipal bond funds by more than .5 percent? Explain.

10.21 In the book Business Research Methods, Donald R. Cooper and C. William Emory (1995) discuss
a manager who wishes to compare the effectiveness of two methods for training new salespeople.
The authors describe the situation as follows:

The company selects 22 sales trainees who are randomly divided into two experimental
groups—one receives type A and the other type B training. The salespeople are then assigned
and managed without regard to the training they have received. At the year’s end, the manager
reviews the performances of salespeople in these groups and finds the following results:

A Group B Group
Average Weekly Sales x–1  $1,500 x–2  $1,300

Standard Deviation s1  225 s2  251

a Set up the null and alternative hypotheses needed to attempt to establish that type A training
results in higher mean weekly sales than does type B training.

b Because different sales trainees are assigned to the two experimental groups, it is reasonable
to believe that the two samples are independent. Assuming that the normality assumption
holds, and using the equal variances procedure, test the hypotheses you set up in part a at
levels of significance .10, .05, .01, and .001. How much evidence is there that type A training
produces results that are superior to those of type B?

c Use the equal variances procedure to calculate a 95 percent confidence interval for the differ-
ence between the mean weekly sales obtained when type A training is used and the mean
weekly sales obtained when type B training is used. Interpret this interval.

10.22 A marketing research firm wishes to compare the prices charged by two supermarket chains—
Miller’s and Albert’s. The research firm, using a standardized one-week shopping plan (grocery
list), makes identical purchases at 10 of each chain’s stores. The stores for each chain are ran-
domly selected, and all purchases are made during a single week.

The shopping expenses obtained at the two chains, along with box plots of the expenses, are
as follows: ShopExp

Because the stores in each sample are different stores in different chains, it is reasonable to as-
sume that the samples are independent, and we assume that weekly expenses at each chain are
normally distributed.
a Letting mM be the mean weekly expense for the shopping plan at Miller’s, and letting mA be

the mean weekly expense for the shopping plan at Albert’s, Figure 10.5 gives the MINITAB
output of the test of H0: mM mA 0 (that is, there is no difference between mM and mA) 
versus Ha: mM mA 0 (that is, mM and mA differ). Note that MINITAB has employed the

Market

Albert

E
x
p

e
n

se

124

119

114

Miller

Miller’s

$119.25 $121.32 $122.34 $120.14 $122.19

$123.71 $121.72 $122.42 $123.63 $122.44

Albert’s

$111.99 $114.88 $115.11 $117.02 $116.89

$116.62 $115.38 $114.40 $113.91 $111.87

DS
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F I G U R E 1 0 . 5 MINITAB Output of Testing the Equality of Mean Weekly Expenses at Miller’s and

Albert’s Supermarket Chains (for Exercise 10.22)

Two-sample T for Millers vs Alberts 

N Mean StDev SE Mean

Millers    10    121.92     1.40        0.44

Alberts    10    114.81     1.84        0.58

Difference = s)- mu(Alberts) Estimate for difference: 7.10900 mu(Miller

95% CI for difference: 50, 8.64450)(5.573

T-Test of diff = 0 (vs not =): T-Value = 9.73   P-Value = 0.000  DF = 18  

Both use Pooled StDev = 1.6343

equal variances procedure. Use the sample data to show that , ,
, sA 1.84, and t 9.73.

b Using the t statistic given on the output and critical values, test H0 versus Ha by setting 
equal to .10, .05, .01, and .001. How much evidence is there that the mean weekly expenses at
Miller’s and Albert’s differ?

c Figure 10.5 gives the p-value for testing H0: mM mA 0 versus Ha: mM mA 0. Use the 
p-value to test H0 versus Ha by setting a equal to .10, .05, .01, and .001. How much evidence
is there that the mean weekly expenses at Miller’s and Albert’s differ?

d Figure 10.5 gives a 95 percent confidence interval for mM mA. Use this confidence interval to
describe the size of the difference between the mean weekly expenses at Miller’s and Albert’s.
Do you think that these means differ in a practically important way?

e Set up the null and alternative hypotheses needed to attempt to establish that the mean weekly 
expense for the shopping plan at Miller’s exceeds the mean weekly expense at Albert’s by
more than $5. Test the hypotheses at the .10, .05, .01, and .001 levels of significance. How
much evidence is there that the mean weekly expense at Miller’s exceeds that at Albert’s by
more than $5?

10.23 A large discount chain compares the performance of its credit managers in Ohio and Illinois by
comparing the mean dollar amounts owed by customers with delinquent charge accounts in these
two states. Here a small mean dollar amount owed is desirable because it indicates that bad credit
risks are not being extended large amounts of credit. Two independent, random samples of 
delinquent accounts are selected from the populations of delinquent accounts in Ohio and Illinois,
respectively. The first sample, which consists of 10 randomly selected delinquent accounts in
Ohio, gives a mean dollar amount of $524 with a standard deviation of $68. The second sample,
which consists of 20 randomly selected delinquent accounts in Illinois, gives a mean dollar
amount of $473 with a standard deviation of $22.
a Set up the null and alternative hypotheses needed to test whether there is a difference between

the population mean dollar amounts owed by customers with delinquent charge accounts in
Ohio and Illinois.

b Figure 10.6 gives the MINITAB output of using the unequal variances procedure to test the
equality of mean dollar amounts owed by customers with delinquent charge accounts in Ohio
and Illinois. Assuming that the normality assumption holds, test the hypotheses you set up in
part a by setting a equal to .10, .05, .01, and .001. How much evidence is there that the mean
dollar amounts owed in Ohio and Illinois differ?

c Assuming that the normality assumption holds, calculate a 95 percent confidence interval for
the difference between the mean dollar amounts owed in Ohio and Illinois. Based on this
interval, do you think that these mean dollar amounts differ in a practically important way?

10.24 A loan officer compares the interest rates for 48-month fixed-rate auto loans and 48-month
variable-rate auto loans. Two independent, random samples of auto loan rates are selected. A
sample of eight 48-month fixed-rate auto loans had the following loan rates: AutoLoan

8.29% 7.75% 7.50% 7.99% 7.75% 7.99% 9.40% 8.00%

while a sample of five 48-month variable-rate auto loans had loan rates as follows:

7.59% 6.75% 6.99% 6.50% 7.00%

a Set up the null and alternative hypotheses needed to determine whether the mean rates for 
48-month fixed-rate and variable-rate auto loans differ.

b Figure 10.7 gives the Excel output of using the equal variances procedure to test the
hypotheses you set up in part a. Assuming that the normality and equal variances assumptions
hold, use the Excel output and critical values to test these hypotheses by setting a equal to

DS

a

xA  114.81
sM  1.40xM  121.92
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.10, .05, .01, and .001. How much evidence is there that the mean rates for 48-month fixed-
and variable-rate auto loans differ?

c Figure 10.7 gives the p-value for testing the hypotheses you set up in part a. Use the p-value
to test these hypotheses by setting a equal to .10, .05, .01, and .001. How much evidence is
there that the mean rates for 48-month fixed- and variable-rate auto loans differ?

d Calculate a 95 percent confidence interval for the difference between the mean rates for fixed-
and variable-rate 48-month auto loans. Can we be 95 percent confident that the difference
between these means is .4 percent or more? Explain.

e Use a hypothesis test to establish that the difference between the mean rates for fixed- and
variable-rate 48-month auto loans exceeds .4 percent. Use a equal to .05.

10.3 Paired Difference Experiments

F I G U R E 1 0 . 6 MINITAB Output of Testing the

Equality of Mean Dollar Amounts

Owed for Ohio and Illinois

(for Exercise 10.23)

F I G U R E 1 0 . 7 Excel Output of Testing the Equality 

of Mean Loan Rates for Fixed and Variable

48-Month Auto Loans (for Exercise 10.24)

t-Test: Two-Sample Assuming Equal Variances

Fixed-Rate (%) Variable-Rate (%)

Mean 10.0838 8.966

Variance 0.3376 0.1637

Observations 8 5

Pooled Variance 0.2744

Hypothesized Mean Difference 0

df 11

t Stat 3.7431

P(T  t) one-tail 0.0016

t Critical one-tail 1.7959

P(T  t) two-tail 0.0032

t Critical two-tail 2.2010

Recognize
when data

come from
independent
samples and when
they are paired.

LO3
Home State Casualty, specializing in automobile insurance, wishes to compare the repair costs of
moderately damaged cars (repair costs between $700 and $1,400) at two garages. One way to study
these costs would be to take two independent samples (here we arbitrarily assume that each sam-
ple is of size n 7). First we would randomly select seven moderately damaged cars that have re-
cently been in accidents. Each of these cars would be taken to the first garage (garage 1), and repair
cost estimates would be obtained. Then we would randomly select seven different moderately dam-
aged cars, and repair cost estimates for these cars would be obtained at the second garage (garage 2).
This sampling procedure would give us independent samples because the cars taken to garage 1
differ from those taken to garage 2. However, because the repair costs for moderately damaged
cars can range from $700 to $1,400, there can be substantial differences in damages to moderately
damaged cars. These differences might tend to conceal any real differences between repair costs at
the two garages. For example, suppose the repair cost estimates for the cars taken to garage 1 are
higher than those for the cars taken to garage 2. This difference might exist because garage 1
charges customers more for repair work than does garage 2. However, the difference could also
arise because the cars taken to garage 1 are more severely damaged than the cars taken to garage 2.

To overcome this difficulty, we can perform a paired difference experiment. Here we could
randomly select one sample of n  7 moderately damaged cars. The cars in this sample would be
taken to both garages, and a repair cost estimate for each car would be obtained at each garage.
The advantage of the paired difference experiment is that the repair cost estimates at the two
garages are obtained for the same cars. Thus, any true differences in the repair cost estimates
would not be concealed by possible differences in the severity of damages to the cars.

Suppose that when we perform the paired difference experiment, we obtain the repair cost
estimates in Table 10.2 (these estimates are given in units of $100). To analyze these data, we

EXAMPLE 10.5 The Repair Cost Comparison Case C

Two-Sample T-Test and CI

Sample N  Mean    StDev   SE Mean 

 10 524.0 68.0    22 

 20 473.0 22.0   4.9 

Ohio

Illinois

Difference = mu(1) - mu(2) 

Estimate for difference:  51.0 

95% CI for difference:  (1.1, 100.9)

T-Test of difference = 0 (vs not =):

  T-Value = 2.31    P-Value = 0.046  DF = 9



calculate the difference between the repair cost estimates at the two garages for each car. The
resulting paired differences are given in the last column of Table 10.2. The mean of the sample
of n  7 paired differences is

which equals the difference between the sample means of the repair cost estimates at the two garages

Furthermore, (that is,  $80) is the point estimate of

md m1 m2

the mean of the population of all possible paired differences of the repair cost estimates (for all
possible moderately damaged cars) at garages 1 and 2—which is equivalent to m1, the mean of
all possible repair cost estimates at garage 1, minus m2, the mean of all possible repair cost esti-
mates at garage 2. This says we estimate that the mean of all possible repair cost estimates at
garage 1 is $80 less than the mean of all possible repair cost estimates at garage 2.

In addition, the variance and standard deviation of the sample of n 7 paired differences

and

are the point estimates of and , the variance and standard deviation of the population of all
possible paired differences.

In general, suppose we wish to compare two population means, m1 and m2. Also suppose that
we have obtained two different measurements (for example, repair cost estimates) on the same n
units (for example, cars), and suppose we have calculated the n paired differences between these
measurements. Let and sd be the mean and the standard deviation of these n paired differences.
If it is reasonable to assume that the paired differences have been randomly selected from a nor-
mally distributed (or at least mound-shaped) population of paired differences with mean md and
standard deviation sd, then the sampling distribution of

is a t distribution having n 1 degrees of freedom. This implies that we have the following
confidence interval for md:

d  md

sd兾1n

d

sds
2
d

sd  1.2533  .5033

s2
d  

a
7

i 1

(di  d  )2

7  1
 .2533

d   .8

x1  x2  9.329  10.129   .8

d  
 .8  ( 1.1)  ( 1.2)      ( 1.4)

7
  .8
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T A B L E 1 0 . 2 A Sample of n  7 Paired Differences of the Repair Cost Estimates at 

Garages 1 and 2 (Cost Estimates in Hundreds of Dollars) RepairDS

Repair Cost Repair Cost
Sample of n  7 Estimates at Estimates at Sample of n  7
Damaged Cars Garage 1 Garage 2 Paired Differences

Car 1 $ 7.1 $ 7.9 d1  .8

Car 2 9.0 10.1 d2  1.1

Car 3 11.0 12.2 d3  1.2

Car 4 8.9 8.8 d4 .1

Car 5 9.9 10.4 d5  .5

Car 6 9.1 9.8 d6  .7

Car 7 10.3 11.7 d7  1.4

sd  .5033

s2
d  .2533

d   .8  x1  x2x2  10.129x1  9.329

1 2
Garage

12

11

10

9

8

7

C
o

st

0.0

 0.5

 1.0

 1.5

G
1

 
G
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Compare
two

population means
when the data are
paired.

LO4
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A Confidence Interval for the Mean, Md, of a Population of Paired Differences

confidence interval for Md M1 M2 is

Here t
a兾2 is based on (n 1) degrees of freedom.

Bd  ta兾2 

sd1n
R

Let md be the mean of a normally distributed pop-

ulation of paired differences, and let and sd be

the mean and standard deviation of a sample of n

paired differences that have been randomly selected

from the population. Then, a 100(1 A) percent

d

Testing a Hypothesis about the Mean, Md, of a Population of Paired Differences

Let md, , and sd be defined as in the preceding box. Also, assume that the population of paired differ-

ences is normally distributed, and consider testing

H0: md  D0

by using the test statistic

We can test H0: md  D0 versus a particular alternative hypothesis at level of significance a by using the 

appropriate critical value rule, or, equivalently, the corresponding p-value.

Here t
a
, t

a兾2, and the p-values are based on n 1 degrees of freedom.

Alternative Critical Value Rule:
Hypothesis Reject H0 if p-Value (reject H0 if p-value  A)

Ha: md  D0 t   t
a

The area under the t distribution 
curve to the right of t

Ha: md  D0 t    t
a

The area under the t distribution 
curve to the left of t

Ha: md  D0 兩t 兩   t
a兾2—that is, Twice the area under the t

t   t
a兾2 or t    t

a兾2 distribution curve to the right of 兩t 兩

t  
d  D0

sd兾1n

d

Using the data in Table 10.2, and assuming that the population of paired repair cost differences is
normally distributed, a 95 percent confidence interval for md m1 m2 is

Here t.025 2.447 is based on n 1 7 1 6 degrees of freedom. This interval says that
Home State Casualty can be 95 percent confident that md, the mean of all possible paired
differences of the repair cost estimates at garages 1 and 2, is between  $126.54 and  $33.46.
That is, we are 95 percent confident that m1, the mean of all possible repair cost estimates at
garage 1, is between $126.54 and $33.46 less than m2, the mean of all possible repair cost esti-
mates at garage 2.

We can also test a hypothesis about md, the mean of a population of paired differences. We
show how to test the null hypothesis

H0: md D0

in the following box. Here the value of the constant D0 depends on the particular problem. Often
D0 equals 0, and the null hypothesis H0: md 0 says that m1 and m2 do not differ.

  [ 1.2654,  .3346]

  [ .8  .4654]

 Bd  t.025

sd1n
R  B .8  2.447 

.5033

17
R

EXAMPLE 10.6 The Repair Cost Comparison Case C

2.447

t.0250

.95

 t.025

.025 .025

df   6
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F I G U R E 1 0 . 9 Excel Output of Testing H0: Md  0

t-Test: Paired Two Sample for Means

Garage1 

9.328571
1.562381

7
0.950744

0
6

 4.20526
0.002826
1.943181
0.005653
2.446914

Mean
Variance
Observations
Pearson Correlation
Hypothesized Mean
df
t Stat
P(T  t) one-tail
t Critical one-tail
P(T  t) two-tail
t Critical two-tail

Garage2 

10.12857
2.279048

7

Home State Casualty currently contracts to have moderately damaged cars repaired at garage 2.
However, a local insurance agent suggests that garage 1 provides less expensive repair service that
is of equal quality. Because it has done business with garage 2 for years, Home State has decided to
give some of its repair business to garage 1 only if it has very strong evidence that m1, the mean re-
pair cost estimate at garage 1, is smaller than m2, the mean repair cost estimate at garage 2—that is,
if md  m1  m2 is less than zero. Therefore, we will test H0: Md  0 or, equivalently, H0: M1  

M2 0, versus Ha:Md 0 or, equivalently, Ha:M1 M2 0, at the .01 level of significance. To
perform the hypothesis test, we will use the sample data in Table 10.2 to calculate the value of the
test statistic t in the summary box. Because Ha: md 0 is of the form Ha: md D0, we will reject

H0: Md  0 if the value of t is less than  t
A
  t.01   3.143. Here the t

a
point is based on

n 1 7 1 6 degrees of freedom. Using the data in Table 10.2, the value of the test statistic is

Because t    4.2053 is less than  t.01    3.143, we can reject H0: Md  0 in favor of Ha:

Md  0. We conclude (at an a of .01) that m1, the mean repair cost estimate at garage 1, is less
than m2, the mean repair cost estimate at garage 2. As a result, Home State will give some of its
repair business to garage 1. Furthermore, Figure 10.8 gives the MINITAB output of this hypoth-
esis test and shows us that the p-value for the test is .003. Since this p-value is very small, we
have very strong evidence that H0 should be rejected and that m1 is less than m2.

Figure 10.9 shows the Excel output for testing H0: md  0 versus Ha: md  0 (the “one-tail”
test) and for testing H0: md  0 versus Ha: md  0 (the “two-tail” test). The Excel p-value for
testing H0: md  0 versus Ha: md  0 is .002826, which in the rounded form .003 is the same as

t  
d  D0

sd兾1n
 
 .8  0

.5033兾17
  4.2053

EXAMPLE 10.7 The Repair Cost Comparison Case C

⫺3.143

⫺t.01 0

␣   .01

p-value

   .003

df   6

⫺4.2053

t
0

F I G U R E 1 0 . 8 MINITAB Output of Testing H0: Md  0 versus Ha: Md  0

Dif ferences

0.0-0.5-1.0-1.5

_
X

Ho

Boxplot of Dif ferences

(with Ho and 95% t based CI for the mean)

Paired T for Garage1 – Garage2 

Garage1     7      9.3286     1.2500      0.4724 Garage1     7      9.3286     1.2500      0.4724 

N        Mean      StDev     SE Mean N        Mean      StDev     SE Mean 

Garage2     7     10.1286     1.5097      0.5706 Garage2     7     10.1286     1.5097      0.5706 

Difference  7   -0.800000   0.503322    0.190238 Difference  7   –0.800000   0.503322    0.190238 

T-Test of mean difference = 0 (vs < 0): T-Test of mean difference = 0 (vs < 0): 

                     T-Value = -4.21     P-Value = 0.003                     T-Value = –4.21     P–Value = 0.003
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the MINITAB p-value. This very small p-value tells us that Home State has very strong evidence
that the mean repair cost at garage 1 is less than the mean repair cost at garage 2. The Excel 
p-value for testing H0: md  0 versus Ha: md Z 0 is .005653.

In general, an experiment in which we have obtained two different measurements on the same
n units is called a paired difference experiment. The idea of this type of experiment is to
remove the variability due to the variable (for example, the amount of damage to a car) on which
the observations are paired. In many situations, a paired difference experiment will provide more
information than an independent samples experiment. As another example, suppose that we wish
to assess which of two different machines produces a higher hourly output. If we randomly select
10 machine operators and randomly assign 5 of these operators to test machine 1 and the others
to test machine 2, we would be performing an independent samples experiment. This is because
different machine operators test machines 1 and 2. However, any difference in machine outputs
could be obscured by differences in the abilities of the machine operators. For instance, if the
observed hourly outputs are higher for machine 1 than for machine 2, we might not be able to tell
whether this is due to (1) the superiority of machine 1 or (2) the possible higher skill level of the
operators who tested machine 1. Because of this, it might be better to randomly select five ma-
chine operators, thoroughly train each operator to use both machines, and have each operator test
both machines. We would then be pairing on the machine operator, and this would remove the
variability due to the differing abilities of the operators. 

The formulas we have given for analyzing a paired difference experiment are based on the t

distribution. These formulas assume that the population of all possible paired differences is nor-
mally distributed (or at least mound-shaped). If the sample size is large (say, at least 30), the t

based interval and tests of this section are approximately valid no matter what the shape of the
population of all possible paired differences. If the sample size is small, and if we fear that the pop-
ulation of all paired differences might be far from normally distributed, we can use a nonpara-
metric method. One nonparametric method for comparing two populations when using a paired
difference experiment is the Wilcoxon signed ranks test, which is discussed in Section 18.3.

CONCEPTS

10.25 Explain how a paired difference experiment differs from an independent samples experiment in
terms of how the data for these experiments are collected.

10.26 Why is a paired difference experiment sometimes more informative than an independent samples
experiment? Give an example of a situation in which a paired difference experiment might be
advantageous.

10.27 What assumptions must be satisfied to appropriately carry out a paired difference experiment?
When can we carry out a paired difference experiment no matter what the shape of the population
of all paired differences might be?

10.28 Suppose a company wishes to compare the hourly output of its employees before and after
vacations. Explain how you would collect data for a paired difference experiment to make this
comparison.

METHODS AND APPLICATIONS

10.29 Suppose a sample of 11 paired differences that has been randomly selected from a normally
distributed population of paired differences yields a sample mean of and a sample
standard deviation of sd 5.
a Calculate 95 percent and 99 percent confidence intervals for md m1 m2. Can we be 

95 percent confident that the difference between m1 and m2 exceeds 100? Can we be 
99 percent confident?

b Test the null hypothesis H0:md 100 versus Ha:md 100 by setting a equal to .05 and .01.
How much evidence is there that md m1 m2 exceeds 100?

c Test the null hypothesis H0:md 110 versus Ha:md 110 by setting a equal to .05 and .01.
How much evidence is there that md m1 m2 is less than 110?

d  103.5

Exercises for Section 10.3



10.30 Suppose a sample of 49 paired differences that have been randomly selected from a normally 
distributed population of paired differences yields a sample mean of and a sample standard
deviation of sd 7.
a Calculate a 95 percent confidence interval for md m1 m2. Can we be 95 percent confident

that the difference between m1 and m2 is greater than 0?
b Test the null hypothesis H0:md 0 versus the alternative hypothesis Ha:md 0 by setting a

equal to .10, .05, .01, and .001. How much evidence is there that md differs from 0? What does
this say about how m1 and m2 compare?

c The p-value for testing H0:md 3 versus Ha:md 3 equals .0256. Use the p-value to test
these hypotheses with a equal to .10, .05, .01, and .001. How much evidence is there
that md exceeds 3? What does this say about the size of the difference between m1 and m2?

10.31 On its website, the Statesman Journal newspaper (Salem, Oregon, 1999) reports mortgage
loan interest rates for 30-year and 15-year fixed-rate mortgage loans for a number of
Willamette Valley lending institutions. Of interest is whether there is any systematic
difference between 30-year rates and 15-year rates (expressed as annual percentage rate
or APR) and, if there is, the size of that difference. Table 10.3 displays mortgage
loan rates and the difference between 30-year and 15-year rates for nine randomly selected
lending institutions. Assuming that the population of paired differences is normally
distributed: Mortgage99
a Set up the null and alternative hypotheses needed to determine whether there is a difference

between mean 30-year rates and mean 15-year rates.
b Figure 10.10 gives the MINITAB output for testing the hypotheses that you set up in part a.

Use the output and critical values to test these hypotheses by setting a equal to .10, .05, .01,
and .001. How much evidence is there that mean mortgage loan rates for 30-year and 15-year
terms differ?

DS

d  5
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T A B L E 1 0 . 3 1999 Mortgage Loan Interest Rates for Nine Randomly Selected 

Willamette Valley Lending Institutions Mortgage99DS

Annual Percentage Rate
Lending Institution 30-Year 15-Year Difference

American Mortgage N.W. Inc. 6.715 6.599 0.116

City and Country Mortgage 6.648 6.367 0.281

Commercial Bank 6.740 6.550 0.190

Landmark Mortgage Co. 6.597 6.362 0.235

Liberty Mortgage, Inc. 6.425 6.162 0.263

MaPS Credit Union 6.880 6.583 0.297

Mortgage Brokers, Inc. 6.900 6.800 0.100

Mortgage First Corp. 6.675 6.394 0.281

Silver Eagle Mortgage 6.790 6.540 0.250

Source: Salem Homeplace Mortgage Rates Directory, 
www.salemhomeplace.com/pages/finance/, Statesman Journal Newspaper, Salem, 
Oregon January 4, 1999.

R
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15-Year 30-Year
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F I G U R E 1 0 . 1 0 MINITAB Paired Difference t Test of the Mortgage Loan Rate Data (for Exercise 10.31)

Paired T for 30–Year – 15–Year 

             N          Mean          StDev        SE Mean

30–Year      9       6.70778        0.14635        0.04878 

15–Year 9 6.48411 0.18396 0.06132

Difference   9      0.223667       0.072750       0.024250 

95% CI for mean difference: (0.167746, 0.279587) 

T–Test of mean difference = 0 (vs not = 0): 

 T–Value = 9.22  P–Value = 0.000 
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c Figure 10.10 gives the p-value for testing the hypotheses that you set up in part a. Use the 
p-value to test these hypotheses by setting a equal to .10, .05, .01, and .001. How much 
evidence is there that mean mortgage loan rates for 30-year and 15-year terms differ?

d Calculate a 95 percent confidence interval for the difference between mean mortgage loan
rates for 30-year rates versus 15-year rates. Interpret this interval.

10.32 In the book Essentials of Marketing Research, William R. Dillon, Thomas J. Madden, and 
Neil H. Firtle (1993) present preexposure and postexposure attitude scores from an 
advertising study involving 10 respondents. The data for the experiment are given in 
Table 10.4. Assuming that the differences between pairs of postexposure and preexposure 
scores are normally distributed: AdStudy
a Set up the null and alternative hypotheses needed to attempt to establish that the 

advertisement increases the mean attitude score (that is, that the mean postexposure attitude
score is higher than the mean preexposure attitude score).

b Test the hypotheses you set up in part a at the .10, .05, .01, and .001 levels of significance.
How much evidence is there that the advertisement increases the mean attitude score?

c Estimate the minimum difference between the mean postexposure attitude score and the mean
preexposure attitude score. Justify your answer.

10.33 National Paper Company must purchase a new machine for producing cardboard boxes. The
company must choose between two machines. The machines produce boxes of equal quality, so
the company will choose the machine that produces (on average) the most boxes. It is known that
there are substantial differences in the abilities of the company’s machine operators. Therefore
National Paper has decided to compare the machines using a paired difference experiment.
Suppose that eight randomly selected machine operators produce boxes for one hour using
machine 1 and for one hour using machine 2, with the following results: BoxYield

a Assuming normality, perform a hypothesis test to determine whether there is a difference
between the mean hourly outputs of the two machines. Use a .05.

b Estimate the minimum and maximum differences between the mean outputs of the two
machines. Justify your answer.

10.34 During 2004 a company implemented a number of policies aimed at reducing the ages of its
customers’ accounts. In order to assess the effectiveness of these measures, the company 
randomly selects 10 customer accounts. The average age of each account is determined for the
years 2003 and 2004. These data are given in Table 10.5. Assuming that the population of paired
differences between the average ages in 2004 and 2003 is normally distributed: AcctAge
a Set up the null and alternative hypotheses needed to establish that the mean average account

age has been reduced by the company’s new policies.

DS

Machine Operator

1 2 3 4 5 6 7 8

Machine 1 53 60 58 48 46 54 62 49

Machine 2 50 55 56 44 45 50 57 47

DS

DS

T A B L E 1 0 . 4 Preexposure and Postexposure Attitude

Scores (for Exercise 10.32) AdStudyDS

Preexposure Postexposure Attitude 
Subject Attitudes (A1) Attitudes (A2) Change (di)

1 50 53 3

2 25 27 2

3 30 38 8

4 50 55 5

5 60 61 1

6 80 85 5

7 45 45 0

8 30 31 1

9 65 72 7

10 70 78 8

Source: W. R. Dillon, T. J. Madden, and N. H. Firtle, Essentials of Marketing

Research (Burr Ridge, IL: Richard D. Irwin, 1993), p. 435. Copyright © 1993.
Reprinted by permission of McGraw-Hill Companies, Inc.

T A B L E 1 0 . 5 Average Account Ages in 2003 and 2004 

for 10 Randomly Selected Accounts

(for Exercise 10.34) AcctAgeDS

Average Age of Average Age of
Account in 2004 Account in 2003

Account (Days) (Days)

1 27 35

2 19 24

3 40 47

4 30 28

5 33 41

6 25 33

7 31 35

8 29 51

9 15 18

10 21 28
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t-Test: Paired Two Sample for Means
04 Age 03 Age

Mean 27 34

Variance 53.55556 104.2222

Observations 10 10

Pearson Correlation 0.804586

Hypothesized Mean 0

df 9

t Stat  3.61211

P(T<=t) one-tail 0.00282

t Critical one-tail 1.833114

P(T<=t) Two-tail 0.005641

t Critical two-tail 2.262159

T A B L E 1 0 . 6 Weekly Study Time Data for Students Who Perform Well on the MidTerm StudyTimeDS

Students 1 2 3 4 5 6 7 8

Before 15 14 17 17 19 14 13 16

After 9 9 11 10 19 10 14 10

Paired T-Test and CI: StudyBefore, StudyAfter  

Paired T for StudyBefore - StudyAfter

             N     Mean    StDev  SE Mean 

StudyBefore  8  15.6250   1.9955   0.7055 

StudyAfter   8  11.5000   3.4226   1.2101 

Difference   8  4.12500  2.99702  1.05961 

95% CI for mean difference: (1.61943, 6.63057) 

T-Test of mean difference = 0 (vs not = 0): T-Value = 3.89  P-Value = 0.006 

c Use the p-value to test the hypotheses at the .10, .05, and .01 levels of significance. How
much evidence is there against the null hypothesis?

5Source: “Student Effort and Performance over the Semester,” Journal of Economic Education, Winter 2005, pages 3–28.

F I G U R E 1 0 . 1 1 Excel Output of a Paired Difference Analysis of the Account Age Data (for Exercise 10.34)

b Figure 10.11 gives the Excel output needed to test the hypotheses of part a. Use critical values
to test these hypotheses by setting a equal to .10, .05, .01, and .001. How much evidence is
there that the mean average account age has been reduced?

c Figure 10.11 gives the p-value for testing the hypotheses of part a. Use the p-value to test
these hypotheses by setting a equal to .10, .05, .01, and .001. How much evidence is there
that the mean average account age has been reduced?

d Calculate a 95 percent confidence interval for the mean difference in the average account ages
between 2004 and 2003. Estimate the minimum reduction in the mean average account ages
from 2003 to 2004.

10.35 Do students reduce study time in classes where they achieve a higher midterm score? In a 
Journal of Economic Education article (Winter 2005), Gregory Krohn and Catherine O’Connor
studied student effort and performance in a class over a semester. In an intermediate macroeco-
nomics course, they found that “students respond to higher midterm scores by reducing the 
number of hours they subsequently allocate to studying for the course.”5 Suppose that a random
sample of n  8 students who performed well on the midterm exam was taken and weekly study
times before and after the exam were compared. The resulting data are given in Table 10.6. 
Assume that the population of all possible paired differences is normally distributed.
a Set up the null and alternative hypotheses to test whether there is a difference in the true mean

study time before and after the midterm exam.
b Below we present the MINITAB output for the paired differences test. Use the output and

critical values to test the hypotheses at the .10, .05, and .01 levels of significance. Has the
true mean study time changed?
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10.4 Comparing Two Population Proportions by Using
Large, Independent Samples

The Sampling Distribution of p̂1  p̂2

If the randomly selected samples are independent of each other, then the population of all possible values

of :

1 Approximately has a normal distribution if each of the sample sizes n1 and n2 is large. Here n1 and n2

are large enough if n1p1, n1(1  p1), n2p2, and n2(1 p2) are all at least 5.

2 Has mean 

3 Has standard deviation sp̂1 p̂2 

  B
p1(1  p1)

n1

 
p2(1  p2)

n2

mp̂1 p̂2
 p1  p2

 p̂1  p̂2

Suppose a new product was test marketed in the Des Moines, Iowa, and Toledo, Ohio, metropol-
itan areas. Equal amounts of money were spent on advertising in the two areas. However, differ-
ent advertising media were employed in the two areas. Advertising in the Des Moines area was
done entirely on television, while advertising in the Toledo area consisted of a mixture of televi-
sion, radio, newspaper, and magazine ads. Two months after the advertising campaigns com-
menced, surveys are taken to estimate consumer awareness of the product. In the Des Moines
area, 631 out of 1,000 randomly selected consumers are aware of the product, whereas in the
Toledo area 798 out of 1,000 randomly selected consumers are aware of the product. We define
p1 to be the true proportion of consumers in the Des Moines area who are aware of the product
and p2 to be the true proportion of consumers in the Toledo area who are aware of the product. It
follows that, since the sample proportions of consumers who are aware of the product in the Des
Moines and Toledo areas are

and

then a point estimate of p1  p2 is

This says we estimate that p1 is .167 less than p2. That is, we estimate that the percentage of con-
sumers who are aware of the product in the Toledo area is 16.7 percentage points higher than the
percentage in the Des Moines area.

In order to find a confidence interval for and to carry out a hypothesis test about p1 p2, we
need to know the properties of the sampling distribution of . In general, therefore,
consider randomly selecting n1 elements from a population, and assume that a proportion p1 of
all the elements in the population fall into a particular category. Let denote the proportion
of elements in the sample that fall into the category. Also, consider randomly selecting a sample
of n2 elements from a second population, and assume that a proportion p2 of all the elements in
this population fall into the particular category. Let denote the proportion of elements in the
second sample that fall into the category.

p̂2

p̂1

 p̂1  p̂ 2

 p̂ 1  p̂2  .631  .798   .167

 p̂ 2  
798

1,000
 .798

 p̂1  
631

1,000
 .631

EXAMPLE 10.8 The Advertising Media Case C

Compare
two

population
proportions using
large independent
samples.

LO5

If we estimate by and by in the expression for , then the sampling distribution
of implies the following percent confidence interval for p1  p2.100(1  a)p̂1  p̂2

sp̂1 p̂2
p̂2p2p̂1p1
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A Large Sample Confidence Interval for the Difference between
Two Population Proportions6

Suppose we randomly select a sample of size n1

from a population, and let denote the propor-

tion of elements in this sample that fall into a cate-

gory of interest. Also suppose we randomly select a

sample of size n2 from another population, and let

denote the proportion of elements in this second

sample that fall into the category of interest. Then,

if each of the sample sizes n1 and n2 is large

p̂2

p̂1

and must all be at

least 5), and if the random samples are independent

of each other, a 100(1  A) percent confidence inter-

val for p1 p2 is

B (p̂1  p̂2)  za兾2A
p̂1(1  p̂1)

n1

 
p̂2(1  p̂2)

n2

R

n2(1  p̂2)(n1p̂1, n1(1  p̂1), n2p̂2,

Recall that in the advertising media situation described at the beginning of this section, 631 of
1,000 randomly selected consumers in Des Moines are aware of the new product, while 798
of 1,000 randomly selected consumers in Toledo are aware of the new product. Also recall 
that

and

Because 
and are all at least 5, both and can be considered

large. It follows that a 95 percent confidence interval for is

This interval says we are 95 percent confident that p1, the proportion of all consumers in the Des
Moines area who are aware of the product, is between .2059 and .1281 less than p2, the propor-
tion of all consumers in the Toledo area who are aware of the product. Thus, we have substantial
evidence that advertising the new product by using a mixture of television, radio, newspaper, and
magazine ads (as in Toledo) is more effective than spending an equal amount of money on tele-
vision commercials only.

  [ .2059,   .1281]

  [ .167  .0389]

  B (.631  .798)  1.96 B
(.631)(.369)

1,000
 

(.798)(.202)

1,000
R

 B ( p̂1  p̂2)  z.025 B
p̂1(1  p̂1)

n1

 
p̂2(1  p̂2)

n2

R

p1  p2

n2n11,000(1  .798)  202n2(1  p̂2)  798,
n2 p̂2 1,000(.798)  1,000(1 .631)  369,n1(1   p̂1)n1 p̂1 1,000(.631) 631,

 p̂ 2  
798

1,000
 .798

 p̂ 1  
631

1,000
 .631

EXAMPLE 10.9 The Advertising Media Case C

6More correctly, because are unbiased point estimates of 

and a point estimate of is

and a 100(1  a) percent confidence interval for p1  p2 is Because both n1 and n2 are large,
there is little difference between the interval obtained by using this formula and those obtained by using the
formula in the box above. 

[(p̂1  p̂2)  za兾2 sp̂1 p̂2
].

sp̂1 p̂2
 A

p̂1(1  p̂1)

n1  1
 

p̂2(1  p̂2)

n2  1

sp̂1 p̂2
 p2(1  p2)兾n2,

p1(1  p1)兾n1p̂1(1  p̂1)兾(n1  1) and p̂2(1  p̂2)兾(n2  1)

0

.95

z.025 z.025

.025 .025

0

.975
.025

1.96

z.025
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To test the null hypothesis H0: p1 p2 D0, we use the test statistic

A commonly employed special case of this hypothesis test is obtained by setting D0 equal to 0. In
this case, the null hypothesis H0: p1  p2  0 says there is no difference between the population
proportions p1 and p2. When D0  0, the best estimate of the common population proportion 
p  p1  p2 is obtained by computing

Therefore, the point estimate of is

For the case where the point estimate of is obtained by estimating by
and by . With these facts in mind, we present the following procedure for testing
H0 :  p1  p2  D0 :

p̂2p2

p̂1p1sp̂1 p̂2
D0  0,

  A p̂(1  p̂)冢 1

n1

 
1

n2
冣

 sp̂1 p̂2
 B

p̂(1  p̂)

n1

 
p̂(1  p̂)

n2

sp̂1 p̂2

p̂  
the total number of elements in the two samples that fall into the category of interest

the total number of elements in the two samples

z  
( p̂1  p̂2)  D0

sp̂1 p̂2

A Hypothesis Test about the Difference between Two
Population Proportions

Let be as just defined, and let , and n2 be as defined in the preceding box. Furthermore, define

the test statistic

and assume that each of the sample sizes n1 and n2 is large. Then, if the samples are independent of each

other, we can test H0: p1  p2  D0 versus a particular alternative hypothesis at level of significance a by

using the appropriate critical value rule, or, equivalently, the corresponding p-value.

z  
( p̂1  p̂2)  D0

sp̂1 p̂2

p̂1, p̂2, n1p̂

Note:

1 If D0 0, we estimate by

2 If D0 0, we estimate by

sp̂1 p̂2
 B

p̂1(1  p̂1)

n1

 
p̂2(1  p̂2)

n2

sp̂1 p̂2

sp̂1 p̂2
 Bp̂(1  p̂)冢 1

n1

 
1

n2
冣

sp̂1 p̂2

Alternative Critical Value Rule:
Hypothesis Reject H0 if p-Value (reject H0 if p-value  A)

Ha: p1 p2 D0 z   z
a

The area under the standard normal 
curve to the right of z

Ha: p1 p2 D0 z    z
a

The area under the standard normal 
curve to the left of z

Ha: p1 p2 D0 冷z 冷   z
a兾2—that is, Twice the area under the 

z   z
a兾2 or standard normal curve 

z    z
a兾2 to the right of 冷z 冷
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Recall that p1 is the proportion of all consumers in the Des Moines area who are aware of the
new product and that p2 is the proportion of all consumers in the Toledo area who are aware of
the new product. To test for the equality of these proportions, we will test H0: p1  p2  0 ver-

sus Ha: p1 p2 0 at the .05 level of significance. Because both of the Des Moines and Toledo
samples are large (see Example 10.9), we will calculate the value of the test statistic z in the

summary box (where D0  0). Since Ha: p1  p2  0 is of the form Ha: p1  p2  D0, we will
reject H0: p1  p2  0 if the absolute value of z is greater than z

A兾2  z.05兾2  z.025  1.96.

Because 631 out of 1,000 randomly selected Des Moines residents were aware of the product
and 798 out of 1,000 randomly selected Toledo residents were aware of the product, the estimate
of p p1 p2 is

and the value of the test statistic is

Because |z|  8.2673 is greater than 1.96, we can reject H0: p1  p2  0 in favor

of Ha: p1  p2  0. We conclude (at an a of .05) that the proportions of consumers who 
are aware of the product in Des Moines and Toledo differ. Furthermore, the point estimate

says we estimate that the percentage of consumers who are
aware of the product in Toledo is 16.7 percentage points higher than the percentage of consumers
who are aware of the product in Des Moines. The p-value for this test is twice the area under the
standard normal curve to the right of 冷z 冷 8.2673. Since the area under the standard normal curve to
the right of 3.99 is .00003, the p-value for testing H0 is less than 2(.00003) .00006. It follows that
we have extremely strong evidence that H0: p1 p2 0 should be rejected in favor of Ha: p1 p2 

0. That is, this small p-value provides extremely strong evidence that p1 and p2 differ. Figure 10.12
presents the MINITAB output of the hypothesis test of H0: p1 p2 0 versus Ha: p1 p2 0 and
of a 95 percent confidence interval for p1 p2. Note that the MINITAB output gives a value of the
test statistic z—that is, the value  8.41—that is slightly different from the value  8.2673 calcu-
lated above. The reason is that, even though we are testing H0: p1 p2 0, MINITAB uses the
second formula in the summary box—rather than the first formula—to calculate .sp̂1 p̂2

p̂1  p̂2  .631  .798   .167

z  
( p̂1  p̂2)  D0

2p̂(1  p̂)( 1
n1
 

1
n2

)
 

(.631  .798)  0

2(.7145)(.2855)( 1
1,000  

1
1,000)

 
 .167

.0202
  8.2673

p̂  
631  798

1,000  1,000
 

1,429

2,000
 .7145

EXAMPLE 10.10 The Advertising Media Case C

F I G U R E 1 0 . 1 2 MINITAB Output of Statistical Inference in the Advertising Media Case

0

␣/2   .025␣/2   .025

1.96

z.025

 1.96

 z.025

Test and CI for Two Proportions

Sample X N Sample p

631 1000 0.631000

798 1000 0.798000

1

2

Difference = p(1) – p(2) 

Estimate for difference: –0.167 

95% CI for difference: (–0.205906, –0.128094)

Test of difference = 0 (vs not = 0): Z = –8.41, P-value = 0.000

CONCEPTS

10.36 Explain what population is described by the sampling distribution of .

10.37 What assumptions must be satisfied in order to use the methods presented in this section?

METHODS AND APPLICATIONS

In Exercises 10.38 through 10.40 we assume that we have selected two independent random samples from
populations having proportions p1 and p2 and that and p̂2  950兾1,000  .95.p̂1  800兾1,000  .8

p̂1  p̂2

Exercises for Section 10.4
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10.38 Calculate a 95 percent confidence interval for p1 p2. Interpret this interval. Can we be 
95 percent confident that p1 p2 is less than 0? That is, can we be 95 percent confident that p1 is
less than p2? Explain.

10.39 Test H0: p1 p2 0 versus Ha: p1 p2 0 by using critical values and by setting a equal 
to .10, .05, .01, and .001. How much evidence is there that p1 and p2 differ? Explain. 
Hint: z.0005  3.29.

10.40 Test H0: p1 p2  .12 versus Ha: p1 p2  .12 by using a p-value and by setting a equal to
.10, .05, .01, and .001. How much evidence is there that p2 exceeds p1 by more than .12? 
Explain.

10.41 In an article in the Journal of Advertising, Weinberger and Spotts compare the use of humor in
television ads in the United States and in the United Kingdom. Suppose that independent random
samples of television ads are taken in the two countries. A random sample of 400 television ads in
the United Kingdom reveals that 142 use humor, while a random sample of 500 television ads in the
United States reveals that 122 use humor.
a Set up the null and alternative hypotheses needed to determine whether the proportion of ads

using humor in the United Kingdom differs from the proportion of ads using humor in the
United States.

b Test the hypotheses you set up in part a by using critical values and by setting a equal to
.10, .05, .01, and .001. How much evidence is there that the proportions of U.K. and U.S. ads
using humor are different?

c Set up the hypotheses needed to attempt to establish that the difference between the proportions
of U.K. and U.S. ads using humor is more than .05 (five percentage points). Test these 
hypotheses by using a p-value and by setting a equal to .10, .05, .01, and .001. How much
evidence is there that the difference between the proportions exceeds .05?

d Calculate a 95 percent confidence interval for the difference between the proportion of U.K.
ads using humor and the proportion of U.S. ads using humor. Interpret this interval. Can we
be 95 percent confident that the proportion of U.K. ads using humor is greater than the 
proportion of U.S. ads using humor?

10.42 In the book Essentials of Marketing Research, William R. Dillon, Thomas J. Madden, and Neil
H. Firtle discuss a research proposal in which a telephone company wants to determine whether
the appeal of a new security system varies between homeowners and renters. Independent 
samples of 140 homeowners and 60 renters are randomly selected. Each respondent views a TV
pilot in which a test ad for the new security system is embedded twice. Afterward, each 
respondent is interviewed to find out whether he or she would purchase the security system.

Results show that 25 out of the 140 homeowners definitely would buy the security system,
while 9 out of the 60 renters definitely would buy the system.
a Letting p1 be the proportion of homeowners who would buy the security system, and letting

p2 be the proportion of renters who would buy the security system, set up the null and
alternative hypotheses needed to determine whether the proportion of homeowners who
would buy the security system differs from the proportion of renters who would buy the
security system.

b Find the test statistic z and the p-value for testing the hypotheses of part a. Use the p-value to
test the hypotheses with a equal to .10, .05, .01, and .001. How much evidence is there that
the proportions of homeowners and renters differ?

c Calculate a 95 percent confidence interval for the difference between the proportions of 
homeowners and renters who would buy the security system. On the basis of this interval, can
we be 95 percent confident that these proportions differ? Explain.
Note: An Excel add-in (MegaStat) output of the hypothesis test and confidence interval in
parts b and c is given in Appendix 10.2 on page 438.

10.43 In the book Cases in Finance, Nunnally and Plath (1995) present a case in which the estimated
percentage of uncollectible accounts varies with the age of the account. Here the age of an unpaid
account is the number of days elapsed since the invoice date.

An accountant believes that the percentage of accounts that will be uncollectible increases
as the ages of the accounts increase. To test this theory, the accountant randomly selects
independent samples of 500 accounts with ages between 31 and 60 days and 500 accounts
with ages between 61 and 90 days from the accounts receivable ledger dated one year ago.
When the sampled accounts are examined, it is found that 10 of the 500 accounts with ages
between 31 and 60 days were eventually classified as uncollectible, while 27 of the 500
accounts with ages between 61 and 90 days were eventually classified as uncollectible. Let p1

be the proportion of accounts with ages between 31 and 60 days that will be uncollectible,



and let p2 be the proportion of accounts with ages between 61 and 90 days that will be
uncollectible. Use the MINITAB output below to determine how much evidence there is that
we should reject H0: p1  p2  0 in favor of Ha: p1  p2  0. Also, identify a 95 percent
confidence interval for p1  p2, and estimate the smallest that the difference between p1 and p2

might be.
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Test and CI for Two Proportions  

Sample               X     N    Sample p 

1 (31 to 60 days)   10   500    0.020000       Difference = p(1) – p(2)

2 (61 to 90 days    27   500    0.054000       Estimate for difference:  –0.034 

95% CI for difference: –0.0106964)(–0.0573036,

Test for difference = 0 (vs not = 0):  Z = –2.85   P-Value = 0.004 

10.44 On January 7, 2000, the Gallup Organization released the results of a poll comparing the
lifestyles of today with yesteryear. The survey results were based on telephone interviews with a
randomly selected national sample of 1,031 adults, 18 years and older, conducted December 20–21,
1999. The poll asked several questions and compared the 1999 responses with the responses
given in polls taken in previous years. Below we summarize some of the poll’s results.7

Percentage of respondents who

1 Had taken a vacation lasting six days or December 1999 December 1968
more within the last 12 months: 42% 62%

2 Took part in some sort of daily activity December 1999 September 1977
to keep physically fit: 60% 48%

3 Watched TV more than four hours on an December 1999 April 1981
average weekday: 28% 25%

4 Drove a car or truck to work: December 1999 April 1971
87% 81%

Assuming that each poll was based on a randomly selected national sample of 1,031 adults and
that the samples in different years are independent:
a Let p1 be the December 1999 population proportion of U.S. adults who had taken a vacation

lasting six days or more within the last 12 months, and let p2 be the December 1968 population
proportion who had taken such a vacation. Calculate a 99 percent confidence interval for the
difference between p1 and p2. Interpret what this interval says about how these population
proportions differ.

b Let p1 be the December 1999 population proportion of U.S. adults who took part in some sort
of daily activity to keep physically fit, and let p2 be the September 1977 population proportion
who did the same. Carry out a hypothesis test to attempt to justify that the proportion who
took part in such daily activity increased from September 1977 to December 1999. Use 
a .05 and explain your result.

c Let p1 be the December 1999 population proportion of U.S. adults who watched TV more
than four hours on an average weekday, and let p2 be the April 1981 population proportion
who did the same. Carry out a hypothesis test to determine whether these population 
proportions differ. Use a .05 and interpret the result of your test.

d Let p1 be the December 1999 population proportion of U.S. adults who drove a car or
truck to work, and let p2 be the April 1971 population proportion who did the same.
Calculate a 95 percent confidence interval for the difference between p1 and p2. On the
basis of this interval, can it be concluded that the 1999 and 1971 population proportions
differ?

10.45 In the book International Marketing, Philip R. Cateora reports the results of an MTV-
commissioned study of the lifestyles and spending habits of the 14–34 age group in six countries.
The survey results are given in Table 10.7. PurchPct
a As shown in Table 10.7, 96 percent of the 14- to 34-year-olds surveyed in the United States

had purchased soft drinks in the last three months, while 90 percent of the 14- to 34-year-olds
surveyed in Australia had done the same. Assuming that these results were obtained from

DS

7Source: www.gallup.com/poll/releases/, PR991230.ASP. The Gallup Poll, December 30, 1999. © 1999 The Gallup Organization.
All rights reserved.
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independent random samples of 500 respondents in each country, carry out a hypothesis test
that tests the equality of the population proportions of 14- to 34-year-olds in the United States
and in Australia who have purchased soft drinks in the last three months. Also, calculate a
95 percent confidence interval for the difference between these two population proportions,
and use this interval to estimate the largest and smallest values that the difference between
these proportions might be. Based on your confidence interval, do you feel that this result has
practical importance?

b Again as shown in Table 10.7, 40 percent of the 14- to 34-year-olds surveyed in Australia had
purchased athletic footwear in the last three months, while 54 percent of the 14- to 34-year-olds
surveyed in Brazil had done the same. Assuming that these results were obtained from
independent random samples of 500 respondents in each country, carry out a hypothesis test
that tests the equality of the population proportions of 14- to 34-year-olds in Australia and in
Brazil who have purchased athletic footwear in the last three months. Also, calculate a 
95 percent confidence interval for the difference between these two population proportions,
and use this interval to estimate the largest and smallest values that the difference between
these proportions might be. Based on your confidence interval, do you feel that this result has
practical importance?

10.5 Comparing Two Population Variances by Using
Independent Samples

We have seen (in Sections 10.1 and 10.2) that we often wish to compare two population means. In
addition, it is often useful to compare two population variances. For example, in the bank waiting
time situation of Example 10.1, we might compare the variance of the waiting times experienced
under the current and new systems. Or, as another example, we might wish to compare the variance
of the chemical yields obtained when using Catalyst XA-100 with that obtained when using Catalyst
ZB-200. Here the catalyst that produces yields with the smaller variance is giving more consistent
(or predictable) results.

If and are the population variances that we wish to compare, one approach is to test the
null hypothesis

We might test H0 versus an alternative hypothesis of, for instance,

Dividing by , we see that testing these hypotheses is equivalent to testing

versus Ha:  
s1

2

 s2
2  1H0:  

s1
2

 s2
2  1

s
2
2

Ha:  s1
2
 s2

2

H0 :  s1
2
 s2

2

s
2
2s

2
1

T A B L E 1 0 . 7 Results of an MTV-Commissioned Survey of the Lifestyles and Spending Habits

of the 14–34 Age Group in Six Countries PurchPctDS

Which of the Following Have You Purchased in the Past Three Months?

Percentage Percentage
in United Percentage Percentage Percentage Percentage in United

Product States in Australia in Brazil in Germany in Japan Kingdom

Soft drinks 96% 90% 93% 83% 91% 94%

Fast food 94 94 91 70 86 85

Athletic 59 40 54 33 30 49
footwear

Blue jeans 56 39 62 45 42 44

Beer* 46 50 60 46 57 57

Cigarettes* 24 33 30 38 39 40

*Among adults 18 . Source: Yankelovich Clancy Shulman.

Source: Philip R. Cateora, International Marketing, 9th ed. (Burr Ridge, IL: Richard D. Irwin, 1993), p. 262. Copyright © 1993.
Reprinted by permission of McGraw-Hill Companies, Inc.



Intuitively, we would reject H0 in favor of Ha if is significantly larger than 1. Here is the
variance of a random sample of n1 observations from the population with variance , and is
the variance of a random sample of n2 observations from the population with variance . To
decide exactly how large must be in order to reject H0, we need to consider the sampling
distribution of .8

It can be shown that, if the null hypothesis is true, then the population of all
possible values of is described by what is called an F distribution. In general, as illustrated
in Figure 10.13, the curve of the F distribution is skewed to the right. Moreover, the exact shape
of this curve depends on two parameters that are called the numerator degrees of freedom

(denoted df1) and the denominator degrees of freedom (denoted df2). The values of df1 and df2

that describe the sampling distribution of are given in the following result:s2
1兾s2

2

s2
1兾s2

2

H0: s1
2兾s2

2
 1

s2
1兾s2

2

s2
1兾s2

2

s
2
2

s2
2s

2
1

s1
2s2
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F I G U R E 1 0 . 1 3 F Distribution Curves and F Points

F
 

0

This area is   

Curve of the F distribution having

df1 and df2 degrees of freedom

F.05   4.12
0

This area is .05

Curve of the F distribution having 

4 and 7 degrees of freedom

(a) The point F
A

corresponding to df1 and df2 degrees

of freedom

(b) The point F.05 corresponding to 4 and 7 degrees

of freedom

Describe
the proper-

ties of the F distri-
bution and use an F
table.

LO6

The Sampling Distribution of s2
1兾s

2
2

values of has an F distribution with df1 

(n1 1) numerator degrees of freedom and with

df2 (n2 1) denominator degrees of freedom.  

 

 s2
1兾s2

2Suppose we randomly select independent samples

from two normally distributed populations hav-

ing variances and . Then, if the null hypothesis

is true, the population of all possibleH0 :  s1
2兾s2

2
 1

s2
2

s1
2

In order to use the F distribution, we employ an F point, which is denoted F
a
. As illustrated

in Figure 10.13(a), F
 

is the point on the horizontal axis under the curve of the F distribution

that gives a right-hand tail area equal to . The value of F
a

in a particular situation depends on
the size of the right-hand tail area (the size of ) and on the numerator degrees of freedom (df1)
and the denominator degrees of freedom (df2). Values of F

a
are given in an F table. Tables A.5,

A.6, A.7, and A.8 (pages 864–867) give values of F.10, F.05, F.025, and F.01, respectively. Each
table tabulates values of F

a
according to the appropriate numerator degrees of freedom (values

listed across the top of the table) and the appropriate denominator degrees of freedom (values
listed down the left side of the table). A portion of Table A.6, which gives values of F.05, is
reproduced in this chapter as Table 10.8. For instance, suppose we wish to find the F point that
gives a right-hand tail area of .05 under the curve of the F distribution having 4 numerator and

a

 

8Note that we divide by to form a null hypothesis of the form rather than subtracting to form a null hypothesis

of the form . This is because the population of all possible values of has no known sampling distribution.s1
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7 denominator degrees of freedom. To do this, we scan across the top of Table 10.8 until we find
the column corresponding to 4 numerator degrees of freedom, and we scan down the left side
of the table until we find the row corresponding to 7 denominator degrees of freedom. The
table entry in this column and row is the desired F point. We find that the F.05 point is 4.12
[see Figure 10.13(b) and Table 10.8].

We now present the procedure for testing the equality of two population variances when the
alternative hypothesis is one-tailed.

Numerator Degrees of Freedom, df1

1 2 3 4 5 6 7 8 9

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10

7 5.59 4.71 4.25 4.12 3.97 3.87 3.79 3.73 3.68

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96

 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88

Source: M. Merrington and C. M. Thompson, “Tables of Percentage Points of the Inverted Beta (F ) Distribution,” Biometrika,

Vol. 33 (1943), pp. 73–88. Reproduced by permission of Oxford University Press and Biometrika trustees.
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Testing the Equality of Population Variances versus a One-Tailed Alternative 
Hypothesis

2 In order to test versus ,

define the test statistic

and define the corresponding p-value to be the

area to the right of F under the curve of the

F distribution having df1 n2 1 numerator

degrees of freedom and df2 n1 1 denomina-

tor degrees of freedom. We can reject H0 at level

of significance a if and only if

a F  F
a

or, equivalently,

b p-value a.

Here F
a

is based on df1 n2 1 and df2  n1 1

degrees of freedom.

0 F
 

Reject H0

if F   F
  

 

F  
s2

2

s1
2

H
a
: s1

2
 s2

2H0: s1
2
 s2

2

Suppose we randomly select independent samples

from two normally distributed populations—

populations 1 and 2. Let be the variance of the ran-

dom sample of n1 observations from population 1,

and let be the variance of the random sample of n2

observations from population 2.

1 In order to test versus ,

define the test statistic

and define the corresponding p-value to be the

area to the right of F under the curve of the 

F distribution having df1   n1   1 numerator

degrees of freedom and df2   n2   1 denomina-

tor degrees of freedom. We can reject H0 at level

of significance a if and only if

a F   F
a

or, equivalently,

b p-value a.

Here F
a

is based on df1 n1 1 and df2 n2 1

degrees of freedom.

F  
s1

2

s2
2

Ha:  s1
2
 s

2
2H0:  s1

2
 s

2
2

s2
2

s1
2

Again consider the catalyst comparison situation of Example 10.3, and suppose the production
supervisor wishes to use the sample data in Table 10.1 to determine whether , the variance of
the chemical yields obtained by using Catalyst XA-100, is smaller than , the variance of the
chemical yields obtained by using Catalyst ZB-200. To do this, the supervisor will test the null
hypothesis

which says the catalysts produce yields having the same amount of variability, versus the alter-
native hypothesis

or, equivalently,

which says Catalyst XA-100 produces yields that are less variable (that is, more consistent) than
the yields produced by Catalyst ZB-200. Recall from Table 10.1 that n1 n2 5, , and

. In order to test H0 versus Ha, we compute the test statistic

and we compare this value with F
a

based on df1 n2 1 5 1 4 numerator degrees of free-
dom and df2 n1 1 5 1 4 denominator degrees of freedom. If we test H0 versus Ha at
the .05 level of significance, then Table 10.8 tells us that when df1 4 and df2 4, we have
F.05 6.39. Because F 1.2544 is not greater than F.05 6.39, we cannot reject H0 at the
.05 level of significance. That is, at the .05 level of significance we cannot conclude that is
less than . This says that there is little evidence that Catalyst XA-100 produces yields that are
more consistent than the yields produced by Catalyst ZB-200.

s2
2

s1
2
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2
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EXAMPLE 10.11 The Catalyst Comparison Case C
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The p-value for testing H0 versus Ha is the area to the right of F 1.2544 under the curve of
the F distribution having 4 numerator degrees of freedom and 4 denominator degrees of free-
dom. The Excel output in Figure 10.14(a) tells us that this p-value equals 0.415724. Since this 
p-value is large, we have little evidence to support rejecting H0 in favor of Ha. That is, there is
little evidence that Catalyst XA-100 produces yields that are more consistent than the yields
produced by Catalyst ZB-200.

Again considering the catalyst comparison case, suppose we wish to test

versus

One way to carry out this test is to compute

As illustrated in Figure 10.15, if we set a .10, we compare F with the rejection points F.95

and F.05 under the curve of the F distribution having n1 1 4 numerator and n2 1 4
denominator degrees of freedom. We see that we can easily find the appropriate upper-tail
rejection point to be F.05 6.39. In order to find the lower-tail rejection point, F.95, we use the
following relationship:

F(1 a) with df1 numerator and df2 denominator degrees of freedom

 
1

Fa with df2 numerator and df1 denominator degrees of freedom

F  
s1

2

s2
2  

386

484.2
 .797

Ha: s2
1  s

2
2H0: s2

1  s
2
2

F I G U R E 1 0 . 1 4 Excel and MINITAB Outputs for Testing H0: in the Catalyst 

Comparison Case

S
2
1  S

2
2

(a) Excel output of testing versus

F-Test Two-Sample for Variances

ZB-200 XA-100

Mean 750.2 811

Variance 484.2 386

Observations 5 5

df 4 4

F 1.254404

P(F<=f) one-tail 0.415724

F Critical one-tail 6.388234

Ha:  S1
2
 S2

2
H0:  S1

2
 S2

2 (b) MINITAB output of testing 
versus 

F-Test

Test Statistic: 0.797

P-Value       : 0.831

Ha:  S1
2 
 S2

2 
H0:  S1

2   S2
2

.05

.05

F distribution with n1   1   4 numerator and
n2   1   4 denominator degrees of freedom

0
F.95 F.05

Reject H0 if
F   F.95

Reject H0 if
F   F.05

F I G U R E 1 0 . 1 5 Rejection Points for Testing H0: versus Ha:  with A  .10S
2
2S

2
1S

2
1  S

2
2



This says that for the F curve with 4 numerator and 4 denominator degrees of freedom,
F(1 .05) F.95 1兾F.05 1兾6.39 .1565. Therefore, because F .797 is not greater than
F.05 6.39 and since F .797 is not less than F.95 .1565, we cannot reject H0 in favor of Ha

at the .10 level of significance.
Although we can calculate the lower-tail rejection point for this hypothesis test as just illus-

trated, it is common practice to compute the test statistic F so that its value is always greater
than 1. This means that we will always compare F with the upper-tail rejection point when car-
rying out the test. This can be done by always calculating F to be the larger of and divided
by the smaller of and . We obtain the following result:s2

2s1
2

s2
2s1

2
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Testing the Equality of Population Variances (Two Tailed Alternative)

freedom and df2 denominator degrees of freedom.

We can reject H0 at level of significance a if and only if

1 F   F
a兾2 or, equivalently,

2 p-value  a.

Here F
a兾2 is based on df1 and df2 degrees of freedom.

0

 /2

F
 /2

Reject H0

if F   F
 /2

Suppose we randomly select independent samples

from two normally distributed populations and

define all notation as in the previous box. Then, in

order to test versus , define

the test statistic

and let

df1  兵the size of the sample having the largest

variance其  1

df2  兵the size of the sample having the smallest

variance其  1

Also, define the corresponding p-value to be twice

the area to the right of F under the curve of the

F distribution having df1 numerator degrees of

F  
the larger of s2

1 and s2
2

the smaller of s2
1 and s2

2

Ha:  s1
2
Z s

2
2H0:  s1

2
 s

2
2

In the catalyst comparison situation, we can reject H0: in favor of Ha: at the
.05 level of significance if

is greater than . Here the degrees of freedom are

{the size of the sample having the largest variance}  1

and

{the size of the sample having the smallest variance}  1

Table A.7 (page 866) tells us that the appropriate F.025 point equals 9.60. Because F 1.2544
is not greater than 9.60, we cannot reject H0 at the .05 level of significance. Furthermore, the
MINITAB output of Figure 10.14(b) tells us that the p-value for this hypothesis test is 0.831.
Notice that although we calculated the F-statistic in this example as the F statistic is defined in
the preceding box—the larger of and divided by the smaller of and , the MINITAB out-
put gives the reciprocal of this value (as we calculated on page 429). Since the p-value is large,

s2
2s1

2s2
2s1

2
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EXAMPLE 10.12 The Catalyst Comparison Case C
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we have little evidence that the consistencies of the yields produced by Catalysts XA-100 and
ZB-200 differ.

It has been suggested that the F test of be used to choose between the equal vari-
ances and unequal variances t based procedures when comparing two means (as described in Sec-
tion 10.2). Certainly the F test is one approach to making this choice. However, studies have shown
that the validity of the F test is very sensitive to violations of the normality assumption—much more
sensitive, in fact, than the equal variances procedure is to violations of the equal variances assump-
tion. While opinions vary, some statisticians believe that this is a serious problem and that the F test
should never be used to choose between the equal variances and unequal variances procedures. Oth-
ers feel that performing the test for this purpose is reasonable if the test’s limitations are kept in mind.

As an example for those who believe that using the F test is reasonable, we found in
Example 10.12 that we do not reject at the .05 level of significance in the context of
the catalyst comparison situation. Further, the p-value related to the F test, which equals 0.831,
tells us that there is little evidence to suggest that the population variances differ. It follows that
it might be reasonable to compare the mean yields of the catalysts by using the equal variances
procedures (as we have done in Examples 10.3 and 10.4).

H0: s1
2
 s2

2

H0: s1
2
 s2

2

F.025   9.60F   1.25440

.025

Exercises for Section 10.5
CONCEPTS

10.46 Explain what population is described by the sampling distribution of .

10.47 Intuitively explain why a value of that is substantially greater than 1 provides evidence that
is not equal to .

METHODS AND APPLICATIONS

10.48 Use Table 10.8 to find the F.05 point for each of the following:
a df1 3 numerator degrees of freedom and df2 14 denominator degrees of freedom.
b df1 6 and df2 10.
c df1 2 and df2 22.
d df1 7 and df2 5.

10.49 Use Tables A.5, A.6, A.7, and A.8 (pages 864–867) to find the following F
a

points:
a F.10 with df1 4 numerator degrees of freedom and df2 7 denominator degrees of freedom.
b F.01 with df1 3 and df2 25.
c F.025 with df1 7 and df2 17.
d F.05 with df1 9 and df2 3.

10.50 Suppose two independent random samples of sizes n1 9 and n2 7 that have been taken from
two normally distributed populations having variances and give sample variances of

and .

a Test versus with a .05. What do you conclude?

b Test versus with a .05. What do you conclude?

10.51 Suppose two independent random samples of sizes n1 5 and n2 16 that have been taken from
two normally distributed populations having variances and give sample standard deviations
of s1 5 and s2 9.
a Test versus with a .05. What do you conclude?

b Test versus with a .01. What do you conclude?Ha:  s1
2
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10.52 Consider the situation of Exercise 10.23 (page 410). Use the sample information to test
versus with a .05. Based on this test, does it make sense to believe

that the unequal variances procedure is appropriate? Explain.

10.53 Consider the situation of Exercise 10.24 (page 410). AutoLoan
a Use the Excel output in Figure 10.7 (page 411) and a critical value to test 

versus with a .05. What do you conclude?
b Does it make sense to use the equal variances procedure in this situation?
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2
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Chapter Summary

This chapter has explained how to compare two populations

by using confidence intervals and hypothesis tests. First we
discussed how to compare two population means by using inde-

pendent samples. Here the measurements in one sample are not
related to the measurements in the other sample. We saw that in
the unlikely event that the population variances are known, a 
z-based inference can be made. When these variances are un-
known, t-based inferences are appropriate if the populations are
normally distributed or the sample sizes are large. Both equal

variances and unequal variances t-based procedures exist. We
learned that, because it can be difficult to compare the population
variances, many statisticians believe that it is almost always best
to use the unequal variances procedure.

Sometimes samples are not independent. We learned that
one such case is what is called a paired difference experiment.

Here we obtain two different measurements on the same sample
units, and we can compare two population means by using
a confidence interval or by conducting a hypothesis test that
employs the differences between the pairs of measurements.
We next explained how to compare two population propor-

tions by using large, independent samples. Finally, we
concluded this chapter by discussing how to compare two

population variances by using independent samples, and we
learned that this comparison is done by using a test based on the
F distribution.

Glossary of Terms

F distribution: A continuous probability curve having a shape that
depends on two parameters—the numerator degrees of freedom, df1,
and the denominator degrees of freedom, df2. (pages 426–427)
independent samples experiment: An experiment in which
there is no relationship between the measurements in the different
samples. (page 398)
paired difference experiment: An experiment in which two dif-
ferent measurements are taken on the same units and inferences
are made using the differences between the pairs of measure-
ments. (page 415)
sampling distribution of : The probability distribution
that describes the population of all possible values of ,
where is the sample proportion for a random sample takenp̂1

p̂1  p̂2

p̂1  p̂2

from one population and is the sample proportion for a random
sample taken from a second population. (page 419)
sampling distribution of : The probability distribution that
describes the population of all possible values of , where 
is the sample variance of a random sample taken from one popu-
lation and is the sample variance of a random sample taken
from a second population. (page 426)
sampling distribution of : The probability distribution
that describes the population of all possible values of ,
where is the sample mean of a random sample taken from one
population and is the sample mean of a random sample taken
from a second population. (page 398)
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Important Formulas and Tests

Sampling distribution of (independent random samples):
page 398

z-based confidence interval for m1 m2: page 398

z test about m1 m2: page 399

t-based confidence interval for m1 m2 when : page 403

t-based confidence interval for m1 m2 when : page 406

t test about m1 m2 when : page 405

t test about m1 m2 when : page 406

Confidence interval for md: page 413
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x 1  x 2 A hypothesis test about md: page 413

Sampling distribution of (independent random samples):
page 419

Large sample confidence interval for p1 p2: page 420

Large sample hypothesis test about p1 p2: page 421

Sampling distribution of (independent random samples):
page 426

A hypothesis test about the equality of and : pages 428
and 430
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Supplementary Exercises

10.54 In its February 2, 1998, issue, Fortune magazine published the results of a Yankelovich Partners
survey of 600 adults that investigated their ideas about marriage, divorce, and the contributions of
the corporate wife. The survey results are shown in Figure 10.16. For each statement in the figure,
the proportions of men and women who agreed with the statement are given. Assuming that the
survey results were obtained from independent random samples of 300 men and 300 women:
a For each statement, carry out a hypothesis test that tests the equality of the population 

proportions of men and women who agree with the statement. Use a equal to .10, .05, .01,
and .001. How much evidence is there that the population proportions of men and women
who agree with each statement differ?

b For each statement, calculate a 95 percent confidence interval for the difference between the
population proportion of men who agree with the statement and the population proportion of
women who agree with the statement. Use the interval to help assess whether you feel that the
difference between population proportions has practical significance.

Exercises 10.55 and 10.56 deal with the following situation:
In an article in the Journal of Retailing, Kumar, Kerwin, and Pereira study factors affecting merger and

acquisition activity in retailing by comparing “target firms” and “bidder firms” with respect to several financial
and marketing-related variables. If we consider two of the financial variables included in the study, suppose a
random sample of 36 “target firms” gives a mean earnings per share of $1.52 with a standard deviation of $0.92,
and that this sample gives a mean debt-to-equity ratio of 1.66 with a standard deviation of 0.82. Furthermore,
an independent random sample of 36 “bidder firms” gives a mean earnings per share of $1.20 with a standard
deviation of $0.84, and this sample gives a mean debt-to-equity ratio of 1.58 with a standard deviation of 0.81.

10.55 a Set up the null and alternative hypotheses needed to test whether the mean earnings per share
for all “target firms” differs from the mean earnings per share for all “bidder firms.” Test these
hypotheses at the .10, .05, .01, and .001 levels of significance. How much evidence is there
that these means differ? Explain.

b Calculate a 95 percent confidence interval for the difference between the mean earnings per
share for “target firms” and “bidder firms.” Interpret the interval.

F I G U R E 1 0 . 1 6 The Results of a Yankelovich Partners Survey of 600 Adults on Marriage,

Divorce, and the Contributions of the Corporate Wife (All Respondents 

with Income $50,000 or More)

People were magnanimous on the general proposition:

• In a divorce in a long-term marriage where the husband works outside the home and the wife is not 
employed for pay, the wife should be entitled to half the assets accumulated during the marriage.

93% of women agree

85% of men agree

But when we got to the goodies, a gender gap began to appear . . .

• The pension accumulated during the marriage should be split evenly.

80% of women agree

68% of men agree

• Stock options granted during the marriage should be split evenly.

77% of women agree

62% of men agree

. . . and turned into a chasm over the issue of how important a stay-at-home wife is to a
husband’s success.

• Managing the household and child rearing are extremely important to a husband’s success.

57% of women agree

41% of men agree

• A corporate wife who also must travel, entertain, and act as a sounding board is extremely important
to the success of a high-level business executive.

51% of women agree

28% of men agree

• The lifestyle of a corporate wife is more of a job than a luxury.

73% of women agree

57% of men agree

Source: Reprinted from the February 2, 1998, issue of Fortune. Copyright 1998 Time, Inc. Reprinted by permission.
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10.56 a Set up the null and alternative hypotheses needed to test whether the mean debt-to-equity ratio
for all “target firms” differs from the mean debt-to-equity ratio for all “bidder firms.” Test
these hypotheses at the .10, .05, .01, and .001 levels of significance. How much evidence is
there that these means differ? Explain.

b Calculate a 95 percent confidence interval for the difference between the mean debt-to-equity
ratios for “target firms” and “bidder firms.” Interpret the interval.

c Based on the results of this exercise and Exercise 10.55, does a firm’s earnings per share or
the firm’s debt-to-equity ratio seem to have the most influence on whether a firm will be a
“target” or a “bidder”? Explain.

10.57 What impact did the September 11 terrorist attack have on U.S. airline demand? An analysis was
conducted by Ito and Lee, “Assessing the impact of the September 11 terrorist attacks on U.S.
airline demand,” in the Journal of Economics and Business (January-February 2005). They found
a negative short-term effect of over 30% and an ongoing negative impact of over 7%. Suppose
that we wish to test the impact by taking a random sample of 12 airline routes before and after
9兾11. Passenger miles (millions of passenger miles) for the same routes were tracked for the
12 months prior to and the 12 months immediately following 9兾11. Assume that the population of
all possible paired differences is normally distributed.
a Set up the null and alternative hypotheses needed to determine whether there was a reduction

in mean airline passenger demand.
b Below we present the MINITAB output for the paired differences test. Use the output and 

critical values to test the hypotheses at the .10, .05, and .01 levels of significance. Has the
true mean airline demand been reduced?

c Use the p-value to test the hypotheses at the .10, .05, and .01 levels of significance. How
much evidence is there against the null hypothesis?

10.58 In the book Essentials of Marketing Research, William R. Dillon, Thomas J. Madden, and Neil
H. Firtle discuss evaluating the effectiveness of a test coupon. Samples of 500 test coupons and 
500 control coupons were randomly delivered to shoppers. The results indicated that 35 of the 
500 control coupons were redeemed, while 50 of the 500 test coupons were redeemed.
a In order to consider the test coupon for use, the marketing research organization required that

the proportion of all shoppers who would redeem the test coupon be statistically shown to be
greater than the proportion of all shoppers who would redeem the control coupon. Assuming
that the two samples of shoppers are independent, carry out a hypothesis test at the .01 level
of significance that will show whether this requirement is met by the test coupon. Explain
your conclusion.

b Use the sample data to find a point estimate and a 95 percent interval estimate of the 
difference between the proportions of all shoppers who would redeem the test coupon and
the control coupon. What does this interval say about whether the test coupon should be 
considered for use? Explain.

c Carry out the test of part a at the .10 level of significance. What do you conclude? Is your
result statistically significant? Compute a 90 percent interval estimate instead of the 
95 percent interval estimate of part b. Based on the interval estimate, do you feel that this
result is practically important? Explain.

10.59 A marketing manager wishes to compare the mean prices charged for two brands of CD players.
The manager conducts a random survey of retail outlets and obtains independent random samples
of prices with the following results:

Onkyo JVC

Sample mean, $189 $145

Sample standard deviation, s $ 12 $ 10

Sample size 6 12

x

Paired T-Test and CI: Before911, After911 

Paired T for Before911 - After911

N     Mean    StDev  SE Mean 

Before911   12  117.333   26.976    7.787 

After911 12 87.583 25.518 7.366

Difference  12  29.7500  10.3056   2.9750 

T-Test of mean difference = 0 (vs > 0): T-Value = 10.00  P-Value = 0.000 
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Assuming normality and equal variances:
a Use an appropriate hypothesis test to determine whether the mean prices for the two brands 

differ. How much evidence is there that the mean prices differ?
b Use an appropriate 95 percent confidence interval to estimate the difference between the

mean prices of the two brands of CD players. Do you think that the difference has practical 
importance?

c Use an appropriate hypothesis test to provide evidence supporting the claim that the mean
price of the Onkyo CD player is more than $30 higher than the mean price for the JVC CD
player. Set a equal to .05.

10.60 Consider the situation of Exercise 10.59. Use the sample information to test versus
with Based on this test, does it make sense to use the equal variances

procedure? Explain.
a  .05.Ha:  s2

1  s
2
2

H0:  s2
1  s

2
2

10.61 Internet Exercise

a A prominent issue of the 2000 U.S. presidential cam-
paign was campaign finance reform. A Washington
Post /ABC News poll (reported April 4, 2000) found
that 63 percent of 1,083 American adults surveyed
believed that stricter campaign finance laws would
be effective (a lot or somewhat) in reducing the
influence of money in politics. Was this view uni-
formly held or did it vary by gender, race, or political
party affiliation? A summary of survey responses,
broken down by gender, is given in the table below.

Summary of Responses Male Female All

Believe reduce influence, p 59% 66% 63%

Number surveyed, n 520 563 1,083

[Source: Washington Post website: www.washington-
post.com/wp-srv/politics/polls/vault/vault.htm.

Is there sufficient evidence in this survey to con-
clude that the proportion of individuals who believed
that campaign finance laws can reduce the influence
of money in politics differs between females and
males? Set up the appropriate null and alternative
hypotheses. Conduct your test at the .05 and .01 lev-
els of significance and calculate the p-value for your
test. Make sure your conclusion is clearly stated.

b Search the World Wide Web for an interesting recent
political poll dealing with an issue or political candi-
dates, where responses are broken down by gender
or some other two-category classification. (A list of
high-potential websites is given below.) Use a differ-
ence in proportions test to determine whether politi-
cal preference differs by gender or other two-level
grouping.

Political polls on the World Wide Web:

ABC News: www.abcnews.go.com/pollingunit

Washington Post: www.washingtonpost.com/wp-dyn/
content/politics/polls/?nid=roll_polls

Gallup: www.gallup.com/Home.aspx

Polling Report: www.pollingreport.com

Rasmussen Reports: www.rasmussenreports.com/
public_content/politics

Zogby International: www.zogby.com/features/
zogbytables3.cfm

CBS News Poll Database: www.cbsnews.com/stories/2007/10/
12/politics/main3362530.shtml?tag=
cbsnewsMainColumnArea;cbsne
wsMainColumnArea.0
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Appendix 10.1 ■ Two-Sample Hypothesis Testing Using Excel
The instruction blocks in this section each begin by describing the entry of data into an Excel spreadsheet. Alterna-
tively, the data may be downloaded from this book’s website. The appropriate data file name is given at the top of
each instruction block. Please refer to Appendix 1.1 for further information about entering data, saving data, and
printing results when using Excel.

Test for the difference between means, equal vari-
ances, in Figure 10.2(b) on page 406 (data file: 
Catalyst.xlsx):

• Enter the data from Table 10.1 (page 404) into 
two columns: yields for catalyst XA-100 in column A
and yields for catalyst ZB-200 in column B, with 
labels XA-100 and ZB-200.

• Select Data : Data Analysis : t-Test: Two-Sample 
Assuming Equal Variances and click OK in the
Data Analysis dialog box.

• In the t-Test dialog box, enter A1: A6 in the 
“Variable 1 Range” window.

• Enter B1 : B6 in the “Variable 2 Range” window.

• Enter 0 (zero) in the “Hypothesized Mean 
Difference” box.

• Place a checkmark in the Labels checkbox.

• Enter 0.05 into the Alpha box.

• Under output options, select “New Worksheet
Ply” to have the output placed in a new 
worksheet and enter the name Output for the
new worksheet.

• Click OK in the t-Test dialog box.

• The output will be displayed in a new worksheet.

Test for equality of variances similar to Figure 10.14(a)
on page 429 (data file: Catalyst.xlsx):

• Enter the data from Table 10.1 (page 404) into 
two columns: yields for catalyst XA-100 in column A
and yields for catalyst ZB-200 in column B, with 
labels XA-100 and ZB-200.

• Select Data : Data Analysis : F-Test Two-Sample for
Variances and click OK in the Data Analysis dialog
box.

• In the F-Test dialog box, enter A1 : A6 in the 
“Variable 1 Range” window.

• Enter B1 : B6 in the “Variable 2 Range” window.

• Place a checkmark in the Labels checkbox.

• Enter 0.05 into the Alpha box.

• Under output options, select “New Worksheet
Ply” to have the output placed in a new 
worksheet and enter the name Output for the
new worksheet.

• Click OK in the F-Test dialog box.

• The output will be displayed in a new worksheet.

Note: The t test assuming unequal variances can be done
by selecting Data : Data Analysis : t-Test : Two-Sample
Assuming Unequal Variances.
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Appendix 10.2 ■ Two-Sample Hypothesis Testing Using MegaStat
The instructions in this section begin by describing the entry of data into an Excel worksheet. Alternatively, the data
may be downloaded from this book’s website. The appropriate data file name is given at the top of each instruc-
tion block. Please refer to Appendix 1.1 for further information about entering data and saving and printing results
in Excel. Please refer to Appendix 1.2 for more information about using MegaStat. 

Test for paired differences in Figure 10.9 on page 414
(data file: Repair.xlsx):

• Enter the data from Table 10.2 (page 412) into
two columns: costs for Garage 1 in column A and
costs for Garage 2 in column B, with labels 
Garage 1 and Garage 2.

• Select Data : Data Analysis : t-Test: Paired Two
Sample for Means and click OK in the Data 
Analysis dialog box.

• In the t-Test dialog box, enter A1 : A8 into the
“Variable 1 Range” window.

• Enter B1: B8 into the “Variable 2 Range” window.

• Enter 0 (zero) in the “Hypothesized Mean 
Difference” box.

• Place a checkmark in the Labels checkbox.

• Enter 0.05 into the Alpha box.

• Under output options, select “New Worksheet
Ply” to have the output placed in a new 
worksheet and enter the name Output for the
new worksheet.

• Click OK in the t-Test dialog box.

• The output will be displayed in a new worksheet.

Test for the difference between means, equal vari-
ances, similar to Figure 10.2(a) on page 406 (data file: 
Catalyst.xlsx):

• Enter the data from Table 10.1 (page 404) into
two columns: yields for catalyst XA-100 in column A
and yields for catalyst ZB-200 in column B, with 
labels XA-100 and ZB-200.

• Select MegaStat : Hypothesis Tests : Compare Two
Independent Groups

• In the “Hypothesis Test: Compare Two Independent
Groups” dialog box, click on “data input.”

• Click in the Group 1 window and use the 
autoexpand feature to enter the range A1 : A6.

• Click in the Group 2 window and use the 
autoexpand feature to enter the range B1: B6.

• Enter the Hypothesized Difference (here equal to
0) into the so labeled window.

• Select an Alternative (here “not equal”) from the
drop-down menu in the Alternative box.

• Click on “t-test (pooled variance)” to request the
equal variances test described on page 405.

• Check the “Display confidence interval” checkbox,
and select or type a desired level of confidence.
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• Check the “Test for equality of variances” 
checkbox to request the F test described on 
pages 428 and 430.

• Click OK in the “Hypothesis Test: Compare Two 
Independent Groups” dialog box.

• The t test assuming unequal variances described
on page 406 can be done by clicking “t-test 
(unequal variances)”.

Test for paired differences similar to Figure 10.9 on
page 414 (data file: Repair.xlsx):

• Enter the data from Table 10.2 (page 412) into
two columns: costs for Garage 1 in column A and
costs for Garage 2 in column B, with labels
Garage1 and Garage2.

• Select Add-Ins : MegaStat : Hypothesis Tests :
Paired Observations.

• In the “Hypothesis Test: Paired Observations” 
dialog box, click on “data input.”

• Click in the Group 1 window, and use the 
autoexpand feature to enter the range A1: A8.

• Click in the Group 2 window, and use the 
autoexpand feature to enter the range B1: B8.

• Enter the Hypothesized difference (here equal to
0) into the so labeled window.

• Select an Alternative (here “not equal”) from the
drop-down menu in the Alternative box.

• Click on “t-test.”

• Click OK in the “Hypothesis Test: Paired 
Observations” dialog box.

• If the sample sizes are large, a test based on the
normal distribution can be done by clicking on 
“z-test.”

Hypothesis Test and Confidence Interval for Two Inde-
pendent Proportions in Exercise 10.42 on page 423:

• Select Add-Ins : MegaStat : Hypothesis Tests:
Compare Two Independent Proportions.

• In the “Hypothesis Test: Compare Two 
Proportions” dialog box, enter the number of 
successes x (here equal to 25) and the sample size n
(here equal to 140) for homeowners in the “x”
and “n” Group 1 windows.

• Enter the number of successes x (here equal to 9)
and the sample size n (here equal to 60) for
renters in the “x” and “n” Group 2 windows.

• Enter the Hypothesized difference (here equal to
0) into the so labeled window.

• Select an Alternative (here “not equal”) from the
drop-down menu in the Alternative box.

• Check the “Display confidence interval” checkbox,
and select or type a desired level of confidence
(here equal to 95%).

• Click OK in the “Hypothesis Test: Compare Two
Proportions” dialog box.
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Appendix 10.3 ■ Two-Sample Hypothesis Testing Using MINITAB
The instruction blocks in this section each begin by describing the entry of data into the MINITAB data window.
Alternatively, the data may be downloaded from this book’s website. The appropriate data file name is given at the
top of each instruction block. Please refer to Appendix 1.3 for further information about entering data, saving data,
and printing results when using MINITAB.

Test for the difference between means, unequal
variances, in Figure 10.4 on page 408 (data file: 
Catalyst.MTW):

• In the data window, enter the data from 
Table 10.1 (page 404) into two columns with
variable names XA-100 and ZB-200.

• Select Stat : Basic Statistics : 2-Sample t.

• In the “2-Sample t (Test and Confidence Interval)”
dialog box, select the “Samples in different
columns” option.

• Select the XA-100 variable into the First window.

• Select the ZB-200 variable into the Second 
window.

• Click on the Options... button, enter the 
desired level of confidence (here, 95.0) in the
“Confidence level” window, enter 0.0 in the
“Test difference” window, and select “not
equal” from the Alternative pull-down menu.
Click OK in the “2-Sample t—Options” dialog
box.

• To produce yield by catalyst type boxplots, click
the Graphs... button, check the “Boxplots of
data” checkbox, and click OK in the “2 Sample
t—Graphs” dialog box.

• Click OK in the “2-Sample t (Test and Confidence
Interval)” dialog box.

• The results of the two-sample t test (including
the t statistic and p-value) and the confidence 
interval for the difference between means 
appear in the Session window, while the 
boxplots will be displayed in a graphics window.

• A test for the difference between two means
when the variances are equal can be performed
by placing a checkmark in the “Assume Equal
Variances” checkbox in the “2-Sample t (Test and
Confidence Interval)” dialog box.
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Test for paired differences in Figure 10.8 on page 414
(data file: Repair.MTW):

• In the Data window, enter the data from 
Table 10.2 (page 412) into two columns with 
variable names Garage1 and Garage2.

• Select Stat : Basic Statistics : Paired t.

• In the “Paired t (Test and Confidence Interval)” 
dialog box, select the “Samples in columns” 
option.

• Select Garage1 into the “First sample” window
and Garage2 into the “Second sample” window.

• Click the Options... button.

• In the “Paired t—Options” dialog box, enter the
desired level of confidence (here, 95.0) in the
“Confidence level” window, enter 0.0 in the “Test
mean” window, select “less than” from the 
Alternative pull-down menu, and click OK.

• To produce a boxplot of differences with a 
graphical summary of the test, click the Graphs...
button, check the “Boxplot of differences” 
checkbox, and click OK in the “Paired t—Graphs”
dialog box.

• Click OK in the “Paired t (Test and Confidence 
Interval)” dialog box.

The results of the paired t-test are given in the Session
window, and graphical output is displayed in a graph-
ics window.

Hypothesis test and confidence interval for two Inde-
pendent proportions in Figure 10.12 on page 422:

• Select Stat : Basic Statistics : 2 Proportions.

• In the “2 Proportions (Test and Confidence 
Interval)” dialog box, select the “Summarized
data” option.

• Enter the sample size for Des Moines (equal to
1000) into the “First—Trials” window, and enter
the number of successes for Des Moines (equal to
631) into the “First—Events” window.

• Enter the sample size for Toledo (equal to 1000)
into the “Second—Trials” window, and enter the
number of successes for Toledo (equal to 798) into
the “Second—Events” window.

• Click on the Options... button.

• In the “2 Proportions—Options” dialog box, enter
the desired level of confidence (here 95.0) in the
“Confidence level” window.

• Enter 0.0 into the “Test difference” window 
because we are testing that the difference
between the two proportions equals zero.
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• Select the desired alternative hypothesis (here
“not equal”) from the Alternative drop-down
menu.

• Check the “Use pooled estimate of p for test”
checkbox because “Test difference” equals zero.
Do not check this box in cases where “Test 
difference” does not equal zero.

• Click OK in the “2 Proportions—Options” dialog
box.

• Click OK in the “2 Proportions (Test and 
Confidence Interval)” dialog box to obtain results
for the test in the Session window.

Test for equality of variances in Figure 10.14(b) on
page 429 (data file: Catalyst.MTW):

• The MINITAB equality of variance test requires
that the yield data be entered in a single column
with sample identifiers in a second column:

• In the Data window, enter the yield data from
Table 10.1 (page 404) into a single column with
variable name Yield. In a second column with 
variable name Catalyst, enter the corresponding
identifying tag, XA-100 or ZB-200, for each yield
figure.

• Select Stat : ANOVA : Test for Equal Variances.

• In the “Test for Equal Variances” dialog box, select
the Yield variable into the Response window.

• Select the Catalyst variable into the Factors 
window.

• Enter the desired level of confidence (here, 95.0)
in the Confidence Level window. 

• Click OK in the “Test for Equal Variances” dialog
box.

• The reciprocal of the F-statistic (as described in the
text) and the p-value will be displayed in the 
session window (along with additional output
that we do not describe in this book). A graphical
summary of the test is shown in a graphics 
window.
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After mastering the material in this chapter, you will be able to:

LO4 Assess the effects of two factors on a
response variable by using a two-way
analysis of variance.

LO5 Describe what happens when two factors
interact.

Learning Objectives

LO1 Explain the basic terminology and concepts
of experimental design.

LO2 Compare several different population
means by using a one-way analysis of
variance.

LO3 Compare treatment effects and block
effects by using a randomized block
design.



n Chapter 10 we learned that business

improvement often involves making

comparisons. In that chapter we presented

several confidence intervals and several hypothesis

testing procedures for comparing two population

means. However, business improvement often

requires that we compare more than two

population means. For instance, we might compare

the mean sales obtained by using three different

advertising campaigns in order to improve a

company’s marketing process. Or, we might compare

the mean production output obtained by using four

different manufacturing process designs to improve

productivity.

In this chapter we extend the methods presented

in Chapter 10 by considering statistical procedures for

comparing two or more population means. Each

of the methods we discuss is called an analysis of

variance (ANOVA) procedure. We also present some

basic concepts of experimental design, which involves

deciding how to collect data in a way that allows us

to most effectively compare population means.

We explain the methods of this chapter in the

context of four cases:

I

The Gasoline Mileage Case: An oil company

wishes to develop a reasonably priced gasoline

that will deliver improved mileages. The company

uses one-way analysis of variance to compare the

effects of three types of gasoline on mileage in

order to find the gasoline type that delivers the

highest mean mileage.

The Commercial Response Case: Firms that run

commercials on television want to make the best

use of their advertising dollars. In this case,

researchers use one-way analysis of variance to

compare the effects of varying program content

on a viewer’s ability to recall brand names after

watching TV commercials.

The Defective Cardboard Box Case: A paper

company performs an experiment to investigate

the effects of four production methods on the

number of defective cardboard boxes produced

in an hour. The company uses a randomized block

ANOVA to determine which production method

yields the smallest mean number of defective

boxes.

The Shelf Display Case: A commercial bakery

supplies many supermarkets. In order to improve

the effectiveness of its supermarket shelf displays,

the company wishes to compare the effects of

shelf display height (bottom, middle, or top) and

width (regular or wide) on monthly demand. The

bakery employs two-way analysis of variance to

find the display height and width combination

that produces the highest monthly demand.

C

11.1 Basic Concepts of Experimental Design 
In many statistical studies a variable of interest, called the response variable (or dependent

variable), is identified. Then data are collected that tell us about how one or more factors (or

independent variables) influence the variable of interest. If we cannot control the factor(s) being

studied, we say that the data obtained are observational. For example, suppose that in order to

study how the size of a home relates to the sales price of the home, a real estate agent randomly

selects 50 recently sold homes and records the square footages and sales prices of these homes.

Because the real estate agent cannot control the sizes of the randomly selected homes, we say that

the data are observational.

If we can control the factors being studied, we say that the data are experimental. Furthermore,

in this case the values, or levels, of the factor (or combination of factors) are called treatments.

The purpose of most experiments is to compare and estimate the effects of the different treat-

ments on the response variable. For example, suppose that an oil company wishes to study how

three different gasoline types (A, B, and C) affect the mileage obtained by a popular midsized

automobile model. Here the response variable is gasoline mileage, and the company will study a

single factor—gasoline type. Since the oil company can control which gasoline type is used in the

midsized automobile, the data that the oil company will collect are experimental. Furthermore, the

treatments—the levels of the factor gasoline type—are gasoline types A, B, and C.

In order to collect data in an experiment, the different treatments are assigned to objects

(people, cars, animals, or the like) that are called experimental units. For example, in the gaso-

line mileage situation, gasoline types A, B, and C will be compared by conducting mileage tests

using a midsized automobile. The automobiles used in the tests are the experimental units.

Explain the
basic

terminology and
concepts of
experimental
design.

LO1



In general, when a treatment is applied to more than one experimental unit, it is said to be

replicated. Furthermore, when the analyst controls the treatments employed and how they are

applied to the experimental units, a designed experiment is being carried out. A commonly used,

simple experimental design is called the completely randomized experimental design.

In a completely randomized experimental design, independent random samples of experimen-

tal units are assigned to the treatments.

Suppose we assign three experimental units to each of five treatments. We can achieve a com-

pletely randomized experimental design by assigning experimental units to treatments as fol-

lows. First, randomly select three experimental units and assign them to the first treatment. Next,

randomly select three different experimental units from those remaining and assign them to the

second treatment. That is, select these units from those not assigned to the first treatment. Third,

randomly select three different experimental units from those not assigned to either the first or

second treatment. Assign these experimental units to the third treatment. Continue this procedure

until the required number of experimental units have been assigned to each treatment.

Once experimental units have been assigned to treatments, a value of the response variable is

observed for each experimental unit. Thus we obtain a sample of values of the response variable

for each treatment. When we employ a completely randomized experimental design, we assume

that each sample has been randomly selected from the population of all values of the response vari-

able that could potentially be observed when using its particular treatment. We also assume that the

different samples of response variable values are independent of each other. This is usually rea-

sonable because the completely randomized design ensures that each different sample results from

different measurements being taken on different experimental units. Thus we sometimes say that

we are conducting an independent samples experiment.
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EXAMPLE 11.1 The Gasoline Mileage Case

North American Oil Company is attempting to develop a reasonably priced gasoline that will

deliver improved gasoline mileages. As part of its development process, the company would like

to compare the effects of three types of gasoline (A, B, and C) on gasoline mileage. For testing

purposes, North American Oil will compare the effects of gasoline types A, B, and C on the gaso-

line mileage obtained by a popular midsized model called the Fire-Hawk. Suppose the company

has access to 1,000 Fire-Hawks that are representative of the population of all Fire-Hawks, and

suppose the company will utilize a completely randomized experimental design that employs sam-

ples of size five. In order to accomplish this, five Fire-Hawks will be randomly selected from the

1,000 available Fire-Hawks. These autos will be assigned to gasoline type A. Next, five different

Fire-Hawks will be randomly selected from the remaining 995 available Fire-Hawks. These autos

will be assigned to gasoline type B. Finally, five different Fire-Hawks will be randomly selected

from the remaining 990 available Fire-Hawks. These autos will be assigned to gasoline type C.

Each randomly selected Fire-Hawk is test driven using the appropriate gasoline type (treat-

ment) under normal conditions for a specified distance, and the gasoline mileage for each test

drive is measured. We let xij denote the j th mileage obtained when using gasoline type i. The

mileage data obtained are given in Table 11.1. Here we assume that the set of gasoline mileage

observations obtained by using a particular gasoline type is a sample randomly selected from the

infinite population of all Fire-Hawk mileages that could be obtained using that gasoline type.

M
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A B C

Gas Type

Gasoline Type A Gasoline Type B Gasoline Type C

xA1  34.0 xB1  35.3 xC1  33.3

xA2  35.0 xB2  36.5 xC2  34.0

xA3  34.3 xB3  36.4 xC3  34.7

xA4  35.5 xB4  37.0 xC4  33.0

xA5  35.8 xB5  37.6 xC5  34.9

T A B L E 1 1 . 1 The Gasoline Mileage Data GasMile2DS

C
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Examining the box plots shown next to the mileage data, we see some evidence that gasoline

type B yields the highest gasoline mileages.1

EXAMPLE 11.2 The Shelf Display Case

The Tastee Bakery Company supplies a bakery product to many supermarkets in a metropolitan

area. The company wishes to study the effect of the shelf display height employed by the super-

markets on monthly sales (measured in cases of 10 units each) for this product. Shelf display

height, the factor to be studied, has three levels—bottom (B), middle (M), and top (T )—which

are the treatments. To compare these treatments, the bakery uses a completely randomized

experimental design. For each shelf height, six supermarkets (the experimental units) of equal

sales potential are randomly selected, and each supermarket displays the product using its as-

signed shelf height for a month. At the end of the month, sales of the bakery product (the response

variable) at the 18 participating stores are recorded, giving the data in Table 11.2. Here we as-

sume that the set of sales amounts for each display height is a sample randomly selected from the

population of all sales amounts that could be obtained (at supermarkets of the given sales poten-

tial) at that display height. Examining the box plots that are shown next to the sales data, we seem

to have evidence that a middle display height gives the highest bakery product sales.

C

EXAMPLE 11.3 The Commercial Response Case

Advertising research indicates that when a television program is involving (such as the 2002

Super Bowl between the St. Louis Rams and New England Patriots, which was very exciting), in-

dividuals exposed to commercials tend to have difficulty recalling the names of the products ad-

vertised. Therefore, in order for companies to make the best use of their advertising dollars, it is

important to show their most original and memorable commercials during involving programs.

In an article in the Journal of Advertising Research, Soldow and Principe (1981) studied the

effect of program content on the response to commercials. Program content, the factor studied,

has three levels—more involving programs, less involving programs, and no program (that is,

commercials only)—which are the treatments. To compare these treatments, Soldow and

Principe employed a completely randomized experimental design. For each program content

level, 29 subjects were randomly selected and exposed to commercials in that program content

level. Then a brand recall score (measured on a continuous scale) was obtained for each subject.

The 29 brand recall scores for each program content level are assumed to be a sample randomly

selected from the population of all brand recall scores for that program content level. Although

we do not give the results in this example, the reader will analyze summary statistics describing

these results in the exercises of Section 11.2.
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T A B L E 1 1 . 2 The Bakery Product Sales Data BakeSaleDS

Shelf Display Height
Bottom (B) Middle (M) Top (T )

58.2 73.0 52.4

53.7 78.1 49.7

55.8 75.4 50.9

55.7 76.2 54.0

52.5 78.4 52.1

58.9 82.1 49.9

C

CONCEPTS

11.1 Define the meaning of the terms response variable, factor, treatments, and experimental units.

11.2 What is a completely randomized experimental design?

Exercises for Section 11.1

1All of the box plots presented in this chapter have been obtained using MINITAB.
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METHODS AND APPLICATIONS

11.3 A study compared three different display panels for use by air traffic controllers. Each display

panel was tested in a simulated emergency condition; 12 highly trained air traffic controllers took

part in the study. Four controllers were randomly assigned to each display panel. The time (in

seconds) needed to stabilize the emergency condition was recorded. The results of the study are

given in Table 11.3. For this situation, identify the response variable, factor of interest, treatments,

and experimental units. Display

11.4 A consumer preference study compares the effects of three different bottle designs (A, B, and C) on

sales of a popular fabric softener. A completely randomized design is employed. Specifically, 15

supermarkets of equal sales potential are selected, and 5 of these supermarkets are randomly assigned

to each bottle design. The number of bottles sold in 24 hours at each supermarket is recorded. The

data obtained are displayed in Table 11.4. For this situation, identify the response variable, factor of

interest, treatments, and experimental units. BottleDes

11.2 One-Way Analysis of Variance 
Suppose we wish to study the effects of p treatments (treatments 1, 2, . . . , p) on a response

variable. For any particular treatment, say treatment i, we define mi and si to be the mean and

standard deviation of the population of all possible values of the response variable that could

potentially be observed when using treatment i. Here we refer to mi as treatment mean i. The

goal of one-way analysis of variance (often called one-way ANOVA) is to estimate and com-

pare the effects of the different treatments on the response variable. We do this by estimating

and comparing the treatment means m1, m2, . . . , mp. Here we assume that a sample has been

randomly selected for each of the p treatments by employing a completely randomized experi-

mental design. We let ni denote the size of the sample that has been randomly selected for treat-

ment i, and we let xij denote the jth value of the response variable that is observed when using

treatment i. It then follows that the point estimate of mi is , the average of the sample of ni val-

ues of the response variable observed when using treatment i. It further follows that the point

estimate of si is si, the standard deviation of the sample of ni values of the response variable

observed when using treatment i.
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16 33 23

18 31 27

19 37 21

17 29 28

13 34 25
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EXAMPLE 11.4 The Gasoline Mileage Case

Consider the gasoline mileage situation. We let mA, mB, and mC denote the means and sA, sB, and

sC denote the standard deviations of the populations of all possible gasoline mileages using

gasoline types A, B, and C. To estimate these means and standard deviations, North American

Oil has employed a completely randomized experimental design and has obtained the samples

of mileages in Table 11.1. The means of these samples— , and  

33.98—are the point estimates of mA, mB, and mC. The standard deviations of these samples—

sA .7662, sB .8503, and sC .8349—are the point estimates of sA, sB, and sC. Using these

point estimates, we will (later in this section) test to see whether there are any statistically sig-

nificant differences between the treatment means mA, mB, and mC. If such differences exist, we

will estimate the magnitudes of these differences. This will allow North American Oil to judge

whether these differences have practical importance.

xCxA  34.92, xB  36.56

C

Compare
several dif-

ferent population
means by using a
one-way analysis of
variance.

LO2



11.2 One-Way Analysis of Variance 447

The one-way ANOVA formulas allow us to test for significant differences between treatment

means and allow us to estimate differences between treatment means. The validity of these for-

mulas requires that the following assumptions hold:

Assumptions for One-Way Analysis of Variance

3 Independence—the samples of experimental

units associated with the treatments are ran-

domly selected, independent samples.

1 Constant variance—the p populations of values

of the response variable associated with the

treatments have equal variances.

2 Normality—the p populations of values of the

response variable associated with the treatments

all have normal distributions.

The one-way ANOVA results are not very sensitive to violations of the equal variances as-

sumption. Studies have shown that this is particularly true when the sample sizes employed are

equal (or nearly equal). Therefore, a good way to make sure that unequal variances will not be a

problem is to take samples that are the same size. In addition, it is useful to compare the sample

standard deviations s1, s2, . . . , sp to see if they are reasonably equal. As a general rule, the one-

way ANOVA results will be approximately correct if the largest sample standard deviation is no

more than twice the smallest sample standard deviation. The variations of the samples can also

be compared by constructing a box plot for each sample (as we have done for the gasoline

mileage data in Table 11.1). Several statistical texts also employ the sample variances to test the

equality of the population variances [see Bowerman and O’Connell (1990) for two of these tests].

However, these tests have some drawbacks—in particular, their results are very sensitive to vio-

lations of the normality assumption. Because of this, there is controversy as to whether these tests

should be performed.

The normality assumption says that each of the p populations is normally distributed. This

assumption is not crucial. It has been shown that the one-way ANOVA results are approximately

valid for mound-shaped distributions. It is useful to construct a box plot and/or a stem-and-leaf

display for each sample. If the distributions are reasonably symmetric, and if there are no outliers,

the ANOVA results can be trusted for sample sizes as small as 4 or 5. As an example, consider the

gasoline mileage study of Examples 11.1 and 11.4. The box plots of Table 11.1 suggest that the

variability of the mileages in each of the three samples is roughly the same. Furthermore, the sam-

ple standard deviations sA .7662, sB .8503, and sC .8349 are reasonably equal (the largest is

not even close to twice the smallest). Therefore, it is reasonable to believe that the constant vari-

ance assumption is satisfied. Moreover, because the sample sizes are the same, unequal variances

would probably not be a serious problem anyway. Many small, independent factors influence

gasoline mileage, so the distributions of mileages for gasoline types A, B, and C are probably

mound-shaped. In addition, the box plots of Table 11.1 indicate that each distribution is roughly

symmetric with no outliers. Thus, the normality assumption probably approximately holds.

Finally, because North American Oil has employed a completely randomized design, the

independence assumption probably holds. This is because the gasoline mileages in the different

samples were obtained for different Fire-Hawks.

Testing for significant differences between treatment means As a preliminary step

in one-way ANOVA, we wish to determine whether there are any statistically significant differ-

ences between the treatment means m1, m2, . . . , mp. To do this, we test the null hypothesis

H0: m1 m2     mp

This hypothesis says that all the treatments have the same effect on the mean response. We test

H0 versus the alternative hypothesis

Ha: At least two of m1, m2, . . . , mp differ

This alternative says that at least two treatments have different effects on the mean response.



To carry out such a test, we compare what we call the between-treatment variability 

to the within-treatment variability. For instance, suppose we wish to study the effects of three

gasoline types (A, B, and C) on mean gasoline mileage, and consider Figure 11.1(a). This figure

depicts three independent random samples of gasoline mileages obtained using gasoline types A,

B, and C. Observations obtained using gasoline type A are plotted as blue dots (•), observations

obtained using gasoline type B are plotted as red dots (•), and observations obtained using gaso-

line type C are plotted as green dots (•). Furthermore, the sample treatment means are labeled as

“type A mean,” “type B mean,” and “type C mean.” We see that the variability of the sample

treatment means—that is, the between-treatment variability—is not large compared to the

variability within each sample (the within-treatment variability). In this case, the differences

between the sample treatment means could quite easily be the result of sampling variation. Thus

we would not have sufficient evidence to reject

H0: mA mB mC

Next look at Figure 11.1(b), which depicts a different set of three independent random samples

of gasoline mileages. Here the variability of the sample treatment means (the between-treatment

variability) is large compared to the variability within each sample. This would probably provide

enough evidence to tell us to reject

H0: mA mB mC

in favor of

Ha: At least two of mA,mB, and mC differ

We would conclude that at least two of gasoline types A, B, and C have different effects on mean

mileage.

In order to numerically compare the between-treatment and within-treatment variability, we

can define several sums of squares and mean squares. To begin, we define n to be the total num-

ber of experimental units employed in the one-way ANOVA, and we define to be the overall

mean of all observed values of the response variable. Then we define the following:

The treatment sum of squares is

In order to compute SST, we calculate the difference between each sample treatment mean and

the overall mean , we square each of these differences, we multiply each squared difference

by the number of observations for that treatment, and we sum over all treatments. The SST

x

xi

SST  a
p

i 1

ni(xi  x)2

x
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Type
B

mean

Type
C

mean

Type
A

mean

Type A observations
Type B observations
Type C observations

23 24 25 26 27 28

(a) Between-treatment variability is not large compared to within-treatment
 variability.  Do not reject H0: A 

  
B 
  

C

Type
B

mean

Type
A

mean

Type A observations
Type B observations
Type C observations

23 24 25 26 27 28

Type
C

mean

(b) Between-treatment variability is large compared to within-treatment
 variability.  Reject H0: A 

  
B 
  

C

F I G U R E 1 1 . 1 Comparing Between-Treatment Variability and Within-Treatment Variability
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measures the variability of the sample treatment means. For instance, if all the sample treatment

means ( values) were equal, then the treatment sum of squares would be equal to 0. The more

the values vary, the larger will be SST. In other words, the treatment sum of squares measures

the amount of between-treatment variability.

As an example, consider the gasoline mileage data in Table 11.1. In this experiment we

employ a total of

n   nA   nB   nC   5   5   5   15

experimental units. Furthermore, the overall mean of the 15 observed gasoline mileages is

Then

In order to measure the within-treatment variability, we define the following quantity:

The error sum of squares is

Here x1j is the j th observed value of the response in the first sample, x2j is the j th observed value

of the response in the second sample, and so forth. The formula above says that we compute SSE

by calculating the squared difference between each observed value of the response and its corre-

sponding treatment mean and by summing these squared differences over all the observations in

the experiment.

The SSE measures the variability of the observed values of the response variable around their

respective treatment means. For example, if there were no variability within each sample, the

error sum of squares would be equal to 0. The more the values within the samples vary, the larger

will be SSE.

As an example, in the gasoline mileage study, the sample treatment means are  34.92,

 36.56, and  33.98. It follows that

Finally, we define a sum of squares that measures the total amount of variability in the

observed values of the response:

The total sum of squares is

SSTO  SST  SSE

The variability in the observed values of the response must come from one of two sources—the

between-treatment variability or the within-treatment variability. It follows that the total sum of

squares equals the sum of the treatment sum of squares and the error sum of squares. Therefore,

the SST and SSE are said to partition the total sum of squares.

In the gasoline mileage study, we see that

SSTO   SST  SSE   17.0493   8.028   25.0773

  8.028

 [(33.3  33.98)2
 (34.0  33.98)2

 (34.7  33.98)2
 (33.0  33.98)2

 (34.9  33.98)2]

 [(35.3  36.56)2
 (36.5  36.56)2

 (36.4  36.56)2
 (37.0  36.56)2

 (37.6  36.56)2]

  [(34.0  34.92)2
 (35.0  34.92)2

 (34.3  34.92)2
 (35.5  34.92)2

 (35.8  34.92)2]

 SSE  a
nA

j 1

(xAj  xA)2
 a

nB

j 1

(xBj  xB)2
 a

nC

j 1

(xCj  xC)2

xCxB

xA

SSE  a
n1

j 1

(x1j  x1)
2
 a

n2

j 1

(x2j  x2)
2
  

 
 

 
  a

np

j 1

(xpj  xp)
2

  17.0493

  5(34.92  35.153)2
 5(36.56  35.153)2

 5(33.98  35.153)2

  nA(xA  x)2
 nB(xB  x)2

 nC(xC  x)2

 SST  a
i A,B,C

ni(xi  x)2

x  
34.0  35.0        34.9

15
 

527.3

15
 35.153

xi

xi



Using the treatment and error sums of squares, we next define two mean squares:

The treatment mean square is

The error mean square is

In order to decide whether there are any statistically significant differences between the

treatment means, it makes sense to compare the amount of between-treatment variability to

the amount of within-treatment variability. This comparison suggests the following F test:

MSE  
SSE

n  p

MST  
SST

p  1
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A large value of F results when SST, which measures the between-treatment variability, is

large compared to SSE, which measures the within-treatment variability. If F is large enough, this

implies that H0 should be rejected. The rejection point F
a

tells us when F is large enough to allow

us to reject H0 at level of significance a. When F is large, the associated p-value is small. If this

p-value is less than a, we can reject H0 at level of significance a.

An F Test for Differences between Treatment Means

Suppose that we wish to compare p treatment means m1, m2, . . . , mp and consider testing

H0: m1 m2     mp versus Ha: At least two of m1,m2, . . . , mp differ 

(all treatment means are equal) (at least two treatment means differ)

Define the F statistic

and its p-value to be the area under the F curve with p 1 and n p degrees of freedom to the right of F.

We can reject H0 in favor of Ha at level of significance a if either of the following equivalent conditions holds:

1 F   F
a

2 p-value  a

Here the F
a

point is based on p 1 numerator and n p denominator degrees of freedom.

F  
MST

MSE
 

SST兾(p  1)

SSE兾(n  p)

EXAMPLE 11.5 The Gasoline Mileage Case

Consider the North American Oil Company data in Table 11.1. The company wishes to determine

whether any of gasoline types A, B, and C have different effects on mean Fire-Hawk gasoline

mileage. That is, we wish to see whether there are any statistically significant differences be-

tween mA, mB, and mC. To do this, we test the null hypothesis

H0: mA mB mC

which says that gasoline types A, B, and C have the same effects on mean gasoline mileage. We

test H0 versus the alternative

Ha: At least two of mA,mB, and mC differ

which says that at least two of gasoline types A, B, and C have different effects on mean gasoline

mileage.

Since we have previously computed SST to be 17.0493 and SSE to be 8.028, and because we

are comparing p 3 treatment means, we have

MST  
SST

p  1
 

17.0493

3  1
 8.525

C
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and

It follows that

In order to test H0 at the .05 level of significance, we use F.05 with p 1 3 1 2 numerator

and n p 15 3 12 denominator degrees of freedom. Table A.6 (page 865) tells us that this

F point equals 3.89, so we have

F 12.74 F.05 3.89

Therefore, we reject H0 at the .05 level of significance. This says we have strong evidence that at

least two of the treatment means mA,mB, and mC differ. In other words, we conclude that at least

two of gasoline types A, B, and C have different effects on mean gasoline mileage.

Figure 11.2 gives the MINITAB and Excel output of an analysis of variance of the gasoline

mileage data. Note that each output gives the value F 12.74 and the related p-value, which equals

.001(rounded). Since this p-value is less than .05, we reject H0 at the .05 level of significance.

The results of an analysis of variance are often summarized in what is called an analysis of

variance table. This table gives the sums of squares (SST, SSE, SSTO), the mean squares (MST

and MSE), and the F statistic and its related p-value for the ANOVA. The table also gives the

degrees of freedom associated with each source of variation—treatments, error, and total.

Table 11.5 gives the ANOVA table for the gasoline mileage problem. Notice that in the column

labeled “Sums of Squares,” the values of SST and SSE sum to SSTO. Also notice that the upper

portion of the MINITAB output and the lower portion of the Excel output give the ANOVA table

of Table 11.5.

F  
MST

MSE
 

8.525

0.669
 12.74

MSE  
SSE

n  p
 

8.028

15  3
 0.669

F I G U R E 1 1 . 2 MINITAB and Excel Output of an Analysis of Variance of 

the Gasoline Mileage Data in Table 11.1

(a) The MINITAB output

One-way ANOVA: Type A, Type B, Type C                               Tukey 95% Simultaneous

Source  DF       SS      MS   F      P                        Confidence Intervals

Gas Type 2 1   17.049 4   8.525 7   12.74 9   0.001 10                 

Error 12 2    8.028 5   0.669 8                                       Type A subtracted from:

Total 14 3   25.077 6                                                           Lower    Center    Upper

Individual 95% Type B 0.2610    1.6400   3.0190

CIs For Mean Based on Pooled StDev Type C -2.3190   -0.9400   0.439

Level   N  Mean          StDev ---+---------+---------+---------+------    

Type A 5  34.920 11     0.766       (------*------)                 Type B subtracted from:

Type B 5  36.560 12     0.850                       (------*-----)                 Lower    Center    Upper

Type C 5  33.980 13     0.835 (-----*------)                           Type C -3.9590   -2.5800  -1.2010

---+---------+---------+---------+------  

Pooled StDev = 0.818             33.6       34.8     36.0      37.2

(b) The Excel output

SUMMARY
Groups Count Sum Average Variance

Type A 5 174.6 34.92 0.587

Type B 5 182.8 36.56 0.723

Type C 5 169.9 33.98 0.697

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 17.0493 2 8.5247 12.7424 0.0011 3.8853

Within Groups 8.0280 12 0.6690

Total 25.0773 14

4 1 7

5 2 8

6 3

9 1410

11

12

13

p-1 n-p n-1 SST SSE SSTO MST MSE Fstatistic p-value related to F A B C F.05
14x13x12x1110987654321



Before continuing, note that if we use the ANOVA F statistic to test the equality of two popu-

lation means, it can be shown that

1 F equals t2, where t is the equal variances t statistic discussed in Section 10.2 (pages 403–405)

used to test the equality of the two population means and

2 The critical value F
a
, which is based on p   1   2   1   1 and n   p   n1   n2   2 

degrees of freedom, equals t 2
a兾2, where t

a兾2 is the critical value for the equal variances t test

and is based on n1 n2 2 degrees of freedom.

Hence, the rejection conditions

F F
a

and 兩t 兩 t
a兾2

are equivalent. It can also be shown that in this case the p-value related to F equals the p-value

related to t. Therefore, the ANOVA F test of the equality of p treatment means can be regarded as

a generalization of the equal variances t test of the equality of two treatment means.

Pairwise comparisons If the one-way ANOVA F test says that at least two treatment means

differ, then we investigate which treatment means differ and we estimate how large the differ-

ences are. We do this by making what we call pairwise comparisons (that is, we compare treat-

ment means two at a time). One way to make these comparisons is to compute point estimates of

and confidence intervals for pairwise differences. For example, in the gasoline mileage case we

might estimate the pairwise differences mA mB, mA mC, and mB mC. Here, for instance, the

pairwise difference mA mB can be interpreted as the change in mean mileage achieved by

changing from using gasoline type B to using gasoline type A.

There are two approaches to calculating confidence intervals for pairwise differences. The

first involves computing the usual, or individual, confidence interval for each pairwise differ-

ence. Here, if we are computing 100(1 a) percent confidence intervals, we are 100(1 a) per-

cent confident that each individual pairwise difference is contained in its respective interval. That

is, the confidence level associated with each (individual) comparison is 100(1 a) percent, and

we refer to a as the comparisonwise error rate. However, we are less than 100(1 a) percent

confident that all of the pairwise differences are simultaneously contained in their respective

intervals. A more conservative approach is to compute simultaneous confidence intervals. Such

intervals make us 100(1 a) percent confident that all of the pairwise differences are simultane-

ously contained in their respective intervals. That is, when we compute simultaneous intervals,

the overall confidence level associated with all the comparisons being made in the experiment is

100(1 a) percent, and we refer to a as the experimentwise error rate.

Several kinds of simultaneous confidence intervals can be computed. In this book we present

what is called the Tukey formula for simultaneous intervals. We do this because, if we are in-

terested in studying all pairwise differences between treatment means, the Tukey formula yields

the most precise (shortest) simultaneous confidence intervals. In general, a Tukey simultaneous

100(1 a) percent confidence interval is longer than the corresponding individual 100(1 a)
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T A B L E 1 1 . 5 Analysis of Variance Table for Testing H0: MA MB MC in the Gasoline Mileage Problem 

(p 3 Gasoline Types, n 15 Observations)

Degrees
Source of Freedom Sums of Squares Mean Squares F Statistic p-Value

Treatments p 1 3 1 SST 17.0493 0.001
 2

Error n p 15 3 SSE 8.028
 12

Total n 1 15 1 SSTO 25.0773
 14

  0.669

  
8.028

15  3

 MSE  
SSE

n  p

  12.74  8.525

  
8.525

0.669
  

17.0493

3  1

 F  
MST

MSE
 MST  

SST

p  1
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percent confidence interval. Thus, intuitively, we are paying a penalty for simultaneous confi-

dence by obtaining longer intervals. One pragmatic approach to comparing treatment means is to

first determine if we can use the more conservative Tukey intervals to make meaningful pairwise

comparisons. If we cannot, then we might see what the individual intervals tell us. In the fol-

lowing box we present both individual and Tukey simultaneous confidence intervals for pairwise

differences. We also present the formula for a confidence interval for a single treatment mean,

which we might use after we have used pairwise comparisons to determine the “best” treatment.

EXAMPLE 11.6 The Gasoline Mileage Case

Estimation in One-Way ANOVA

Here the value q
a

is obtained from Table A.9

(pages 868–870), which is a table of percentage

points of the studentized range. In this table q
a

is

listed corresponding to values of p and n p. Fur-

thermore, we assume that the sample sizes ni and

nh are equal to the same value, which we denote

as m. If ni and nh are not equal, we replace

by 

4 A point estimate of the treatment mean i is –xi
and an individual 100(1 A) percent confidence

interval for Mi is

Here the t
a兾2 point is based on n p degrees of

freedom.

Bxi  ta兾2 B
MSE

ni

R

(qa兾12)1MSE[(1兾ni)  (1兾nh)].qa1MSE兾m

B (xi  xh)  qa B
MSE

m
R1 Consider the pairwise difference i h, which

can be interpreted to be the change in the mean

value of the response variable associated with

changing from using treatment h to using treat-

ment i. Then, a point estimate of the difference

Mi Mh is , where and are the sample

treatment means associated with treatments i

and h.

2 An individual 100(1 A) percent confidence

interval for Mi Mh is 

Here the t
a兾2 point is based on n p degrees of

freedom, and MSE is the previously defined error

mean square found in the ANOVA table.

3 A Tukey simultaneous 100(1 A) percent confi-

dence interval for Mi Mh is 

B (xi  xh)  ta兾2 BMSE冢 1

ni

 
1

nh
冣R

xhxixi xh

In the gasoline mileage study, we are comparing p 3 treatment means (mA, mB, and mC). Fur-

thermore, each sample is of size m 5, there are a total of n 15 observed gas mileages, and the

MSE found in Table 11.5 is .669. Because q.05 3.77 is the entry found in Table A.9 (page 868)

corresponding to p 3 and n p 12, a Tukey simultaneous 95 percent confidence interval for

mB mA is

Similarly, Tukey simultaneous 95 percent confidence intervals for mA mC and mB mC are,

respectively,

and

These intervals make us simultaneously 95 percent confident that (1) changing from gasoline

type A to gasoline type B increases mean mileage by between .261 and 3.019 mpg, (2) changing

from gasoline type C to gasoline type A might decrease mean mileage by as much as .439 mpg

or might increase mean mileage by as much as 2.319 mpg, and (3) changing from gasoline type C

to gasoline type B increases mean mileage by between 1.201 and 3.959 mpg. The first and third

of these intervals make us 95 percent confident that mB is at least .261 mpg greater than mA and at

 [1.201, 3.959] [ 0.439, 2.319]

 [(36.56  33.98)  1.379] [(34.92  33.98)  1.379]

[(xB  xC)  1.379][(xA  xC)  1.379]

  [.261, 3.019]

  [1.64  1.379]

 B (xB  xA)  q.05 A
MSE

m
R  B (36.56  34.92)  3.77A

.669

5
R  

C



least 1.201 mpg greater than mC. Therefore, we have strong evidence that gasoline type B yields

the highest mean mileage of the gasoline types tested. Furthermore, noting that t.025 based on

n p 12 degrees of freedom is 2.179, it follows that an individual 95 percent confidence

interval for mB is

This interval says we can be 95 percent confident that the mean mileage obtained by using gaso-

line type B is between 35.763 and 37.357 mpg. Notice that this confidence interval is graphed on

the MINITAB output of Figure 11.2. This output also shows the 95 percent confidence intervals

for mA and mC and gives Tukey simultaneous 95 percent intervals. For example, consider finding

the Tukey interval for mB  mA on the MINITAB output. To do this, we look in the table corre-

sponding to “Type A subtracted from” and find the row in this table labeled “Type B.” This row

gives the interval for “Type A subtracted from Type B”—that is, the interval for mB  mA. This

interval is [.261, 3.019], as calculated above. Finally, note that the half-length of the individual

95 percent confidence interval for a pairwise comparison is (because nA nB nC 5)

This half-length implies that the individual intervals are shorter than the previously constructed

Tukey intervals, which have a half-length of 1.379. Recall, however, that the Tukey intervals are

short enough to allow us to conclude with 95 percent confidence that mB is greater than mA and mC.

In general, when we use a completely randomized experimental design, it is important to

compare the treatments by using experimental units that are essentially the same with respect to

the characteristic under study. For example, in the gasoline mileage case we have used cars of the

same type (Fire-Hawks) to compare the different gasoline types, and in the shelf display case we

have used grocery stores of the same sales potential for the bakery product to compare the shelf

display heights (the reader will analyze the data for this case in the exercises). Sometimes, how-

ever, it is not possible to use experimental units that are essentially the same with respect to the

characteristic under study. For example, suppose a chain of stores that sells audio and video

equipment wishes to compare the effects of street, mall, and downtown locations on the sales

volume of its stores. The experimental units in this situation are the areas where the stores are lo-

cated, but these areas are not of the same sales potential because each area is populated by a dif-

ferent number of households. In such a situation we must explicitly account for the differences

in the experimental units. One way to do this is to use regression analysis, which is discussed

in Chapters 13–15. When we use regression analysis to explicitly account for a variable (such

as the number of households in the store’s area) that causes differences in the experimental

units, we call the variable a covariate. Furthermore, we say that we are performing an analysis

of covariance. Finally, another way to deal with differing experimental units is to employ a

randomized block design. This experimental design is discussed in Section 11.3.

To conclude this section, we note that if we fear that the normality and/or equal variances as-

sumptions for one-way analysis of variance do not hold, we can use a nonparametric approach to

compare several populations. One such approach is the Kruskal–Wallis H test, which is discussed

in Section 18.4.

Exercises for Section 11.2
CONCEPTS

11.5 Explain the assumptions that must be satisfied in order to validly use the one-way ANOVA formulas.

11.6 Explain the difference between the between-treatment variability and the within-treatment

variability when performing a one-way ANOVA.

11.7 Explain why we conduct pairwise comparisons of treatment means.

11.8 Explain the difference between individual and simultaneous confidence intervals for a set of

several pairwise differences.

t.025AMSE冢1

ni

 
1

nh
冣  2.179A .669冢1

5
 

1

5冣  1.127

  [35.763, 37.357]

 BxB  t.025A
MSE

nB

R  B36.56  2.179 A
.669

5
R
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METHODS AND APPLICATIONS

11.9 THE SHELF DISPLAY CASE BakeSale

Consider Example 11.2, and let mB, mM, and mT represent the mean monthly sales when using

the bottom, middle, and top shelf display heights, respectively. Figure 11.3 gives the

MINITAB output of a one-way ANOVA of the bakery sales study data in Table 11.2 

(page 445).

a Test the null hypothesis that mB, mM, and mT are equal by setting a .05. On the basis of this

test, can we conclude that the bottom, middle, and top shelf display heights have different

effects on mean monthly sales?

b Consider the pairwise differences mM mB, mT mB, and mT mM. Find a point estimate of

and a Tukey simultaneous 95 percent confidence interval for each pairwise difference. Interpret

the meaning of each interval in practical terms. Which display height maximizes mean sales?

c Find an individual 95 percent confidence interval for each pairwise difference in part b.

Interpret each interval.

d Find 95 percent confidence intervals for mB, mM, and mT. Interpret each interval.

11.10 Consider the display panel situation in Exercise 11.3, and let mA, mB, and mC represent the mean

times to stabilize the emergency condition when using display panels A, B, and C, respectively.

Figure 11.4 gives the MINITAB output of a one-way ANOVA of the display panel data in

Table 11.3 (page 446). Display

a Test the null hypothesis that and are equal by setting On the basis of this

test, can we conclude that display panels A, B, and C have different effects on the mean time

to stabilize the emergency condition?

b Consider the pairwise differences mB mA, mC mA, and mC mB. Find a point estimate of

and a Tukey simultaneous 95 percent confidence interval for each pairwise difference.

Interpret the results by describing the effects of changing from using each display panel to

using each of the other panels. Which display panel minimizes the time required to stabilize

the emergency condition?

c Find an individual 95 percent confidence interval for each pairwise difference in part b.

Interpret the results.

a  .05.mCmA, mB,

DS

DS

One-way ANOVA: Bakery Sales versus Display Height
Tukey 95% Simultaneous          

Source          DF       SS       MS       F      P                      Confidence Intervals 

Display Height   2  2273.88  1136.94  184.57  0.000                          

Error           15    92.40     6.16                                    Bottom subtracted from:

Total           17  2366.28                                                      Lower   Center   Upper 

                                Individual 95%                          Middle  17.681   21.400  25.119 

CIs For Mean Based on Pooled StDev      Top -8.019   -4.300  -0.581

Level    N    Mean  StDev --------+---------+---------+---------+-

Bottom   6  55.800  2.477       (--*-)                                 Middle subtracted from:

Middle   6  77.200  3.103                                  (--*-)               Lower   Center    Upper

Top      6  51.500  1.648  (-*--)                                       Top -29.419  -25.700  -21.981 

                           --------+---------+---------+---------+- 

Pooled StDev = 2.482            56.0      64.0      72.0      80.0 

F I G U R E 1 1 . 3 MINITAB Output of a One-Way ANOVA of the Bakery Sales Study Data in Table 11.2

One-way ANOVA: Time versus Display Tukey 95% Simultaneous 

Confidence Intervals 

Source   DF      SS      MS      F      P                              

Display   2  500.17  250.08  30.11  0.000                               A subtracted from:

Error     9   74.75    8.31                                                  Lower  Center   Upper

Total    11  574.92                                                     B   -9.692  -4.000   1.692 

Individual 95% C    5.558  11.250  16.942 

CIs For Mean Based on Pooled StDev 

Level  N    Mean  StDev    -+---------+---------+---------+--------     

A      4  24.500  2.646          (-----*----)                           B subtracted from: 

B 4 20.500 2.646 (----*-----)     Lower  Center   Upper

C      4  35.750  3.304                             (-----*----)        C    9.558  15.250  20.942 

                           -+---------+---------+---------+--------                                 

Pooled StDev = 2.882      18.0      24.0      30.0      36.0 

F I G U R E 1 1 . 4 MINITAB Output of a One-Way ANOVA of the Display Panel Study Data in Table 11.3



11.11 Consider the bottle design study situation in Exercise 11.4, and let mA, mB, and mC represent mean

daily sales using bottle designs A, B, and C, respectively. Figure 11.5 gives the Excel output of a

one-way ANOVA of the bottle design study data in Table 11.4 (page 446). BottleDes

a Test the null hypothesis that are equal by setting That is, test for

statistically significant differences between these treatment means at the .05 level of

significance. Based on this test, can we conclude that bottle designs A, B, and C have different

effects on mean daily sales?

b Consider the pairwise differences mB mA, mC mA, and mC mB. Find a point estimate

of and a Tukey simultaneous 95 percent confidence interval for each pairwise difference.

Interpret the results in practical terms. Which bottle design maximizes mean daily sales?

a  .05.mA, mB, and mC

DS
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200
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Century

Divot

T A B L E 1 1 . 6 Golf Ball Durability Test Results and a Plot of

the Results GolfBallDS

Brand
Alpha Best Century Divot

281 270 218 364

220 334 244 302

274 307 225 325

242 290 273 337

251 331 249 355

F I G U R E 1 1 . 6 Excel Output of a One-Way ANOVA of the Golf Ball Durability Data

SUMMARY
Groups Count Sum Average Variance

Alpha 5 1268 253.6 609.3

Best 5 1532 306.4 740.3

Century 5 1209 241.8 469.7

Divot 5 1683 336.6 605.3

ANOVA
Source of Variation SS df MS F P-Value F crit

Between Groups 29860.4 3 9953.4667 16.420798 3.853E-05 3.2388715

Within Groups 9698.4 16 606.15

Total 39558.8 19

SUMMARY
Groups Count Sum Average Variance

DESIGN A 5 83 16.6 5.3

DESIGN B 5 164 32.8 9.2

DESIGN C 5 124 24.8 8.2

ANOVA
Source of Variation SS df MS F P-Value F crit

Between Groups 656.1333 2 328.0667 43.35683 3.23E-06 3.88529

Within Groups 90.8 12 7.566667

Total 746.9333 14

F I G U R E 1 1 . 5 Excel Output of a One-Way ANOVA of the Bottle Design Study Data in Table 11.4
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c Find an individual 95 percent confidence interval for each pairwise difference in part b.

Interpret the results in practical terms.

d Find a 95 percent confidence interval for each of the treatment means mA, mB, and mC.

Interpret these intervals.

11.12 In order to compare the durability of four different brands of golf balls (ALPHA, BEST,

CENTURY, and DIVOT), the National Golf Association randomly selects five balls of each brand

and places each ball into a machine that exerts the force produced by a 250-yard drive. The

number of simulated drives needed to crack or chip each ball is recorded. The results are given in

Table 11.6. The Excel output of a one-way ANOVA of this data is shown in Figure 11.6. Test for

statistically significant differences between the treatment means mALPHA, mBEST, mCENTURY, and

mDIVOT. Set a .05. GolfBall

11.13 Perform pairwise comparisons of the treatment means in Exercise 11.12 by using Tukey simulta-

neous 95 percent confidence intervals. Which brand(s) are most durable? Find a 95 percent confi-

dence interval for each of the treatment means.

11.14 THE COMMERCIAL RESPONSE CASE

Recall from Example 11.3 that (1) 29 randomly selected subjects were exposed to commercials

shown in more involving programs, (2) 29 randomly selected subjects were exposed to com-

mercials shown in less involving programs, and (3) 29 randomly selected subjects watched

commercials only (note: this is called the control group). The mean brand recall scores for these

three groups were, respectively, Furthermore, a one-way

ANOVA of the data shows that SST 21.40 and SSE 85.56.

a Define appropriate treatment means m1, m2, and m3. Then test for statistically significant

differences between these treatment means. Set a .05.

b Perform pairwise comparisons of the treatment means by computing a Tukey simultaneous

95 percent confidence interval for each of the pairwise differences m1 m2, m1 m3, and 

m2 m3. Which type of program content results in the lowest mean brand recall score?

11.3 The Randomized Block Design 
Not all experiments employ a completely randomized design. For instance, suppose that when we

employ a completely randomized design, we fail to reject the null hypothesis of equality of treatment

means because the within-treatment variability (which is measured by the SSE) is large. This could

happen because differences between the experimental units are concealing true differences between

the treatments. We can often remedy this by using what is called a randomized block design.

x1  1.21, x2  2.24, and x3  2.28.

DS

Compare
treatment

effects and block
effects by using a
randomized block
design.

LO3

EXAMPLE 11.7 The Defective Cardboard Box Case C

The Universal Paper Company manufactures cardboard boxes. The company wishes to investigate

the effects of four production methods (methods 1, 2, 3, and 4) on the number of defective boxes pro-

duced in an hour. To compare the methods, the company could utilize a completely randomized

design. For each of the four production methods, the company would select several (say, as an exam-

ple, three) machine operators, train each operator to use the production method to which he or she

has been assigned, have each operator produce boxes for one hour, and record the number of defec-

tive boxes produced. The three operators using any one production method would be different from

those using any other production method. That is, the completely randomized design would utilize a

total of 12 machine operators. However, the abilities of the machine operators could differ substan-

tially. These differences might tend to conceal any real differences between the production methods.

To overcome this disadvantage, the company will employ a randomized block experimental

design. This involves randomly selecting three machine operators and training each operator thor-

oughly to use all four production methods. Then each operator will produce boxes for one hour using

each of the four production methods. The order in which each operator uses the four methods should

be random. We record the number of defective boxes produced by each operator using each method.

The advantage of the randomized block design is that the defective rates obtained by using the four

methods result from employing the same three operators. Thus any true differences in the effective-

ness of the methods would not be concealed by differences in the operators’abilities.

When Universal Paper employs the randomized block design, it obtains the 12 defective

box counts in Table 11.7. We let xij denote the number of defective boxes produced by machine
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Operator

Treatment Block (Machine Operator) Sample Treatment
(Production Method) 1 2 3 Mean

1 9 10 12 10.3333

2 8 11 12 10.3333

3 3 5 7 5.0

4 4 5 5 4.6667

Sample Block Mean 6.0 7.75 9.0 ⫽ 7.5833x

T A B L E 1 1 . 7 Numbers of Defective Cardboard Boxes Obtained by Production Methods 1, 2, 3, and 4 and 

Machine Operators 1, 2, and 3 CardBoxDS

operator j using production method i. For example, x32⫽ 5 says that 5 defective boxes were pro-

duced by machine operator 2 using production method 3 (see Table 11.7). In addition to the 12 de-

fective box counts, Table 11.7 gives the sample mean of these 12 observations, which is

and also gives sample treatment means and sample block means. The sample treat-

ment means are the average defective box counts obtained when using production methods 1, 2, 3,

and 4. Denoting these sample treatment means as we see from Table 11.7 that

, Because are less than

, we estimate that the mean number of defective boxes produced per hour by production

method 3 or 4 is less than the mean number of defective boxes produced per hour by production

method 1 or 2. The sample block means are the average defective box counts obtained by machine

operators 1, 2, and 3. Denoting these sample block means as we see from Table 11.7

that Because differ, we have evidence that

the abilities of the machine operators differ and thus that using the machine operators as blocks is

reasonable.

In general, a randomized block design compares p treatments (for example, production

methods) by using b blocks (for example, machine operators). Each block is used exactly once to

measure the effect of each and every treatment. The advantage of the randomized block design

over the completely randomized design is that we are comparing the treatments by using the

same experimental units. Thus any true differences in the treatments will not be concealed by dif-

ferences in the experimental units.

In some experiments a block consists of similar or matched sets of experimental units. For ex-

ample, suppose we wish to compare the performance of business majors, science majors, and fine

arts majors on a graduate school admissions test. Here the blocks might be matched sets of students.

Each matched set (block) would consist of a business major, a science major, and a fine arts major

selected so that each is in his or her senior year, attends the same university, and has the same grade

point average. By selecting blocks in this fashion, any true differences between majors would not

be concealed by differences between college classes, universities, or grade point averages.

In order to analyze the data obtained in a randomized block design, we define

the value of the response variable observed when block j uses treatment i

the mean of the b values of the response variable observed when using treatment i

the mean of the p values of the response variable observed when using block j

the mean of the total of the bp values of the response variable that we have observed 

in the experiment

 x ⫽

 x.j ⫽

 xi. ⫽

 xij ⫽

x.1, x.2, and x.3x.2 ⫽ 7.75, and x.3 ⫽ 9.0.x.1 ⫽ 6.0,

x.1, x.2, and x.3,

x1. and x2.

x3. and x4.x2. ⫽ 10.3333, x3. ⫽ 5.0, and x4. ⫽ 4.6667.x1. ⫽ 10.3333

x1., x2., x3., and x4.,

x ⫽ 7.5833,
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The ANOVA procedure for a randomized block design partitions the total sum of squares

(SSTO) into three components: the treatment sum of squares (SST ), the block sum of squares

(SSB), and the error sum of squares (SSE). The formula for this partitioning is

SSTO⫽ SST⫹ SSB⫹ SSE

The steps for calculating these sums of squares can be summarized as follows:

Step 1: Calculate SST, which measures the amount of between-treatment variability:

Step 2: Calculate SSB, which measures the amount of variability due to the blocks:

Step 3: Calculate SSTO, which measures the total amount of variability:

Step 4: Calculate SSE, which measures the amount of variability due to the error:

SSE⫽ SSTO⫺ SST⫺ SSB

These sums of squares are shown in Table 11.8, which is the ANOVA table for a randomized

block design. This table also gives the degrees of freedom, mean squares, and F statistics used to

test the hypotheses of interest in a randomized block experiment.

Before discussing these hypotheses, we will illustrate how the entries in the ANOVA table are

calculated. The sums of squares in the defective cardboard box case are calculated as follows

(note that p⫽ 4 and b⫽ 3):

Step 1:

Step 2:

Step 3: SSTO ⫽ (9⫺ 7.5833)2
⫹ (10⫺ 7.5833)2

⫹ (12⫺ 7.5833)2

⫹ (8⫺ 7.5833)2
⫹ (11⫺ 7.5833)2

⫹ (12⫺ 7.5833)2

⫹ (3⫺ 7.5833)2
⫹ (5 ⫺ 7.5833)2

⫹ (7⫺ 7.5833)2

⫹ (4⫺ 7.5833)2
⫹ (5⫺ 7.5833)2

⫹ (5⫺ 7.5833)2

⫽ 112.9167

⫽ 18.1667

⫽ 4[(6.0 ⫺ 7.5833)2
⫹ (7.75 ⫺ 7.5833)2

⫹ (9.0 ⫺ 7.5833)2]

 SSB ⫽ 4[(x.1 ⫺ x)2
⫹ (x.2 ⫺ x)2

⫹ (x.3 ⫺ x)2]

 ⫽ 90.9167

⫹ (5.0 ⫺ 7.5833)2
⫹ (4.6667 ⫺ 7.5833)2]

 ⫽ 3[(10.3333 ⫺ 7.5833)2
⫹ (10.3333 ⫺ 7.5833)2

 SST ⫽ 3[(x1. ⫺ x)2
⫹ (x2. ⫺ x)2

⫹ (x3. ⫺ x)2
⫹ (x4. ⫺ x)2]

SSTO ⫽ a
p

i⫽1
a

b

j⫽1

(xij ⫺ x)2

SSB ⫽ pa
b

j⫽1

(x.j ⫺ x)2

SST ⫽ ba
p

i⫽1

(xi. ⫺ x)2

T A B L E 1 1 . 8 ANOVA Table for the Randomized Block Design with p Treatments and b Blocks

Source of Degrees of Sum of Mean
Variation Freedom Squares Square F

Treatments p⫺1 SST

Blocks b⫺1 SSB

Error (p⫺1)(b⫺1) SSE

Total pb⫺1 SSTO

MSE ⫽
SSE

(p ⫺ 1)(b ⫺ 1)

F(blocks) ⫽
MSB

MSE
MSB ⫽

SSB

b ⫺ 1

F(treatments) ⫽
MST

MSE
MST ⫽

SST

p ⫺ 1
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Step 4: SSE SSTO SST SSB

 112.9167 90.9167 18.1667

 3.8333

Figure 11.7 gives the MINITAB output of a randomized block ANOVA of the defective box data.

This figure shows the above calculated sums of squares, as well as the degrees of freedom (recall

that p 4 and b 3), the mean squares, and the F statistics (and associated p-values) used to test

the hypotheses of interest.

Of main interest is the test of the null hypothesis H0 that no differences exist between the

treatment effects on the mean value of the response variable versus the alternative hypoth-

esis H
a

that at least two treatment effects differ. We can reject H0 in favor of Ha at level of

F I G U R E 1 1 . 7 MINITAB and Excel Outputs of a Randomized Block ANOVA of the Defective Box Data

Rows: Method   Columns: Operator

1          2            3         All

1 9.000     10.000       12.000      10.333

2 8.000     11.000       12.000      10.333

3 3.000      5.000        7.000       5.000

4 4.000      5.000        5.000       4.667

All 6.000      7.750        9.000       7.583

Two-way ANOVA: Rejects versus Method, Operator

Source      DF            SS               MS            F            P

Method 3        90.917          30.3056        47.43        0.000

Operator 2        18.167           9.0833        14.22        0.005

Error 6         3.833           0.6389

Total 11       112.917

Method      Mean          Operator   Mean

1 10.3333          1 6.00

2 10.3333          2 7.75

3 5.0000          3 9.00

4 4.6667

1

2

3

5

6

8

10

9

11

7

4

12

13

14

16

17

18

15

ANOVA: Two-Factor Without Replication

Summary Count Sum Average Variance

Method1 3 31 10.3333 2.3333

Method2 3 31 10.3333 4.3333

Method3 3 5 5 4

Method4 3 14 4.6667 0.3333

Operator1 4 24 6 8.6667

Operator2 4 31 7.75 10.25

Operator3 4 36 9 12.6667

ANOVA

Source of Variation SS df MS F P-value F crit
Method 90.9167 3 30.3056 47.4348 0.0001 4.7571

Operator 18.1667 2 9.0833 14.2174 0.0053 5.1433

Error 3.8333 6 0.6389

Total 112.9167 11

SST SSB SSE SSTO MST MSB MSE F(treatments) p-value for F(treatments)

F(blocks) p-value for F(blocks) x.318x.217x.116x4.15x3.14x2.13x1.121110

987654321

1

2

3

5

6

8

10

9

11

7

4

12

13

14

16

17

18

15

(b) The Excel output

(a) The MINITAB Output
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significance a if

is greater than the F
a

point based on p 1 numerator and (p 1)(b 1) denominator degrees

of freedom. In the defective cardboard box case, F.05 based on p 1 3 numerator and 

(p 1)(b 1) 6 denominator degrees of freedom is 4.76 (see Table A.6, page 865). Because

is greater than F.05 4.76, we reject H0 at the .05 level of significance. Therefore, we have

strong evidence that at least two production methods have different effects on the mean number

of defective boxes produced per hour. Alternatively, we can reject H0 in favor of Ha at level

of significance a if the p-value is less than a. Here the p-value is the area under the curve of

the F distribution [having p 1 and (p 1)(b 1) degrees of freedom] to the right of

F(treatments). The MINITAB and Excel outputs in Figure 11.7 tell us that this p-value is 0.000

(that is, less than .001) for the defective box data. Therefore, we have extremely strong evi-

dence that at least two production methods have different effects on the mean number of de-

fective boxes produced per hour.

It is also of interest to test the null hypothesis H0 that no differences exist between the block

effects on the mean value of the response variable versus the alternative hypothesis H
a

that at

least two block effects differ. We can reject H0 in favor of Ha at level of significance a if

is greater than the F
a

point based on b 1 numerator and (p 1)(b 1) denominator degrees

of freedom. In the defective cardboard box case, F.05 based on b 1 2 numerator and 

(p 1)(b 1) 6 denominator degrees of freedom is 5.14 (see Table A.6, page 865). Because

is greater than F.05 5.14, we reject H0 at the .05 level of significance. Therefore, we have strong

evidence that at least two machine operators have different effects on the mean number of defective

boxes produced per hour. Alternatively, we can reject H0 in favor of Ha at level of significance a if

the p-value is less than a. Here the p-value is the area under the curve of the F distribution [having

b 1 and (p 1)(b 1) degrees of freedom] to the right of F(blocks). The MINITAB output in

Figure 11.7 tells us that this p-value is .005 for the defective box data. Therefore, we have very strong

evidence that at least two machine operators have different effects on the mean number of defective

boxes produced per hour. This implies that using the machine operators as blocks is reasonable.

If, in a randomized block design, we conclude that at least two treatment effects differ, we can

perform pairwise comparisons to determine how they differ.

F(blocks)  
MSB

MSE
 

9.083

.639
 14.22

F(blocks)  
MSB

MSE

F(treatments)  
MST

MSE
 

30.306

.639
 47.43

F(treatments)  
MST

MSE

Point Estimates and Confidence Intervals in a Randomized Block ANOVA

3 A Tukey simultaneous 100(1 A) percent confi-

dence interval for this difference is

Here the value q
a

is obtained from Table A.9

(pages 868–870), which is a table of percentage

points of the studentized range. In this table q
a

is listed corresponding to values of p and

(p 1)(b 1).

B (xi.  xh.)  qa 
s

1b
R

Consider the difference between the effects of

treatments i and h on the mean value of the

response variable. Then:

1 A point estimate of this difference is 

2 An individual 100(1 A) percent confidence

interval for this difference is

Here t
a兾2 is based on (p 1)(b 1) degrees of

freedom, and s is the square root of the MSE

found in the randomized block ANOVA table.

B (xi.  xh.)  ta兾2 s A
2

b
R

xi.  xh.
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We have previously concluded that we have extremely strong evidence that at least two produc-

tion methods have different effects on the mean number of defective boxes produced per hour.

We have also seen that the sample treatment means are  10.3333,  10.3333,  5.0,

and  4.6667. Since is the smallest sample treatment mean, we will use Tukey simultane-

ous 95 percent confidence intervals to compare the effect of production method 4 with the effects

of production methods 1, 2, and 3. To compute these intervals, we first note that q.05 4.90 is the

entry in Table A.9 (page 868) corresponding to p  4 and (p  1)(b  1)  6. Also, note that the

MSE found in the randomized block ANOVA table is .639 (see Figure 11.7 on page 460), which

implies that . It follows that a Tukey simultaneous 95 percent confidence in-

terval for the difference between the effects of production methods 4 and 1 on the mean number

of defective boxes produced per hour is

Furthermore, it can be verified that a Tukey simultaneous 95 percent confidence interval for the

difference between the effects of production methods 4 and 2 on the mean number of defective

boxes produced per hour is also [ 7.9281, 3.4051]. Therefore, we can be 95 percent confident

that changing from production method 1 or 2 to production method 4 decreases the mean number

of defective boxes produced per hour by a machine operator by between 3.4051 and 7.9281 boxes.

A Tukey simultaneous 95 percent confidence interval for the difference between the effects of

production methods 4 and 3 on the mean number of defective boxes produced per hour is

This interval tells us (with 95 percent confidence) that changing from production method 3 to pro-

ductionmethod4mightdecrease themeannumberofdefectiveboxesproducedperhourbyasmany

as 2.5948 boxes or might increase this mean by as many as 1.9282 boxes. In other words, because

this interval contains 0, we cannot conclude that the effects of production methods 4 and 3 differ.

  [ 2.5948, 1.9282]

 [(x4.  x3.)  2.2615]  [(4.6667  5)  2.2615]

  [ 7.9281,  3.4051]

  [ 5.6666  2.2615]

 B (x4.  x1.)  q.05 
s

1b
R  B (4.6667  10.3333)  4.90¢ .7994

13
≤ R

s  1.639  .7994

x4.x4.

x3.x2.x1.

BI

CONCEPTS

11.15 In your own words, explain why we sometimes employ the randomized block design.

11.16 How can we test to determine if the blocks we have chosen are reasonable?

METHODS AND APPLICATIONS

11.17 A marketing organization wishes to study the effects of four sales methods on weekly sales of a

product. The organization employs a randomized block design in which three salesman use each

sales method. The results obtained are given in Table 11.9. Figure 11.8 gives the Excel output of

a randomized block ANOVA of the sales method data. SaleMethDS

Exercises for Section 11.3

23
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Method

23
24
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26
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32

A B C

S
a
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s

Salesperson

Salesman, j
Sales Method, i A B C

1 32 29 30

2 32 30 28

3 28 25 23

4 25 24 23

T A B L E 1 1 . 9 Results of a Sales Method Experiment Employing a Randomized Block Design SaleMethDS

C
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a Test the null hypothesis H0 that no differences exist between the effects of the sales methods

(treatments) on mean weekly sales. Set a  .05. Can we conclude that the different sales

methods have different effects on mean weekly sales?

b Test the null hypothesis H0 that no differences exist between the effects of the salesmen

(blocks) on mean weekly sales. Set a   .05. Can we conclude that the different salesmen

have different effects on mean weekly sales?

c Use Tukey simultaneous 95 percent confidence intervals to make pairwise comparisons of the

sales method effects on mean weekly sales. Which sales method(s) maximize mean weekly

sales?

11.18 A consumer preference study involving three different bottle designs (A, B, and C) for the jumbo

size of a new liquid laundry detergent was carried out using a randomized block experimental

design, with supermarkets as blocks. Specifically, four supermarkets were supplied with all three

bottle designs, which were priced the same. Table 11.10 gives the number of bottles of each

design sold in a 24-hour period at each supermarket. If we use these data, SST, SSB, and SSE can

be calculated to be 586.1667, 421.6667, and 1.8333, respectively. BottleDes2

a Test the null hypothesis H0 that no differences exist between the effects of the bottle designs

on mean daily sales. Set a   .05. Can we conclude that the different bottle designs have

different effects on mean sales?

b Test the null hypothesis H0 that no differences exist between the effects of the supermarkets

on mean daily sales. Set a   .05. Can we conclude that the different supermarkets have

different effects on mean sales?

c Use Tukey simultaneous 95 percent confidence intervals to make pairwise comparisons of the

bottle design effects on mean daily sales. Which bottle design(s) maximize mean sales?

11.19 To compare three brands of computer keyboards, four data entry specialists were randomly

selected. Each specialist used all three keyboards to enter the same kind of text material for

10 minutes, and the number of words entered per minute was recorded. The data obtained are

given in Table 11.11. If we use these data, SST, SSB, and SSE can be calculated to be 392.6667,

143.5833, and 2.6667, respectively. KeyboardDS

DS

F I G U R E 1 1 . 8 Excel Output of a Randomized Block ANOVA of the Sales Method Data Given in Table 11.9

T A B L E 1 1 . 1 0 Results of a Bottle Design Experiment

BottleDes2DS

Supermarket, j
Bottle Design, i 1 2 3 4

A 16 14 1 6

B 33 30 19 23

C 23 21 8 12

T A B L E 1 1 . 1 1 Results of a Keyboard Experiment

KeyboardDS

Keyboard Brand
Data Entry
Specialist A B C

1 77 67 63

2 71 62 59

3 74 63 59

4 67 57 54

ANOVA: Two-Factor without Replication

SUMMARY Count Sum Average Variance

Method 1 3 91 30.3333 2.3333

Method 2 3 90 30 4

Method 3 3 76 25.3333 6.3333

Method 4 3 72 24 1

Salesman A 4 117 29.25 11.5833

Salesman B 4 108 27 8.6667

Salesman C 4 104 26 12.6667

ANOVA
Source of Variation SS df MS F P-value F crit

Rows 93.5833 3 31.1944 36.2258 0.0003 4.7571

Columns 22.1667 2 11.0833 12.8710 0.0068 5.1433

Error 5.1667 6 0.8611

Total 120.9167 11



a Test the null hypothesis H0 that no differences exist between the effects of the keyboard

brands on the mean number of words entered per minute. Set a   .05.

b Test the null hypothesis H0 that no differences exist between the effects of the data entry

specialists on the mean number of words entered per minute. Set a   .05.

c Use Tukey simultaneous 95 percent confidence intervals to make pairwise comparisons of the

keyboard brand effects on the mean number of words entered per minute. Which keyboard

brand maximizes the mean number of words entered per minute?

11.20 In an advertisement in a local newspaper, Best Food supermarket attempted to convince con-

sumers that it offered them the lowest total food bill. To do this, Best Food presented the follow-

ing comparison of the prices of 60 grocery items purchased at three supermarkets—Best Food,

Public, and Cash’ N Carry—on a single day. BestFoodDS
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Item Best Food Public Cash N’ Carry Item Best Food Public Cash N’ Carry

Big Thirst Towel 1.21 1.49 1.59 Keb Graham Crust .79 1.29 1.28

Camp Crm/Broccoli .55 .67 .67 Spiffits Glass 1.98 2.19 2.59

Royal Oak Charcoal 2.99 3.59 3.39 Prog Lentil Soup .79 1.13 1.12

Combo Chdr/Chz Snk 1.29 1.29 1.39 Lipton Tea Bags 2.07 2.17 2.17

Sure Sak Trash Bag 1.29 1.79 1.89 Carnation Hot Coco 1.59 1.89 1.99

Dow Handi Wrap 1.59 2.39 2.29 Crystal Hot Sauce .70 .87 .89

White Rain Shampoo .96 .97 1.39 C/F/N/ Coffee Bag 1.17 1.15 1.55

Post Golden Crisp 2.78 2.99 3.35 Soup Start Bf Veg 1.39 2.03 1.94

Surf Detergent 2.29 1.89 1.89 Camp Pork & Beans .44 .49 .58

Sacramento T/Juice .79 .89 .99 Sunsweet Pit Prune .98 1.33 1.10

SS Prune Juice 1.36 1.61 1.48 DM Vgcls Grdn Duet 1.07 1.13 1.29

V-8 Cocktail 1.18 1.29 1.28 Argo Corn Starch .69 .89 .79

Rodd Kosher Dill 1.39 1.79 1.79 Sno Drop Bowl Clnr .53 1.15 .99

Bisquick 2.09 2.19 2.09 Cadbury Milk Choc .79 1.29 1.28

Kraft Italian Drs .99 1.19 1.00 Andes Crm/De Ment 1.09 1.30 1.09

BC Hamburger Helper 1.46 1.75 1.75 Combat Ant & Roach 2.33 2.39 2.79

Comstock Chrry Pie 1.29 1.69 1.69 Joan/Arc Kid Bean .45 .56 .38

Dawn Liquid King 2.59 2.29 2.58 La Vic Salsa Pican 1.22 1.75 1.49

DelMonte Ketchup 1.05 1.25 .59 Moist N Beef/Chz 2.39 3.19 2.99

Silver Floss Kraut .77 .81 .69 Ortega Taco Shells 1.08 1.33 1.09

Trop Twist Beverag 1.74 2.15 2.25 Fresh Step Cat Lit 3.58 3.79 3.81

Purina Kitten Chow 1.09 1.05 1.29 Field Trial Dg/Fd 3.49 3.79 3.49

Niag Spray Starch .89 .99 1.39 Tylenol Tablets 5.98 5.29 5.98

Soft Soap Country .97 1.19 1.19 Rolaids Tablets 1.88 2.20 2.49

Northwood Syrup 1.13 1.37 1.37 Plax Rinse 2.88 3.14 2.53

Bumble Bee Tuna .58 .65 .65 Correctol Laxative 3.44 3.98 3.59

Mueller Elbow/Mac 2.09 2.69 2.69 Tch Scnt Potpourri 1.50 1.89 1.89

Kell Nut Honey Crn 2.95 3.25 3.23 Chld Enema 2.250 .98 1.15 1.19

Cutter Spray 3.09 3.95 3.69 Gillette Atra Plus 5.00 5.24 5.59

Lawry Season Salt 2.28 2.97 2.85 Colgate Shave .94 1.10 1.19

If we use these data to compare the mean prices of grocery items at the three supermarkets, then

we have a randomized block design where the treatments are the three supermarkets and the

blocks are the 60 grocery items. Below is the MINITAB output of a randomized block ANOVA

of the supermarket data. 

a Test the null hypothesis H0 that no differences exist between the mean prices of grocery

items at the three supermarkets. Do the three supermarkets differ with respect to mean

grocery prices?

b Make pairwise comparisons of the mean prices of grocery items at the three supermarkets by

using Tukey simultaneous 95 percent confidence intervals. Which supermarket has the lowest

mean prices?

Two-way ANOVA: PRICE versus MARKET, ITEM Descriptive Statistics: PRICE

Source DF SS MS F P Variable MARKET N Mean

Market 2 2.641 1.32063 39.23 0.000 PRICE BEST FOOD 60 1.665

Item 59 215.595 3.65415 108.54 0.000 CASH N CARRY 60 1.925

Error 118 3.973 0.03367 PUBLIC 60 1.920

Total 179 222.209
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11.21 The Coca-Cola Company introduced new Coke in 1985. Within three months of this introduction,

negative consumer reaction forced Coca-Cola to reintroduce the original formula of Coke as

Coca-Cola classic. Suppose that two years later, in 1987, a marketing research firm in Chicago

compared the sales of Coca-Cola classic, new Coke, and Pepsi in public building vending ma-

chines. To do this, the marketing research firm randomly selected 10 public buildings in Chicago 

having both a Coke machine (selling Coke classic and new Coke) and a Pepsi machine. The

data—in number of cans sold over a given period of time—and a MINITAB randomized block

ANOVA of the data are given in Figure 11.9: Coke

a Test the null hypothesis H0 that no differences exist between the mean sales of Coca-Cola

classic, new Coke, and Pepsi in Chicago public building vending machines. Set a  .05.

b Make pairwise comparisons of the mean sales of Coca-Cola classic, new Coke, and Pepsi in

Chicago public building vending machines by using Tukey simultaneous 95 percent confi-

dence intervals.

c By the mid-1990s the Coca-Cola Company had discontinued making new Coke and had re-

turned to making only its original product. Is there evidence in the 1987 study that this might

happen? Explain your answer.

11.4 Two-Way Analysis of Variance 
Many response variables are affected by more than one factor. Because of this we must often con-

duct experiments in which we study the effects of several factors on the response. In this section

we consider studying the effects of two factors on a response variable. To begin, recall that in

Example 11.2 we discussed an experiment in which the Tastee Bakery Company investigated the

effect of shelf display height on monthly demand for one of its bakery products. This one-factor

experiment is actually a simplification of a two-factor experiment carried out by the Tastee

Bakery Company. We discuss this two-factor experiment in the following example.

DS

F I G U R E 1 1 . 9 The Coca-Cola Data and a MINITAB Output of a Randomized Block ANOVA of the Data

Building 1 2 3 4 5 6 7 8 9 10

Coke Classic 45 136 134 41 146 33 71 224 111 87

New Coke 6 114 56 14 39 20 42 156 61 140

Pepsi 24 90 100 43 51 42 68 131 74 107

Assess the
effects of

two factors on a
response variable
by using a two-way
analysis of variance.
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Two-way ANOVA: Cans versus Drink, Building Descriptive Statistics: Cans

Source DF SS MS F P Variable Drink Mean

Drink 2 7997.6 3998.80 5.78 0.011 Cans Coke Classic 102.8

Building 9 55573.5 6174.83 8.93 0.000 New Coke 64.8

Error 18 12443.7 691.32 Pepsi 73.0

Total 29 76014.8

The Tastee Bakery Company supplies a bakery product to many metropolitan supermarkets. The

company wishes to study the effects of two factors—shelf display height and shelf display

width—on monthly demand (measured in cases of 10 units each) for this product. The factor

“display height” is defined to have three levels: B (bottom), M (middle), and T (top). The factor

“display width” is defined to have two levels: R (regular) and W (wide). The treatments in this

experiment are display height and display width combinations. These treatments are

BR BW MR MW TR TW

Here, for example, the notation BR denotes the treatment “bottom display height and regular dis-

play width.” For each display height and width combination the company randomly selects a sam-

ple of m 3 metropolitan area supermarkets (all supermarkets used in the study will be of equal

sales potential). Each supermarket sells the product for one month using its assigned display height

and width combination, and the month’s demand for the product is recorded. The six samples ob-

tained in this experiment are given in Table 11.12 on the next page. We let xij,k denote the monthly

EXAMPLE 11.9 The Shelf Display Case C
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demand obtained at the kth supermarket that used display height i and display width j. For ex-

ample, xMW,2 78.4 is the monthly demand obtained at the second supermarket that used a mid-

dle display height and a wide display.

In addition to giving the six samples, Table 11.12 gives the sample treatment mean for each

display height and display width combination. For example,  55.9 is the mean of the sam-

ple of three demands observed at supermarkets using a bottom display height and a regular dis-

play width. The table also gives the sample mean demand for each level of display height (B, M,

and T ) and for each level of display width (R and W). Specifically,

 55.8 the mean of the six demands observed when using a bottom display height

 77.2 the mean of the six demands observed when using a middle display height

 51.5 the mean of the six demands observed when using a top display height

 60.8 the mean of the nine demands observed when using a regular display width

 62.2 the mean of the nine demands observed when using a wide display

Finally, Table 11.12 gives  61.5, which is the overall mean of the total of 18 demands observed

in the experiment. Because  77.2 is considerably larger than  55.8 and  51.5, we

estimate that mean monthly demand is highest when using a middle display height. Since  60.8

and  62.2 do not differ by very much, we estimate there is little difference between the effects

of a regular display width and a wide display on mean monthly demand.

Figure 11.10 presents a graphical analysis of the bakery demand data. In this figure we plot,

for each display width (R and W), the change in the sample treatment mean demand associated
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F I G U R E 1 1 . 1 0 Graphical Analysis of the Bakery Demand Data
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with changing the display height from bottom (B) to middle (M) to top (T). Note that, for either

a regular display width (R) or a wide display (W), the middle display height (M) gives the high-

est mean monthly demand. Also, note that, for either a bottom, middle, or top display height,

there is little difference between the effects of a regular display width and a wide display on mean

monthly demand. This sort of graphical analysis is useful in determining whether a condition

called interaction exists. We explain the meaning of interaction in the following discussion.

In general, suppose we wish to study the effects of two factors on a response variable. We as-

sume that the first factor, which we refer to as factor 1, has a levels (levels 1, 2, . . . , a). Further,

we assume that the second factor, which we will refer to as factor 2, has b levels (levels 1,

2, . . . , b). Here a treatment is considered to be a combination of a level of factor 1 and a level

of factor 2. It follows that there are a total of ab treatments, and we assume that we will employ a

completely randomized experimental design in which we will assign m experimental units to each

treatment. This procedure results in our observing m values of the response variable for each of the

ab treatments, and in this case we say that we are performing a two-factor factorial experiment.

The method we will explain for analyzing the results of a two-factor factorial experiment is

called two-way analysis of variance or two-way ANOVA. This method assumes that we have

obtained a random sample corresponding to each and every treatment, and that the sample sizes

are equal (as described above). Further, we can assume that the samples are independent because

we have employed a completely randomized experimental design. In addition, we assume that

the populations of values of the response variable associated with the treatments have normal dis-

tributions with equal variances.

In order to understand the various ways in which factor 1 and factor 2 might affect the mean

response, consider Figure 11.11. It is possible that only factor 1 significantly affects the mean

response [see Figure 11.11(a)]. On the other hand, it is possible that only factor 2 significantly

Mean
response

Level 2
of factor 2

Level 1
of factor 2

Levels of factor 1

1 2 3

(a) Only factor 1 significantly
 affects the mean response

Mean
response

Level 2
of factor 2

Level 1
of factor 2

Levels of factor 1

1 2 3

(c) Both factors 1 and 2 significantly
     affect the mean response:
     no interaction

Mean
response

Level 2
of factor 2

Level 1
of factor 2

Levels of factor 1

1 2 3

(b) Only factor 2 significantly
 affects the mean response

Mean
response

Level 2
of factor 2

Level 1
of factor 2

Levels of factor 1

1 2 3

(d) Both factors 1 and 2 significantly
 affect the mean response:
 interaction

F I G U R E 1 1 . 1 1 Different Possible Treatment Effects in Two-Way ANOVA

Describe
what

happens when two
factors interact.
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affects the mean response [see Figure 11.11(b)]. It is also possible that both factors 1 and 2

significantly affect the mean response. If this is so, these factors might affect the mean response

independently [see Figure 11.11(c)], or these factors might interact as they affect the mean

response [see Figure 11.11(d)]. In general, we say that there is interaction between factors 1

and 2 if the relationship between the mean response and one of the factors depends upon the

level of the other factor. This is clearly true in Figure 11.11(d). Note here that at levels 1 and 3

of factor 1, level 1 of factor 2 gives the highest mean response, whereas at level 2 of factor 1,

level 2 of factor 2 gives the highest mean response. On the other hand, the parallel line plots in

Figure 11.11(a), (b), and (c) indicate a lack of interaction between factors 1 and 2. To graphi-

cally check for interaction, we can plot the sample treatment means, as we have done in Fig-

ure 11.10. If we obtain essentially parallel line plots, then it might be reasonable to conclude

that there is little or no interaction between factors 1 and 2 (this is true in Figure 11.10). On the

other hand, if the line plots are not parallel, then it might be reasonable to conclude that factors

1 and 2 interact.

In addition to graphical analysis, analysis of variance is a useful tool for analyzing the data

from a two-factor factorial experiment. To explain the ANOVA approach for analyzing such an

experiment, we define

the kth value of the response variable observed when using level i of factor 1 and

level j of factor 2

the mean of the m values observed when using the ith level of factor 1 and the jth

level of factor 2

the mean of the bm values observed when using the ith level of factor 1

the mean of the am values observed when using the jth level of factor 2

the mean of the total of abm values that we have observed in the experiment

The ANOVA procedure for a two-factor factorial experiment partitions the total sum of squares

(SSTO) into four components: the factor 1 sum of squares-SS(1), the factor 2 sum of squares-

SS(2), the interaction sum of squares-SS(int), and the error sum of squares-SSE. The formula

for this partitioning is as follows:

SSTO SS(1) SS(2) SS(int) SSE

The steps for calculating these sums of squares, as well as what is measured by the sums of

squares, can be summarized as follows:

Step 1: Calculate SSTO, which measures the total amount of variability:

Step 2: Calculate SS(1), which measures the amount of variability due to the different levels of

factor 1:

Step 3: Calculate SS(2), which measures the amount of variability due to the different levels of

factor 2:

Step 4: Calculate SS(int), which measures the amount of variability due to the interaction

between factors 1 and 2:

Step 5: Calculate SSE, which measures the amount of variability due to the error:

SSE SSTO SS(1) SS(2) SS(int)

SS(int)  ma
a

i 1
a

b

j 1

(xij  xi.  x.j  x)2

SS(2)  ama
b

j 1

(x.j  x)2

SS(1)  bma
a

i 1

(xi.  x)2

SSTO  a
a

i 1
a

b

j 1
a
m

k 1

(xij,k  x)2

 x  

 x.j  

 xi.  

 xij  

 xij,k  
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These sums of squares are shown in Table 11.13, which is called a two-way analysis of variance

(ANOVA) table. This table also gives the degrees of freedom associated with each source of

variation—factor 1, factor 2, interaction, error, and total—as well as the mean squares and F sta-

tistics used to test the hypotheses of interest in a two-factor factorial experiment.

Before discussing these hypotheses, we will illustrate how the entries in the ANOVA table are

calculated. The sums of squares in the shelf display case are calculated as follows (note that 

a 3, b 2, and m 3):

Step 1: SSTO (58.2 61.5)2
 (53.7 61.5)2

 (55.8 61.5)2

 (55.7 61.5)2
     (49.9 61.5)2

 2,366.28

Step 2:

  6[(55.8   61.5)2
  (77.2   61.5)2

  (51.5   61.5)2]

  6[32.49   246.49   100]

  2,273.88

Step 3:

 9[(60.8 61.5)2
 (62.2 61.5)2]

 9[.49 .49]

 8.82

Step 4:

  3[(55.9   55.8   60.8   61.5)2
  (55.7   55.8   62.2   61.5)2

  (75.5   77.2   60.8   61.5)2
  (78.9   77.2   62.2   61.5)2

  (51.0   51.5   60.8   61.5)2
  (52.0   51.5   62.2   61.5)2]

  3(3.36)   10.08

Step 5: SSE SSTO SS(1) SS(2) SS(int)

 2,366.28 2,273.88 8.82 10.08

 73.50

Figure 11.12 on the next page gives the MINITAB and Excel outputs of a two-way ANOVA for

the shelf display data. This figure shows the above calculated sums of squares, as well as the

degrees of freedom (recall that a 3, b 2, and m 3), mean squares, and F statistics used to

test the hypotheses of interest.

We first test the null hypothesis H0 that no interaction exists between factors 1 and 2 versus

the alternative hypothesis H
a

that interaction does exist. We can reject H0 in favor of Ha at level

 (xTR  xT.  x.R  x)2
 (xTW  xT.  x.W  x)2]

 (xMR  xM.  x.R  x)2
 (xMW  xM.  x.W  x)2

 SS(int)  3[(xBR  xB.  x.R  x)2
 (xBW  xB.  x.W  x)2

SS(2)  3  3[(x.R  x)2
 (x.W  x)2]

SS(1)  2  3[(xB.  x)2
 (xM.  x)2

 (xT.  x)2]

T A B L E 1 1 . 1 3 Two-Way ANOVA Table

Source of Degrees of Sum of
Variation Freedom Squares Mean Square F

Factor 1 a  1 SS(1)

Factor 2 b 1 SS(2)

Interaction (a  1)(b 1) SS(int)

Error ab(m 1) SSE

Total abm 1 SSTO

MSE  
SSE

ab(m  1)

F(int)  
MS(int)

MSE
MS(int)  

SS(int)

(a  1)(b  1)

F(2)  
MS(2)

MSE
MS(2)  

SS(2)

b  1

F(1)  
MS(1)

MSE
MS(1)  

SS(1)

a  1
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SS(1) SS(2) SS(int) SSE SSTO MS(1) MS(2) MS(int) MSE F(1) p-value for F(1)

F(2) p-value for F(2) F(int) p-value for F(int) x.W20x.R19xT.18xM.17xB.1615141312

1110987654321

F I G U R E 1 1 . 1 2 MINITAB and Excel Outputs of a Two-Way ANOVA of the Shelf Display Data

Rows : Height    Columns : Width      Cell Contents : Demand : Mean

Regular       Wide         All

Bottom 55.90      55.70       55.80

Middle 75.50      78.90       77.20

Top 51.00      52.00       51.50

All 60.80      62.20       61.50

Two-way ANOVA: Demand versus Height, Width

Source DF SS MS F P

Height 2      2273.88        1136.94       185.62       0.000

Width 1         8.82           8.82         1.44       0.253

Interaction 2        10.08           5.04         0.82       0.462

Error 12        73.50           6.12

Total 17      2366.28

Height    Mean        Width       Mean

Bottom 55.8        Regular 60.8

Middle 77.2        Wide 62.2

Top 51.5

1
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5

16
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20

18

(a) The MINITAB Output

ANOVA: Two-Factor With Replication

SUMMARY Regular Wide Total

Bottom

Count 3 3 6

Sum 167.7 167.1 334.8

Average 55.9 55.7 55.8

Variance 5.07 10.24 6.136

Middle

Count 3 3 6

Sum 226.5 236.7 463.2

Average 75.5 78.9 77.2

Variance 6.51 8.89 9.628

Top

Count 3 3 6

Sum 153.0 156.0 309.0

Average 51.0 52.0 51.5

Variance 1.8 4.2 2.7

Total

Count 9 9

Sum 547.2 559.8

Average 60.8 62.2

Variance 129.405 165.277

ANOVA
Source of Variation SS df MS F P-value F crit

Height 2273.88 2 1136.94 185.6229 0.0000 3.8853

Width 8.82 1 8.82 1.4400 0.2533 4.7472

Interaction 10.08 2 5.04 0.8229 0.4625 3.8853

Within 72.5 12 6.125

Total 2366.28 17

16

17

18

19 20

1 6 10 11

2 7 12 13

3 8 14 15

4 9

5

(b) The Excel Output
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of significance a if

is greater than the F
a

point based on (a 1)(b 1) numerator and ab(m 1) denominator de-

grees of freedom. In the shelf display case, F.05 based on (a 1)(b 1) 2 numerator and

ab(m 1) 12 denominator degrees of freedom is 3.89 (see Table A.6, page 865). Because

is less than F.05 3.89, we cannot reject H0 at the .05 level of significance. We conclude that lit-

tle or no interaction exists between shelf display height and shelf display width. That is, we con-

clude that the relationship between mean demand for the bakery product and shelf display

height depends little (or not at all) on the shelf display width. Further, we conclude that the re-

lationship between mean demand and shelf display width depends little (or not at all) on the

shelf display height. Notice that these conclusions are suggested by the previously given plots

of Figure 11.10 (page 466).

In general, when we conclude that little or no interaction exists between factors 1 and 2, we

can (separately) test the significance of each of factors 1 and 2. We call this testing the signifi-

cance of the main effects (what we do if we conclude that interaction does exist between factors

1 and 2 will be discussed at the end of this section).

To test the significance of factor 1, we test the null hypothesis H0 that no differences exist

between the effects of the different levels of factor 1 on the mean response versus the alterna-

tive hypothesis H
a

that at least two levels of factor 1 have different effects. We can reject H0

in favor of Ha at level of significance a if

is greater than the F
a

point based on a 1 numerator and ab(m 1) denominator degrees of free-

dom. In the shelf display case, F.05 based on a 1 2 numerator and ab(m 1) 12 denomina-

tor degrees of freedom is 3.89. Because

is greater than F.05 3.89, we can reject H0 at the .05 level of significance. Therefore, we have

strong evidence that at least two of the bottom, middle, and top display heights have different

effects on mean monthly demand.

To test the significance of factor 2, we test the null hypothesis H0 that no differences exist

between the effects of the different levels of factor 2 on the mean response versus the alterna-

tive hypothesis H
a

that at least two levels of factor 2 have different effects. We can reject H0

in favor of Ha at level of significance a if 

is greater than the F
a

point based on b 1 numerator and ab(m 1) denominator degrees of free-

dom. In the shelf display case, F.05 based on b 1 1 numerator and ab(m 1) 12 denomina-

tor degrees of freedom is 4.75. Because

is less than F.05 4.75, we cannot reject H0 at the .05 level of significance. Therefore, we do not

have strong evidence that the regular display width and the wide display have different effects on

mean monthly demand.

If, in a two-factor factorial experiment, we conclude that at least two levels of factor 1 have

different effects or at least two levels of factor 2 have different effects, we can make pairwise

comparisons to determine how the effects differ.

F(2)  
MS(2)

MSE
 

8.82

6.12
 1.44

F(2)  
MS(2)

MSE

F(1)  
MS(1)

MSE
 

1,136.94

6.12
 185.77

F(1)  
MS(1)

MSE

F(int)  
MS(int)

MSE
 

5.04

6.12
 .82

F(int)  
MS(int)

MSE



We have previously concluded that at least two of the bottom, middle, and top display heights

have different effects on mean monthly demand. Since is greater than 

and , we will use Tukey simultaneous 95 percent confidence intervals to compare the

effect of a middle display height with the effects of the bottom and top display heights. To

compute these intervals, we first note that is the entry in Table A.9 (page 868) corre-

sponding to a  3 and ab(m  1)  12. Also note that the MSE found in the two-way ANOVA

table is 6.12 (see Figure 11.12 on page 470). It follows that a Tukey simultaneous 95 percent con-

fidence interval for the difference between the effects of a middle and bottom display height on

mean monthly demand is

This interval says we are 95 percent confident that changing from a bottom display height to a mid-

dle display height will increase the mean demand for the bakery product by between 17.5925 and

25.2075 cases per month. Similarly, a Tukey simultaneous 95 percent confidence interval for the

difference between the effects of a middle and top display height on mean monthly demand is

  [21.8925, 29.5075]

 [(xM.  xT.)  3.8075]  [(77.2  51.5)  3.8075]

  [17.5925, 25.2075]

  [21.4  3.8075]

 B (xM.  xB.)  q.05 AMSE冢 1

bm冣R  B (77.2  55.8)  3.77A6.12冢 1

2(3)冣R

q.05  3.77

xT .  51.5

xB.  55.8xM.  77.2
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Point Estimates and Confidence Intervals in Two-Way ANOVA

b An individual 100(1 A) percent confidence

interval for this difference is

where the t
a兾2 point is based on ab(m 1)

degrees of freedom.

c A Tukey simultaneous 100(1 A) percent

confidence interval for this difference (in

the set of all possible paired differences

between the effects of the different levels

of factor 2) is

where q
a

is obtained from Table A.9 and is

listed corresponding to values of b and

ab(m 1).

3 Let mij denote the mean value of the response

variable obtained when using level i of factor 1

and level j of factor 2. A point estimate of Mij is

and an individual 100(1 A) percent confi-

dence interval for mij is

where the t
a兾2 point is based on ab(m 1)

degrees of freedom.

Bxij  ta兾2  B
MSE

m
R

xij,

B ( x.j  x.j )  qa  AMSE冢 1

am冣R

B ( x.j  x.j )  ta兾2  AMSE冢 2

am冣R

1 Consider the difference between the effects of

levels i and i of factor 1 on the mean value of

the response variable.

a A point estimate of this difference is 

b An individual percent confidence

interval for this difference is

where the t
a兾2 point is based on ab(m 1)

degrees of freedom, and MSE is the error

mean square found in the two-way ANOVA

table.

c A Tukey simultaneous 100(1 A) percent con-

fidence interval for this difference (in the set

of all possible paired differences between the

effects of the different levels of factor 1) is

where q
a

is obtained from Table A.9

(pages 868–870), which is a table of percent-

age points of the studentized range. Here q
a

is listed corresponding to values of a and

ab(m 1).

2 Consider the difference between the effects of

levels j and j of factor 2 on the mean value of

the response variable.

a A point estimate of this difference is x.j  x.j 

B ( xi.  xi .)  qa  AMSE冢 1

bm冣R

B ( xi.  xi .)  ta兾2  AMSE冢 2

bm冣R

100(1 A)

xi.  xi .

EXAMPLE 11.10 The Shelf Display Case C
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This interval says we are 95 percent confident that changing from a top display height to a middle

display height will increase mean demand for the bakery product by between 21.8925 and 29.5075

cases per month. Together, these intervals make us 95 percent confident that a middle shelf display

height is, on average, at least 17.5925 cases sold per month better than a bottom shelf display

height and at least 21.8925 cases sold per month better than a top shelf display height.

Next, recall that previously conducted F tests suggest that there is little or no interaction be-

tween display height and display width and that there is little difference between using a reg-

ular display width and a wide display. However, intuitive and graphical analysis should always

be used to supplement the results of hypothesis testing. In this case, note from Table 11.12

(page 466) that and . This implies that we estimate that, when we use a

middle display height, changing from a regular display width to a wide display increases mean

monthly demand by 3.4 cases (or 34 units). This slight increase can be seen in Figure 11.10

(page 466) and suggests that it might be best (depending on what supermarkets charge for dif-

ferent display heights and widths) for the bakery to use a wide display with a middle display

height. Since t.025 based on ab(m  1)  12 degrees of freedom is 2.179, an individual 95 per-

cent confidence interval for mMW, the mean demand obtained when using a middle display

height and a wide display, is

This interval says that, when we use a middle display height and a wide display, we can be 95 per-

cent confident that mean demand for the bakery product will be between 75.7878 and 82.0122

cases per month.

If we conclude that (substantial) interaction exists between factors 1 and 2, the effects of

changing the level of one factor will depend on the level of the other factor. In this case, we can-

not separate the analysis of the effects of the levels of the two factors. One simple alternative pro-

cedure is to use one-way ANOVA (see Section 11.2) to compare all of the treatment means (the

mij’s) with the possible purpose of finding the best combination of levels of factors 1 and 2. For

example, if there had been (substantial) interaction in the shelf display case, we could have used

one-way ANOVA to compare the six treatment means—mBR, mBW, mMR, mMW, mTR, and mTW—to

find the best combination of display height and width. Alternatively, we could study the effects

of the different levels of one factor at a specified level of the other factor. This is what we did at

the end of the shelf display case, when we noticed that at a middle display height, a wide display

seemed slightly more effective than a regular display width.

Finally, we might wish to study the effects of more than two factors on a response variable of

interest. The ideas involved in such a study are an extension of those involved in a two-way

ANOVA. Although studying more than two factors is beyond the scope of this text, a good refer-

ence is Neter, Kutner, Nachtsheim, and Wasserman (1996).

  [75.7878, 82.0122]

 BxMW  t.025 A
MSE

m
R  B78.9  2.179A

6.12

3
R

xMW  78.9xMR  75.5

BI

Exercises for Section 11.4
CONCEPTS

11.22 What is a treatment in the context of a two-factor factorial experiment?

11.23 Explain what we mean when we say that

a Interaction exists between factor 1 and factor 2.

b No interaction exists between the factors.

METHODS AND APPLICATIONS

11.24 An experiment is conducted to study the effects of two sales approaches—high-pressure (H) and

low-pressure (L)—and to study the effects of two sales pitches (1 and 2) on the weekly sales of a

product. The data in Table 11.14 on the next page are obtained by using a completely randomized



design, and Figure 11.13 gives the Excel output of a two-way ANOVA of the sales experiment

data. SaleMeth2

a Perform graphical analysis to check for interaction between sales pressure and sales pitch.

b Test for interaction by setting a .05.

c Test for differences in the effects of the levels of sales pressure by setting a .05. That is, test

the significance of sales pressure effects with a .05.

d Calculate and interpret a 95 percent individual confidence interval for mH. mL.

e Test for differences in the effects of the levels of sales pitch by setting a .05. That is, test

the significance of sales pitch effects with a .05.

f Calculate and interpret a 95 percent individual confidence interval for m.1  m.2.

g Calculate a 95 percent (individual) confidence interval for mean sales when using high sales

pressure and sales pitch 1. Interpret this interval.

11.25 A study compared three display panels used by air traffic controllers. Each display panel was

tested for four different simulated emergency conditions. Twenty-four highly trained air traffic

controllers were used in the study. Two controllers were randomly assigned to each display

panel–emergency condition combination. The time (in seconds) required to stabilize the

emergency condition was recorded. The data in Table 11.15 were observed. Figure 11.14

presents the MINITAB output of a two-way ANOVA of the display panel data. Display2

a Interpret the MINITAB interaction plot in Figure 11.14. Then test for interaction with .

b Test the significance of display panel effects with a .05.

c Test the significance of emergency condition effects with a .05.

d Make pairwise comparisons of display panels A, B, and C by using Tukey simultaneous 

95 percent confidence intervals. 

e Make pairwise comparisons of emergency conditions 1, 2, 3, and 4 by using Tukey simulta-

neous 95 percent confidence intervals.

f Which display panel minimizes the time required to stabilize an emergency condition? Does

your answer depend on the emergency condition? Why?

g Calculate a 95 percent (individual) confidence interval for the mean time required to stabilize

emergency condition 4 using display panel B.

11.26 A telemarketing firm has studied the effects of two factors on the response to its television

advertisements. The first factor is the time of day at which the ad is run, while the second is the

a  .05

DS

DS
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Sales Pitch

Sales Pressure 1 2

H 32 32

29 30

30 28

L 28 25

25 24

23 23

Emergency Condition

Display Panel 1 2 3 4

A 17 25 31 14

14 24 34 13

B 15 22 28 9

12 19 31 10

C 21 29 32 15

24 28 37 19

TA B L E 1 1 . 1 4 Results of the Sales Approach

Experiment SaleMeth2DS

TA B L E 1 1 . 1 5 Results of a Two-Factor Display 

Panel Experiment Display2DS

F I G U R E 1 1 . 1 3 Excel Output of a Two-Way ANOVA of the 

Sales Approach Data

ANOVA: Two-Factor With Replication

SUMMARY Pitch 1 Pitch 2 Total

High Pressure

Count 3 3 6

Sum 91 90 181

Average 30.3333 30 30.1667

Variance 2.3333 4 2.5667

Low Pressure

Count 3 3 6

Sum 76 72 148

Average 25.3333 24 24.6667

Variance 6.3333 1 3.4667

Total

Count 6 6

Sum 167 162

Average 27.8333 27

Variance 10.9667 12.8

ANOVA

Source of Variation SS df MS F P-value F crit

Pressure 90.75 1 90.75 26.5610 0.0009 5.3177

Pitch 2.0833 1 2.0833 0.6098 0.4574 5.3177

Interaction 0.75 1 0.75 0.2195 0.6519 5.3177

Within 27.3333 8 3.4167

Total 120.917 11
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position of the ad within the hour. The data in Table 11.16, which were obtained by using a

completely randomized experimental design, give the number of calls placed to an 800 number

following a sample broadcast of the advertisement. If we use Excel to analyze these data, we

obtain the output in Figure 11.15. TelMktResp

a Perform graphical analysis to check for interaction between time of day and position of 

advertisement. Explain your conclusion. Then test for interaction with a⫽ .05.

b Test the significance of time of day effects with a⫽ .05.

c Test the significance of position of advertisement effects with a⫽ .05.

DS

F I G U R E 1 1 . 1 4 MINITAB Output of a Two-Way ANOVA of the Display Panel Data

Tabulated statistics: Panel, Condition

Rows: Panel Columns: Condition

1 2 3 4 All

A 15.50 24.50 32.50 13.50 21.50

B 13.50 20.50 29.50 9.50 18.25

C 22.50 28.50 34.50 17.00 25.63

All 17.17 24.50 32.17 13.33 21.79

Cell Contents: Time : Mean

10

15

20

25

30

35

Panel A Panel B Panel C

Condition

1

2

3

4

T A B L E 1 1 . 1 6 Results of a Two-Factor Telemarketing Response 

Experiment TelMktRespDS

Position of Advertisement

Time of Day On the Hour On the Half-Hour Early in Program Late in Program

10:00 morning 42 36 62 51

37 41 68 47

41 38 64 48

4:00 afternoon 62 57 88 67

60 60 85 60

58 55 81 66

9:00 evening 100 97 127 105

96 96 120 101

103 101 126 107

Two-way ANOVA: Time versus Panel, Condition
Source DF SS MS F P

Panel 2 218.58 109.292 26.49 0.000

Condition 3 1247.46 415.819 100.80 0.000

Interaction 6 16.42 2.736 0.66 0.681

Error 12 49.50 4.125

Total 23 1531.96

Individiual 95% CIs For Mean Based on 

Pooled StDev

Panel Mean ----+---------+---------+--------+-----

A 21.500 (-----+----)

B 18.250 (-----+----)

C 25.625 (-----+----)

----+---------+---------+---------+----

18.0 21.0 24.0 27.0

Individual 95% CIs For Mean Based on Pooled StDev

Condition Mean -+---------+---------+---------+-----

1 17.1667 (--*--)

2 24.5000 (--*--)

3 32.1667 (--*--)

4 13.3333 (--*--)

----+---------+---------+---------+----

12.0 18.0 24.0 30.0



d Make pairwise comparisons of the morning, afternoon, and evening times by using Tukey

simultaneous 95 percent confidence intervals.

e Make pairwise comparisons of the four ad positions by using Tukey simultaneous 95 percent

confidence intervals.

f Which time of day and advertisement position maximizes consumer response? Compute a 

95 percent (individual) confidence interval for the mean number of calls placed for this time

of day/ad position combination.

11.27 A small builder of speculative homes builds three basic house designs and employs two foremen.

The builder has used each foreman to build two houses of each design and has obtained the 

profits given in Table 11.17 (the profits are given in thousands of dollars). Figure 11.16 presents

the MINITAB output of a two-way ANOVA of the house profitability data. HouseProf

a Interpret the MINITAB interaction plot in Figure 11.16. Then test for interaction with 

a .05. Can we (separately) test for the significance of house design and foreman effects?

Explain why or why not.

b Which house design/foreman combination gets the highest profit? When we analyze the six

house design/foreman combinations using one-way ANOVA, we obtain MSE .390.

Compute a 95 percent (individual) confidence interval for mean profit when the best house

design/foreman combination is employed.

11.28 In the article “Humor in American, British, and German Ads” (Industrial Marketing Manage-

ment, vol. 22, 1993), L. S. McCullough and R. K. Taylor study humor in trade magazine 

advertisements. A sample of 665 ads was categorized according to two factors: nationality

(American, British, or German) and industry (29 levels, ranging from accounting to travel). A

panel of judges ranked the degree of humor in each ad on a five-point scale. When the result-

ing data were analyzed using two-way ANOVA, the p-values for testing the significance of 

nationality, industry, and the interaction between nationality and industry were, respectively,

.087, .000, and .046. Discuss why these p-values agree with the following verbal conclusions

of the authors: “British ads were more likely to be humorous than German or American ads in

the graphics industry. German ads were least humorous in the grocery and mining industries,

but funnier than American ads in the medical industry and funnier than British ads in the

packaging industry.”

DS
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0

50

100

150

Hour Half-Hour Early Late

Evening

Afternoon

Morning

F I G U R E 1 1 . 1 5 Excel Output of a Two-Way ANOVA of the Telemarketing Data

ANOVA: Two-Factor With Replication

Summary Hour Half-Hour Early Late Total

Morning

Count 3 3 3 3 12

Sum 120 115 194 146 575

Average 40 38.3 64.7 48.7 47.9

Variance 7 6.3 9.3 4.3 123.7

Afternoon

Count 3 3 3 3 12

Sum 180 172 254 193 799

Average 60 57.3 84.7 64.3 66.6

Variance 4 6.3 12.3 14.3 132.4

Evening

Count 3 3 3 3 12

Sum 299 294 373 313 1279

Average 99.67 98 124.3 104.3 106.6

Variance 12.33 7 14.3 9.3 128.3

Total

Count 9 9 9 9

Sum 599 581 821 652

Average 66.56 64.56 91.22 72.44

Variance 697.53 701.78 700.69 625.03

ANOVA

Source of SS df MS F P-value F crit

Variation

Sample 21560.89 2 10780.444 1209.02 8.12E-25 3.403

Columns 3989.42 3 1329.B06 149.14 1.19E-15 3.009

Interaction 25.33 6 4.222 0.47 0.8212 2.508

Within 214 24 8.917

Total 25789.64 35
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Design

M
e
a
n

CBA

20

15

10

1

2

Interaction Plot (data means) for Profit

Design

CBA

Boxplot of Profit vs DesignRows: Foreman   Columns: Design 

1      10.65  11.95  18.80  13.80 

A      B      C All

2      10.25  11.80  13.15  11.73 

All    10.45  11.88  15.98  12.77 

Cell Contents: Profit : Mean 

Two-way ANOVA: Profit versus Foreman, Design

Source       DF       SS       MS      F      P 

Foreman       1   12.813  12.8133  32.85  0.001 

Design 2 65.822 32.9108 84.39 0.000

Interaction   2   19.292   9.6458  24.73  0.001 

Error         6    2.340   0.3900 

Total        11  100.267 

Foreman     Mean       Design    Mean 

1        13.8000       A       10.450 

2        11.7333       B       11.875 

C       15.975 

P
ro

fi
t

21

20

15

10

P
ro

fi
t

20

15

10

Boxplot of Profit vs Foreman

Foreman

Foreman

T A B L E 1 1 . 1 7 Results of the House Profitability Study HouseProfDS

House Design

Foreman A B C

1 10.2 12.2 19.4

11.1 11.7 18.2

2 9.7 11.6 13.6

10.8 12.0 12.7

F I G U R E 1 1 . 1 6 MINITAB Output of a Two-Way ANOVA of the House Profitability Data 

Chapter Summary

We began this chapter by introducing some basic concepts of

experimental design. We saw that we carry out an experiment

by setting the values of one or more factors before the values of

the response variable are observed. The different values (or

levels) of a factor are called treatments, and the purpose of most

experiments is to compare and estimate the effects of the various

treatments on the response variable. We saw that the different

treatments are assigned to experimental units, and we discussed

the completely randomized experimental design. This design

assigns independent, random samples of experimental units to the

treatments. 

We began studying how to analyze experimental data by dis-

cussing one-way analysis of variance (one-way ANOVA). Here

we study how one factor (having p levels) affects the response

variable. In particular, we learned how to use this methodology to

test for differences between the treatment means and to estimate

the size of pairwise differences between the treatment means.

Sometimes, even if we randomly select the experimental units,

differences between the experimental units conceal differences

between the treatments. In such a case, we learned that we can

employ a randomized block design. Each block (experimental

unit or set of experimental units) is used exactly once to measure

the effect of each and every treatment. Because we are comparing

the treatments by using the same experimental units, any true dif-

ferences between the treatments will not be concealed by differ-

ences between the experimental units.

The last technique we studied in this chapter was two-way

analysis of variance (two-way ANOVA). Here we study the ef-

fects of two factors by carrying out a two-factor factorial exper-

iment. If there is little or no interaction between the two factors,

then we are able to separately study the significance of each of the

two factors. On the other hand, if substantial interaction exists

between the two factors, we study the nature of the differences

between the treatment means.
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Glossary of Terms

analysis of variance table: A table that summarizes the sums of

squares, mean squares, F statistic(s), and p-value(s) for an analy-

sis of variance. (pages 452, 459, and 469)

completely randomized experimental design: An experimen-

tal design in which independent, random samples of experimental

units are assigned to the treatments. (page 444)

experimental units: The entities (objects, people, and so on) to

which the treatments are assigned. (page 443)

factor: A variable that might influence the response variable; an

independent variable. (page 443)

interaction: When the relationship between the mean response

and one factor depends on the level of the other factor. (page 467)

one-way ANOVA: A method used to estimate and compare the

effects of the different levels of a single factor on a response vari-

able. (page 446)

randomized block design: An experimental design that com-

pares p treatments by using b blocks (experimental units or sets of

experimental units). Each block is used exactly once to measure

the effect of each and every treatment. (page 458)

replication: When a treatment is applied to more than one

experimental unit. (page 444)

response variable: The variable of interest in an experiment; the

dependent variable. (page 443)

treatment: A value (or level) of a factor (or combination of

factors). (page 443)

treatment mean: The mean value of the response variable

obtained by using a particular treatment. (page 446)

two-factor factorial experiment: An experiment in which we

randomly assign m experimental units to each combination of

levels of two factors. (page 467)

two-way ANOVA: A method used to study the effects of two

factors on a response variable. (page 467)

Important Formulas and Tests

One-way ANOVA sums of squares: pages 448–449

One-way ANOVA F test: page 450

One-way ANOVA table: page 452

Estimation in one-way ANOVA: page 453

Randomized block sums of squares: page 459

Randomized block ANOVA table: page 459

Estimation in a randomized block experiment: page 461

Two-way ANOVA sums of squares: page 468

Two-way ANOVA table: page 469

Estimation in two-way ANOVA: page 472

Supplementary Exercises

11.29 A drug company wishes to compare the effects of three different drugs (X, Y, and Z ) that are

being developed to reduce cholesterol levels. Each drug is administered to six patients at the 

recommended dosage for six months. At the end of this period the reduction in cholesterol level

is recorded for each patient. The results are given in Table 11.18. Completely analyze these data

using one-way ANOVA. Use the MINITAB output in Figure 11.17. CholRed

11.30 In an article in Accounting and Finance (the journal of theAccountingAssociation ofAustralia

and New Zealand), Church and Schneider (1993) report on a study concerning auditor objectivity.

A sample of 45 auditors was randomly divided into three groups: (1) the 15 auditors in group 1

designed an audit program for accounts receivable and evaluated an audit program for accounts

payable designed by somebody else; (2) the 15 auditors in group 2 did the reverse; (3) the 15 auditors

in group 3 (the control group) evaluated the audit programs for both accounts.All 45 auditors were

then instructed to spend an additional 15 hours investigating suspected irregularities in either or both

of the audit programs. The mean additional number of hours allocated to the accounts receivable

audit program by the auditors in groups 1, 2, and 3 were Further-

more, a one-wayANOVAof the data shows that and

a Define appropriate treatment means m1, m2, and m3. Then test for statistically significant

differences between these treatment means. Set a .05. Can we conclude that the different

auditor groups have different effects on the mean additional time allocated to investigating

the accounts receivable audit program?

b Perform pairwise comparisons of the treatment means by computing a Tukey simultaneous

95 percent confidence interval for each of the pairwise differences m1 m2, m1 m3, and

m2 m3. Interpret the results. What do your results imply about the objectivity of auditors?

What are the practical implications of this result?

11.31 The loan officers at a large bank can use three different methods for evaluating loan applications.

Loan decisions can be based on (1) the applicant’s balance sheet (B), (2) examination of key 

financial ratios (F), or (3) use of a new decision support system (D). In order to compare these

three methods, four of the bank’s loan officers are randomly selected. Each officer employs each

of the evaluation methods for one month (the methods are employed in randomly selected

SSE  321.3.SST  71.51

and x3  7.6.x1  6.7, x2  9.7,

DS

T A B L E 1 1 . 1 8

Reduction of 

Cholesterol Levels

CholRedDS

Drug

X Y Z

22 40 15

31 35 9

19 47 14

27 41 11

25 39 21

18 33 5
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orders). After a year has passed, the percentage of bad loans for each loan officer and evaluation

method is determined. The data obtained by using this randomized block design are given in

Table 11.19. Completely analyze the data using randomized block ANOVA. LoanEval

11.32 In an article in the Accounting Review (1991), Brown and Solomon study the effects of two

factors—confirmation of accounts receivable and verification of sales transactions—on account

misstatement risk by auditors. Both factors had two levels—completed or not completed—and a

line plot of the treatment mean misstatement risks is shown in Figure 11.18. This line plot makes

it appear that interaction exists between the two factors. In your own words, explain what the 

nature of the interaction means in practical terms.

11.33 In an article in the Academy of Management Journal (1987), W. D. Hicks and R. J. Klimoski

studied the effects of two factors—degree of attendance choice and prior information—on 

managers’ evaluation of a two-day workshop concerning performance reviews. Degree of 

attendance choice had two levels: high (little pressure from supervisors to attend) and low

(mandatory attendance). Prior information also had two levels: realistic preview and traditional

announcement. Twenty-one managers were randomly assigned to the four treatment 

combinations. At the end of the program, each manager was asked to rate the workshop on a

seven-point scale (1  no satisfaction, 7  extreme satisfaction). The following sample treatment

means were obtained:

Prior Information
Degree of Attendance Choice Realistic Preview Traditional Announcement

High 6.20 6.06

Low 5.33 4.82

Source: W. D. Hicks and R. J. Klimoski, “Entry into Training Programs and Its Effects on Training Outcomes: A Field

Experiment,” Academy of Management Journal 30, no. 3 (September 1987), p. 548.

In addition, SS(1), SS(2), SS(int), and SSE were calculated to be, respectively, 22.26, 1.55, .61,

and 114.4. Here factor 1 is degree of choice and factor 2 is prior information. Completely analyze

this situation using two-way ANOVA.
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Source: C. E. Brown and I. Solomon, “Configural Information Processing in

Auditing: The Role of Domain-Specific Knowledge,” The Accounting Review

66, no. 1 (January 1991), p. 105 (Figure 1). Copyright © 1991 American

Accounting Association. Used with permission.

F I G U R E 1 1 . 1 7 MINITAB Output of an ANOVA of the Cholesterol Reduction Data

F I G U R E 1 1 . 1 8 Line Plot for Exercise 11.32

T A B L E 1 1 . 1 9 Results of a Loan Evaluation

Experiment LoanEvalDS

Loan Evaluation Method

Loan Officer B F D

1 8 5 4

2 6 4 3

3 5 2 1

4 4 1 0

One-way ANOVA: Reduction versus Drug
Source DF SS MS F P

Drug 2 2152.1 1076.1 40.79 0.000

Error 15 395.7 26.4

Total 17 2547.8

S = 5.136 R-Sq = 84.47% R-Sq(adj) = 82.40%

Descriptive Statistics: Reduction
Variable Drug N Mean StDev

Reduction X 6 23.67 4.97

Y 6 39.17 4.92

Z 6 12.50 5.50
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Compiler

Computer 1 2 3

Model 235 9.9 8.0 7.1

Model 335 12.5 10.6 9.1

Model 435 10.8 9.0 7.8

Wheat Type

Fertilizer Type M N O P

A 19.4 25.0 24.8 23.1

20.6 24.0 26.0 24.3

20.0 24.5 25.4 23.7

B 22.6 25.6 27.6 25.4

21.6 26.8 26.4 24.5

22.1 26.2 27.0 26.3

0

10

20

C
e
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 m
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30

M N O P

B

A

T A B L E 1 1 . 2 0 Results of an Execution Speed

Experiment for Three Compilers

(Seconds) ExecSpdDS

T A B L E 1 1 . 2 1 Results of a Two-Factor Wheat Yield

Experiment WheatDS

11.34 An information systems manager wishes to compare the execution speed (in seconds) for a

standard statistical software package using three different compilers. The manager tests each

compiler using three different computer models, and the data in Table 11.20 are obtained. 

Completely analyze the data (using a computer package if you wish). In particular, test for com-

piler effects and computer model effects, and also perform pairwise comparisons. ExecSpd

11.35 A research team at a school of agriculture carried out an experiment to study the effects of two

fertilizer types (A and B) and four wheat types (M, N, O, and P) on crop yields (in bushels per

one-third acre plot). The data in Table 11.21 were obtained by using a completely randomized

experimental design. Analyze these data by using the following Excel output: WheatDS

DS

In an article from the Journal of Statistics Education,
Robin Lock describes a rich set of interesting data on
selected attributes for a sample of 1993-model new cars.
These data support a wide range of analyses. Indeed,
the analysis possibilities are the subject of Lock’s article.
Here our interest is in comparing mean highway gas
mileage figures among the six identified vehicle types—
compact, small, midsize, large, sporty, and van.

Go to the Journal of Statistics Education Web
archive and retrieve the 1993-cars data set and related
documentation: http://www.amstat.org/publications/jse/

archive.htm. Click on 93cars.dat for data, 93cars.txt 
for documentation, and article associated with this data
set for a full text of the article. Excel and MINITAB data
files may also be downloaded from this book’s website
( 93Cars). Construct box plots of Highway MPG by
Vehicle Type (if MINITAB or other suitable statistical
software is available). Describe any apparent differ-
ences in gas mileage by vehicle type. Conduct an analy-
sis of variance to test for differences in mean gas
mileage by vehicle type. Prepare a brief report of your
analysis and conclusions.

DS

11.36 Internet Exercise

ANOVA: Two-Factor With Replication

Count

Sum

Average

Variance

3

60

20

0.36

3

71.1

23.7

0.36

3

73.5

24.5

0.25

3

76.2

25.4

0.36

12

280.8

23.4

4.84

SUMMARY

A

M N O P Total

ANOVA

Sample

Columns

Interaction

Within

18.904

92.021

0.221

6.220

48.63

78.90

0.19

3.14E-06

8.37E-10

0.9019

1

3

3

16

Total 117.366 23

18.9038

30.6738

0.0738

0.3888

4.494

3.239

3.239

Source of Variation SS df MS F P-value F crit

Count

Sum

Average

Variance

3

66.3

22.1

0.25

3

76.2

25.4

0.81

3

78.6

26.2

0.36

3

81

27

0.36

12

302.1

25.18

4.111

B

Count

Sum

Average

Variance

6

126.3

21.05

1.567

6

147.3

24.55

1.335

6

152.1

25.35

1.111

6

157.2

26.2

1.056

Total
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Appendix 11.1 ■ Experimental Design and Analysis of Variance
Using Excel

The instruction blocks in this section each begin by describing the entry of data into an Excel spreadsheet. Alterna-
tively, the data may be downloaded from this book’s website. The appropriate data file name is given at the top of
each instruction block. Please refer to Appendix 1.1 for further information about entering data, saving data, and
printing results when using Excel.

One-way ANOVA in Figure 11.2(b) on page 451
(data file: GasMile2.xlsx):

• Enter the gasoline mileage data from Table 11.1
(page 444) as follows: type the label “Type A”
in cell A1 with its five mileage values in cells A2
to A6; type the label “Type B” in cell B1 with its
five mileage values in cells B2 to B6; type the
label “Type C” in cell C1 with its five mileage
values in cells C2 to C6.

• Select Data : Data Analysis : Anova : Single Fac-
tor and click OK in the Data Analysis dialog box.

• In the “Anova: Single Factor” dialog box, enter
A1 : C6 into the “Input Range” window.

• Select the “Grouped by: Columns” option.

• Place a checkmark in the “Labels in first row”
checkbox.

• Enter 0.05 into the Alpha box

• Under output options, select “New Worksheet
Ply” to have the output placed in a new 
worksheet and enter the name Output for the
new worksheet.

• Click OK in the “Anova: Single Factor” dialog
box.

Randomized block ANOVA in Figure 11.8 on page 463
(data file: SaleMeth.xlsx):

• Enter the sales methods data from Table 11.9
(page 462) as shown in the screen.

• Select Data : Data Analysis : Anova: Two-Factor
Without Replication and click OK in the Data
Analysis dialog box.

• In the “Anova: Two Factor Without Replication”
dialog box, enter A1 : D5 into the “Input
Range” window. 

• Place a checkmark in the “Labels” checkbox.

• Enter 0.05 in the Alpha box.

• Under output options, select “New Worksheet
Ply” to have the output placed in a new 
worksheet and enter the name Output for the
new worksheet.

• Click OK in the “Anova: Two-Factor Without 
Replication” dialog box.
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Two-way ANOVA in Figure 11.13 on page 474 (data
file: SaleMeth2.xlsx):

• Enter the sales approach experiment data from
Table 11.14 (page 474) as shown in the screen.

• Select Data : Data Analysis : Anova : Two-Factor
With Replication and click OK in the Data Analysis
dialog box.

• In the “Anova: Two-Factor With Replication” 
dialog box, enter A1:C7 into the “Input Range”
window.

• Enter the value 3 into the “Rows per Sample” box
(this indicates the number of replications).

• Enter 0.05 in the Alpha box.

• Under output options, select “New Worksheet
Ply” to have the output placed in a new 
worksheet and enter the name Output for the
new worksheet.

• Click OK in the “Anova: Two-Factor With 
Replication” dialog box.

Appendix 11.2 ■ Experimental Design and Analysis of Variance
Using MegaStat

The instructions in this section begin by describing the entry of data into an Excel worksheet. Alternatively, the data
may be downloaded from this book’s website. The appropriate data file name is given at the top of each instruc-
tion block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing re-
sults in Excel. Please refer to Appendix 1.2 for more information about using MegaStat.

One-way ANOVA similar to Figure 11.2(b) on page 451
(data file: GasMile2.xlsx):

• Enter the gas mileage data in Table 11.1 
(page 444) into columns A, B, and C—Type A
mileages in column A (with label “Type A”), Type
B mileages in column B (with label “Type B”), and 
Type C mileages in column C (with label “Type C”).
Note that the input columns for the different
groups must be side by side. However, the number
of observations in each group can be different.

• Select Add-Ins : MegaStat : Analysis of Variance :
One-Factor ANOVA.

• In the One-Factor ANOVA dialog box, use the 
autoexpand feature to enter the range A1 : C6
into the Input Range window.

• If desired, request “Post-hoc Analysis” to obtain
Tukey simultaneous comparisons and pairwise t
tests. Select from the options: “Never,” “Always,”
or “When p  .05.” The option “When p  .05”
gives post-hoc analysis when the p-value for the
F statistic is less than .05.

• Check the Plot Data checkbox to obtain a plot
comparing the groups.

• Click OK in the One-Factor ANOVA dialog box.
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Randomized block ANOVA similar to Figure 11.7(b) on
page 460 (data file: CardBox.xlsx):

• Enter the cardboard box data in Table 11.7 
(page 458) in the arrangement shown in the
screen. Here each column corresponds to a 
treatment (in this case, a production method) and
each row corresponds to a block (in this case, a
machine operator). Identify the production 
methods using the labels Method 1, Method 2,
Method 3, and Method 4 in cells B1, C1, D1, 
and E1. Identify the blocks using the labels
Operator 1, Operator 2, and Operator 3 in cells A2,
A3, and A4.

• Select Add-Ins : MegaStat : Analysis of Variance :
Randomized Blocks ANOVA.

• In the Randomized Blocks ANOVA dialog box, click
in the Input Range window and enter the range
A1 : E4.

• If desired, request “Post-hoc Analysis” to obtain
Tukey simultaneous comparisons and pairwise 
t-tests. Select from the options: “Never,” 
“Always,” or “When p  .05.” The option “When 
p  .05” gives post-hoc analysis when the 
p-value related to the F statistic for the treatments
is less than .05.

• Check the Plot Data checkbox to obtain a plot
comparing the treatments.

Two-way ANOVA similar to Figure 11.12(b) on
page 470 (data file: BakeSale2.xlsx):

• Enter the bakery demand data in Table 11.12
(page 466) in the arrangement shown in the
screen. Here the row labels Bottom, Middle, and
Top are the levels of factor 1 (in this case, shelf
display height) and the column labels Regular
and Wide are the levels of factor 2 (in this case,
shelf display width). The arrangement of the
data is as laid out in Table 11.12.

• Select Add-Ins : MegaStat : Analysis of Variance:
Two-Factor ANOVA.

• In the Two-Factor ANOVA dialog box, enter the
range A1 : C10 into the Input Range window.

• Type 3 into the “Replications per Cell” window.

• Check the “Interaction Plot by Factor 1” and 
“Interaction Plot by Factor 2” checkboxes to 
obtain interaction plots.

• If desired, request “Post-hoc Analysis” to 
obtain Tukey simultaneous comparisons and
pairwise t-tests. Select from the options:
“Never,” “Always,” and “When p  .05.” The
option “When p  .05” gives Post-hoc analysis
when the p-value related to the F statistic for a
factor is less than .05. Here we have selected
“Always.”

• Click OK in the Two-Factor ANOVA dialog box.

Note: See the technical note on page 487 to inter-
pret MegaStat “Post-hoc Analysis.”
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Appendix 11.3 ■ Experimental Design and Analysis of Variance 
Using MINITAB

The instruction blocks in this section each begin by describing the entry of data into the MINITAB data window. 
Alternatively, the data may be downloaded from this book’s website. The appropriate data file name is given at the
top of each instruction block. Please refer to Appendix 1.3 for further information about entering data, saving data,
and printing results when using MINITAB.

One-way ANOVA in Figure 11.2(a) on page 451 (data
file: GasMile2.MTW):

• In the Data window, enter the data from 
Table 11.1 (page 444) into three columns with
variable names Type A, Type B, and Type C.

• Select Stat : ANOVA : One-way (Unstacked).

• In the “One-Way Analysis of Variance” dialog
box, select ‘Type A’ ‘Type B’ ‘Type C’ into the
“Responses (in separate columns)” window. (The
single quotes are necessary because of the blank
spaces in the variable names. The quotes will be
added automatically if the names are selected
from the variable list or if they are selected by
double clicking.)

• Click OK in the “One-Way Analysis of Variance”
dialog box.

To produce mileage by gasoline type boxplots
similar to those shown in Table 11.1 (page 444):

• Click the Graphs… button in the “One-Way
Analysis of Variance” dialog box.

• Check the “Boxplots of data” checkbox and click
OK in the “One-Way Analysis of Variance—
Graphs” dialog box.

• Click OK in the “One-Way Analysis of Variance”
dialog box.

To produce Tukey pairwise comparisons:

• Click on the Comparisons… button in the 
“One-Way Analysis of Variance” dialog box.

• Check the “Tukey’s family error rate” checkbox.

• In the “Tukey’s family error rate” box, enter 
the desired experimentwise error rate (here 
we have entered 5, which denotes 5%—
alternatively, we could enter the decimal 
fraction .05).

• Click OK in the “One-Way Multiple 
Comparisons” dialog box.

• Click OK in the “One-Way Analysis of Variance”
dialog box.

• The one-way ANOVA output and the Tukey
multiple comparisons will be given in the 
Session window, and the box plots will appear
in a graphics window.



Appendix 11.3 Experimental Design and Analysis of Variance Using MINITAB 485

Randomized Block ANOVA in Figure 11.7(a) on
page 460 (data File: CardBox.MTW):

• In the data window, enter the observed number
of defective boxes from Table 11.7 (page 458) into
column C1 with variable name Rejects; enter the 
corresponding production method (1,2,3,or 4)
into column C2 with variable name Method; and
enter the corresponding machine operator (1,2,or
3) into column C3 with variable name Operator.

• Select Stat : ANOVA : Two-way.

• In the “Two-way Analysis of Variance” dialog box,
select Rejects into the Response window.

• Select Method into the Row Factor window and
check the “Display Means” checkbox.

• Select Operator into the Column Factor window
and check the “Display Means” checkbox.

• Check the “Fit additive model” checkbox.

• Click OK in the “Two-way Analysis of Variance”
dialog box to display the randomized block
ANOVA in the Session window.

Table of row, column, and cell means in Figure 11.12
on page 470 (data file: BakeSale2.MTW):

• In the data window, enter the observed demands
from Table 11.12 (page 466) into column C1 with
variable name Demand, enter the corresponding
shelf display heights (Bottom, Middle, or Top) into
column C2 with variable name Height, and enter
the corresponding shelf display widths (Regular or
Wide) into column C3 with variable name Width.

• Select Stat : Tables : Descriptive Statistics.

• In the “Table of Descriptive Statistics” dialog box,
select Height into the “Categorical variables: 
For rows” window and select Width into the “Cat-
egorical variables: For columns” window.

• Click on the “Display summaries for Associated
Variables…” button.

• In the “Descriptive Statistics—Summaries for 
Associated Variables” dialog box, select Demand
into the “Associated variables” window, check the
“Display Means” checkbox, and click OK.

• If cell frequencies are desired in addition to the
row, column, and cell means, click OK in the
“Table of Descriptive Statistics” dialog box.

• If cell frequencies are not desired, click on the
“Display summaries for Categorical Variables…”
button, uncheck the “Display Counts” checkbox,
and click OK in the “Descriptive Statistics—
Summaries for Categorical Variables” dialog 
box. Then, click OK in the “Table of Descriptive
Statistics” dialog box.

• The row, column, and cell means are displayed in
the Session window.
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Two-way ANOVA in Figure 11.12(a) on page 470 (data
file: BakeSale2.MTW):

• In the data window, enter the observed demands
from Table 11.12 (page 466) into column C1 with
variable name Demand; enter the corresponding
shelf display heights (Bottom, Middle, or Top) into
column C2 with variable name Height; and enter
the corresponding shelf display widths (Regular or
Wide) into column C3 with variable name Width.

• Select Stat : ANOVA : Two-Way.

• In the “Two-Way Analysis of Variance” dialog box,
select Demand into the Response window.

• Select Height into the “Row Factor” window.

• Select Width into the “Column Factor” window.

• To produce tables of means by Height and Width,
check the “Display means” checkboxes next to the
“Row factor” and “Column factor” windows. This
will also produce individual confidence intervals
for each level of the row factor and each level of
the column factor—these intervals are not shown
in Figure 11.12.

• Enter the desired level of confidence for the 
individual confidence intervals in the “Confidence
level” box.

• Click OK in the “Two-Way Analysis of Variance” 
dialog box.

To produce Demand by Height and Demand by Width
boxplots similar to those displayed in Table 11.12 on
page 466:

• Select Graph : Boxplot.

• In the Boxplots dialog box, select “One Y With
Groups” and click OK.

• In the “Boxplot—One Y, With Groups” dialog box,
select Demand into the Graph variables window. 

• Select Height into the “Categorical variables for
grouping” window.

• Click OK in the “Boxplot—One Y, With Groups” 
dialog box to obtain boxplots of demand by levels
of height in a graphics window.

• Repeat the steps above using Width as the 
“Categorical variable for grouping” to obtain 
boxplots of demand by levels of width in a 
separate graphics window.
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To produce an interaction plot similar to that displayed
in Figure 11.10(b) on page 466:

• Select Stat : ANOVA : Interactions plot.

• In the Interactions Plot dialog box, select Demand
into the Responses window.

• Select Width and Height into the Factors window.

• Click OK in the Interactions Plot dialog box to ob-
tain the plot in a graphics window.

1.82

Type C

33.98

Type A

34.92

Type B

36.56

4.99

34.92

36.56

33.98

Type A

Type B

Type C

3.56

2.67

critical values for experimentwise error rate:

Tukey simultaneous comparison t-values (d.f.   12)

0.01

0.05

3.17

.0942

Type C

33.98

Type A

34.92

Type B

36.56

.0003

34.92

36.56

33.98

Type A

Type B

Type C

⫽ Significant at .05 level

⫽ Significant at .01 level

⫽ Significant at .01 level

p-values for pairwise t-tests

.0081

Technical note: In the gas mileage case of Examples  11.5 and 11.6, we rejected and used Tukey
simultaneous 95 percent confidence intervals to make pairwise comparisons of , and . MegaStat makes
these pairwise comparisons by using hypothesis testing. Therefore, recall that the sample mean mileages using
gasoline types A, B, and C are and and consider testing versus

The test statistic t for performing this test is calculated by dividing by
. For example, consider testing versus Since

1.64 and , the test statistic t
equals This test statistic value is given in the leftmost table of the following MegaStat output,
as is the test statistic value for testing and the test statistic value for testing
H0:mA  mC  0 (t  1.82):

H0:  mB  mC  0 (t  4.99)
1.64兾.5173  3.17.

.51731.669[(1兾5)  (1兾5)]  1MSE [(1兾nB)  (1兾nA)]  xB  xA  36.56  34.92  
Ha:mB mA  0.H0:mB  mA  01MSE [(1兾ni)  (1兾nh)]

xi  xhHa:mi  mh  0.
H0:mi  mh  0xC  33.98,xB  36.56,xA  34.92,

mCmA, mB

H0 :mA  mB  mC

If we wish to use the Tukey simultaneous comparison procedure having an experimentwise error rate of a, we
reject H0: mi  mh  0 in favor of Ha: mi  mh  0 if the absolute value of t is greater than the critical value 
Table A.9 on page 868 tells us that q.05 is 3.77 and q.01 is 5.04, which are based on the values and

. Therefore, the critical values for experimentwise error rates of .05 and .01 are, respectively,
and (see the MegaStat output). Suppose we set a equal to .05. Then, since the test

statistic value for testing H0: mB  mA  0 (t  3.17) and the test statistic value for testing H0: mB  mC  0 (t  4.99)
are greater than the critical value 2.67, we reject both null hypotheses. This, along with the fact that is
greater than and leads us to conclude that gasoline type B yields the highest mean mileage
of the gasoline types tested (note that the MegaStat output conveniently arranges the sample means in increasing
order). Finally, note that the rightmost table of the MegaStat output gives the p-values for individual (rather than
simultaneous) pairwise hypothesis tests. For example, the individual p-value for testing H0: mB  mC  0 is .0003,
and the individual p-value for testing H0: mB  mA  0 is .0081.

xC  33.98,xA  34.92
xB  36.56

5.04兾12  3.563.77兾12  2.67
n  p  15  3  12

p  3
qa兾12.
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12.1 Chi-Square Goodness of Fit Tests 12.2 A Chi-Square Test for Independence

Chi-Square
Tests

Chapter Outline

LO1 Test hypotheses about multinomial
probabilities by using a chi-square
goodness of fit test.

LO2 Perform a goodness of fit test for normality.

LO3 Decide whether two qualitative variables
are independent by using a chi-square test
for independence.

Learning Objectives

After mastering the material in this chapter, you will be able to:



n this chapter we present two useful

hypothesis tests based on the chi-square

distribution. (We have discussed the chi-

square distribution in Section 9.6). First, we consider

the chi-square test of goodness of fit. This test

evaluates whether data falling into several categories

do so with a hypothesized set of probabilities. Second,

we discuss the chi-square test for independence. Here

data are classified on two dimensions and are

summarized in a contingency table. The test for

independence then evaluates whether the cross-

classified variables are independent of each other. If

we conclude that the variables are not independent,

then we have established that the variables in 

question are related, and we must then investigate

the nature of the relationship.

I

12.1 Chi-Square Goodness of Fit Tests 
Multinomial probabilities Sometimes we collect count data in order to study how the

counts are distributed among several categories or cells. As an example, we might study

consumer preferences for four different brands of a product. To do this, we select a random

sample of consumers, and we ask each survey participant to indicate a brand preference. We then

count the number of consumers who prefer each of the four brands. Here we have four categories

(brands), and we study the distribution of the counts in each category in order to see which brands

are preferred.

We often use categorical data to carry out a statistical inference. For instance, suppose that a

major wholesaler in Cleveland, Ohio, carries four different brands of microwave ovens. Histori-

cally, consumer behavior in Cleveland has resulted in the market shares shown in Table 12.1. The

wholesaler plans to begin doing business in a new territory—Milwaukee, Wisconsin. To study

whether its policies for stocking the four brands of ovens in Cleveland can also be used in

Milwaukee, the wholesaler compares consumer preferences for the four ovens in Milwaukee

with the historical market shares observed in Cleveland. A random sample of 400 consumers in

Milwaukee gives the preferences shown in Table 12.2.

To compare consumer preferences in Cleveland and Milwaukee, we must consider a multi-

nomial experiment. This is similar to the binomial experiment. However, a binomial experiment

concerns count data that can be classified into two categories, while a multinomial experiment

concerns count data that are classified into more than two categories. Specifically, the assump-

tions for the multinomial experiment are as follows:

The Multinomial Experiment

4 The results of the experiment are observed

frequencies (counts) of the number of trials

that result in each of the k possible outcomes. The

frequencies are denoted f1, f2, . . . , fk. That is, f1 is

the number of trials resulting in the first possible

outcome, f2 is the number of trials resulting in the

second possible outcome, and so forth.

1 We perform an experiment in which we carry

out n identical trials and in which there are k

possible outcomes on each trial.

2 The probabilities of the k outcomes are denoted

p1, p2, . . . , pk where p1 p2     pk 1. These

probabilities stay the same from trial to trial.

3 The trials in the experiment are independent.

Brand Market Share

1 20%

2 35%

3 30%

4 15%

T A B L E 1 2 . 2 Brand Preferences for Four Microwave

Ovens in Milwaukee, Wisconsin

MicroWavDS

Observed Frequency (Number
of Consumers Sampled Who

Brand Prefer the Brand)

1 102

2 121

3 120

4 57

T A B L E 1 2 . 1 Market Shares for Four

Microwave Oven Brands in

Cleveland, Ohio MicroWavDS

Test hypo-
theses

about multinomial
probabilities by
using a chi-square
goodness of fit test.

LO1



Notice that the scenario that defines a multinomial experiment is similar to that which defines a

binomial experiment. In fact, a binomial experiment is simply a multinomial experiment where k

equals 2 (there are two possible outcomes on each trial).

In general, the probabilities p1, p2, . . . , pk are unknown, and we estimate their values. Or, we

compare estimates of these probabilities with a set of specified values. We now look at such an

example.
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Chi-square
curve with
k   1   3
degrees of
freedom

 2     7.81473 
.05

Reject H0

.05

0

EXAMPLE 12.1 The Microwave Oven Preference Case

Suppose the microwave oven wholesaler wishes to compare consumer preferences in Milwaukee

with the historical market shares in Cleveland. If the consumer preferences in Milwaukee are

substantially different, the wholesaler will consider changing its policies for stocking the ovens.

Here we will define

p1 the proportion of Milwaukee consumers who prefer brand 1

p2 the proportion of Milwaukee consumers who prefer brand 2

p3 the proportion of Milwaukee consumers who prefer brand 3

p4 the proportion of Milwaukee consumers who prefer brand 4

Remembering that the historical market shares for brands 1, 2, 3, and 4 in Cleveland are 20 percent,

35 percent, 30 percent, and 15 percent, we test the null hypothesis

H0: p1   .20, p2   .35, p3   .30, and p4   .15

which says that consumer preferences in Milwaukee are consistent with the historical market

shares in Cleveland. We test H0 versus

Ha: the previously stated null hypothesis is not true

To test H0 we must compare the “observed frequencies” given in Table 12.2 with the “expected

frequencies” for the brands calculated on the assumption that H0 is true. For instance, if H0 is true,

we would expect 400(.20)   80 of the 400 Milwaukee consumers surveyed to prefer brand 1.

Denoting this expected frequency for brand 1 as E1, the expected frequencies for brands 2, 3, and

4 when H0 is true are E2   400(.35)   140, E3   400(.30)   120, and E4   400(.15)   60.

Recalling that Table 12.2 gives the observed frequency for each brand, we have f1   102, 

f2   121, f3   120, and f4   57. We now compare the observed and expected frequencies by

computing a chi-square statistic as follows:

Clearly, the more the observed frequencies differ from the expected frequencies, the larger x2

will be and the more doubt will be cast on the null hypothesis. If the chi-square statistic is large

enough (beyond a rejection point), then we reject H0.

To find an appropriate rejection point, it can be shown that, when the null hypothesis is true,

the sampling distribution of x2 is approximately a x2 distribution with k  1  4  1  3

degrees of freedom. If we wish to test H0 at the .05 level of significance, we reject H0 if and

only if

x
2
 x

2
.05

  
484
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0

120
 

9

60
 8.7786
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Since Table A.17 (page 875) tells us that the point corresponding to k   1   3 degrees of

freedom equals 7.81473, we find that

and we reject H0 at the .05 level of significance. Alternatively, the p-value for this hypothesis test

is the area under the curve of the chi-square distribution having 3 degrees of freedom to the right

of x2   8.7786. This p-value can be calculated to be .0323845. Since this p-value is less than .05,

we can reject H0 at the .05 level of significance. Although there is no single MINITAB dialog box

that produces a chi-square goodness of fit test, Figure 12.1 shows the output of a MINITAB

session that computes the chi-square statistic and its related p-value for the oven wholesaler

problem.

We conclude that consumer preferences in Milwaukee for the four brands of ovens are not

consistent with the historical market shares in Cleveland. Based on this conclusion, the whole-

saler should consider changing its stocking policies for microwave ovens when it enters the

Milwaukee market. To study how to change its policies, the wholesaler might compute a 95 per-

cent confidence interval for, say, the proportion of consumers in Milwaukee who prefer brand 2.

Since  .3025, this interval is (see Section 8.4, page 329)

Since this entire interval is below .35, it suggests that (1) the market share for brand 2 ovens in

Milwaukee will be smaller than the 35 percent market share that this brand commands in

Cleveland, and (2) fewer brand 2 ovens (on a percentage basis) should be stocked in Milwaukee.

Notice here that by restricting our attention to one particular brand (brand 2), we are essentially

combining the other brands into a single group. It follows that we now have two possible

outcomes—“brand 2” and “all other brands.” Therefore, we have a binomial experiment, and we

can employ the methods of Section 8.4, which are based on the binomial distribution.

  [.2575, .3475]

 Bp̂2  z.025 A
p̂2(1  p̂2)

n2

R  B .3025  1.96 A
.3025(1  .3025)

400
R

p̂2  121兾400

x
2
 8.7786  x

2
.05  7.81473

x
2
.05

F I G U R E 1 2 . 1 Output of a MINITAB Session That Computes the Chi-Square Statistic and 

Its Related p-Value for the Oven Wholesaler Example


2   8.7786

Chi-square
curve with
k   1   3
degrees of
freedom

p-value
   .0323845

0

BI

BI



In the following box we give a general chi-square goodness of fit test for multinomial

probabilities:

492 Chapter 12 Chi-Square Tests

A Goodness of Fit Test for Multinomial Probabilities

versus

Ha: at least one of the multinomial probabilities

is not equal to the value stated in H0

we define the chi-square goodness of fit statistic

to be

Also, define the p-value related to x2 to be the area

under the curve of the chi-square distribution having

k   1 degrees of freedom to the right of x2.

Then, we can reject H0 in favor of Ha at level of

significance   if either of the following equivalent

conditions holds:

1

2 p-value  a

Here the point is based on k 1 degrees of

freedom.

x
2
a

x
2
 x

2
a

x
2
 a

k

i 1

(fi  Ei)
2

Ei

Consider a multinomial experiment in which each

of n randomly selected items is classified into

one of k groups. We let

fi   the number of items classified into group i

(that is, the ith observed frequency)

Ei   npi

  the expected number of items that would

be classified into group i if pi is the

probability of a randomly selected item

being classified into group i (that is, the ith

expected frequency)

If we wish to test

H0: the values of the multinomial probabilities

are p1, p2, . . . , pk—that is, the probability of

a randomly selected item being classified into

group 1 is p1, the probability of a randomly

selected item being classified into group 2 is

p2, and so forth

This test is based on the fact that it can be shown that, when H0 is true, the sampling distribu-

tion of x2 is approximately a chi-square distribution with k  1 degrees of freedom, if the sample

size n is large. It is generally agreed that n should be considered large if all of the “expected

cell frequencies” (Ei values) are at least 5. Furthermore, recent research implies that this condi-

tion on the Ei values can be somewhat relaxed. For example, Moore and McCabe (1993) indicate

that it is reasonable to use the chi-square approximation if the number of groups (k) exceeds

4, the average of the Ei values is at least 5, and the smallest Ei value is at least 1. Notice that

in Example 12.1 all of the Ei values are much larger than 5. Therefore, the chi-square test is valid.

A special version of the chi-square goodness of fit test for multinomial probabilities is called

a test for homogeneity. This involves testing the null hypothesis that all of the multinomial prob-

abilities are equal. For instance, in the microwave oven situation we would test

H0: p1 p2 p3 p4  .25

which would say that no single brand of microwave oven is preferred to any of the other brands

(equal preferences). If this null hypothesis is rejected in favor of

Ha: At least one of p1, p2, p3, and p4 exceeds .25

we would conclude that there is a preference for one or more of the brands. Here each of the

expected cell frequencies equals .25(400) 100. Remembering that the observed cell frequen-

cies are f1   102, f2   121, f3   120, and f4   57, the chi-square statistic is

Since is greater than (see Table A.17 on page 875 with 

degrees of freedom), we reject H0 at level of significance .05. We conclude that pref-

erences for the four brands are not equal and that at least one brand is preferred to the others.

4 1 3

k 1  x
2
.05  7.81473x

2
 26.94

  .04  4.41  4  18.49  26.94
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Normal distributions We have seen that many statistical methods are based on the assump-

tion that a random sample has been selected from a normally distributed population. We can

check the validity of the normality assumption by using frequency distributions, stem-and-leaf

displays, histograms, and normal plots. Another approach is to use a chi-square goodness of fit

test to check the normality assumption. We show how this can be done in the following example.

EXAMPLE 12.2 The Car Mileage Case

Consider the sample of 50 gas mileages given in Table 1.6 (page 12). A histogram of these

mileages (see Figure 2.9, page 46) is symmetrical and bell-shaped. This suggests that the sample

of mileages has been randomly selected from a normally distributed population. In this example

we use a chi-square goodness of fit test to check the normality of the mileages.

To perform this test, we first divide the number line into intervals (or categories). One way to

do this is to use the class boundaries of the histogram in Figure 2.9. Table 12.3 gives these inter-

vals and also gives observed frequencies (counts of the number of mileages in each interval),

which have been obtained from the histogram of Figure 2.9. The chi-square test is done by com-

paring these observed frequencies with the expected frequencies in the rightmost column of

Table 12.3. To explain how the expected frequencies are calculated, we first use the sample mean

and the sample standard deviation s .798 of the 50 mileages as point estimates of

the population mean m and population standard deviation s. Then, for example, consider p1, the

probability that a randomly selected mileage will be in the first interval (less than 30.0) in

Table 12.3, if the population of all mileages is normally distributed. We estimate p1 to be

It follows that E1   50p1 50(.0256)  1.28 is the expected frequency for the first interval under

the normality assumption. Next, if we consider p2, the probability that a randomly selected

mileage will be in the second interval in Table 12.3 if the population of all mileages is normally

distributed, we estimate p2 to be

It follows that E2   50p2   50(.0662)   3.31 is the expected frequency for the second interval

under the normality assumption. The other expected frequencies are computed similarly. In gen-

eral, pi is the probability that a randomly selected mileage will be in interval i if the population of

all possible mileages is normally distributed with mean 31.56 and standard deviation .798, and Ei

is the expected number of the 50 mileages that would be in interval i if the population of all pos-

sible mileages has this normal distribution.

It seems reasonable to reject the null hypothesis

H0: the population of all mileages is normally distributed

in favor of the alternative hypothesis

Ha: the population of all mileages is not normally distributed

  P( 1.95  z   1.33)  .0918  .0256  .0662

 p2  P(30.0  mileage  30.5)  P¢30.0  31.56

.798
 z  

30.5  31.56

.798
≤

  P(z   1.95)  .0256

 p1  P(mileage  30.0)  P¢z  
30.0  31.56

.798
≤

x  31.56

C

T A B L E 1 2 . 3 Observed and Expected Cell Frequencies for a Chi-Square Goodness of Fit 

Test for Testing the Normality of the 50 Gasoline Mileages in Table 1.6 GasMilesDS

Observed pi If the Population of Expected Frequency,
Interval Frequency (fi) Mileages Is Normally Distributed Eiⴝ npiⴝ 50pi
Less than 30.0 1 p1 P(mileage 30.0)   .0256 E1 50(.0256)   1.28

30.0 30.5 3 p2 P(30.0 mileage 30.5)  .0662 E2 50(.0662)  3.31

30.5 31.0 8 p3 P(30.5 mileage 31.0)  .1502 E3 50(.1502)  7.51

31.0 31.5 11 p4 P(31.0 mileage 31.5)  .2261 E4 50(.2261)  11.305

31.5 32.0 11 p5 P(31.5 mileage 32.0)  .2407 E5 50(.2407)  12.035

32.0 32.5 9 p6 P(32.0  mileage 32.5) .1722 E6 50(.1722)  8.61

32.5 33.0 5 p7 P(32.5  mileage 33.0) .0831 E7 50(.0831)  4.155

Greater than 33.0 2 p8 P(mileage 33.0) .0359 E8 50(.0359)  1.795

Perform a
goodness of

fit test for normality.

LO2



if the observed frequencies in Table 12.3 differ substantially from the corresponding expected

frequencies in Table 12.3. We compare the observed frequencies with the expected frequencies

under the normality assumption by computing the chi-square statistic

Since we have estimated m  2 parameters (m and s) in computing the expected frequencies

(Ei values), it can be shown that the sampling distribution of x2 is approximately a chi-square dis-

tribution with k  1  m   8   1   2   5 degrees of freedom. Therefore, we can reject H0 at

level of significance a if

where the point is based on k   1   m   8   1   2   5 degrees of freedom. If we wish to

test H0 at the .05 level of significance, Table A.17 tells us that Therefore, since

we cannot reject H0 at the .05 level of significance, and we cannot reject the hypothesis that the

population of all mileages is normally distributed. Therefore, for practical purposes it is probably

reasonable to assume that the population of all mileages is approximately normally distributed

and that inferences based on this assumption are valid. Finally, the p-value for this test, which is

the area under the chi-square curve having 5 degrees of freedom to the right of x2   .43242, can

be shown to equal .994. Since this p-value is large (much greater than .05), we have little evi-

dence to support rejecting the null hypothesis (normality).

Note that although some of the expected cell frequencies in Table 12.3 are not at least 5, the

number of classes (groups) is 8 (which exceeds 4), the average of the expected cell frequencies

is at least 5, and the smallest expected cell frequency is at least 1. Therefore, it is probably rea-

sonable to consider the result of this chi-square test valid. If we choose to base the chi-square test

on the more restrictive assumption that all of the expected cell frequencies are at least 5, then we

can combine adjacent cell frequencies as follows:

x
2
 .43242  x

2
.05  11.0705

x
2
.05  11.0705.

x
2
a

x
2
 x

2
a
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Original Original Original Combined Combined Combined
fi Values pi Values Ei Values Ei Values pi Values fi Values

1 .0256 1.28

3 .0662 3.31 12.1 .2420 12

8 .1502 7.51

11 .2261 11.305 11.305 .2261 11

11 .2407 12.035 12.035 .2407 11

9 .1722 8.61 8.61 .1722 9

5 .0831 4.155

2 .0359 1.795 5.95 .1190 7

⎫
⎪
⎬
⎪
⎭

⎫
⎬
⎭

When we use these combined cell frequencies, the chi-square approximation is based on 

k  1 m  5  1  2  2 degrees of freedom. We find that x2   .30102 and that the p-value 

.860. Since this p-value is much greater than .05, we cannot reject the hypothesis of normality at

the .05 level of significance.

In Example 12.2 we based the intervals employed in the chi-square goodness of fit test on the

class boundaries of a histogram for the observed mileages. Another way to establish intervals for

such a test is to compute the sample mean and the sample standard deviation s and to use inter-

vals based on the Empirical Rule as follows:

Interval 1: less than 

Interval 2: x  2s  x  s

x  2s

x


2   .43242

Chi-square
curve with
5 degrees
of freedom

p-value 
   .994

0
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Interval 3:

Interval 4:

Interval 5:

Interval 6: greater than 

However, care must be taken to ensure that each of the expected frequencies is large enough

(using the previously discussed criteria).

No matter how the intervals are established, we use as an estimate of the population mean m

and we use s as an estimate of the population standard deviation s when we calculate the

expected frequencies (Ei values). Since we are estimating m   2 population parameters, the

rejection point is based on k   1   m   k   1   2   k   3 degrees of freedom, where k is

the number of intervals employed.

In the following box we summarize how to carry out this chi-square test:

x
2
a

x

x  2s

x  s  x  2s

x  x  s

x  s  x

While chi-square goodness of fit tests are often used to verify that it is reasonable to assume

that a random sample has been selected from a normally distributed population, such tests can

also check other distribution forms. For instance, we might verify that it is reasonable to assume

that a random sample has been selected from a Poisson distribution. In general, the number of

degrees of freedom for the chi-square goodness of fit test will equal kⴚ 1ⴚm, where k is the

number of intervals or categories employed in the test and m is the number of population param-

eters that must be estimated to calculate the needed expected frequencies.

Exercises for Section 12.1
CONCEPTS

12.1 Describe the characteristics that define a multinomial experiment.

12.2 Give the conditions that the expected cell frequencies must meet in order to validly carry out a

chi-square goodness of fit test.

12.3 Explain the purpose of a goodness of fit test.

12.4 When performing a chi-square goodness of fit test, explain why a large value of the chi-square

statistic provides evidence that H0 should be rejected.

12.5 Explain two ways to obtain intervals for a goodness of fit test of normality.

A Goodness of Fit Test for a Normal Distribution

is within the interval and by multiplying this

probability by n. Make sure that each expected

frequency is large enough. If necessary, combine

intervals to make the expected frequencies large

enough.

6 Calculate the chi-square statistic

and define the p-value for the test to be the

area under the curve of the chi-square distri-

bution having k  3 degrees of freedom to the

right of x2.

7 Reject H0 in favor of Ha at level of significance a

if either of the following equivalent conditions

holds:

a b p-value a

Here the point is based on k 3 degrees of

freedom.

x
2
a

x
2
 x

2
a

x
2 
 a

k

i 1

(fi  Ei)
2

Ei

1 We will test the following null and alternative

hypotheses:

H0: the population has a normal distribution

Ha: the population does not have a normal

distribution

2 Select a random sample of size n and compute

the sample mean and sample standard

deviation s.

3 Define k intervals for the test. Two reasonable

ways to do this are to use the classes of a

histogram of the data or to use intervals based

on the Empirical Rule.

4 Record the observed frequency (fi) for each

interval.

5 Calculate the expected frequency (Ei) for each in-

terval under the normality assumption. Do this

by computing the probability that a normal

variable having mean and standard deviation sx

x



METHODS AND APPLICATIONS

12.6 The shares of the U.S. automobile market held in 1990 by General Motors, Japanese manufactur-

ers, Ford, Chrysler, and other manufacturers were, respectively, 36%, 26%, 21%, 9%, and 8%.

Suppose that a new survey of 1,000 new-car buyers shows the following purchase frequencies:

GM Japanese Ford Chrysler Other

391 202 275 53 79

a Show that it is appropriate to carry out a chi-square test using these data. AutoMkt

b Test to determine whether the current market shares differ from those of 1990. Use 

12.7 Last rating period, the percentages of viewers watching several channels between 11 P.M. and

11:30 P.M. in a major TV market were as follows: TVRate

WDUX WWTY WACO WTJW
(News) (News) (Cheers Reruns) (News) Others

15% 19% 22% 16% 28%

Suppose that in the current rating period, a survey of 2,000 viewers gives the following

frequencies:

WDUX WWTY WACO WTJW
(News) (News) (Cheers Reruns) (News) Others

182 536 354 151 777

a Show that it is appropriate to carry out a chi-square test using these data.

b Test to determine whether the viewing shares in the current rating period differ from those in

the last rating period at the .10 level of significance. What do you conclude?

12.8 In the Journal of Marketing Research (November 1996), Gupta studied the extent to which the

purchase behavior of scanner panels is representative of overall brand preferences. A scanner

panel is a sample of households whose purchase data are recorded when a magnetic identification

card is presented at a store checkout. The table below gives peanut butter purchase data collected

by the A. C. Nielson Company using a panel of 2,500 households in Sioux Falls, South Dakota.

The data were collected over 102 weeks. The table also gives the market shares obtained by

recording all peanut butter purchases at the same stores during the same period. ScanPan

a Show that it is appropriate to carry out a chi-square test.

b Test to determine whether the purchase behavior of the panel of 2,500 households is

consistent with the purchase behavior of the population of all peanut butter purchasers.

Assume here that purchase decisions by panel members are reasonably independent, and

seta  .05.

DS

DS

a  .05.

DS
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Number of Purchases Market
Brand Size by Household Panel Shares

Jif 18 oz. 3,165 20.10%

Jif 28 1,892 10.10

Jif 40 726 5.42

Peter Pan 10 4,079 16.01

Skippy 18 6,206 28.56

Skippy 28 1,627 12.33

Skippy 40 1,420 7.48

Total 19,115

Source: Reprinted with permission from The Journal of Marketing Research,

published by the American Marketing Association, Vol. 33, S. Gupta et al.,
“Do Household Scanner Data Provide Representative Inferences from Brand
Choices? A Comparison with Store Data,” p. 393 (Table 6).

Goodness of Fit Test
% of

obs expected O  E (O  E)2/E chisq

3165 3842.115  677.115 119.331 13.56

1892 1930.615  38.615 0.772 0.09

726 1036.033  310.033 92.777 10.54

4079 3060.312 1018.689 339.092 38.52

6206 5459.244 746.756 102.147 11.60

1627 2356.880  729.880 226.029 25.68

1420 1429.802  9.802 0.067 0.01

19115 19115.000 0.000 880.216 100.00

880.22 chisquare 6 df 0.0000 p-value

12.9 The purchase frequencies for six different brands of videotape are observed at a video store over

one month: VidTape

Brand Memorex Scotch Kodak TDK BASF Sony

Purchase Frequency 131 273 119 301 176 200

a Carry out a test of homogeneity for these data with a   .025.

b Interpret the result of your test.

DS
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12.10 A wholesaler has recently developed a computerized sales invoicing system. Prior to

implementing this system, a manual system was used. The distribution of the number of 

errors per invoice for the manual system is as follows: Invoice2

Errors per Invoice 0 1 2 3 More Than 3

Percentage of Invoices 87% 8% 3% 1% 1%

After implementation of the computerized system, a random sample of 500 invoices gives the

following error distribution:

Errors per Invoice 0 1 2 3 More Than 3

Number of Invoices 479 10 8 2 1

a Show that it is appropriate to carry out a chi-square test using these data.

b Use the following Excel output to determine whether the error percentages for the

computerized system differ from those for the manual system at the .05 level of significance.

What do you conclude?

DS

pi     Ei     fi    (f-E)^2/E

0.87    435    479       4.4506

0.08     40     10      22.5000

0.03     15      8       3.2667

0.01      5      2       1.8000

0.01      5      1       3.2000

Chi-     35.21724  p-value 0.0000001096

Square

12.11 THE PAYMENT TIME CASE

Consider the sample of 65 payment times given in Table 2.4 (page 42). Use these data to carry

out a chi-square goodness of fit test to test whether the population of all payment times is

normally distributed by doing the following: PayTime

a It can be shown that and that for the payment time data. Use these

values to compute the intervals

(1) Less than (4)
(2) (5)
(3) (6) Greater than 

b Assuming that the population of all payment times is normally distributed, find the probability

that a randomly selected payment time will be contained in each of the intervals found in 

part a. Use these probabilities to compute the expected frequency under the normality

assumption for each interval.

c Verify that the average of the expected frequencies is at least 5 and that the smallest expected

frequency is at least 1. What does this tell us?

d Formulate the null and alternative hypotheses for the chi-square test of normality.

e For each interval given in part a, find the observed frequency. Then calculate the chi-square

statistic needed for the chi-square test of normality.

f Use the chi-square statistic to test normality at the .05 level of significance. What do you

conclude?

12.12 THE MARKETING RESEARCH CASE

Consider the sample of 60 bottle design ratings given in Table 1.5 (page 10). Use these data

to carry out a chi-square goodness of fit test to determine whether the population of all bottle

design ratings is normally distributed. Use and note that and s  3.1073 for

the 60 bottle design ratings. Design

12.13 THE BANK CUSTOMER WAITING TIME CASE

Consider the sample of 100 waiting times given in Table 1.8 (page 13). Use these data to carry

out a chi-square goodness of fit test to determine whether the population of all waiting times is

normally distributed. Use and note that and s  2.475 for the 100 waiting

times. WaitTime

12.14 The table on the next page gives a frequency distribution describing the number of errors found

in 30 1,000-line samples of computer code. Suppose that we wish to determine whether the

number of errors can be described by a Poisson distribution with mean m   4.5. Using the

Poisson probability tables, fill in the table. Then perform an appropriate chi-square goodness of

DS

x  5.46a  .10,

DS

x  30.35a  .05,

x  2sx  s  x

x  s  x  2sx  2s  x  s

x  x  sx  2s

s  3.9612x  18.1077

DS



fit test at the .05 level of significance. What do you conclude about whether the number of errors

can be described by a Poisson distribution with m  4.5? Explain. CodeErr

Number of Observed Probability Assuming Errors Are Expected 
Errors Frequency Poisson Distributed with M ⴝ 4.5 Frequency

0–1 6

2–3 5

4–5 7

6–7 8

8 or more 4

12.2 A Chi-Square Test for Independence 
We have spent considerable time in previous chapters studying relationships between variables.

One way to study the relationship between two variables is to classify multinomial count data on

two scales (or dimensions) by setting up a contingency table.

DS
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EXAMPLE 12.3 The Client Satisfaction Case

A financial institution sells several kinds of investment products—a stock fund, a bond fund, and a

tax-deferred annuity. The company is examining whether customer satisfaction depends on the type

of investment product purchased. To do this, 100 clients are randomly selected from the population

of clients who have purchased shares in exactly one of the funds. The company records the fund type

purchased by these clients and asks each sampled client to rate his or her level of satisfaction with

the fund as high, medium, or low. Table 12.4 on page 500 gives the survey results.

We can look at the data in Table 12.4 in an organized way by constructing a contingency table

(also called a two-way cross-tabulation or cross-classification table). Such a table classifies the

data on two dimensions—type of fund and degree of client satisfaction. Figure 12.2 gives Excel

and MINITAB outputs of a contingency table of fund type versus level of satisfaction. This table

consists of a row for each fund type and a column for each level of satisfaction. Together, the rows

and columns form a “cell” for each fund type–satisfaction level combination. That is, there is a

cell for each “contingency” with respect to fund type and satisfaction level. Both the Excel and

MINITAB outputs give a cell frequency for each cell. On the MINITAB output, this is the top

number given in the cell. The cell frequency is a count (observed frequency) of the number of

surveyed clients with the cell’s fund type–satisfaction level combination. For instance, 15 of the

surveyed clients invest in the bond fund and report high satisfaction, while 24 of the surveyed

clients invest in the tax-deferred annuity and report medium satisfaction. In addition to the cell

frequencies, each output also gives:

Row totals (at the far right of each table): These are counts of the numbers of clients who

invest in each fund type. These row totals tell us that

1 30 clients invest in the bond fund.

2 30 clients invest in the stock fund.

3 40 clients invest in the tax-deferred annuity.

Column totals (at the bottom of each table): These are counts of the numbers of clients who

report high, medium, and low satisfaction. These column totals tell us that

1 40 clients report high satisfaction.

2 40 clients report medium satisfaction.

3 20 clients report low satisfaction.

Overall total (the bottom-right entry in each table): This tells us that a total of 100 clients

were surveyed.

Besides the row and column totals, the MINITAB output gives row and column percentages

(below the row and column totals). For example, 30.00 percent of the surveyed clients invest in

the bond fund, and 20.00 percent of the surveyed clients report low satisfaction. Furthermore, in

addition to a cell frequency, the MINITAB output gives a row percentage and a column

C

Decide
whether

two qualitative
variables are inde-
pendent by using a
chi-square test for
independence.

LO3
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percentage for each cell (these are below the cell frequency in each cell). For instance, looking

at the “bond fund–high satisfaction cell,” we see that the 15 clients in this cell make up 50.0 per-

cent of the 30 clients who invest in the bond fund, and they make up 37.5 percent of the 40 clients

who report high satisfaction. We will explain the last number that appears in each cell of the

MINITAB output later in this section.

Looking at the contingency tables, it appears that the level of client satisfaction may be related

to the fund type. We see that higher satisfaction ratings seem to be reported by stock and bond

fund investors, while holders of tax-deferred annuities report lower satisfaction ratings. To carry

out a formal statistical test we can test the null hypothesis

H0: fund type and level of client satisfaction are independent

versus

Ha: fund type and level of client satisfaction are dependent

In order to perform this test, we compare the counts (or observed cell frequencies) in the

contingency table with the counts we would expect if we assume that fund type and level of

satisfaction are independent. Because these latter counts are computed by assuming indepen-

dence, we call them the expected cell frequencies under the independence assumption. We

illustrate how to calculate these expected cell frequencies by considering the cell corresponding

to the bond fund and high client satisfaction. We first use the data in the contingency table to

compute an estimate of the probability that a randomly selected client invests in the bond fund.

Denoting this probability as pB, we estimate pB by dividing the row total for the bond fund by the

total number of clients surveyed. That is, denoting the row total for the bond fund as rB and letting

n denote the total number of clients surveyed, the estimate of pB is rB 兾n   30兾100   .3. Next

we compute an estimate of the probability that a randomly selected client will report high satis-

faction. Denoting this probability as pH, we estimate pH by dividing the column total for high

(a) The Excel Output (b) The MINITAB Output

F I G U R E 1 2 . 2 Excel and MINITAB Outputs of a Contingency Table of Fund Type versus 

Level of Client Satisfaction (See the Survey Results in Table 12.4) InvestDS

Rows: FundType   Columns: SatRating 

High     Med     Low     All 

Bond 15      12       3 30 

           50.00   40.00   10.00  100.00 

37.50 30.00 15.00 30.00

12 12 6 30

Stock 24       4       2 30 

           80.00   13.33    6.67  100.00 

           60.00   10.00   10.00   30.00 

12 12 6 30

TaxDef 1      24      15 40

            2.50   60.00   37.50  100.00  

            2.50   60.00   75.00   40.00  

              16      16       8      40

All           40      40      20     100 

           40.00   40.00   20.00  100.00 

          100.00  100.00  100.00  100.00 

40 40 20 100

Pearson Chi-Square = 46.438,  46.438, DF = 4  4 

       P-Value = 0.000  0.000 

Cell Contents: Count 

                    % of Row 

                    % of Column 

                    Expected count

a

b

aChi-square statistic.
bp-value for chi-square.



satisfaction by the total number of clients surveyed. That is, denoting the column total for high sat-

isfaction as cH, the estimate of pH is cH兾n   40兾100   .4. Next, assuming that investing in the

bond fund and reporting high satisfaction are independent, we compute an estimate of the prob-

ability that a randomly selected client invests in the bond fund and reports high satisfaction.

Denoting this probability as pBH, we can compute its estimate by recalling from Section 4.4 that

if two events A and B are statistically independent, then P(A 傽 B) equals P(A)P(B). It follows

that, if we assume that investing in the bond fund and reporting high satisfaction are independent,

we can compute an estimate of pBH by multiplying the estimate of pB by the estimate of pH. That

is, the estimate of pBH is (rB兾n)(cH兾n)  (.3)(.4)  .12. Finally, we compute an estimate of the ex-

pected cell frequency under the independence assumption. Denoting the expected cell frequency

as EBH, the estimate of EBH is

This estimated expected cell frequency is given in the MINITAB output of Figure 12.2(b) as the

last number under the observed cell frequency for the bond fund–high satisfaction cell.

ÊBH  n 冢rB

n 冣冢cH

n 冣  100(.3)(.4) 12

500 Chapter 12 Chi-Square Tests

T A B L E 1 2 . 4 Results of a Customer Satisfaction Survey Given to 100 Randomly Selected Clients Who Invest 

in One of Three Fund Types—a Bond Fund, a Stock Fund, or a Tax-Deferred Annuity InvestDS

Fund Level of
Client Type Satisfaction

1 BOND HIGH

2 STOCK HIGH

3 TAXDEF MED

4 TAXDEF MED

5 STOCK LOW

6 STOCK HIGH

7 STOCK HIGH

8 BOND MED

9 TAXDEF LOW

10 TAXDEF LOW

11 STOCK MED

12 BOND LOW

13 STOCK HIGH

14 TAXDEF MED

15 TAXDEF MED

16 TAXDEF LOW

17 STOCK HIGH

18 BOND HIGH

19 BOND MED

20 TAXDEF MED

21 TAXDEF MED

22 BOND HIGH

23 TAXDEF MED

24 TAXDEF LOW

25 STOCK HIGH

26 BOND HIGH

27 TAXDEF LOW

28 BOND MED

29 STOCK HIGH

30 STOCK HIGH

31 BOND MED

32 TAXDEF MED

33 BOND HIGH

34 STOCK MED

Fund Level of
Client Type Satisfaction

35 STOCK HIGH

36 BOND MED

37 TAXDEF MED

38 TAXDEF LOW

39 STOCK HIGH

40 TAXDEF MED

41 BOND HIGH

42 BOND HIGH

43 BOND LOW

44 TAXDEF LOW

45 STOCK HIGH

46 BOND HIGH

47 BOND MED

48 STOCK HIGH

49 TAXDEF MED

50 TAXDEF MED

51 STOCK HIGH

52 TAXDEF MED

53 STOCK HIGH

54 TAXDEF MED

55 STOCK LOW

56 BOND HIGH

57 STOCK HIGH

58 BOND MED

59 TAXDEF LOW

60 TAXDEF LOW

61 STOCK MED

62 BOND LOW

63 STOCK HIGH

64 TAXDEF MED

65 TAXDEF MED

66 TAXDEF LOW

67 STOCK HIGH

68 BOND HIGH

Fund Level of
Client Type Satisfaction

69 BOND MED

70 TAXDEF MED

71 TAXDEF MED

72 BOND HIGH

73 TAXDEF MED

74 TAXDEF LOW

75 STOCK HIGH

76 BOND HIGH

77 TAXDEF LOW

78 BOND MED

79 STOCK HIGH

80 STOCK HIGH

81 BOND MED

82 TAXDEF MED

83 BOND HIGH

84 STOCK MED

85 STOCK HIGH

86 BOND MED

87 TAXDEF MED

88 TAXDEF LOW

89 STOCK HIGH

90 TAXDEF MED

91 BOND HIGH

92 TAXDEF HIGH

93 TAXDEF LOW

94 TAXDEF LOW

95 STOCK HIGH

96 BOND HIGH

97 BOND MED

98 STOCK HIGH

99 TAXDEF MED

100 TAXDEF MED
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Noting that the expression for BH can be written as

we can generalize to obtain a formula for the estimated expected cell frequency for any cell in

the contingency table. Letting ij denote the estimated expected cell frequency corresponding to

row i and column j in the contingency table, we see that

where ri is the row total for row i and cj is the column total for column j. For example, for the fund

type–satisfaction level contingency table, we obtain

and

These (and the other estimated expected cell frequencies under the independence assumption) are

the last numbers below the observed cell frequencies in the MINITAB output of Figure 12.2(b).

Intuitively, these estimated expected cell frequencies tell us what the contingency table looks like

if fund type and level of client satisfaction are independent. A table of estimated expected cell

frequencies is also given below the contingency table on the Excel output of Figure 12.2(a).

To test the null hypothesis of independence, we will compute a chi-square statistic that com-

pares the observed cell frequencies with the estimated expected cell frequencies calculated as-

suming independence. Letting fij denote the observed cell frequency for cell ij, we compute

If the value of the chi-square statistic is large, this indicates that the observed cell frequencies

differ substantially from the expected cell frequencies calculated by assuming independence.

Therefore, the larger the value of chi-square, the more doubt is cast on the null hypothesis of

independence.

To find an appropriate rejection point, we let r denote the number of rows in the contingency

table and we let c denote the number of columns. Then, it can be shown that, when the null hy-

pothesis of independence is true, the sampling distribution of  2 is approximately a  2 distribu-

tion with (r  1)(c  1)  (3  1)(3  1)  4 degrees of freedom. If we test H0 at the .05 level of

significance, we reject H0 if and only if

Since TableA.17 (page 875) tells us that the point corresponding to (r 1)(c 1)  4 degrees

of freedom equals 9.48773, we have

and we reject H0 at the .05 level of significance. We conclude that fund type and level of client

satisfaction are not independent.

x
2
 46.4375  x

2
.05  9.48773

x
2
.05

x
2
 x

2
.05

 46.4375

 
(2  6)2

6
 

(1  16)2

16
 

(24  16)2

16
 

(15  8)2

8
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12
 

(12  12)2

12
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6
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12
 

(4  12)2

12

 
( fBH  ÊBH)2

ÊBH

 
( fBM  ÊBM)2

ÊBM

       
( fTL  ÊTL)

2

ÊTL

x
2
 a

all cells

( fij  Êij)
2

Êij

ˆ ETM  
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40(40)

100
 

1,600

100
 16

 ÊSL  
rScL
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Êij  
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Ê
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n

Ê


2 curve with
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Reject H0

.05

0
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In the following box we summarize how to carry out a chi-square test for independence:

502 Chapter 12 Chi-Square Tests

This test is based on the fact that it can be shown that, when the null hypothesis of inde-

pendence is true, the sampling distribution of x2 is approximately a chi-square distribution with

(r  1)(c  1) degrees of freedom, if the sample size n is large. It is generally agreed that n

should be considered large if all of the estimated expected cell frequencies (Êij values) are

at least 5. Moore and McCabe (1993) indicate that it is reasonable to use the chi-square

approximation if the number of cells (rc) exceeds 4, the average of the Êij values is at least

5, and the smallest Êij value is at least 1. Notice that in Figure 12.2 all of the estimated

expected cell frequencies are greater than 5.

A Chi-Square Test for Independence

versus

Ha: the two classifications are statistically

dependent

we define the test statistic

Also, define the p-value related to x2 to be the area

under the curve of the chi-square distribution having

(r   1)(c   1) degrees of freedom to the right of x2.

Then, we can reject H0 in favor of Ha at level of

significance a if either of the following equivalent

conditions holds:

1

2 p-value  a

Here the point is based on (r   1)(c   1) degrees

of freedom.

x
2
a

x
2
 x

2
a

x
2
 a

all cells

(fij  Êij)
2

Êij

Suppose that each of n randomly selected ele-

ments is classified on two dimensions, and sup-

pose that the result of the two-way classification is a

contingency table having r rows and c columns. Let

fij  the cell frequency corresponding to row i

and column j of the contingency table (that

is, the number of elements classified in row i

and column j )

ri  the row total for row i in the contingency

table

cj  the column total for column j in the

contingency table

 the estimated expected number of ele-

ments that would be classified in row i and

column j of the contingency table if the two

classifications are statistically independent

If we wish to test

H0: the two classifications are statistically

independent

Êij  
ri cj

n

EXAMPLE 12.4 The Client Satisfaction Case

Again consider the Excel and MINITAB outputs of Figure 12.2, which give the contingency table

of fund type versus level of client satisfaction. Both outputs give the chi-square statistic

( 46.438) for testing the null hypothesis of independence, as well as the related p-value. We see

that this p-value is less than .001. It follows, therefore, that we can reject

H0: fund type and level of client satisfaction are independent

at the .05 level of significance, since the p-value is less than .05.

In order to study the nature of the dependency between the classifications in a contingency

table, it is often useful to plot the row and/or column percentages. As an example, Figure 12.3

gives plots of the row percentages in the contingency table of Figure 12.2(b). For instance, look-

ing at the column in this contingency table corresponding to a high level of satisfaction, the con-

tingency table tells us that 40.00 percent of the surveyed clients report a high level of satisfaction.

If fund type and level of satisfaction really are independent, then we would expect roughly 40 per-

cent of the clients in each of the three categories—bond fund participants, stock fund participants,

and tax-deferred annuity holders—to report a high level of satisfaction. That is, we would expect

the row percentages in the “high satisfaction” column to be roughly 40 percent in each row.

C


2   46.438

p-value 
   .000

0


2 curve with

4 degrees of
freedom
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However, Figure 12.3(a) gives a plot of the percentages of clients reporting a high level of satis-

faction for each investment type (that is, the figure plots the three row percentages in the column

corresponding to “high satisfaction”). We see that these percentages vary considerably. Noting

that the dashed line in the figure is the 40 percent reporting a high level of satisfaction for the

overall group, we see that the percentage of stock fund participants reporting high satisfaction

is 80 percent. This is far above the 40 percent we would expect if independence exists. On the

other hand, the percentage of tax-deferred annuity holders reporting high satisfaction is only

2.5 percent—way below the expected 40 percent if independence exists. In a similar fashion,

Figures 12.3(b) and (c) plot the row percentages for the medium and low satisfaction columns in

the contingency table. These plots indicate that stock fund participants report medium and low

levels of satisfaction less frequently than the overall group of clients, and that tax-deferred annu-

ity participants report medium and low levels of satisfaction more frequently than the overall

group of clients.

To conclude this section, we note that the chi-square test for independence can be used to test the

equality of several population proportions. We will show how this is done in Exercise 12.21.

F I G U R E 1 2 . 3 Plots of Row Percentages versus Investment Type for the Contingency 

Tables in Figure 12.2

(c) Percentage of clients reporting a
     low level of satisfaction for each
     investment type

% reporting
low satisfaction

100

80

60

40

20

Bond
fund

Stock
fund

Tax-deferred
annuity

All

(a) Percentage of clients reporting a
      high level of satisfaction for each
      investment type

% reporting
high satisfaction

100
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60
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20
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fund

Stock
fund

Tax-deferred
annuity

All

(b) Percentage of clients reporting a
     medium level of satisfaction for 
     each investment type

% reporting
medium satisfaction

100

80

60

40

20

Bond
fund
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fund

Tax-deferred
annuity

All

Exercises for Section 12.2
CONCEPTS

12.15 What is the purpose behind summarizing data in the form of a two-way contingency table?

12.16 When performing a chi-square test for independence, explain how the “cell frequencies under the

independence assumption” are calculated. For what purpose are these frequencies calculated?

METHODS AND APPLICATIONS

12.17 A marketing research firm wishes to study the relationship between wine consumption and

whether a person likes to watch professional tennis on television. One hundred randomly selected

people are asked whether they drink wine and whether they watch tennis. The following results

are obtained: WineCons

Watch Do Not
Tennis Watch Tennis Totals

Drink Wine 16 24 40

Do Not Drink Wine 4 56 60

Totals 20 80 100

a For each row and column total, calculate the corresponding row or column percentage.

b For each cell, calculate the corresponding cell, row, and column percentages.

DS

BI



c Test the hypothesis that whether people drink wine is independent of whether people watch

tennis. Set a   .05.

d Given the results of the chi-square test, does it make sense to advertise wine during a

televised tennis match (assuming that the ratings for the tennis match are high enough)?

Explain.

12.18 In recent years major efforts have been made to standardize accounting practices in different

countries; this is called harmonization. In an article in Accounting and Business Research,

Emmanuel N. Emenyonu and Sidney J. Gray studied the extent to which accounting practices in

France, Germany, and the UK are harmonized. DeprMeth

a Depreciation method is one of the accounting practices studied by Emenyonu and Gray. Three

methods were considered—the straight-line method (S), the declining balance method (D),

and a combination of D & S (sometimes European firms start with the declining balance

method and then switch over to the straight-line method when the figure derived from straight

line exceeds that from declining balance). The data in Table 12.5 summarize the depreciation

methods used by a sample of 78 French, German, and U.K. firms. Use these data and the

results of the chi-square analysis in Table 12.5 to test the hypothesis that depreciation method

is independent of a firm’s location (country) at the .05 level of significance.

b Perform a graphical analysis to study the relationship between depreciation method and

country. What conclusions can be made about the nature of the relationship?

12.19 In the book Business Research Methods (5th ed.), Donald R. Cooper and C. William Emory

discuss studying the relationship between on-the-job accidents and smoking. Cooper and Emory

describe the study as follows: Accident

Suppose a manager implementing a smoke-free workplace policy is interested in whether

smoking affects worker accidents. Since the company has complete reports of on-the-job

accidents, she draws a sample of names of workers who were involved in accidents during the

last year.Asimilar sample from among workers who had no reported accidents in the last year

is drawn. She interviews members of both groups to determine if they are smokers or not.

The sample results are given in Table 12.6.

a For each row and column total in Table 12.6, find the corresponding row/column percentage.

b For each cell in Table 12.6, find the corresponding cell, row, and column percentages.

DS

DS
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F I G U R E 1 2 . 4 MINITAB Output of a Chi-Square Test

for Independence in the Accident Study

Depreciation
Methods France Germany UK Total

A. Straight line (S) 15 0 25 40

B. Declining Bal (D) 1 1 1 3

C. (D & S) 10 25 0 35

Total companies 26 26 26 78

Source: E. N. Emenyonu and S. J. Gray, “EC Accounting Harmonisation: 
An Empirical Study of Measurement Practices in France, Germany, and the
UK,” Accounting and Business Research 23, no. 89 (1992), pp. 49–58.
Reprinted by permission of the author.

Chi-Square Test for Independence

France Germany UK Total

A. Straight line (S) 15 0 25 40

B. Declining Bal (D) 1 1 1 3

C. (D & S) 10 25 0 35

Total 26 26 26 78

50.89 chisquare 4 df 0.0000   p-value

On-the-Job Accident
Smoker Yes No Row Total

Heavy 12 4 16

Moderate 9 6 15

Nonsmoker 13 22 35

Column total 34 32 66

Source: D. R. Cooper and C. W. Emory, Business Research Methods

(5th ed.) (Burr Ridge, IL: Richard D. Irwin, 1995), p. 451.

T A B L E 1 2 . 5 Depreciation Methods Used by a Sample of 78 Firms DeprMethDS

T A B L E 1 2 . 6 A Contingency Table of the Results of 

the Accidents Study AccidentDS

Expected counts are below observed counts 

Accident  No Accident   Total 

Heavy 12            4 16

8.24 7.76

Moderate 9            6 15 

7.73 7.27

Nonsmoker 13           22 35 

             18.03        16.97 

Total           34           32      66

Chi-Sq = 6.860,  6.860, DF = 2,  2, P-Value = 0.032  0.032 
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c Use the MINITAB output in Figure 12.4 to test the hypothesis that the incidence of on-the-job

accidents is independent of smoking habits. Set a   .01.

d Is there a difference in on-the-job accident occurrences between smokers and nonsmokers?

Explain.

12.20 In the book Essentials of Marketing Research, William R. Dillon, Thomas J. Madden, and Neil A.

Firtle discuss the relationship between delivery time and computer-assisted ordering. A sample of

40 firms shows that 16 use computer-assisted ordering, while 24 do not. Furthermore, past data

are used to categorize each firm’s delivery times as below the industry average, equal to the

industry average, or above the industry average. The results obtained are given in Table 12.7.

a Test the hypothesis that delivery time performance is independent of whether computer-

assisted ordering is used. What do you conclude by setting a  .05? DelTime

b Verify that a chi-square test is appropriate.

c Is there a difference between delivery-time performance between firms using computer-

assisted ordering and those not using computer-assisted ordering?

d Carry out graphical analysis to investigate the relationship between delivery-time

performance and computer-assisted ordering. Describe the relationship.

12.21 A television station wishes to study the relationship between viewership of its 11 P.M. news

program and viewer age (18 years or less, 19 to 35, 36 to 54, 55 or older). A sample of 250

television viewers in each age group is randomly selected, and the number who watch the station’s

11 P.M. news is found for each sample. The results are given in Table 12.8. TVView

a Let p1, p2, p3, and p4 be the proportions of all viewers in each age group who watch the station’s

11 P.M. news. If these proportions are equal, then whether a viewer watches the station’s 11 P.M.

news is independent of the viewer’s age group. Therefore, we can test the null hypothesis H0

that p1, p2, p3, and p4 are equal by carrying out a chi-square test for independence. Perform this

test by setting a .05.

b Compute a 95 percent confidence interval for the difference between p1 and p4.

DS

DS

Delivery Time
Computer- Below Equal to Above
Assisted Industry Industry Industry Row
Ordering Average Average Average Total

No 4 12 8 24

Yes 10 4 2 16

Column total 14 16 10 40

Watch Age Group

11 P.M. News? 18 or Less 19 to 35 36 to 54 55 or Older Total

Yes 37 48 56 73 214

No 213 202 194 177 786

Total 250 250 250 250 1,000

T A B L E 1 2 . 7 A Contingency Table Relating Delivery Time and Computer-Assisted Ordering

DelTimeDS

T A B L E 1 2 . 8 A Summary of the Results of a TV Viewership Study TVViewDS

Chapter Summary

In this chapter we presented two hypothesis tests that employ

the chi-square distribution. In Section 12.1 we discussed a chi-

square test of goodness of fit. Here we considered a situation in

which we study how count data are distributed among various

categories. In particular, we considered a multinomial experi-

ment in which randomly selected items are classified into several

groups, and we saw how to perform a goodness of fit test for the

multinomial probabilities associated with these groups. We also

explained how to perform a goodness of fit test for normality. In

Section 12.2 we presented a chi-square test for independence.

Here we classify count data on two dimensions, and we summa-

rize the cross-classification in the form of a contingency table.

We use the cross-classified data to test whether the two classifica-

tions are statistically independent, which is really a way to see

whether the classifications are related. We also learned that we

can use graphical analysis to investigate the nature of the rela-

tionship between the classifications.
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Glossary of Terms

chi-square test for independence: A test to determine whether

two classifications are independent. (page 502)

contingency table: A table that summarizes data that have been

classified on two dimensions or scales. (page 498)

goodness of fit test for multinomial probabilities: A test to de-

termine whether multinomial probabilities are equal to a specific

set of values. (page 492)

goodness of fit test for normality: A test to determine if a

sample has been randomly selected from a normally distributed

population. (page 495)

homogeneity (test for): A test of the null hypothesis that all

multinomial probabilities are equal. (page 492)

multinomial experiment: An experiment that concerns count

data that are classified into more than two categories. (page 489)

Important Formulas and Tests

A goodness of fit test for multinomial probabilities: page 492

A goodness of fit test for a normal distribution: page 495

A test for homogeneity: page 492

A chi-square test for independence: page 502

Supplementary Exercises

12.22 A large supermarket conducted a consumer preference study by recording the brand of wheat

bread purchased by customers in its stores. The supermarket carries four brands of wheat bread,

and the brand preferences of a random sample of 200 purchasers are given in the following 

table: BreadPref

Brand
A B C D

51 82 27 40

Test the null hypothesis that the four brands are equally preferred by setting   equal to .05. Find

a 95 percent confidence interval for the proportion of all purchasers who prefer Brand B.

12.23 An occupant traffic study was carried out to aid in the remodeling of a large building on a 

university campus. The building has five entrances, and the choice of entrance was recorded for

a random sample of 300 persons entering the building. The results obtained are given in the

following table: EntrPref

Entrance
I II III IV V

30 91 97 40 42

Test the null hypothesis that the five entrances are equally used by setting a equal to .05. Find

a 95 percent confidence interval for the proportion of all people who use Entrance III.

12.24 In a 1993 article in Accounting and Business Research, Meier, Alam, and Pearson studied auditor

lobbying on several proposed U.S. accounting standards that affect banks and savings and loan

associations. As part of this study, the authors investigated auditors’ positions regarding proposed

changes in accounting standards that would increase client firms’ reported earnings. It was

hypothesized that auditors would favor such proposed changes because their clients’ managers

would receive higher compensation (salary, bonuses, and so on) when client earnings were

reported to be higher. Table 12.9 summarizes auditor and client positions (in favor or opposed)

regarding proposed changes in accounting standards that would increase client firms’ reported

earnings. Here the auditor and client positions are cross-classified versus the size of the client

firm. AuditPos

a Test to determine whether auditor positions regarding earnings-increasing changes in

accounting standards depend on the size of the client firm. Use a   .05.

b Test to determine whether client positions regarding earnings-increasing changes in

accounting standards depend on the size of the client firm. Use a   .05.

c Carry out a graphical analysis to investigate a possible relationship between (1) auditor

positions and the size of the client firm and (2) client positions and the size of the client firm.

DS

DS

DS
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d Does the relationship between position and the size of the client firm seem to be similar for

both auditors and clients? Explain.

12.25 In the book Business Research Methods (5th ed.), Donald R. Cooper and C. William Emory

discuss a market researcher for an automaker who is studying consumer preferences for styling

features of larger sedans. Buyers, who were classified as “first-time” buyers or “repeat” buyers,

were asked to express their preference for one of two types of styling—European styling or

Japanese styling. Of 40 first-time buyers, 8 preferred European styling and 32 preferred Japanese

styling. Of 60 repeat buyers, 40 preferred European styling, and 20 preferred Japanese styling.

a Set up a contingency table for these data.

b Test the hypothesis that buyer status (repeat versus first-time) and styling preference are

independent at the .05 level of significance. What do you conclude?

c Carry out a graphical analysis to investigate the nature of any relationship between buyer

status and styling preference. Describe the relationship.

12.26 Again consider the situation of Exercise 12.24. Table 12.10 summarizes auditor positions

regarding proposed changes in accounting standards that would decrease client firms’ reported

earnings. Determine whether the relationship between auditor position and the size of the client

firm is the same for earnings-decreasing changes in accounting standards as it is for earnings-

increasing changes in accounting standards. Justify your answer using both a statistical test and a

graphical analysis. AuditPos2

12.27 The manager of a chain of three discount drug stores wishes to investigate the level of discount

coupon redemption at its stores. All three stores have the same sales volume. Therefore, the

manager will randomly sample 200 customers at each store with regard to coupon usage. The

survey results are given in Table 12.11. Test the hypothesis that redemption level and location are

independent with a .01. Use the MINITAB output in Figure 12.5. Coupon

12.28 THE VIDEO GAME SATISFACTION RATING CASE

Consider the sample of 65 customer satisfaction ratings given in Table 12.12. Carry out a chi-square

goodness of fit test of normality for the population of all customer satisfaction ratings. Recall that

we previously calculated and s  2.6424 for the 65 ratings. VideoGameDSx  42.95

DS

DS

(b) Client Positions

Large Small
Firms Firms Total

In Favor 12 120 132

Opposed 11 34 45

Total 23 154 177

T A B L E 1 2 . 9 Auditor and Client Positions Regarding Earnings-Increasing Changes 

in Accounting Standards AuditPosDS

(a) Auditor Positions

Large Small
Firms Firms Total

In Favor 13 130 143

Opposed 10 24 34

Total 23 154 177

Source: Heidi Hylton Meier, Pervaiz Alam, and Michael A. Pearson, “Auditor Lobbying for Accounting Standards: The
Case of Banks and Savings and Loan Associations,” Accounting and Business Research 23, no. 92 (1993), pp. 477–487. 

Large Small
Firms Firms Total

In Favor 27 152 179

Opposed 29 154 183

Total 56 306 362

Source: Heidi Hylton Meier, Pervaiz Alam, and Michael A.
Pearson, “Auditor Lobbying for Accounting Standards: The
Case of Banks and Savings and Loan Associations,” Accounting

and Business Research 23, no. 92 (1993), pp. 477–487.

Coupon
Redemption Store Location
Level Midtown North Side South Side Total

High 69 97 52 218

Medium 101 93 76 270

Low 30 10 72 112

Total 200 200 200 600

T A B L E 1 2 . 1 0 Auditor Positions Regarding

Earnings-Decreasing Changes

in Accounting Standards

AuditPos2DS

T A B L E 1 2 . 1 1 Results of the Coupon Redemption Study

CouponDS
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F I G U R E 1 2 . 5 MINITAB Output of a Chi-Square

Test for Independence in the

Coupon Redemption Study

39 46 42 40 45 44 44 44 45

45 44 46 46 46 41 46 46

38 40 40 41 43 38 48 39

42 39 47 43 47 43 44 41

42 40 44 39 43 36 41 44

41 42 43 43 41 44 45 42

38 45 45 46 40 44 44 47

42 44 45 45 43 45 44 43

Expected counts are below observed counts 

        Midtown    North    South   Total 

High 69       97       52 218

72.67 72.67 72.67

Medium 101       93       76 270

90.00 90.00 90.00

Low  30       10       72 112

          37.33    37.33    37.33 

 Total 200      200      200     600

Chi-Sq = 71.476,  71.476, DF = 4,  4, P-Value = 0.000  0.000 

T A B L E 1 2 . 1 2 A Sample of 65 Customer 

Satisfaction Ratings

VideoGameDS

12.29 Internet Exercise

A report on the 1995 National Health Risk Behavior
Survey, conducted by the Centers for Disease Control
and Prevention, can be found at the CDC website
[http://www.cdc.gov: More Data & Statistics: CDC Data &
Statistics Resources, Surveys Tab: CDC Surveys, Youth
Risk Behavior Surveillance System (YRBSS): Publications
and Data Files, YRBSS Publications: MMWR: Youth 
Risk Behavior Surveillance – National College Health Risk
Behavior Survey – United States, 1995, or, directly, go to
www.cdc.gov/mmwr/PDF/ss/ss4606.pdf]. Among the issues
addressed in the survey was whether the subjects had, in
the prior 30 days, ridden with a driver who had been
drinking alcohol. Does the proportion of students ex-
hibiting this selected risk behavior vary by ethnic group?
The report includes tables summarizing the “Ridden
Drinking” risk behavior by ethnic group (Table 3) and the
ethnic composition (Table 1) for a sample of n ⴝ 4,609
college students. The “Ridden Drinking” and ethnic
group information is extracted from Tables 1 and 3 and is
displayed as proportions or probabilities in the leftmost
panel of the table below. Note that the values in the
body of the leftmost panel are given as conditional prob-

abilities, the probabilities of exhibiting the ”Ridden
Drinking” risk behavior, given ethnic group. These condi-
tional probabilities can be multiplied by the appropriate
marginal probabilities to compute the joint probabilities
for all the risk behavior by ethnic group combinations to
obtain the summaries in the center panel. Finally, the
joint probabilities are multiplied by the sample size to
obtain projected counts for the number of students in
each “Ridden Drinking” by ethnic group combination.
The “Other” ethnic group was omitted from the Table 3
summaries and is thus not included in this analysis.

Is there sufficient evidence to conclude that the
proportion of college students exhibiting the “Ridden
Drinking” behavior varies by ethnic group? Conduct a
chi-square test for independence using the projected
count data provided in the rightmost panel of the sum-
mary table. (Data are available in MINITAB and Excel
files, YouthRisk.mtw and YouthRisk.xls.) Test at the 0.01
level of significance and report an approximate p-value
for your test. Be sure to clearly state your hypotheses
and conclusion. YouthRiskDS

Conditional Probabilities Joint Probabilities Projected Counts [nⴝ4609]
[Table 3: P(R 兩E). Table 1: P(E)] [P(ER)ⴝP(R 兩E)P(E)] [n(ER)ⴝP(ER)ⴛ4609]

Ridden Drinking? Ridden Drinking? Ridden Drinking?
Ethnic %Y 兩Eth %N 兩Eth % Ethnic Yes No Total Yes No Total

White 0.383 0.617 0.728 0.2788 0.4492 0.7280 1,285 2,070 3,355

Black 0.275 0.725 0.103 0.0283 0.0747 0.1030 131 344 475

Hispanic 0.307 0.693 0.071 0.0218 0.0492 0.0710 100 227 327
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Chi-square goodness of fit test in Exercise 12.10 on
page 497 (data file: Invoice2.xlsx):

• In the first row of the spreadsheet, enter the
following column headings in order—Percent,
Expected, Number, and ChiSqContribution.

• Beginning in cell A2, enter the “percentage of
invoice figures” from Exercise 12.10 as decimal
fractions into column A.

• Compute expected values. Enter the formula
=500*A2 into cell B2 and press enter. Copy this
formula through cell B6 by double-clicking the
drag handle (in the lower right corner) of 
cell B2.

• Enter the “number of invoice figures” from 
Exercise 12.10 into cells C2 through C6.

• Compute cell Chi-square contributions. In cell
D2, enter the formula =(C2 – B2)^2/B2 and press
enter. Copy this formula through cell D6 by
double-clicking the drag handle (in the lower
right corner) of cell D2.

• Compute the Chi-square statistic in cell D8. Use
the mouse to select the range of cells D2 : D8
and click the button on the Excel ribbon.

• Click on an empty cell, say cell A15, and select
the Insert Function button  on the Excel 
ribbon.

• In the Insert Function dialog box, select 
Statistical from the “Or select a category:”
menu, select CHIDIST from the “Select a 
function:” menu, and click OK.

• In the “CHIDIST Function Arguments” dialog
box, enter D8 into the “X” box and 3 into the
“Deg_freedom” box.

• Click OK in the “CHIDIST Function Arguments”
dialog box to produce the p-value related to
the chi-square statistic in cell A15.

Contingency table and chi-square test of indepen-
dence in Figure 12.2(a) on page 499 (data file:
Invest.xlsx):

• Follow the instructions given in Appendix 2.1 for
using a PivotTable to construct a crosstabulation
table of fund type versus level of customer 
satisfaction and place the table in a new 
worksheet.

fx

 

Appendix 12.1 ■ Chi-Square Tests Using Excel
The instruction blocks in this section each begin by describing the entry of data into an Excel spreadsheet. Alterna-
tively, the data may be downloaded from this book’s website. The appropriate data file name is given at the top of
each instruction block. Please refer to Appendix 1.1 for further information about entering data, saving data, and
printing results when using Excel.



To compute a table of expected values:

• In cell B9, type the formula =$E4*B$7/$E$7
(be very careful to include the $ in all the cor-
rect places) and press the enter key (to obtain
the expected value 12 in cell B9).

• Click on cell B9 and use the mouse to point
the cursor to the drag handle (in the lower
right corner) of the cell. The cursor will
change to a black cross. Using the black cross,
drag the handle right to cell D9 and release
the mouse button to fill cells C9 : D9. With
B9 : D9 still selected, use the black cross to
drag the handle down to cell D11. Release the
mouse button to fill cells B10 : D11.

• To add marginal totals, select the range
B9 : E12 and click the button on the Excel 
ribbon.

To compute the chi-square statistic:

• In cell B15, type the formula = (B4 – B9)^2/B9
and press the enter key to obtain the cell 
contribution 0.75 in cell B15.

• Click on cell B15 and (using the procedure 
described above) use the “black cross cursor”
to drag the cell handle right to cell D15 and
then down to cell D17 (obtaining the cell 
contributions in cells B15 : D17).

• To add marginal totals, select the range
B15 : E18 and click the button on the Excel
ribbon.

• The chi-square statistic is in cell E18
(=46.4375).

To compute the p-value for the chi-square test of
independence:

• Click on an empty cell, say E20.

• Select the Insert Function button  on the
Excel ribbon.

• In the Insert Function dialog box, select 
Statistical from the “Or select a category:”
menu, select CHIDIST from the “Select a 
function:” menu, and click OK.

• In the “CHIDIST Function Arguments” dialog
box, enter E18 (the cell location of the 
chi-square statistic) into the “X” window and
4 into the “Deg_freedom” window.

• Click OK in the “CHIDIST Function 
Arguments” dialog box to produce the 
p-value related to the chi-square statistic in
cell E20.

fx
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Appendix 12.2 ■ Chi-Square Tests Using MegaStat
The instructions in this section begin by describing the entry of data into an Excel worksheet. Alternatively, the data
may be downloaded from this book’s website. The appropriate data file name is given at the top of each instruc-
tion block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing
results in Excel. Please refer to Appendix 1.2 for more information about using MegaStat.

Contingency table and chi-square test of indepen-
dence similar to Figure 12.2(a) on page 499 (data file:
Invest.xlsx):

• Follow the instructions given in Appendix 2.2 for
using MegaStat to construct a crosstabulation
table of fund type versus level of customer 
satisfaction.

• After having made entries to specify the row and
column variables for the table, in the list of Output
Options place a checkmark in the “chi-square”
checkbox.

• If desired, row, column, and cell percentages can
be obtained by placing checkmarks in the “%
of row,” “% of column,” and “% of total” 
checkboxes in the list of Output Options. Here we
have elected to not request these percentages.

• Click OK in the Crosstabulation dialog box.

• The value of the chi-square statistic (=46.44) and
its related p-value (=0.000000002) are given below
the crosstabulation table. 



Chi-square goodness of fit test for the scanner panel
data in Exercise 12.8 on page 496 (data file: ScanPan.
xlsx):

• Enter the scanner panel data in Exercise 12.8
(page 496) as shown in the screen with the 
number of purchases for each brand in column C
and with the market share for each brand 
(expressed as a percentage) in column D. Note
that the total number of purchases for all brands
equals 19,115 (which is in cell C11).

• In cell E4, type the cell formula =D4*19115 and
press enter to compute the expected frequency
for the Jiff—18 ounce brand/size combination.
Copy this cell formula (by double-clicking the
drag handle in the lower right corner of cell E4)
to compute the expected frequencies for each of
the other brands in cells E5 through E10.

• Select Add-Ins : MegaStat : Chi-square/
Crosstab : Goodness of Fit Test.

• In the “Goodness of Fit Test” dialog box, click in
the “Observed values Input range” window and
enter the range C4:C10. Enter this range by
dragging with the mouse—the autoexpand 
feature cannot be used in the “Goodness of Fit
Test” dialog box.

• Click in the “Expected values Input range” win-
dow, and enter the range E4 : E10. Again, enter
this range by dragging with the mouse.

• Click OK in the “Goodness of Fit Test” dialog
box.
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Chi-square test for independence with contingency
table input data in the depreciation situation of
Exercise 12.18 on page 504 (data file: DeprMeth.xlsx):

• Enter the depreciation method contingency
table data in Table 12.5 on page 504 as shown in
the screen—depreciation methods in rows and
countries in columns.

• Select Add-Ins : MegaStat : Chi-square/
Crosstab : Contingency Table.

• In the “Contingency Table Test for 
Independence” dialog box, click in the Input
Range window and (by dragging the mouse)
enter the range A4 : D7. Note that the entered
range may contain row and column labels, but
the range should not include the “total row” or
“total column.”

• In the list of Output Options, check the 
Chi-square checkbox to obtain the results of the
chi-square test for independence.

• If desired, row, column, and cell percentages 
can be obtained by placing checkmarks in the
“% of row,” “% of column,” and “% of total”
checkboxes in the list of Output Options. 
Here we have elected to not request these 
percentages.

• Click OK in the “Contingency Table Test for 
Independence” dialog box.

Appendix 12.3 ■ Chi-Square Tests Using MINITAB
The instruction blocks in this section each begin by describing the entry of data into the MINITAB Data window.
Alternatively, the data may be downloaded from this book’s website. The appropriate data file name is given at the
top of each instruction block. Please refer to Appendix 1.3 for further information about entering data, saving data,
and printing results when using MINITAB.



Chi-square test for goodness of fit in Figure 12.1 on
page 491 (data file: MicroWav.MTW):

• Enter the microwave oven data from Tables 12.1
and 12.2 on page 489—observed frequencies in
column C1 with variable name Frequency and
market shares (entered as decimal fractions)
in column C2 with variable name MarketShr.

To compute the chi-square statistic:

• Select Calc : Calculator.

• In the Calculator dialog box, enter Expected into
the “Store result in variable” box.

• In the Expression window, enter 400*MarketShr
and click OK to compute the expected values.

• Select Calc : Calculator.

• Enter ChiSq into the “Store result in variable”
box.

• In the Expression window enter the formula 
(Frequency   Expected)**2/Expected and click OK
to compute the cell chi-square contributions.

• Select Calc : Column Statistics.

• In the Column Statistics dialog box, click on Sum.

• Enter ChiSq in the “Input variable” box.

• Enter k1 in the “Store result in” box and click OK
to compute the chi-square statistic and to store it
as the constant k1.

• The chi-square statistic will be displayed in the
session window.

To compute the p-value for the test:

We first compute the probability of obtaining a value
of the chi-square statistic that is less than or equal to
the computed value (= 8.77857):

• Select Calc : Probability Distributions : 
Chi-Square.

• In the Chi-Square Distribution dialog box, click on
“Cumulative probability.”

• Enter 3 in the “Degrees of freedom” box.

• Click the “Input constant” option and enter k1
into the corresponding box.

• Enter k2 into the “Optional storage” box. 

• Click OK in the Chi-Square Distribution dialog
box. This computes the needed probability and
stores its value as a constant k2.
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• Select Calc : Calculator.

• In the Calculator dialog box, enter PValue into
the “Store result in variable” box.

• In the Expression window, enter the formula 
1  k2, and click OK to compute the p-value 
related to the chi-square statistic.

To display the p-value:

• Select Data : Display Data.

• Enter PValue in the “Columns, constants, and
matrices to display” window and click OK. 

Sum of ChiSq (=8.77857) is the chi-square statistic,
and PValue (=0.0323845) is the corresponding 
p-value.

Crosstabulation table and chi-square test of inde-
pendence for the client satisfaction data as in Fig-
ure 12.2 (b) on page 499 (data file: Invest.MTW):

• Follow the instructions for constructing a 
cross-tabulation table of fund type versus level
of client satisfaction as given in Appendix 2.3.

• After entering the categorical variables into
the “Cross Tabulation and Chi-Square” dialog
box, click on the Chi-Square… button.

• In the “Cross Tabulation—Chi-Square” dialog
box, place checkmarks in the “Chi-Square
analysis” and “Expected cell counts” check
boxes and click OK.

• Click OK in the “Cross Tabulation and 
Chi-Square” dialog box to obtain results in 
the Session window.

The chi-square statistic can also be calculated from
summary data by entering the cell counts from
Table 12.2 and by selecting “Chi-Square Test (Table
in Worksheet)” from the Stat : Tables sub-menu.
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13.1 The Simple Linear Regression Model 
and the Least Squares Point Estimates

13.2 Model Assumptions and the Standard Error

13.3 Testing the Significance of the Slope 
and y-Intercept

13.4 Confidence and Prediction Intervals

13.5 Simple Coefficients of Determination
and Correlation (This section may be read
anytime after reading Section 13.1)

13.6 Testing the Significance of the 
Population Correlation Coefficient
(Optional)

13.7 An F Test for the Model

13.8 The QHIC Case

13.9 Residual Analysis

13.10 Some Shortcut Formulas (Optional)

Simple
Linear
Regression
Analysis

Chapter Outline

After mastering the material in this chapter, you will be able to:

LO6 Calculate and interpret the simple
coefficients of determination and
correlation.

LO7 Test hypotheses about the population
correlation coefficient (Optional).

LO8 Test the significance of a simple linear
regression model by using an F test.

LO9 Use residual analysis to check the
assumptions of simple linear regression. 

Learning Objectives

LO1 Explain the simple linear regression model.

LO2 Find the least squares point estimates of
the slope and y-intercept.

LO3 Describe the assumptions behind simple
linear regression and calculate the
standard error.

LO4 Test the significance of the slope and
y-intercept.

LO5 Calculate and interpret a confidence
interval for a mean value and a prediction
interval for an individual value.



expenditures made to promote the product, the

company might use regression analysis to develop an

equation to predict demand on the basis of price and

advertising expenditure. Predictions of demand for

various price–advertising expenditure combinations

can then be used to evaluate potential changes in

the company’s marketing strategies.

In the next three chapters we give a thorough

presentation of regression analysis. We begin in this

chapter by presenting simple linear regression

analysis. Using this technique is appropriate when

we are relating a dependent variable to a single

independent variable and when a straight-line

model describes the relationship between these two

variables. We explain many of the methods of this

chapter in the context of two new cases:

The Tasty Sub Shop Case: A business

entrepreneur uses simple linear regression

analysis to predict the yearly revenue for a

potential restaurant site on the basis of the

number of residents living near the site. The

entrepreneur then uses the prediction to 

assess the profitability of the potential 

restaurant site.

The QHIC Case: The marketing department at

Quality Home Improvement Center (QHIC) uses

simple linear regression analysis to predict home

upkeep expenditure on the basis of home value.

Predictions of home upkeep expenditures are

used to help determine which homes should be

sent advertising brochures promoting QHIC’s

products and services.

C

13.1 The Simple Linear Regression Model and the Least
Squares Point Estimates 

The simple linear regression model The simple linear regression model assumes that the

relationship between the dependent variable, which is denoted y, and the independent vari-

able, denoted x, can be approximated by a straight line. We can tentatively decide whether there

is an approximate straight-line relationship between y and x by making a scatter diagram, or

scatter plot, of y versus x. First, data concerning the two variables are observed in pairs. To con-

struct the scatter plot, each value of y is plotted against its corresponding value of x. If the y val-

ues tend to increase or decrease in a straight-line fashion as the x values increase, and if there is a

scattering of the (x, y) points around the straight line, then it is reasonable to describe the relation-

ship between y and x by using the simple linear regression model. We illustrate this in the follow-

ing case study.

Explain the
simple

linear regression
model.

LO1

anagers often make decisions by studying

the relationships between variables, and

process improvements can often be made

by understanding how changes in one or more

variables affect the process output. Regression

analysis is a statistical technique in which we use

observed data to relate a variable of interest, which

is called the dependent (or response) variable, to one

or more independent (or predictor) variables. The

objective is to build a regression model, or prediction

equation, that can be used to describe, predict, and

control the dependent variable on the basis of the

independent variables. For example, a company

might wish to improve its marketing process. After

collecting data concerning the demand for a

product, the product’s price, and the advertising

M

EXAMPLE 13.1 The Tasty Sub Shop Case: Predicting Yearly 
Revenue for a Potential Restaurant Site

Part 1: Purchasing a restaurant franchise Quiznos Sub Shops and other restaurant

chains sell franchises to business entrepreneurs. Unlike McDonald’s, Pizza Hut, and certain

other chains, Quiznos does not construct a standard, recognizable building to house each of its

restaurants. Instead, the entrepreneur wishing to purchase a Quiznos franchise finds a suitable

site, which includes a suitable geographical location and suitable store space to rent. Then, when

Quiznos approves the site, Quiznos hires an architect and a contractor to remodel the store rental

space and thus “build” the Quiznos restaurant. Quiznos will help an entrepreneur evaluate po-

tential sites, will help negotiate leases, and will provide national advertising and other support

once a franchise is purchased. However, strict regulations prevent Quiznos (and other chains)

from predicting how profitable an entrepreneur’s potential restaurant might be. These regulations

C



exist to prevent restaurant chains from overpredicting profit and thus misleading an entrepreneur

into purchasing a franchise that might not be successful. As stated on the Quiznos website:1

There are strict regulations in the franchise industry that limit our ability to estimate how successful

your business could be. You need to do this yourself, but we can give some guidance. . . . Your sales

primarily depend on the quality of the site, and your skill as an operator. So to estimate what your

sales might be, look at other Quiznos restaurants that are in similar sites to the one you are review-

ing. Find one with similar demographics (nearby employer and residence counts). . . . Ask that oper-

ator what their sales are.

Part 2: The Tasty Sub Shop Sales Data In this case study, we suppose that there is a restau-

rant chain—The Tasty Sub Shop—that is similar to Quiznos in the way it sells franchises to busi-

ness entrepreneurs. We will also suppose that there is an entrepreneur who has found several po-

tential sites for a Tasty Sub Shop restaurant. Similar to most existing Tasty Sub restaurant sites,

each of the entrepreneur’s sites is a store rental space located in an outdoor shopping area that is

close to one or more residential areas. For a Tasty Sub restaurant built on such a site, yearly rev-

enue is known to partially depend on (1) the number of residents living near the site and (2) the

amount of business and shopping near the site. Referring to the number of residents living near a

site as population size and to the yearly revenue for a Tasty Sub restaurant built on the site as

yearly revenue, the entrepreneur will—in this chapter—try in predict the dependent (response)

variable yearly revenue (y) on the basis of the independent (predictor) variable population

size (x). (In the next chapter the entrepreneur will also use the amount of business and shopping

near a site to help predict yearly revenue.) To predict yearly revenue on the basis of population

size, the entrepreneur chooses 10 existing Tasty Sub restaurants that are built on sites similar to

the sites that the entrepreneur is considering. The entrepreneur then asks the owner of each ex-

isting restaurant what the restaurant’s revenue y was last year and estimates—with the help of the

owner and published demographic information—the number of residents, or population size x,

living near the site. The values of y (measured in thousands of dollars) and x (measured in thousands

of residents) that are obtained are given in Table 13.1. In Figure 13.1 we give an Excel output

of a scatter plot of y versus x. This plot shows (1) a tendency for the yearly revenues to increase in

a straight-line fashion as the population sizes increase and (2) a scattering of points around the

straight line. A regression model describing the relationship between y and x must represent

these two characteristics. We now develop such a model.

Part 3: The simple linear regression model The simple linear regression model relating

y to x can be expressed as follows:

y  b0  b1x  e
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1www.quiznosfranchises.com/top-food-franchise-faqs.

T A B L E 1 3 . 1 The Tasty Sub Shop

Revenue Data

TastySub1DS

Population Yearly
Size, x Revenue, y
(Thousands (Thousands

Restaurant of Residents) of Dollars)

1 20.8 527.1

2 27.5 548.7

3 32.3 767.2

4 37.2 722.9

5 39.6 826.3

6 45.1 810.5

7 49.9 1040.7

8 55.4 1033.6

9 61.7 1090.3

10 64.6 1235.8

Population Revenue1
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F I G U R E 1 3 . 1 Excel Output of a Scatter Plot of y versus x
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This model says that the values of y can be represented by a mean level— —that

changes in a straight line fashion as x changes, combined with random fluctuations—described

by the error term —that cause the values of y to deviate from the mean level. Here:

1 The mean level is the mean yearly revenue corresponding to a particular

population size x. That is, noting that different Tasty Sub restaurants could potentially be

built near different populations of the same size x, the mean level is the

mean of the yearly revenues that would be obtained by all such restaurants. In addition,

because is the equation of a straight line, the mean yearly revenues that

correspond to increasing values of the population size x lie on a straight line. For example,

Table 13.1 tells us that 32,300 residents live near restaurant 3 and 45,100 residents live near

restaurant 6. It follows that the mean yearly revenue for all Tasty Sub restaurants that could

potentially be built near populations of 32,300 residents is Similarly, the

mean yearly revenue for all Tasty Sub restaurants that could potentially be built near popu-

lations of 45,100 residents is Figure 13.2 depicts these two mean yearly

revenues as triangles that lie on the straight line which we call the line of

means. The unknown parameters and are the y-intercept and the slope of the line of

means. When we estimate and in the next subsection, we will be able to estimate

mean yearly revenue on the basis of the population size x.

2 The y-intercept of the line of means can be understood by considering Figure 13.2. As

illustrated in this figure, the y-intercept is the mean yearly revenue for all Tasty Sub

restaurants that could potentially be built near populations of zero residents. However, since

it is unlikely that a Tasty Sub restaurant would be built near a population of zero residents,

this interpretation of is of dubious practical value. There are many regression situations

where the y-intercept lacks a practical interpretation. In spite of this, statisticians have

found that is almost always an important component of the line of means and thus of the

simple linear regression model.

3 The slope of the line of means can also be understood by considering Figure 13.2. As

illustrated in this figure, the slope is the change in mean yearly revenue that is associated

with a one-unit increase (that is, a 1,000 resident increase) in the population size x.

4 The error term of the simple linear regression model accounts for any factors affecting

yearly revenue other than the population size x. Such factors would include the amount of
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810.5   The observed yearly revenue for restaurant 6

Mean yearly revenue when x is 45.1   ␤0   ␤1(45.1)

The error term for restaurant 6 (a negative error term)

The y-intercept ␤0

The line of means: y   ␤0   ␤1x
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increase in x
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767.2   The observed yearly revenue for restaurant 3

Mean yearly revenue when x is 32.3   ␤0   ␤1(32.3)

The error term for restaurant 3 (a positive error term)

F I G U R E 1 3 . 2 The Simple Linear Regression Model Relating Yearly Revenue (y) to Population (x)



business and shopping near a restaurant and the skill of the owner as an operator of the

restaurant. For example, Figure 13.2 shows that the error term for restaurant 3 is positive.

Therefore, the observed yearly revenue y 767.2 for restaurant 3 is above the correspond-

ing mean yearly revenue for all restaurants that have x 32.3. As another example, Fig-

ure 13.2 also shows that the error term for restaurant 6 is negative. Therefore, the observed

yearly revenue y 810.5 for restaurant 6 is below the corresponding mean yearly revenue

for all restaurants that have x  45.1. Of course, since we do not know the true values of 

and the relative positions of the quantities pictured in Figure 13.2 are only hypothetical.

With the Tasty Sub Shop example as background, we are ready to define the simple linear

regression model relating the dependent variable y to the independent variable x. We sup-

pose that we have gathered n observations—each observation consists of an observed value of x

and its corresponding value of y. Then:

b1,

b0

520 Chapter 13 Simple Linear Regression Analysis
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x

y-intercept

One-unit change
in x

Slope    1

Error
term

An observed
value of y
when x equals x0

Mean value of y
when x equals x0

Straight line defined
by the equation
 y    0    1x

x0   A specific value of
 the independent
 variable x

0

 0

F I G U R E 1 3 . 3 The Simple Linear Regression Model (Here the Slope B1 Is Positive)

The Simple Linear Regression Model

associated with a one-unit increase in x. If b1 is

positive, the mean value of y increases as x

increases. If b1 is negative, the mean value of y

decreases as x increases.

4 e is an error term that describes the effects on y

of all factors other than the value of the inde-

pendent variable x.

The simple linear (or straight line) regression model is: y  b0  b1x e

Here

1 my   b0 b1x is the mean value of the dependent

variable y when the value of the independent

variable is x.

2 b0 is the y-intercept. b0 is the mean value of y

when x equals zero.

3 b1 is the slope. b1 is the change (amount of

increase or decrease) in the mean value of y

This model is illustrated in Figure 13.3 (note that x0 in this figure denotes a specific value of the

independent variable x). The y-intercept b0 and the slope b1 are called regression parameters.
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In addition, we have interpreted the slope b1 to be the change in the mean value of y associated

with a one-unit increase in x. We sometimes refer to this change as the effect of the independent

variable x on the dependent variable y. However, we cannot prove that a change in an indepen-

dent variable causes a change in the dependent variable. Rather, regression can be used only to

establish that the two variables move together and that the independent variable contributes in-

formation for predicting the dependent variable. For instance, regression analysis might be used

to establish that as liquor sales have increased over the years, college professors’ salaries have

also increased. However, this does not prove that increases in liquor sales cause increases in col-

lege professors’ salaries. Rather, both variables are influenced by a third variable—long-run

growth in the national economy.

The least squares point estimates Suppose that we have gathered n observations 

where each observation consists of a value of an independent variable x

and a corresponding value of a dependent variable y. Also, suppose that a scatter plot of the n

observations indicates that the simple linear regression model relates y to x. In order to estimate

the y-intercept and the slope of the line of means of this model, we could visually draw a

line—called an estimated regression line—through the scatter plot. Then, we could read the

y-intercept and slope off the estimated regression line and use these values as the point estimates

of and . Unfortunately, if different people visually drew lines through the scatter plot, their

lines would probably differ from each other. What we need is the “best line” that can be drawn

through the scatter plot. Although there are various definitions of what this best line is, one of the

most useful best lines is the least squares line.

To understand the least squares line, we let

denote the general equation of an estimated regression line drawn through a scatter plot. Here,

since we will use this line to predict y on the basis of x, we call the predicted value of y when

the value of the independent variable is x. In addition, is the y-intercept and is the slope of

the estimated regression line. When we determine numerical values for and , these values

will be the point estimates of the y-intercept and the slope of the line of means. To explain

which estimated regression line is the least squares line, we begin with the Tasty Sub Shop

situation. Figure 13.4 shows an estimated regression line drawn through a scatter plot of the Tasty

b1b0

b1b0

b1b0

ŷ

ŷ  b0  b1x

b1b0

b1b0

(x2, y2), . . . , (xn, yn),
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F I G U R E 1 3 . 4 An Estimated Regression Line Drawn through the Tasty Sub Shop Revenue Data
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Sub Shop revenue data. In this figure the red dots represent the 10 observed yearly revenues and

the black squares represent the 10 predicted yearly revenues given by the estimated regression

line. Furthermore, the line segments drawn between the red dots and black squares represent

residuals, which are the differences between the observed and predicted yearly revenues.

Intuitively, if a particular estimated regression line provides a good “fit” to the Tasty Sub Shop

revenue data, it will make the predicted yearly revenues “close” to the observed yearly revenues,

and thus the residuals given by the line will be small. The least squares line is the line that min-

imizes the sum of squared residuals. That is, the least squares line is the line positioned on the

scatter plot so as to minimize the sum of the squared vertical distances between the observed and

predicted yearly revenues.

To define the least squares line in a general situation, consider an arbitrary observation 

in a sample of n observations. For this observation, the predicted value of the dependent vari-

able y given by an estimated regression line is

Furthermore, the difference between the observed and predicted values of y, is the

residual for the observation, and the sum of squared residuals for all n observations is

The least squares line is the line that minimizes SSE. To find this line, we find the values of the

y-intercept and slope that give values of that minimize SSE. These values of

are called the least squares point estimates of Using calculus, it can be

shown that these estimates are calculated as follows:2

b0 and b1.b0 and b1

ŷi  b0  b1xib1b0

SSE  a
n

i 1

(yi  ŷi)
2

yi  ŷi,

ŷi  b0  b1xi

(xi, yi)
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The following example illustrates how to calculate these point estimates and how to use these

point estimates to estimate mean values and predict individual values of the dependent variable.

Note that the quantities SSxy and SSxx used to calculate the least squares point estimates are also

used throughout this chapter to perform other important calculations.

2In order to simplify notation, we will often drop the limits on summations in this and subsequent chapters. That is, instead of

using the summation we will simply writea .a
n

i 1

The Least Squares Point Estimates

For the simple linear regression model:

1 The least squares point estimate of the slope B1 is where

and

2 The least squares point estimate of the y-intercept B0 is where

Here n is the number of observations (an observation is an observed value of x and its corresponding

value of y).

y  
a yi

n
    and    x  

a xi

n

b0  y  b1x

SSxx  a (xi  x )2
 a x2

i  

冢a xi冣
2

n
 SSxy  a (xi  x )(yi  y )  a xiyi  

冢a xi冣冢a yi冣
n

b1  
SSxy

SSxx
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EXAMPLE 13.2 The Tasty Sub Shop Case

Part 1: Calculating the least squares point estimates Again consider the Tasty Sub

Shop problem. To compute the least squares point estimates of the regression parameters b0 and

b1 we first calculate the following preliminary summations:

yi xi xiyi

527.1 20.8 (20.8)2  432.64 (20.8)(527.1)  10963.68

548.7 27.5 (27.5)2  756.25 (27.5)(548.7)  15089.25

767.2 32.3 (32.3)2  1,043.29 (32.3)(767.2)  24780.56

722.9 37.2 (37.2)2  1,383.84 (37.2)(722.9)  26891.88

826.3 39.6 (39.6)2  1,568.16 (39.6)(826.3)  32721.48

810.5 45.1 (45.1)2  2,034.01 (45.1)(810.5)  36553.55

1040.7 49.9 (49.9)2  2,490.01 (49.9)(1040.7)  51930.93

1033.6 55.4 (55.4)2  3,069.16 (55.4)(1033.6)  57261.44

1090.3 61.7 (61.7)2  3,806.89 (61.7)(1090.3)  67271.51

1235.8 64.6 (64.6)2  4,173.16 (64.6)(1235.8)  79832.68

Using these summations, we calculate SSxy and SSxx as follows.

It follows that the least squares point estimate of the slope b1 is

Furthermore, because

the least squares point estimate of the y-intercept b0 is

(where we have used more decimal place accuracy than shown to obtain the result 183.31).

Since b1 15.596, we estimate that mean yearly revenue at Tasty Sub restaurants increases

by 15.596 (that is by $15,596) for each one-unit (1,000 resident) increase in the population size

x. Since b0 183.31, we estimate that mean yearly revenue for all Tasty Sub restaurants that

could potentially be built near populations of zero residents is $183,310. However, since it is un-

likely that a Tasty Sub restaurant would be built near a population of zero residents, this inter-

pretation is of dubious practical value.

The least squares line

is sometimes called the least squares prediction equation. In Table 13.2 (on the next page) we

summarize using this prediction equation to calculate the predicted yearly revenues and the

ŷ  b0  b1x  183.31  15.596x

b0  y  b1x  860.31  (15.596)(43.41)  183.31

y  
a yi

n
 

8603.1

10
 860.31    and    x  

a xi

n
 

434.1

10
 43.41

b1  
SSxy

SSxx
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residuals for the 10 observed Tasty Sub restaurants. For example, since the population size for

restaurant 1 was 20.8, the predicted yearly revenue for restaurant 1 is

It follows, since the observed yearly revenue for restaurant 1 was that the residual

for restaurant 1 is

If we consider all of the residuals in Table 13.2 and add their squared values, we find that SSE,

the sum of squared residuals, is 30,460.21. This SSE value will be used throughout this chapter.

Figure 13.5 gives the MINITAB output of the least squares line. Note that this output gives

(within rounding) the least squares estimates and In general, we will

rely on Excel and MINITAB to compute the least squares estimates (and to perform many other

regression calculations).

Part 2: Estimating a mean yearly revenue and predicting an individual yearly
revenue We define the experimental region to be the range of the previously observed pop-

ulation sizes. Referring to Table 13.2, we see that the experimental region consists of the range

b1  15.60.b0  183.3

y1  ŷ1  527.1  507.69  19.41

y1  527.1,

ŷ1  183.31  15.596(20.8)  507.69

524 Chapter 13 Simple Linear Regression Analysis

T A B L E 1 3 . 2 Calculation of SSE Obtained by Using the Least Squares Point Estimates

yi xi   183.31  15.596xi yi  

527.1 20.8 183.31  15.596(20.8)  507.69 19.41

548.7 27.5 183.31  15.596(27.5)  612.18  63.48

767.2 32.3 687.04 80.16

722.9 37.2 763.46  40.56

826.3 39.6 800.89 25.41

810.5 45.1 886.67  76.17

1040.7 49.9 961.53 79.17

1033.6 55.4 1047.30  13.70

1090.3 61.7 1145.55  55.25

1235.8 64.6 1190.78 45.02

Note: the predictions and residuals in this table are taken from MINITAB, which uses values of b0 and b1 that are more
precise than the rounded values we have calculated by hand. If you use the formula  183.31  15.596xi, your fig-
ures may differ slightly from those given here.

 y ˆ i

SSE  a ( yi  ŷi )
2
 (19.41)2
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F I G U R E 1 3 . 5 The MINITAB Output of the Least Squares Line
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of population sizes from 20.8 to 64.6. The simple linear regression model relates yearly revenue

y to population size x for values of x that are in the experimental region. For such values of x, the

least squares line is the estimate of the line of means. It follows that the point on the least squares

line corresponding to a population size of x

is the point estimate of the mean yearly revenue for all Tasty Sub restaurants that could

potentially be built near populations of size x. In addition, we predict the error term to be 0.

Therefore, is also the point prediction of an individual value which is the

yearly revenue for a single (individual) Tasty Sub restaurant that is built near a population of size

x. Note that the reason we predict the error term to be zero is that, because of several regression

assumptions to be discussed in the next section, has a 50 percent chance of being positive and a

50 percent chance of being negative.

For example, suppose that one of the business entrepreneur’s potential restaurant sites is near

a population of 47,300 residents. Because x  47.3 is in the experimental region,

(that is, $921,000)

is

1 The point estimate of the mean yearly revenue for all Tasty Sub restaurants that could

potentially be built near populations of 47,300 residents.

2 The point prediction of the yearly revenue for a single Tasty Sub restaurant that is built

near a population of 47,300 residents.

Figure 13.6 illustrates as a square on the least squares line. Moreover, suppose that the

yearly rent and other fixed costs for the entrepreneur’s potential restaurant will be $257,550 and

that (according to Tasty Sub corporate headquarters) the yearly food and other variable costs for

the restaurant will be 60 percent of the yearly revenue. Because we predict that the yearly revenue

ŷ  921.0

 921.0

ŷ  183.31  15.596(47.3)

e

e

y  b0  b1x  e,ŷ

e

b0  b1x,

ŷ  b0  b1x

F I G U R E 1 3 . 6 Point Estimation and Point Prediction, and the Danger of Extrapolation
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for the restaurant will be $921,000, it follows that we predict that the yearly total operating cost for

the restaurant will be $257,550  .6($921,000)  $810,150. In addition, if we subtract this pre-

dicted yearly operating cost from the predicted yearly revenue of $921,000, we predict that the

yearly profit for the restaurant will be $110,850. Of course, these predictions are point predictions.

In section 13.4 we will predict the restaurant’s yearly revenue and profit with confidence.

To conclude this example, note that Figure 13.6 illustrates the potential danger of using

the least squares line to predict outside the experimental region. In the figure, we extrapolate

the least squares line beyond the experimental region to obtain a prediction for a population

size of As shown in Figure 13.6, for values of x in the experimental region (that is, be-

tween 20.8 and 64.6) the observed values of y tend to increase in a straight-line fashion as the

values of x increase. However, for population sizes greater than we have no data to

tell us whether the relationship between y and x continues as a straight-line relationship or, pos-

sibly, becomes a curved relationship. If, for example, this relationship becomes the sort of curved

relationship shown in Figure 13.6, then extrapolating the straight-line prediction equation to ob-

tain a prediction for would overestimate mean yearly revenue (see Figure 13.6).

The previous example illustrates that when we are using a least squares regression line, we

should not estimate a mean value or predict an individual value unless the corresponding value

of x is in the experimental region—the range of the previously observed values of x. Often the

value x 0 is not in the experimental region. In such a situation, it would not be appropriate to

interpret the y-intercept b0 as the estimate of the mean value of y when x equals 0. For example,

consider the Tasty Sub Shop problem. Figure 13.6 illustrates that the population size x 0 is not

in the experimental region. Therefore, it would not be appropriate to use b0  183.31 as the point

estimate of the mean yearly revenue for all Tasty Sub restaurants that could potentially be built

near populations of zero residents. Because it is not meaningful to interpret the y-intercept in

many regression situations, we often omit such interpretations.

We now present a general procedure for estimating a mean value and predicting an individual

value:

x  90

x  64.6,

x  90.
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Point Estimation and Point Prediction in Simple Linear Regression

1 is the point estimate of the mean value of the

dependent variable when the value of the inde-

pendent variable is x0. 

2 is the point prediction of an individual value of

the dependent variable when the value of the

independent variable is x0. Here we predict the

error term to be 0.

Let b0 and b1 be the least squares point estimates

of the y-intercept b0 and the slope b1 in the simple

linear regression model, and suppose that x0, a spec-

ified value of the independent variable x, is inside

the experimental region. Then

ŷ  b0  b1x0

Exercises for Section 13.1
CONCEPTS

13.1 What is the least squares regression line, and what are the least squares point estimates?

13.2 Why is it dangerous to extrapolate outside the experimental region?

METHODS AND APPLICATIONS

In Exercises 13.3 through 13.8 we present six data sets involving a dependent variable y and an indepen-

dent variable x. For each data set, assume that the simple linear regression model

relates y to x.

13.3 THE FUEL CONSUMPTION CASE FuelCon1

On the next page we give the average hourly outdoor temperature (x) in a city during a week and

the city’s natural gas consumption (y) during the week for each of eight weeks (the temperature

readings are expressed in degrees Fahrenheit and the natural gas consumptions are expressed in

DS

y  b0  b1x  e
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millions of cubic feet of natural gas—denoted MMcf). The output to the right of the data is obtained

when MINITAB is used to fit a least squares line to the natural gas (fuel) consumption data.

a Find the least squares point estimates b0 and b1 on the computer output and report their values.

Interpret b0 and b1 . Is an average hourly temperature of 0 F in the experimental region? What

does this say about the interpretation of b0?

b Use the facts that and to hand

calculate (within rounding) b0 and b1. 

c Use the least squares line to compute a point estimate of the mean fuel consumption for all

weeks having an average hourly temperature of 40°F and a point prediction of the fuel con-

sumption for an individual week having an average hourly temperature of 40°F.

13.4 THE STARTING SALARY CASE StartSal

The chairman of the marketing department at a large state university undertakes a study to relate

starting salary (y) after graduation for marketing majors to grade point average (GPA) in major

courses. To do this, records of seven recent marketing graduates are randomly selected, and the

data shown below on the left are obtained. The MINITAB output obtained by fitting a least squares

regression line to the data is below on the right.

DS

x  43.98y  10.2125;SSxx  1,404.355;SSxy   179.6475;

Average Hourly Weekly Fuel
Temperature, Consumption, 

Week x (ºF) y (MMcf)

1 28.0 12.4

2 28.0 11.7

3 32.5 12.4

4 39.0 10.8

5 45.9 9.4

6 57.8 9.5

7 58.1 8.0

8 62.5 7.5
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Starting Salary, 
Marketing y (Thousands 
Graduate GPA, x of Dollars)

1 3.26 33.8

2 2.60 29.8

3 3.35 33.5

4 2.86 30.4

5 3.82 36.4

6 2.21 27.6

7 3.47 35.3
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Fitted Line Plot

StartSal = 14.82 + 5.707 GPA

a Find the least squares point estimates b0 and b1 on the computer output and report their values.

Interpret b0 and b1. Does the interpretation of b0 make practical sense?

b Use the least squares line to compute a point estimate of the mean starting salary for all

marketing graduates having a grade point average of 3.25 and a point prediction of the

starting salary for an individual marketing graduate having a grade point average of 3.25.

13.5 THE SERVICE TIME CASE SrvcTime

Accu-Copiers, Inc., sells and services the Accu-500 copying machine. As part of its standard service

contract, the company agrees to perform routine service on this copier. To obtain information about

the time it takes to perform routine service, Accu-Copiers has collected data for 11 service calls. The

data and Excel output from fitting a least squares regression line to the data follow on the next page.

DS



a Find the least squares point estimates b0 and b1 on the computer output and report their values.

Interpret b0 and b1. Does the interpretation of b0 make practical sense?

b Use the least squares line to compute a point estimate of the mean time to service four copiers

and a point prediction of the time to service four copiers on a single call.

13.6 THE FRESH DETERGENT CASE Fresh

Enterprise Industries produces Fresh, a brand of liquid laundry detergent. In order to study the

relationship between price and demand for the large bottle of Fresh, the company has gathered data

concerning demand for Fresh over the last 30 sales periods (each sales period is four weeks). Here,

for each sales period,

y   demand for the large bottle of Fresh (in hundreds of thousands of bottles) in the sales

period, and

x   the difference between the average industry price (in dollars) of competitors’ similar

detergents and the price (in dollars) of Fresh as offered by Enterprise Industries in the

sales period.

The data and MINITAB output from fitting a least squares regression line to the data follow

below.

DS

528 Chapter 13 Simple Linear Regression Analysis

Service Number of Copiers Number of Minutes
Call Serviced, x Required, y

1 4 109

2 2 58

3 5 138

4 7 189

5 1 37

6 3 82

7 4 103

8 5 134

9 2 68

10 4 112

11 6 154

SrvcTimeDS

Copiers Line Fit Plot
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Fresh Detergent Demand Data
Sales Sales
Period y x Period y x

1 7.38  .05 24 8.50 .10

2 8.51 .25 25 8.75 .50

3 9.52 .60 26 9.21 .60

4 7.50 0 27 8.27  .05

5 9.33 .25 28 7.67 0

6 8.28 .20 29 7.93 .05

7 8.75 .15 30 9.26 .55

8 7.87 .05

9 7.10  .15

10 8.00 .15

11 7.89 .20

12 8.15 .10

13 9.10 .40

14 8.86 .45

15 8.90 .35

16 8.87 .30

17 9.26 .50

18 9.00 .50

19 8.75 .40

20 7.95  .05

21 7.65  .05

22 7.27  .10

23 8.00 .20
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a Find the least squares point estimates b0 and b1 on the computer output and report their values.

Interpret b0 and b1. Does the interpretation of b0 make practical sense?

b Use the least squares line to compute a point estimate of the mean demand in all sales periods

when the price difference is .10 and a point prediction of the actual demand in an individual

sales period when the price difference is .10.

13.7 THE DIRECT LABOR COST CASE DirLab

An accountant wishes to predict direct labor cost (y) on the basis of the batch size (x) of a product

produced in a job shop. Data for 12 production runs are given in the table below, along with the

Excel output from fitting a least squares regression line to the data.

DS

Direct Labor Cost 
Data DirLab

Direct
Labor Cost, Batch
y ($100s) Size, x

71 5

663 62

381 35

138 12

861 83

145 14

493 46

548 52

251 23

1024 100

435 41

772 75

DS
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a By using the formulas illustrated in Example 13.2 (see page 523) and the data provided,

verify that (within rounding) b0 18.488 and b1 10.146, as shown on the Excel output.

b Interpret the meanings of b0 and b1. Does the interpretation of b0 make practical sense?

c Write the least squares prediction equation.

d Use the least squares line to obtain a point estimate of the mean direct labor cost for all 

batches of size 60 and a point prediction of the direct labor cost for an individual batch of

size 60.

13.8 THE REAL ESTATE SALES PRICE CASE RealEst

A real estate agency collects data concerning the sales price of a house (in thousands of

dollars), and the home size (in hundreds of square feet). The data are given in the table 

below. The MINITAB output from fitting a least squares regression line to the data is on the 

next page.

x  

y  

DS

Real Estate Sales Price Data RealEst

Sales Home Sales Home
Price (y) Size (x) Price (y) Size (x)

180 23 165.9 21

98.1 11 193.5 24

173.1 20 127.8 13

136.5 17 163.5 19

141 15 172.5 25

Source: Reprinted with permission from The Real Estate Appraiser and

Analyst Spring 1986 issue. Copyright 1986 by the Appraisal Institute,
Chicago, Illinois.

DS



a By using the formulas illustrated in Example 13.2 (see page 523) and the data provided,

verify that (within rounding) b0 48.02 and b1 5.700, as shown on the MINITAB output.

b Interpret the meanings of b0 and b1. Does the interpretation of b0 make practical sense?

c Write the least squares prediction equation.

d Use the least squares line to obtain a point estimate of the mean sales price of all houses 

having 2,000 square feet and a point prediction of the sales price of an individual house 

having 2,000 square feet.

13.2 Model Assumptions and the Standard Error 
Model assumptions In order to perform hypothesis tests and set up various types of inter-

vals when using the simple linear regression model

y  b0   b1x   e

we need to make certain assumptions about the error term e. At any given value of x, there is a

population of error term values that could potentially occur. These error term values describe the

different potential effects on y of all factors other than the value of x. Therefore, these error term

values explain the variation in the y values that could be observed when the independent variable

is x. Our statement of the simple linear regression model assumes that my, the mean of the popu-

lation of all y values that could be observed when the independent variable is x, is b0 b1x.

This model also implies that e y (b0 b1x), so this is equivalent to assuming that the mean

of the corresponding population of potential error term values is 0. In total, we make four

assumptions—called the regression assumptions—about the simple linear regression model.

These assumptions can be stated in terms of potential y values or, equivalently, in terms of

potential error term values. Following tradition, we begin by stating these assumptions in terms

of potential error term values:
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Home Size
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SalesPrice = 48.02 + 5.700 HomeSize

The Regression Assumptions

3 Normality Assumption

At any given value of x, the population of poten-

tial error term values has a normal distribution.

4 Independence Assumption

Any one value of the error term E is statistically

independent of any other value of E. That is, the

value of the error term E corresponding to an

observed value of y is statistically independent

of the value of the error term corresponding to

any other observed value of y.

1 At any given value of x, the population of poten-

tial error term values has a mean equal to 0.

2 Constant Variance Assumption

At any given value of x, the population of

potential error term values has a variance that

does not depend on the value of x. That is, the

different populations of potential error term

values corresponding to different values of x

have equal variances. We denote the constant

variance as 2.

Describe
the assump-

tions behind simple
linear regression
and calculate the
standard error.

LO3
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Taken together, the first three assumptions say that, at any given value of x, the population of

potential error term values is normally distributed with mean zero and a variance S2 that

does not depend on the value of x. Because the potential error term values cause the variation

in the potential y values, these assumptions imply that the population of all y values that could

be observed when the independent variable is x is normally distributed with mean B0  B1x

and a variance S2 that does not depend on x. These three assumptions are illustrated in

Figure 13.7 in the context of the Tasty Sub Shop problem. Specifically, this figure depicts

the populations of yearly revenues corresponding to two values of the population size x—32.3

and 61.7. Note that these populations are shown to be normally distributed with different means

(each of which is on the line of means) and with the same variance (or spread).

The independence assumption is most likely to be violated when time series data are being uti-

lized in a regression study. For example, the fuel consumption data in Exercise 13.3 are time se-

ries data. Intuitively, the independence assumption says that there is no pattern of positive error

terms being followed (in time) by other positive error terms, and there is no pattern of positive

error terms being followed by negative error terms. That is, there is no pattern of higher-than-

average y values being followed by other higher-than-average y values, and there is no pattern of

higher-than-average y values being followed by lower-than-average y values.

It is important to point out that the regression assumptions very seldom, if ever, hold exactly

in any practical regression problem. However, it has been found that regression results are not

extremely sensitive to mild departures from these assumptions. In practice, only pronounced

departures from these assumptions require attention. In optional Section 13.9 we show how to

check the regression assumptions. Prior to doing this, we will suppose that the assumptions are

valid in our examples.

In Section 13.1 we stated that, when we predict an individual value of the dependent variable,

we predict the error term to be 0. To see why we do this, note that the regression assumptions

state that, at any given value of the independent variable, the population of all error term values

that can potentially occur is normally distributed with a mean equal to 0. Since we also assume

that successive error terms (observed over time) are statistically independent, each error term has

a 50 percent chance of being positive and a 50 percent chance of being negative. Therefore, it is

reasonable to predict any particular error term value to be 0.

The mean square error and the standard error To present statistical inference formulas

in later sections, we need to be able to compute point estimates of s2 and s, the constant variance

and standard deviation of the error term populations. The point estimate of s2 is called the mean

square error and the point estimate of s is called the standard error. In the following box, we

show how to compute these estimates:

F I G U R E 1 3 . 7 An Illustration of the Model Assumptions

1090.3   Observed value
 of y when x   61.7

Mean yearly revenue
when x   61.7

Mean yearly revenue when x   32.3

y

x
32.30 61.7

767.2   Observed value of y when x   32.3

y   ␤0   ␤1x



In order to understand these point estimates, recall that s2 is the variance of the population of

y values (for a given value of x) around the mean value my. Because is the point estimate of this

mean, it seems natural to use

to help construct a point estimate of s2. We divide SSE by n 2 because it can be proven that

doing so makes the resulting s2 an unbiased point estimate of s2. Here we call n 2 the number

of degrees of freedom associated with SSE.

SSE  a (yi  ŷi)
2

ŷ
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The Mean Square Error and the Standard Error

If the regression assumptions are satisfied and SSE is the sum of squared residuals:

1 The point estimate of s2 is the mean

square error

2 The point estimate of s is the standard

error

s  B
SSE

n  2
s2
 

SSE

n  2

EXAMPLE 13.3 The Tasty Sub Shop Case

Consider the Tasty Sub Shop situation, and recall that in Table 13.2 (page 524) we have calcu-

lated the sum of squared residuals to be SSE 30,460.21. It follows, because we have observed

n 10 yearly revenues, that the point estimate of s2 is the mean square error

This implies that the point estimate of s is the standard error

To conclude this section, note that in optional Section 13.10 we present a shortcut formula for

calculating SSE. The reader may study Section 13.10 now or at any later point.

s  2s2
 23807.526  61.7052

s2
 

SSE

n  2
 

30,460.21

10  2
 3807.526

C

Exercises for Section 13.2
CONCEPTS

13.9 What four assumptions do we make about the simple linear regression model?

13.10 What is estimated by the mean square error, and what is estimated by the standard error?

METHODS AND APPLICATIONS

13.11 THE FUEL CONSUMPTION CASE FuelCon1

When a least squares line is fit to the 8 observations in the fuel consumption data, we obtain 

SSE 2.568. Calculate s2 and s.

13.12 THE STARTING SALARY CASE StartSal

When a least squares line is fit to the 7 observations in the starting salary data, we obtain 

SSE 1.438. Calculate s2 and s.

13.13 THE SERVICE TIME CASE SrvcTime

When a least squares line is fit to the 11 observations in the service time data, we obtain 

SSE   191.7017. Calculate s2 and s.

DS

DS

DS
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13.14 THE FRESH DETERGENT CASE Fresh

When a least squares line is fit to the 30 observations in the Fresh detergent data, we obtain 

SSE   2.806. Calculate s2 and s.

13.15 THE DIRECT LABOR COST CASE DirLab

When a least squares line is fit to the 12 observations in the labor cost data, we obtain 

SSE 746.7624. Calculate s2 and s.

13.16 THE REAL ESTATE SALES PRICE CASE RealEst

When a least squares line is fit to the 10 observations in the real estate sales price data, we obtain

SSE 896.8. Calculate s2 and s.

13.17 Ten sales regions of equal sales potential for a company were randomly selected. The

advertising expenditures (in units of $10,000) in these 10 sales regions were purposely set

during July of last year at, respectively, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14. The sales volumes

(in units of $10,000) were then recorded for the 10 sales regions and found to be, respectively,

89, 87, 98, 110, 103, 114, 116, 110, 126, and 130. Assuming that the simple linear regression

model is appropriate, it can be shown that b0 66.2121, b1 4.4303, and SSE 222.8242. 

Calculate s2 and s. SalesPlot

13.3 Testing the Significance of the Slope 
and y-Intercept 

Testing the significance of the slope A simple linear regression model is not likely to be

useful unless there is a significant relationship between y and x. In order to judge the signifi-

cance of the relationship between y and x, we test the null hypothesis

H0: b1 0

which says that there is no change in the mean value of y associated with an increase in x, versus

the alternative hypothesis

Ha: b1 0

which says that there is a (positive or negative) change in the mean value of y associated with an

increase in x. It would be reasonable to conclude that x is significantly related to y if we can be

quite certain that we should reject H0 in favor of Ha.

In order to test these hypotheses, recall that we compute the least squares point estimate b1 of

the true slope b1 by using a sample of n observed values of the dependent variable y. Different

samples of n observed y values would yield different values of the least squares point estimate b1.

It can be shown that, if the regression assumptions hold, then the population of all possible val-

ues of b1 is normally distributed with a mean of b1 and with a standard deviation of

The standard error s is the point estimate of s, so it follows that a point estimate of is

which is called the standard error of the estimate b1. Furthermore, if the regression assump-

tions hold, then the population of all values of

has a t distribution with n 2 degrees of freedom. It follows that, if the null hypothesis

H0: b1 0 is true, then the population of all possible values of the test statistic

has a t distribution with n 2 degrees of freedom. Therefore, we can test the significance of the

regression relationship as follows:

t  
b1

sb1

b1  b1

sb1

sb1
 

s

1SSxx

sb1

sb1
 

s

1SSxx

DS

DS

DS

DS

Test the sig-
nificance of

the slope and
y-intercept.
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We usually use the two-sided alternative Ha: b1 0 for this test of significance. However,

sometimes a one-sided alternative is appropriate. For example, in the Tasty Sub Shop problem

we can say that if the slope b1 is not 0, then it must be positive. A positive b1 would say that

mean yearly revenue increases as the population size x increases. Because of this, it would be

appropriate to decide that x is significantly related to y if we can reject H0: b1 0 in favor of the

one-sided alternative Ha: b1 0. Although this test would be slightly more effective than the

usual two-sided test, there is little practical difference between using the one-sided or two-sided

alternative. Furthermore, computer packages (such as Excel and MINITAB) present results

for testing a two-sided alternative hypothesis. For these reasons we will emphasize the two-

sided test.

It should also be noted that

1 If we can decide that the slope is significant at the .05 significance level, then we have

concluded that x is significantly related to y by using a test that allows only a .05 probability

of concluding that x is significantly related to y when it is not. This is usually regarded as

strong evidence that the regression relationship is significant.

2 If we can decide that the slope is significant at the .01 significance level, this is usually

regarded as very strong evidence that the regression relationship is significant.

3 The smaller the significance level aa at which H0 can be rejected, the stronger is the

evidence that the regression relationship is significant.
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Testing the Significance of the Regression Relationship: Testing the 
Significance of the Slope

Define the test statistic

where

and suppose that the regression assumptions hold. Then we can test H0: b1  0 versus a particular

alternative hypothesis at significance level a (that is, by setting the probability of a Type I error equal to a)

by using the appropriate critical value rule, or, equivalently, the corresponding p-value.

sb1
 

s

1SSxx

t  
b1

sb1

Alternative Critical Value Rule:
Hypothesis Reject H0 if p-Value (reject H0 if p-value  A)

Ha: b1  0 Twice the area under the t curve
to the right of 

Ha: b1  0 t  ta The area under the t curve to 
the right of t

Ha: b1  0 t   ta The area under the t curve to
the left of t

冷 t 冷
冷 t 冷  ta兾2

Here tA兾2, tA, and all p-values are based on n 2 degrees of freedom. If we can reject H0: B1   0 at a given

value of A, then we conclude that the slope (or, equivalently, the regression relationship) is significant at

the A level.

EXAMPLE 13.4 The Tasty Sub Shop Case

Again consider the Tasty Sub Shop revenue model. For this model SSxx 1913.129, b1 15.596,

and s 61.7052 [see Examples 13.2 (page 523) and 13.3 (page 532)]. Therefore

and

t  
b1

sb1

 
15.596

1.411
 11.05

sb1
 

s

1SSxx

 
61.7052

11913.129
 1.411

C
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Figure 13.8 presents the Excel and MINITAB outputs of a simple linear regression analysis of

the Tasty Sub Shop revenue data. Note that b0 (labeled as on the outputs), b1 (labeled ), s (la-

beled ), (labeled ), and t (labeled ) are given on each of these outputs. (The other quan-

tities on the outputs will be discussed later.) In order to test versus at the

level of significance, we compare with which is

based on degrees of freedom. Because is greater than

we reject and conclude that there is strong evidence that the slope (re-

gression relationship) is significant. The p-value for testing H0 versus Ha is twice the area to the

right of under the curve of the t distribution having degrees of freedom.

Both the Excel and MINITAB outputs in Figure 13.8 tell us that this p-value is less than .001 (see

on the outputs). It follows that we can reject H0 in favor of Ha at level of significance .05, .01,

or .001, which implies that we have extremely strong evidence that the regression relationship

between x and y is significant.

7

n ⫺ 2 ⫽ 8冷 t 冷 ⫽ 11.05

H0 :b1 ⫽ 0t.025 ⫽ 2.306,

冷 t 冷 ⫽ 11.05n ⫺ 2 ⫽ 10 ⫺ 2 ⫽ 8

ta兾2 ⫽ t.025 ⫽ 2.306,冷 t 冷 ⫽ 11.05a ⫽ .05

Ha :  b1 � 0H0 :b1 ⫽ 0

64sb1
8

21

F I G U R E 1 3 . 8 Excel and MINITAB Outputs of a Simple Linear Regression Analysis 

of the Tasty Sub Shop Revenue Data

The regression equation is

Revenue = 183 + 15.6 Population

Predictor            Coef           SE Coef               T                   P

Constant 183.31             64.27            2.85               0.021

Population 15.596             1.411           11.05               0.000

S = 61.7052  R-Sq = 93.9%          R-Sq(adj) = 93.1%

Analysis of Variance

Source              DF            SS          MS         F      P-value

Regression 1        465316       465316      122.21         0.000

Residual Error 8         30460         3808

Total 9        495777

Predicted Values for New Observations

New Obs          Fit    SE Fit            95% CI               95% PI

1 921.0 20.3        (874.2, 967.7)      (771.2, 1070.7)

Values of Predictors for New Observations  

New Obs    Population                         

1 47.3

Regression Statistics

Multiple R 0.9688

R Square 0.9386

Adjusted R Square 0.9309

Standard Error 61.7052

Observations 10

ANOVA df SS MS F Significance F

Regression 1 465316.3004 465316.3004 122.2096 0.0000

Residual 8 30460.2086 3807.5261

Total 9 495776.5090

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 183.3051 64.2741 2.8519 0.0214 35.0888 331.5214

Population 15.5956 1.4107 11.0548 0.0000 12.3424 18.8488

point estimate of the y-intercept point estimate of the slope standard error of the estimate b0 standard error of the estimate b1

t for testing significance of the y-intercept t for testing significance of the slope p-values for t statistics standard error r2 Explained variation

Unexplained variation Total variation F(model) statistic p-value for F(model) point prediction when standard error

of the estimate 95% confidence interval when 95% prediction interval when 95% confidence interval for the slope b119x ⫽ 47.318x ⫽ 47.317ŷ

sŷ ⫽16x ⫽ 47.3ŷ ⫽15141312SSE ⫽11

109s ⫽8765

sb1
⫽4sb0
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EXAMPLE 13.5 The Tasty Sub Shop Case
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A Confidence Interval for the Slope

If the regression assumptions hold, a 100(1 A) percent confidence interval for the true slope B1 is

. Here is based on n   2 degrees of freedom.ta兾2[b1  ta兾2sb1
]

The Excel and MINITAB outputs in Figure 13.8 tell us that and Thus,

for instance, because t.025 based on degrees of freedom equals 2.306, a 95

percent confidence interval for b1 is

(where we have used more decimal place accuracy than shown to obtain the final result). This in-

terval says we are 95 percent confident that, if the population size increases by one thousand res-

idents, then mean yearly revenue will increase by at least $12,342 and by at most $18,849. Also,

because the 95 percent confidence interval for b1 does not contain 0, we can reject H0: b1 0 in

favor of Ha: b1 0 at level of significance .05. Note that the 95 percent confidence interval for b1

is given on the Excel output but not on the MINITAB output (see Figure 13.8).

Testing the significance of the y-intercept We can also test the significance of the 

y-intercept b0. We do this by testing the null hypothesis H0: b0 0 versus the alternative hypo-

thesis Ha: b0 0. If we can reject H0 in favor of Ha by setting the probability of a Type I error

equal to A, we conclude that the intercept B0 is significant at the A level. To carry out the

hypothesis test, we use the test statistic

Here the critical value and p-value conditions for rejecting H0 are the same as those given previ-

ously for testing the significance of the slope, except that t is calculated as For example, if

we consider the Tasty Sub Shop problem and the Excel and MINITAB outputs in Figure 13.8, we

see that b0 183.31, sb0
 64.27, t 2.85, and p-value .021. Because t   2.85  t.025   2.306

and p-value .05, we can reject H0: b0 0 in favor of Ha: b0 0 at the .05 level of significance.

This provides strong evidence that the y-intercept b0 does not equal 0 and thus is significant.

Therefore, we should include b0 in the Tasty Sub Shop revenue model.

In general, if we fail to conclude that the intercept is significant at a level of significance of .05,

it might be reasonable to drop the y-intercept from the model. However, it is common practice to

include the y-intercept whether or not H0: b0 0 is rejected. In fact, experience suggests that it is

definitely safest, when in doubt, to include the intercept b0.

b0兾sb0
.

t  
b0

sb0

  where  sb0
 s B

1

n
 

x 2

SSxx

  [12.342, 18.849]

 [b1  t.025sb1
]  [15.596  2.306(1.411)]

n  2  10  2  8

sb1
 1.411.b1  15.596

C

Exercises for Section 13.3
CONCEPTS

13.18 What do we conclude if we can reject H0: b1 0 in favor of Ha: b1 0 by setting

a a equal to .05? b a equal to .01?

13.19 Give an example of a practical application of the confidence interval for b1.

METHODS AND APPLICATIONS

In Exercises 13.20 through 13.25, we refer to Excel and MINITAB outputs of simple linear regression analy-

ses of the data sets related to the six case studies introduced in the exercises for Section 13.1. Using the

appropriate output for each case study,

a Find the least squares point estimates b0 and b1 of b0 and b1 on the output and report their values.

b Find SSE and s on the computer output and report their values.
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c Find and the t statistic for testing the significance of the slope on the output and report their values.

Show (within rounding) how t has been calculated by using b1 and sb1
from the computer output.

d Using the t statistic and appropriate critical value, test H0: b1 0 versus Ha : b1 0 by setting a equal

to .05. Is the slope (regression relationship) significant at the .05 level?

e Using the t statistic and appropriate critical value, test H0: b1 0 versus Ha : b1 0 by setting a

equal to .01. Is the slope (regression relationship) significant at the .01 level?

f Find the p-value for testing H0: b1 0 versus Ha: b1 0 on the output and report its value. Using the

p-value, determine whether we can reject H0 by setting a equal to .10, .05, .01, and .001. How much

evidence is there that the slope (regression relationship) is significant?

g Calculate the 95 percent confidence interval for b1 using numbers on the output. Interpret the interval.

h Calculate the 99 percent confidence interval for b1 using numbers on the output.

i Find and the t statistic for testing the significance of the y intercept on the output and report their val-

ues. Show (within rounding) how t has been calculated by using b0 and sb0
from the computer output.

j Find the p-value for testing H0: b0 0 versus Ha: b0 0 on the computer output and report its value.

Using the p-value, determine whether we can reject H0 by setting a equal to .10, .05, .01, and .001.

What do you conclude about the significance of the y intercept?

k Using the data set and s from the computer output, hand calculate (within rounding) SSxx, , and .

13.20 THE FUEL CONSUMPTION CASE FuelCon1

The Excel and MINITAB outputs of a simple linear regression analysis of the data set for this

case (see Exercise 13.3 on page 526) are given in Figures 13.9 and 13.10. Labeled Excel and

MINITAB outputs are on page 535 in Figure 13.8. Use whichever package is taught in your class.

13.21 THE STARTING SALARY CASE StartSal

The MINITAB output of a simple linear regression analysis of the data set for this case (see

Exercise 13.4 on page 527) is given in Figure 13.11. Recall that a labeled MINITAB regression

output is on page 535.

DS

DS

sb1
sb0

sb0

sb1

F I G U R E 1 3 . 9 Excel Output of a Simple Linear Regression Analysis of the Fuel Consumption Data

Regression Statistics

Multiple R 0.9484

R Square 0.8995

Adjusted R Square 0.8827

Standard Error 0.6542

Observations 8

ANOVA df SS MS F Significance F

Regression 1 22.9808 22.9808 53.6949 0.0003

Residual 6 2.5679 0.4280

Total 7 25.5488

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 15.8379 0.8018 19.7535 1.09E-06 13.8760 17.7997

TEMP –0.1279 0.0175 –7.3277 0.0003 –0.1706 –0.0852

F I G U R E 1 3 . 1 0 MINITAB Output of a Simple Linear Regression Analysis of the Fuel Consumption Data

The regression equation is

FuelCons = 15.8 - 0.128 Temp

Predictor            Coef        SE Coef            T           P

Constant 15.8379         0.8018        19.75       0.000

Temp -0.12792        0.01746        -7.33       0.000

S = 0.654209         R-Sq = 89.9%         R-Sq(adj) = 88.3%

Analysis of Variance

Source               DF            SS           MS         F     P

Regression 1        22.981       22.981        53.69         0.000

Residual Error 6         2.568        0.428

Total 7        25.549

Values of Predictors for New Obs   Predicted Values for New Observations

New Obs  Temp                      New Obs     Fit   SE Fit       95% CI           95% PI

1 40.0 1 10.721 0.241  (10.130, 11.312)  (9.015, 12.427)
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13.22 THE SERVICE TIME CASE SrvcTime

The Excel output of a simple linear regression analysis of the data set for this case (see

Exercise 13.5 on pages 527 and 528) is given in Figure 13.12. Recall that a labeled Excel

regression output is on page 535.

13.23 THE FRESH DETERGENT CASE Fresh

The MINITAB output of a simple linear regression analysis of the data set for this case (see

Exercise 13.6 on page 528) is given in Figure 13.13. Recall that a labeled MINITAB regression

output is on page 535.

13.24 THE DIRECT LABOR COST CASE DirLab

The Excel output of a simple linear regression analysis of the data set for this case (see Exercise

13.7 on page 529) is given in Figure 13.14. Recall that a labeled Excel regression output is on

page 535.

13.25 THE REAL ESTATE SALES PRICE CASE RealEst

The MINITAB output of a simple linear regression analysis of the data set for this case (see

Exercise 13.8 on page 529) is given in Figure 13.15. Recall that a labeled MINITAB regression

output is on page 535.

13.26 Find and interpret a 95 percent confidence interval for the slope b1 of the simple linear regression

model describing the sales volume data in Exercise 13.17 (page 533). SalesPlotDS

DS

DS

DS

DS

F I G U R E 1 3 . 1 1 MINITAB Output of a Simple Linear Regression Analysis of the 

Starting Salary Data

The regression equation is 

StartSal = 14.8 + 5.71 GPA 

Predictor    Coef  SE Coef      T      P         

Constant   14.816    1.235  12.00  0.000          

GPA        5.7066   0.3953  14.44  0.000 

S = 0.536321   R-Sq = 97.7%   R-Sq(adj) = 97.2% 

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression  1 59.942 59.942 208.39 0.000

Residual Error   5   1.438   0.288 

Total            6  61.380 

Values of Predictors for New Obs    Predicted Values for New Observations 

New Obs   GPA                       New Obs     Fit   SE Fit       95% CI            95% PI 

1  3.25                             1  33.362    0.213  (32.813, 33.911) (31.878, 34.846)

F I G U R E 1 3 . 1 2 Excel Output of a Simple Linear Regression Analysis of the 

Service Time Data

Regression Statistics

Multiple R 0.9952

R Square 0.9905

Adjusted R Square 0.9894

Standard Error 4.6152

Observations 11

ANOVA df SS MS F Significance F

Regression 1 19918.8438 19918.844 935.149 2.094E-10

Residual 9 191.7017 21.300184

Total 10 20110.5455

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 11.4641 3.4390 3.3335 0.0087 3.6845 19.2437

Copiers 24.6022 0.8045 30.5802 2.09E-10 22.7823 26.4221
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F I G U R E 1 3 . 1 3 MINITAB Output of a Simple Linear Regression Analysis of the Fresh 

Detergent Demand Data

The regression equation is 

Demand = 7.81 + 2.67 PriceDif

Predictor     Coef  SE Coef      T      P 

Constant   7.81409  0.07988  97.82  0.000 

PriceDif    2.6652   0.2585  10.31  0.000 

S = 0.316561   R-Sq = 79.2%   R-Sq(adj) = 78.4% 

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression       1  10.653  10.653  106.30  0.000 

Residual Error  28   2.806   0.100 

Total           29  13.459 

Values of Predictors for New Obs     Predicted Values for New Observations 

New Obs  PriceDif                    New Obs     Fit  SE Fit       95% CI            95% PI 

1     0.100                          1  8.0806  0.0648  (7.9479, 8.2133)  (7.4187, 8.7425) 

2     0.250                          2  8.4804  0.0586  (8.3604, 8.6004)  (7.8209, 9.1398) 

F I G U R E 1 3 . 1 4 Excel Output of a Simple Linear Regression Analysis of the 

Direct Labor Cost Data

Regression Statistics

Multiple R 0.9996

R Square 0.9993

Adjusted R Square 0.9992

Standard Error 8.6415

Observations 12

ANOVA df SS MS F Significance F

Regression 1 1024592.9043 1024592.9043 13720.4677 5.04E-17

Residual 10 746.7624 74.6762

Total 11 1025339.6667

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 18.4875 4.6766 3.9532 0.0027 8.0674 28.9076

BatchSize (x) 10.1463 0.0866 117.1344 5.04E-17 9.9533 10.3393

F I G U R E 1 3 . 1 5 MINITAB Output of a Simple Linear Regression Analysis of the Real Estate

Sales Price Data

The regression equation is 

SPrice = 48.0 + 5.70 HomeSize 

Predictor    Coef  SE Coef     T      P        

Constant    48.02    14.41  3.33  0.010              

HomeSize   5.7003   0.7457  7.64  0.000  

S = 10.5880     R-Sq = 88.0%      R-Sq(adj) = 86.5% 

Analysis of Variance 

Source          DF      SS      MS      F      P 

Regression       1  6550.7  6550.7  58.43  0.000 

Residual Error   8   896.8   112.1 

Total            9  7447.5 

Values of Predictors for New Obs    Predicted Values for New Observations    

New Obs  HomeSize                   New Obs     Fit  SE Fit       95% CI            95% PI 

      1      20.0                         1  162.03    3.47  (154.04, 170.02)  (136.34, 187.72) 



13.27 THE FAST-FOOD RESTAURANT RATING CASE FastFood

In the early 1990s researchers at The Ohio State University studied consumer ratings of six 

fast-food restaurants: Borden Burger, Hardee’s, Burger King, McDonald’s, Wendy’s, and White

Castle. Each of 406 randomly selected individuals gave each restaurant a rating of 1, 2, 3, 4, 5, or

6 on the basis of taste, and then ranked the restaurants from 1 through 6 on the basis of overall

preference. In each case, 1 is the best rating and 6 the worst. The mean ratings given by the 

406 individuals are given in the following table:

Mean Mean
Restaurant Taste Preference

Borden Burger 3.5659 4.2552

Hardee’s 3.329 4.0911

Burger King 2.4231 3.0052

McDonald’s 2.0895 2.2429

Wendy’s 1.9661 2.5351

White Castle 3.8061 4.7812

Figure 13.16 gives the Excel output of a simple linear regression analysis of this data. Here, mean

preference is the dependent variable and mean taste is the independent variable. Recall that a

labeled Excel regression output is given on page 535.

a Find the least squares point estimate b1 of b1 on the computer output. Report and interpret this

estimate.

b Find the 95 percent confidence interval for b1 on the output. Report and interpret the interval.

13.4 Confidence and Prediction Intervals 
We have seen that

is the point estimate of the mean value of y when the value of the independent variable x is .

We have also seen that is the point prediction of an individual value of y when the value of

the independent variable x is . In this section we will assess the accuracy of as both a point

estimate and a point prediction. To do this, we will find a confidence interval for the mean

value of y and a prediction interval for an individual value of y.

Because each possible sample of n values of the dependent variable gives values of and 

that differ from the values given by other samples, different samples give different values of

b1b0

ŷx0

ŷ

x0

ŷ  b0  b1x0

DS
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F I G U R E 1 3 . 1 6 Excel Output of a Simple Linear Regression Analysis of the Fast-Food 

Restaurant Rating Data

Regression Statistics

Multiple R 0.9873

R Square 0.9747

Adjusted R Square 0.9684

Standard Error 0.1833

Observations 6

ANOVA df SS MS F Significance F

Regression 1 5.1817 5.1817 154.2792 0.0002

Residual 4 0.1343 0.0336

Total 5 5.3160

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept  0.1602 0.3029  0.5289 0.6248  1.0011 0.6807

MeanTaste (x) 1.2731 0.1025 12.4209 0.0002 0.9885 1.5577

Calculate
and inter-

pret a confidence
interval for a mean
value and a predic-
tion interval for an
individual value.

LO5
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A confidence interval for the mean value of y is based on the estimated standard

deviation of the population of all possible values of This estimated standard deviation is

called the standard error of and is denoted If the regression assumptions hold, the formula

for is

Here, s is the standard error (see Section 13.2), is the average of the n previously observed

values of x, and 

As explained above, a confidence interval for the mean value of y is based on the standard

error A prediction interval for an individual value of y is based on a more complex standard

error: the estimated standard deviation of the population of all possible values of the pre-

diction error obtained when predicting y by We refer to this estimated standard deviation as the

standard error of and denote it as If the regression assumptions hold, the formula

for is

Intuitively, the “extra 1” under the radical in the formula for accounts for the fact that there

is more uncertainty in predicting an individual value than in estimating the

mean value (because we must predict the error term when predicting an individual

value). Therefore, as shown in the following summary box, the prediction interval for an indi-

vidual value of y is longer than the confidence interval for the mean value of y.
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ŷ.
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A Confidence Interval and a Prediction Interval

If the regression assumptions hold,

1 A 100(1  A) percent confidence interval for the mean value of y when x equals x0 is

2 A 100(1  A) percent prediction interval for an individual value of y when x equals x0 is

Here, is based on (n   2) degrees of freedom.ta兾2
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The summary box tells us that both the formula for the confidence interval and the formula for the

prediction interval use the quantity We will call this quantity the distance

value, because it is a measure of the distance between the value of x for which we will 

make a point estimate or a point prediction, and the average of the previously observed

values of x. The farther that is from which represents the center of the experimental re-

gion, the larger is the distance value, and thus the longer are both the confidence interval 

and the prediction interval Said

another way, when is farther from the center of the data, is likely to be less

accurate as both a point estimate and a point prediction.
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EXAMPLE 13.6 The Tasty Sub Shop Case
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In the Tasty Sub Shop problem, recall that one of the business entrepreneur’s potential sites is

near a population of 47,300 residents. Also, recall that

(that is, $921,000)

is the point estimate of the mean yearly revenue for all Tasty Sub restaurants that could poten-

tially be built near populations of 47,300 residents and is the point prediction of the yearly

revenue for a single Tasty Sub restaurant that is built near a population of 47,300 residents. Using

the information in Example 13.2 (page 523), we compute

Since s 61.7052 (see Example 13.3 on page 532) and since based on n 2 10 2 8

degrees of freedom equals 2.306, it follows that a 95 percent confidence interval for the mean

yearly revenue when is

This interval says we are 95 percent confident that the mean yearly revenue for all Tasty Sub

restaurants that could potentially be built near populations of 47,300 residents is between

$874,300 and $967,700.

Because the entrepreneur would be operating a single Tasty Sub restaurant that is built near a

population of 47,300 residents, the entrepreneur is interested in obtaining a prediction interval for

the yearly revenue of such a restaurant. A 95 percent prediction interval for this revenue is

  [921.0   2.306(61.7052) ]

  [921.0  149.77]

  [771.2, 1070.8]

This interval says that we are 95 percent confident that the yearly revenue for a single Tasty

Sub restaurant that is built near a population of 47,300 residents will be between $771,200 and

$1,070,800. Moreover, recall that the yearly rent and other fixed costs for the entrepreneur’s

potential restaurant will be $257,550 and that (according to Tasty Sub corporate headquarters)

the yearly food and other variable costs for the restaurant will be 60 percent of the yearly rev-

enue. Using the lower end of the 95 percent prediction interval [771.2, 1070.8], we predict that

(1) the restaurant’s yearly operating cost will be $257,550  .6($771,200)  $720,270 and

(2) the restaurant’s yearly profit will be $771,200  $720,270  $50,930. Using the upper end

of the 95 percent prediction interval [771.2, 1070.8], we predict that (1) the restaurant’s yearly

21.1079

[ ŷ   ta兾2s21  distance value]

  [874.3, 967.7]

  [921.0  46.74]

  [921.0  2.306(61.7052)1.1079]
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operating cost will be $257,550  .6($1,070,800)  $900,030 and (2) the restaurant’s yearly

profit will be $1,070,800  $900,030  $170,770. Combining the two predicted profits, it

follows that we are 95 percent confident that the potential restaurant’s yearly profit will be

between $50,930 and $170,770. If the entrepreneur decides that this is an acceptable range of

potential yearly profits, then the entrepreneur might decide to purchase a Tasty Sub franchise

for the potential restaurant site. In Chapter 14 we will use a multiple regression model to re-

duce the range of the predicted yearly profits for the potential Tasty Sub restaurant.

Below we repeat the bottom of the MINITAB output in Figure 13.8(b) on page 535. This out-

put gives (within rounding) the point estimate and prediction the 95 percent confi-

dence interval for the mean value of y when x equals 47.3, and the 95 percent prediction interval

for an individual value of y when x equals 47.3.

Although the MINITAB output does not directly give the distance value, it does give

under the heading “SE Fit.” A little algebra shows that this implies that

the distance value equals Specifically, because and , the distance

value equals Note that, because MINITAB rounds , this calculation

of the distance value is slightly less accurate than the previous hand calculation that obtained a

distance value of .1079.

To conclude this example, note that Figure 13.17 illustrates the MINITAB output of the 95 per-

cent confidence and prediction intervals corresponding to all values of x in the experimental region.

Here can be regarded as the center of the experimental region. Notice that the farther x0

is from the larger is the distance value and, therefore, the longer are the 95 percent

confidence and prediction intervals. These longer intervals are undesirable because they give us

less information about mean and individual values of y.
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x  43.41

sŷ(20.3兾61.7052)2
 .1082.

s  61.7052sŷ  20.3(sŷ兾s)2.
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Predicted Values for New Observations

New Obs     Fit   SE Fit       95% CI            95% PI

      1   921.0    20.3  (874.2, 967.7)  (771.2, 1070.7)

ŷ  921.0,
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Sub Shop Case
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CONCEPTS

13.28 What is the difference between a confidence interval and a prediction interval?

13.29 What does the distance value measure? How does the distance value affect a confidence or 

prediction interval?

METHODS AND APPLICATIONS

13.30 THE FUEL CONSUMPTION CASE FuelCon1

The following partial MINITAB regression output for the fuel consumption data relates to

predicting the city’s fuel consumption (in MMcf of natural gas) in a week that has an average

hourly temperature of 40°F.

a Report (as shown on the computer output) a point estimate of and a 95 percent confidence

interval for the mean fuel consumption for all weeks having an average hourly temperature

of 40°F.

b Report (as shown on the computer output) a point prediction of and a 95 percent prediction

interval for the fuel consumption in a single week that has an average hourly temperature of

40°F.

c Remembering that s   .6542; and hand calculate the

distance value when Remembering that the distance value equals , use s and

from the computer output to calculate (within rounding) the distance value using this for-

mula. Note that, because MINITAB rounds , the first hand calculation is the more accurate

calculation of the distance value.

d Remembering that for the fuel consumption data and calculate

(within rounding) the confidence interval of part (a) and the prediction interval of

part (b).

e Suppose that next week the city’s average hourly temperature will be 40°F. Also, suppose that

the city’s natural gas company will use the point prediction and order 10.721

MMcf of natural gas to be shipped to the city by a pipeline transmission system. The city will

have to pay a fine to the transmission system if the city’s actual gas useage y differs from the

order of 10.721 MMcf by more than 10.5 percent—that is, is outside of the range [10.721  

.105(10.721)]  [9.595, 11.847]. Discuss why the 95 percent prediction interval for y—

[9.015, 12.427]—says that y might be outside of the allowable range and thus does not make

the city 95 percent confident that it will avoid paying a fine.

Note: In the exercises of Chapter 14 we will use multiple regression analysis to predict y

accurately enough that the city is likely to avoid paying a fine.

13.31 THE STARTING SALARY CASE StartSal

The following partial MINITAB regression output for the starting salary data relates to predicting

the starting salary of a marketing graduate having a grade point average of 3.25.

a Report (as shown on the computer output) a point estimate of and a 95 percent confidence

interval for the mean starting salary of all marketing graduates having a grade point average

of 3.25.

b Report (as shown on the computer output) a point prediction of and a 95 percent prediction

interval for the starting salary of an individual marketing graduate having a grade point

average of 3.25.

c Remembering that s   .536321 and that the distance value equals ( 兾s)2, use from the

computer output to hand calculate the distance value when .

d Remembering that for the starting salary data and hand

calculate (within rounding) the confidence interval of part (a) and the prediction interval of

part (b).

b1  5.7066,n  7, b0  14.816,

x  3.25

sŷsŷ

    Predicted Values for New Observations 

    New Obs     Fit   SE Fit       95% CI            95% PI 

     1  33.362    0.213  (32.813, 33.911)  (31.878, 34.846) 

DS

ŷ  10.721

b1   .1279,b0  15.84

sŷ

sŷ

(sŷ兾s)2x0  40.

n  8,x  43.98;SSxx  1,404.355;

Predicted Values for New Observations

New Obs     Fit   SE Fit       95% CI            95% PI

      1   10.721    0.241  (10.130, 11.312)  (9.015, 12.427)
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13.32 THE SERVICE TIME CASE SrvcTime

The following partial Excel add-in (MegaStat) regression output for the service time data relates

to predicting service times for 1, 2, 3, 4, 5, 6, and 7 copiers.

DS

Predicted values for: Minutes (y)

95% Confidence Intervals 95% Prediction Intervals
Copiers (x) Predicted lower upper lower upper Leverage

1 36.066 29.907 42.226 23.944 48.188 0.348

2 60.669 55.980 65.357 49.224 72.113 0.202

3 85.271 81.715 88.827 74.241 96.300 0.116

4 109.873 106.721 113.025 98.967 120.779 0.091

5 134.475 130.753 138.197 123.391 145.559 0.127

6 159.077 154.139 164.016 147.528 170.627 0.224

7 183.680 177.233 190.126 171.410 195.950 0.381

a Report (as shown on the computer output) a point estimate of and a 95 percent confidence

interval for the mean time to service four copiers.

b Report (as shown on the computer output) a point prediction of and a 95 percent prediction

interval for the time to service four copiers on a single call.

c For this case: n   11, b0   11.4641, b1   24.6022, and s   4.615. Using this information and

a distance value (called Leverage on the add-in output), hand calculate (within rounding) the

confidence interval of part (a) and the prediction interval of part (b).

d If we examine the service time data, we see that there was at least one call on which 

Accu-Copiers serviced each of 1, 2, 3, 4, 5, 6, and 7 copiers. The 95 percent confidence

intervals for the mean service times on these calls might be used to schedule future service

calls. To understand this, note that a person making service calls will (in, say, a year or

more) make a very large number of service calls. Some of the person’s individual service

times will be below, and some will be above, the corresponding mean service times. 

However, since the very large number of individual service times will average out to the

mean service times, it seems fair to both the efficiency of the company and to the person

making service calls to schedule service calls by using estimates of the mean service 

times. Therefore, suppose we wish to schedule a call to service five copiers. Examining 

the computer output, we see that a 95 percent confidence interval for the mean time to

service five copiers is [130.753, 138.197]. Since the mean time might be 138.197 minutes,

it would seem fair to allow 138 minutes to make the service call. Now suppose we wish

to schedule a call to service four copiers. Determine how many minutes to allow for the

service call.

13.33 THE FRESH DETERGENT CASE Fresh

The following partial MINITAB regression output for the Fresh detergent data relates to

predicting demand for future sales periods in which the price difference will be .10 (see New 

Obs 1) and .25 (see New Obs2).

a Report (as shown on the computer output) a point estimate of and a 95 percent confidence

interval for the mean demand for Fresh in all sales periods when the price difference is .10.

b Report (as shown on the computer output) a point prediction of and a 95 percent prediction

interval for the actual demand for Fresh in an individual sales period when the price

difference is .10.

c Remembering that s .316561 and that the distance value equals ( 兾s)2, use from the

computer output to hand calculate the distance value when .

d For this case: and Using this information,

and your result from part (c), find 99 percent confidence and prediction intervals for mean

and individual demands when x  .10.

e Repeat parts (a), (b), (c), and (d) when x  .25.

s  .316561.n  30, b0  7.81409, b1  2.6652,

x  .10

sŷsŷ

     Predicted Values for New Observations 

     New Obs     Fit  SE Fit       95% CI            95% PI 

     1  8.0806  0.0648  (7.9479, 8.2133)  (7.4187, 8.7425) 

     2  8.4804  0.0586  (8.3604, 8.6004)  (7.8209, 9.1398) 

DS



a Report (as shown on the computer output) a point estimate of and a 95 percent confidence

interval for the mean direct labor cost of all batches of size 60.

b Report (as shown on the computer output) a point prediction of and a 95 percent prediction

interval for the actual direct labor cost of an individual batch of size 60.

c For this case: n 12, b0  18.4875, b1  10.1463, and s  8.6415. Use this information and

the distance value (called Leverage) on the computer output to compute 99 percent confi-

dence and prediction intervals for the mean and individual labor costs when x  60.

13.35 THE REAL ESTATE SALES PRICE CASE RealEst

The following partial MINITAB regression output for the real estate sales price data relates to

predicting the sales price of a home having 2,000 square feet.

a Report (as shown on the MINITAB output) a point estimate of and a 95 percent confidence

interval for the mean sales price of all houses having 2,000 square feet.

b Report (as shown on the MINITAB output) a point prediction of and a 95 percent prediction

interval for the sales price of an individual house having 2,000 square feet.

c If you were purchasing a home having 2,000 square feet, which of the above intervals would

you find to be most useful? Explain.

13.5 Simple Coefficients of Determination 
and Correlation 

The simple coefficient of determination The simple coefficient of determination is a

measure of the usefulness of a simple linear regression model. To introduce this quantity, which

is denoted r2 (pronounced r squared), suppose we have observed n values of the dependent

variable y. However, we choose to predict y without using a predictor (independent) variable x.

In such a case the only reasonable prediction of a specific value of y, say yi, would be which

is simply the average of the n observed values y1, y2, . . . , yn. Here the error of prediction in

predicting yi would be yi  . For example, Figure 13.18(a) illustrates the prediction errors

obtained for the Tasty Sub Shop revenue data when we do not use the information provided by

the independent variable x, population size.

Next, suppose we decide to employ the predictor variable x and observe the values x1, x2, . . . , xn

corresponding to the observed values of y. In this case the prediction of yi is

and the error of prediction is yi  ŷi. For example, Figure 13.18(b) illustrates the prediction

errors obtained in the Tasty Sub Shop problem when we use the predictor variable x. Together,

Figures 13.18(a) and (b) show the reduction in the prediction errors accomplished by employ-

ing the predictor variable x (and the least squares line).

Using the predictor variable x decreases the prediction error in predicting yi from (yi – ) to 

(yi – ), or by an amount equal to

(yi  y)  (yi  y ˆi)  (y ˆi  y)

y ˆi

y

y ˆi  b0  b1xi

 y

y,

Predicted Values for New Observations

New Obs     Fit   SE Fit       95% CI            95% PI

      1   162.03    3.47  (154.04, 170.02)  (136.34, 187.72)

DS
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Calculate
and inter-

pret the simple
coefficients of
determination and
correlation.
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13.34 THE DIRECT LABOR COST CASE DirLab

The following partial Excel add-in (MegaStat) regression output for the direct labor cost data

relates to predicting direct labor cost when the batch size is 60.

DS

Predicted values for: LaborCost (y)
95% Confidence Interval 95% Prediction Interval

BatchSize (x) Predicted lower upper lower upper Leverage

60 627.263 621.054 633.472 607.032 647.494 0.104
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It can be shown that in general

The sum of squared prediction errors obtained when we do not employ the predictor variable x,

is called the total variation. Intuitively, this quantity measures the total amount of

variation exhibited by the observed values of y. The sum of squared prediction errors obtained

when we use the predictor variable is called the unexplained variation (this is

another name for SSE). Intuitively, this quantity measures the amount of variation in the values

of y that is not explained by the predictor variable. The quantity is called the

explained variation. Using these definitions and the above equation involving these summations,

we see that

Total variation Unexplained variation Explained variation

It follows that the explained variation is the reduction in the sum of squared prediction errors that

has been accomplished by using the predictor variable x to predict y. It also follows that

Total variation Explained variation Unexplained variation

兺 (y ˆi  y)2

x, 兺 (yi  y ˆi)
2,

兺 (yi  y)2,

a (yi  y)2
 a (yi  y ˆi)

2
 a (y ˆi  y)2

F I G U R E 1 3 . 1 8 The Reduction in the Prediction Errors Accomplished by Employing the 

Predictor Variable x
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(a) Prediction errors for the Tasty Sub Shop problem when we do not use the information
contributed by x

(b) Prediction errors for the Tasty Sub Shop problem when we use the information 
contributed by x by using the least squares line



Intuitively, this equation implies that the explained variation represents the amount of the total

variation in the observed values of y that is explained by the predictor variable x (and the simple

linear regression model).

We now define the simple coefficient of determination to be

That is, r2 is the proportion of the total variation in the n observed values of y that is explained by

the simple linear regression model. Neither the explained variation nor the total variation can be

negative (both quantities are sums of squares). Therefore, r2 is greater than or equal to 0. Because

the explained variation must be less than or equal to the total variation, r2 cannot be greater than

1. The nearer r2 is to 1, the larger is the proportion of the total variation that is explained by the

model, and the greater is the utility of the model in predicting y. If the value of r2 is not reason-

ably close to 1, the independent variable in the model does not provide accurate predictions of y.

In such a case, a different predictor variable must be found in order to accurately predict y. It is

also possible that no regression model employing a single predictor variable will accurately pre-

dict y. In this case the model must be improved by including more than one independent variable.

We see how to do this in Chapter 14.

r2
 

Explained variation

Total variation

548 Chapter 13 Simple Linear Regression Analysis

The Simple Coefficient of Determination, r 2

5 The simple coefficient of determination is

6 r2 is the proportion of the total variation in the 

n observed values of the dependent variable

that is explained by the simple linear regression

model.

r2
 

Explained variation

Total variation
 

For the simple linear regression model

1 Total variation  

2 Explained variation  

3 Unexplained variation  

4 Total variation  Explained variation

 Unexplained variation

a (
 

yi  ŷi 

)2

a ( yiˆ  y )2

a (yi  y )2

EXAMPLE 13.7 The Tasty Sub Shop Case

For the Tasty Sub data (see Table 13.1 on page 518) we have seen that (527.1 548.7

It follows that the total variation is 

Furthermore, we found in Table 13.2 (page 524) that the unexplained variation is SSE  

30,460.21. Therefore, we can compute the explained variation and r2 as follows:

Explained variation  Total variation Unexplained variation

 495,776.51 30,460.21 465,316.30

This value of r2 says that the regression model explains 93.9 percent of the total variation in the

10 observed yearly revenues. 

r2
 

Explained variation

Total variation
 

465,316.30

495,776.51
 .939

  495,776.51

 a (yi  y)2
 (527.1  860.31)2

 (548.7  860.31)2
 . . .  (1235.8  860.31)2

1235.8)兾10  8603.1兾10  860.31. . . .  

   y

C
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The simple correlation coefficient, r People often claim that two variables are correlated.

For example, a college admissions officer might feel that the academic performance of college

students (measured by grade point average) is correlated with the students’ scores on a standard-

ized college entrance examination. This means that college students’ grade point averages are

related to their college entrance exam scores. One measure of the relationship between two vari-

ables y and x is the simple correlation coefficient. We define this quantity as follows:

F I G U R E 1 3 . 1 9 An Illustration of Different Values of the Simple Correlation Coefficient

y

x

(a) r   1: perfect positive
correlation

y

x

(b) Positive correlation (positive r):
  y increases as x increases in

a straight-line fashion

y

x

(c) Little correlation (r near 0):
little linear relationship

between y and x

y

x

(e) r    1: perfect negative
correlation

y

x

(d) Negative correlation (negative r):
y decreases as x increases in

a straight-line fashion

The Simple Correlation Coefficient

The simple correlation coefficient between y and x, denoted by r, is

and

where b1 is the slope of the least squares line relating y to x. This correlation coefficient measures the

strength of the linear relationship between y and x.

r   2r2  if b1 is negativer   2r2  if b1 is positive

Because r2 is always between 0 and 1, the correlation coefficient r is between 1 and 1.Avalue

of r near 0 implies little linear relationship between y and x. A value of r close to 1 says that y and x

have a strong tendency to move together in a straight-line fashion with a positive slope and, there-

fore, that y and x are highly related and positively correlated. A value of r close to 1 says that y

and x have a strong tendency to move together in a straight-line fashion with a negative slope and,

therefore, that y and x are highly related and negatively correlated. Figure 13.19 illustrates these

relationships. Notice that when r  1, y and x have a perfect linear relationship with a positive

slope, whereas when r  1, y and x have a perfect linear relationship with a negative slope.



EXAMPLE 13.8 The Tasty Sub Shop Case

550 Chapter 13 Simple Linear Regression Analysis

In the Tasty Sub Shop problem, we found that b1  15.596 and r2  .939. It follows that the sim-

ple correlation coefficient between y (yearly revenue) and x (population size) is

This simple correlation coefficient says that x and y have a strong tendency to move together in a

linear fashion with a positive slope. We have seen this tendency in Figure 13.1 (page 518), which

indicates that y and x are positively correlated.

If we have computed the least squares slope b1 and r2, the method given in the previous box

provides the easiest way to calculate r. The simple correlation coefficient can also be calculated

using the formula

Here SSxy and SSxx have been defined in Section 13.1 on page 522, and SSyy denotes the total vari-

ation, which has been defined in this section. Furthermore, this formula for r automatically gives

r the correct ( or  ) sign. For instance, in the Tasty Sub Shop problem, SSxy  29,836.389, 

SSxx  1913.129, and SSyy  495,776.51 (see Examples 13.2 on page 523 and 13.7 on page 548).

Therefore

It is important to make two points. First, the value of the simple correlation coefficient is not

the slope of the least squares line. If we wish to find this slope, we should use the previously

given formula for b1.
3 Second, high correlation does not imply that a cause-and-effect rela-

tionship exists. When r indicates that y and x are highly correlated, this says that y and x have a

strong tendency to move together in a straight-line fashion. The correlation does not mean that

changes in x cause changes in y. Instead, some other variable (or variables) could be causing the

apparent relationship between y and x. For example, suppose that college students’ grade point

averages and college entrance exam scores are highly positively correlated. This does not mean

that earning a high score on a college entrance exam causes students to receive a high grade point

average. Rather, other factors such as intellectual ability, study habits, and attitude probably

determine both a student’s score on a college entrance exam and a student’s college grade point

average. In general, while the simple correlation coefficient can show that variables tend to move

together in a straight-line fashion, scientific theory must be used to establish cause-and-effect

relationships. 

A technical note In optional Section 13.9 we present some shortcut formulas for calculating

the total, explained, and unexplained variations. Also, for those who have already read Sec-

tion 13.3, r2, the explained variation, the unexplained variation, and the total variation are calcu-

lated by Excel and MINITAB. These quantities are identified on the Excel and MINITAB outputs

of Figure 13.8 (page 535) by, respectively, the labels , , , and . These outputs also give

an “adjusted r2.” We will explain the meaning of this quantity in Chapter 14.

1211109

 
29,836.389

2(1,913.129)(495,776.51)
 .969

r  
SSxy

2SSxxSSyy

r  
SSxy

2SSxx SSyy

r   2r2
  2.939  .969

C

3Essentially, the difference between r and b1 is a change of scale. It can be shown that b1 and r are related by the equation
b1 (SSyy兾SSxx)

1兾2 r.
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Exercises for Section 13.5
CONCEPTS

13.36 Discuss the meanings of the total variation, the unexplained variation, and the explained variation.

13.37 What does the simple coefficient of determination measure?

METHODS AND APPLICATIONS

In Exercises 13.38 through 13.43, we give the total variation, the unexplained variation (SSE), and the

least squares point estimate b1 that are obtained when simple linear regression is used to analyze the data

set related to each of five previously discussed case studies. Using the information given in each exercise,

find the explained variation, the simple coefficient of determination (r2), and the simple correlation

coefficient (r). Interpret r2.

13.38 THE FUEL CONSUMPTION CASE FuelCon1

Total variation   25.549; SSE   2.568; b1    .12792

13.39 THE STARTING SALARY CASE StartSal

Total variation   61.380; SSE   1.438; b1   5.7066

13.40 THE SERVICE TIME CASE SrvcTime

Total variation   20,110.5455; SSE   191.7017; b1   24.6022

13.41 THE FRESH DETERGENT CASE Fresh

Total variation   13.459; SSE   2.806; b1   2.6652

13.42 THE DIRECT LABOR COST CASE DirLab

Total variation   1,025,339.6667; SSE   746.7624; b1   10.1463

13.43 THE REAL ESTATE SALES PRICE CASE RealEst

Total variation   7447.5; SSE   896.8; b1   5.7003

13.6 Testing the Significance of the Population 
Correlation Coefficient (Optional)

We have seen that the simple correlation coefficient measures the linear relationship between the

observed values of x and the observed values of y that make up the sample. A similar coefficient

of linear correlation can be defined for the population of all possible combinations of observed

values of x and y. We call this coefficient the population correlation coefficient and denote it

by the symbol R (pronounced rho). We use r as the point estimate of r. In addition, we can carry

out a hypothesis test. Here we test the null hypothesis H0:  0, which says there is no linear

relationship between x and y, against the alternative Ha:  0, which says there is a positive

or negative linear relationship between x and y. This test employs the test statistic

and is based on the assumption that the population of all possible observed combinations of val-

ues of x and y has a bivariate normal probability distribution. See Wonnacott and Wonnacott

(1981) for a discussion of this distribution. It can be shown that the preceding test statistic t and

the p-value used to test H0: r  0 versus Ha: r  0 are equal to, respectively, the test statistic

and the p-value used to test H0: b1  0 versus Ha: b1  0, where b1 is the slope in the

simple linear regression model. Keep in mind, however, that although the mechanics involved in

these hypothesis tests are the same, these tests are based on different assumptions (remember that

the test for significance of the slope is based on the regression assumptions). If the bivariate

normal distribution assumption for the test concerning r is badly violated, we can use a non-

parametric approach to correlation. One such approach is Spearman’s rank correlation coeffi-

cient. This approach is discussed in Section 18.5.

t  b1兾sb1

t  
r2n  2

21  r 2

DS

DS

DS

DS

DS

DS

Test
hypotheses

about the popula-
tion correlation
coefficient
(Optional).

LO7
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Again consider testing the significance of the slope in the Tasty Sub Shop problem. Recall that in

Example 13.4 (page 534) we found that t  11.05 and that the p-value related to this t statistic is

less than .001. We therefore (if the regression assumptions hold) can reject H0: b1  0 at level of

significance .05, .01, or .001, and we have extremely strong evidence that x is significantly re-

lated to y. This also implies (if the population of all possible observed combinations of x and y

has a bivariate normal probability distribution) that we can reject H0: r  0 in favor of Ha: r  0

at level of significance .05, .01, or .001. It follows that we have extremely strong evidence of a

linear relationship, or correlation, between x and y. Furthermore, because we have previously

calculated r to be .969, we estimate that x and y are positively correlated.

Exercises for Section 13.6
CONCEPTS

13.44 Explain what is meant by the population correlation coefficient r.

13.45 Explain how we test H0: r  0 versus Ha: r  0. What do we conclude if we reject H0: r   0?

METHODS AND APPLICATIONS

13.46 THE STARTING SALARY CASE StartSal

Consider testing H0: b1  0 versus Ha: b1  0. Figure 13.11 (page 538) tells us that t  14.44 

and that the related p-value is less than .001. Assuming that the bivariate normal probability 

distribution assumption holds, test H0: r  0 versus Ha: r  0 by setting a equal to .05, .01, 

and .001. What do you conclude about how x and y are related?

13.47 THE SERVICE TIME CASE SrvcTime

Consider testing H0: b1  0 versus Ha: b1  0. Figure 13.12 (page 538) tells us that t  30.580

and that the related p-value is less than .001. Assuming that the bivariate normal probability 

distribution assumption holds, test H0: r  0 versus Ha: r  0 by setting a equal to .05, .01, 

and .001. What do you conclude about how x and y are related?

13.7 An F Test for the Model 
In this section we discuss an F test that can be used to test the significance of the regression rela-

tionship between x and y. Sometimes people refer to this as testing the significance of the simple

linear regression model. For simple linear regression, this test is another way to test the null

hypothesis H0: b1  0 (the relationship between x and y is not significant) versus Ha: b1  0 (the

relationship between x and y is significant). If we can reject H0 at level of significance a, we often

say that the simple linear regression model is significant at level of significance A.

DS

DS

An F Test for the Simple Linear Regression Model

We can reject in favor of 

at level of significance a if either of the following

equivalent conditions hold:

1 F(model)  Fa

2 p-value  a

Here the point Fa is based on 1 numerator and n  2

denominator degrees of freedom.

Ha:  b1 Z 0H0:  b1  0Suppose that the regression assumptions hold, and

define the overall F statistic to be

Also define the p-value related to F(model) to be

the area under the curve of the F distribution (having

1 numerator and n  2 denominator degrees of free-

dom) to the right of F (model)—see Figure 13.20(b).

F (model)  
Explained variation

(Unexplained variation)兾(n  2)

Test the sig-
nificance of

a simple linear
regression model
by using an F test.

LO8

C



13.7 An F Test for the Model 553

The first condition in the box says we should reject H0: b1   0 (and conclude that the rela-

tionship between x and y is significant) when F(model) is large. This is intuitive because a large

overall F statistic would be obtained when the explained variation is large compared to the un-

explained variation. This would occur if x is significantly related to y, which would imply that the

slope b1 is not equal to 0. Figure 13.20(a) illustrates that we reject H0 when F(model) is greater

than Fa. As can be seen in Figure 13.20(b), when F(model) is large, the related p-value is small.

When the p-value is small enough [resulting from an F(model) statistic that is large enough], we

reject H0. Figure 13.20(b) illustrates that the second condition in the box ( p-value  a) is an

equivalent way to carry out this test.

F I G U R E 1 3 . 2 0 ( a ) The F Test Critical Value F I G U R E 1 3 . 2 0 ( b ) The F Test p-Value

The curve of the F distribution having
1 and n   2 degrees of freedom

    The probability
of a Type I error1    

F 

If F(model)   F ,
do not reject H0 in favor of Ha

If F(model)   F ,
reject H0 in favor of Ha

If the p-value is smaller than ␣, then
F(model)  F

␣
  and we reject H0.

The curve of the F distribution having
1 and n   2 degrees of freedom

F(model)

p-value

EXAMPLE 13.10 The Tasty Sub Shop Case

Consider the Tasty Sub Shop problem and the following partial MINITAB output of the simple

linear regression analysis relating yearly revenue y to population size x:

Looking at this output, we see that the explained variation is 465,316 and the unexplained varia-

tion is 30,460. It follows that

Note that this overall F statistic is given on the MINITAB output and is also given on the follow-

ing partial Excel output:

  122.21

  
465,316

30,460兾(10  2)
 

465,316

3808

 F(model)  
Explained variation

(Unexplained variation)兾(n  2)

Analysis of Variance

Source                DF             SS            MS             F      P-value

Regression 1         465316        465316        122.21        0.000

Residual Error 8          30460          3808

Total 9         495777

C

ANOVA df SS MS F Significance F

Regression 1 465316.3004 465316.3004 122.2096 0.0000

Residual 8 30460.2086 3807.5261

Total 9 495776.5090



The p-value related to F(model) is the area to the right of 122.21 under the curve of the F dis-

tribution having 1 numerator and 8 denominator degrees of freedom. This p-value is given on

both the MINITAB output (labeled “p”) and the Excel output (labeled “Significance F”) and is

less than .001. If we wish to test the significance of the regression relationship with level of sig-

nificance a  .05, we use the critical value F.05 based on 1 numerator and 8 denominator de-

grees of freedom. Using Table A.6 (page 865), we find that F.05  5.32. Since F(model)  

122.21  F.05  5.32, we can reject H0: b1  0 in favor of Ha: b1  0 at level of significance

.05. Alternatively, since the p-value is smaller than .05, .01, and .001, we can reject H0 at level

of significance .05, .01, or .001. Therefore, we have extremely strong evidence that H0: b1 0

should be rejected and that the regression relationship between x and y is significant. That is, we

might say that we have extremely strong evidence that the simple linear model relating y to x is

significant.

Testing the significance of the regression relationship between y and x by using the overall F

statistic and its related p-value is equivalent to doing this test by using the t statistic and its re-

lated p-value. Specifically, it can be shown that (t)2  F(model) and that (ta兾2)
2 based on n 2

degrees of freedom equals Fa based on 1 numerator and n  2 denominator degrees of freedom.

It follows that the critical value conditions

and F(model)  Fa

are equivalent. Furthermore, the p-values related to t and F(model) can be shown to be equal.

Because these tests are equivalent, it would be logical to ask why we have presented the F test.

There are two reasons. First, most standard regression computer packages include the results

of the F test as a part of the regression output. Second, the F test has a useful generalization in

multiple regression analysis (where we employ more than one predictor variable). The F test

in multiple regression is not equivalent to a t test. This is further explained in Chapter 14.

冷 t 冷  ta兾2
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Exercises for Section 13.7
CONCEPTS

13.48 What are the null and alternative hypotheses for the F test in simple linear regression?

13.49 The F test in simple linear regression is equivalent to what other test?

METHODS AND APPLICATIONS

In Exercises 13.50 through 13.55, we give MINITAB and Excel outputs of simple linear regression analy-

ses of the data sets related to six previously discussed case studies. Using the appropriate computer output,

a Use the explained variation and the unexplained variation as given on the computer output to calculate

(within rounding) the F(model) statistic.

b Utilize the F(model) statistic and the appropriate critical value to test H0: b1   0 versus Ha: b1   0 by

setting a equal to .05. What do you conclude about the regression relationship between y and x?

c Utilize the F(model) statistic and the appropriate critical value to test H0: b1   0 versus Ha: b1  0 by

setting a equal to .01. What do you conclude about the regression relationship between y and x?

d Find the p-value related to F(model) on the computer output and report its value. Using the p-value,

test the significance of the regression model at the .10, .05, .01, and .001 levels of significance. What

do you conclude?

e Show that the F(model) statistic is (within rounding) the square of the t statistic for testing H0: b1   0

versus Ha: b1  0. Also, show that the F.05 critical value is the square of the t.025 critical value.

Note that in the lower right hand corner of each output we give (in parentheses) the number of observa-

tions, n, used to perform the regression analysis and the t statistic for testing H0: b1   0 versus Ha: b1  0.

13.50 THE FUEL CONSUMPTION CASE FuelCon1

ANOVA df SS MS F Significance F

Regression 1 22.9808 22.9808 53.6949 0.0003

Residual 6 2.5679 0.4280

Total 7 25.5488 (n=8; t=–7.33)

DS
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13.51 THE STARTING SALARY CASE StartSal

13.52 THE SERVICE TIME CASE SrvcTimeDS

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression       1  59.942  59.942  208.39  0.000

Residual Error   5   1.438   0.288 

Total            6  61.380 (n=7; t=14.44)

DS

ANOVA SS df MS F p-value

Regression 19,918.8438 1 19,918.8438 935.15 2.09E-10

Residual 191.7017 9 21.3002

Total 20,110.5455 10 (n=11; t=30.580)

13.53 THE FRESH DETERGENT CASE Fresh

13.54 THE DIRECT LABOR COST CASE DirLab

13.55 THE REAL ESTATE SALES PRICE CASE RealEst

13.8 The QHIC Case 
Quality Home Improvement Center (QHIC) operates five stores in a large metropolitan area. The

marketing department at QHIC wishes to study the relationship between x, home value (in thou-

sands of dollars), and y, yearly expenditure on home upkeep (in dollars). A random sample of

40 homeowners is taken and asked to estimate their expenditures during the previous year on the

types of home upkeep products and services offered by QHIC. Public records of the county

auditor are used to obtain the previous year’s assessed values of the homeowner’s homes. The

resulting x and y values, as well as a scatter plot of these values, are given in Figure 13.21. The

Excel output included in this figure tells us that the least squares point estimates of the y-intercept

and the slope are and The p-value associated with b1

implies there is a significant linear relationship between x and y. In addition, because ,

we estimate that mean yearly upkeep expenditure increases by $7.26 for each additional $1,000

increase in home value. Consider a home worth $220,000, and note that x0 220 is in the range

of previously observed values of x: 48.9 to 286.18. It follows that

ŷ  b0   b1x0

   348.3921  7.2583(220)

  1,248.43 (or $1,248.43)

b1  7.2583

b1  7.2583.b0   348.3921b1b0

Analysis of Variance 

Source          DF      SS      MS      F      P 

Regression       1  6550.7  6550.7  58.43  0.000

Residual Error   8   896.8   112.1 

Total            9  7447.5 (n=10; t=7.64)

DS

ANOVA df SS MS F Significance F

Regression 1 1024592.9043 1024592.9043 13720.4677 5.04E-17

Residual 10 746.7624 74.6762

Total 11 1025339.6667 (n=12; t=117.1344)

DS

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression       1  10.653  10.653  106.30  0.000

Residual Error  28   2.806   0.100 

Total           29  13.459 (n=30; t=10.31)

DS
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F I G U R E 1 3 . 2 1 The QHIC Upkeep Expenditure Data, Scatterplot, and Excel Output QHICDS

Value of Home, x Upkeep Expenditure, Value of Home, x Upkeep Expenditure,
Home (Thousands of Dollars) y (Dollars) Home (Thousands of Dollars) y (Dollars)

1 237.00 1,412.08 21 153.04 849.14

2 153.08 797.20 22 232.18 1,313.84

3 184.86 872.48 23 125.44 602.06

4 222.06 1,003.42 24 169.82 642.14

5 160.68 852.90 25 177.28 1,038.80

6 99.68 288.48 26 162.82 697.00

7 229.04 1,288.46 27 120.44 324.34

8 101.78 423.08 28 191.10 965.10

9 257.86 1,351.74 29 158.78 920.14

10 96.28 378.04 30 178.50 950.90

11 171.00 918.08 31 272.20 1,670.32

12 231.02 1,627.24 32 48.90 125.40

13 228.32 1,204.76 33 104.56 479.78

14 205.90 857.04 34 286.18 2,010.64

15 185.72 775.00 35 83.72 368.36

16 168.78 869.26 36 86.20 425.60

17 247.06 1,396.00 37 133.58 626.90

18 155.54 711.50 38 212.86 1,316.94

19 224.20 1,475.18 39 122.02 390.16

20 202.04 1,413.32 40 198.02 1,090.84
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Scatterplot of Upkeep vs Value

Regression Statistics

Multiple R 0.9430

R Square 0.8892

Adjusted R Square 0.8863

Standard Error 146.8973

Observations 40

ANOVA df SS MS F Significance F

Regression 1 6582759.6972 6582759.6972 305.0564 0.0000

Residual 38 819995.5427 21578.8301

Total 39 7402755.2399

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept  348.3921 76.1410  4.5756 0.0000  502.5314  194.2527

Value 7.2583 0.4156 17.4659 0.0000 6.4170 8.0995
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is the point estimate of the mean yearly upkeep expenditure for all homes worth $220,000 and is

the point prediction of a yearly upkeep expenditure for an individual home worth $220,000.

The marketing department at QHIC wishes to determine which homes should be sent adver-

tising brochures promoting QHIC’s products and services. If the marketing department has

decided to send an advertising brochure to any home that has a predicted yearly upkeep expen-

diture of at least $500, then a home worth $220,000 would be sent an advertising brochure. This

is because the predicted yearly upkeep expenditure for such a home is (as calculated above)

$1,248.43. Other homes can be evaluated in a similar fashion.

13.9 Residual Analysis 
In this section we explain how to check the validity of the regression assumptions. The required

checks are carried out by analyzing the regression residuals. The residuals are defined as

follows:

For any particular observed value of y, the corresponding residual is

e  y   (observed value of y predicted value of y)

where the predicted value of y is calculated using the least squares prediction equation

 b0  b1x

The linear regression model implies that the error term e is given by the

equation Since in the previous box is clearly the point estimate of

we see that the residual is the point estimate of the error term e. If the re-

gression assumptions are valid, then, for any given value of the independent variable, the popu-

lation of potential error term values will be normally distributed with mean 0 and variance s2

(see the regression assumptions in Section 13.2 on page 530). Furthermore, the different error

terms will be statistically independent. Because the residuals provide point estimates of the error

terms, it follows that

If the regression assumptions hold, the residuals should look like they have been randomly and

independently selected from normally distributed populations having mean 0 and variance s2.

In any real regression problem, the regression assumptions will not hold exactly. In fact, it

is important to point out that mild departures from the regression assumptions do not seriously

hinder our ability to use a regression model to make statistical inferences. Therefore, we are

looking for pronounced, rather than subtle, departures from the regression assumptions.

Because of this, we will require that the residuals only approximately fit the description just

given.

Residual plots One useful way to analyze residuals is to plot them versus various criteria.

The resulting plots are called residual plots. To construct a residual plot, we compute the resid-

ual for each observed y value. The calculated residuals are then plotted versus some criterion. To

validate the regression assumptions, we make residual plots against (1) values of the independent

variable x; (2) values of , the predicted value of the dependent variable; and (3) the time order

in which the data have been observed (if the regression data are time series data).

We next look at an example of constructing residual plots. Then we explain how to use these

plots to check the regression assumptions.

ŷ

e  y  ŷb0  b1x,

ŷe  y  (b0  b1x).

y  b0  b1x  e

ŷ

ŷ

Use residual
analysis to

check the assump-
tions of simple
linear regression.

LO9

EXAMPLE 13.11 The QHIC Case

Figure 13.21 gives the QHIC upkeep expenditure data and a scatterplot of the data. If we use a

simple linear regression model to describe the QHIC data, we find that the least squares point esti-

mates of b0 and b1 are b0   348.3921 and b1  7.2583. The Excel add-in (MegaStat) output in

C



Figure 13.22(a) presents the predicted home upkeep expenditures and residuals that are given by

the simple linear regression model. Here each residual is computed as

e y    y (b0  b1x) y ( 348.3921 7.2583x)

For instance, for the first observation (home) when y 1,412.08 and x 237.00 (see Figure 13.21),

the residual is

e 1,412.08 ( 348.3921 7.2583(237))

 1,412.08 1,371.816 40.264

The MINITAB output in Figure 13.22(b) and (c) gives plots of the residuals for the QHIC simple

linear regression model against values of x and . To understand how these plots are constructed,

recall that for the first observation (home) and the

residual is 40.264. It follows that the point plotted in Figure 13.22(b) corresponding to the first

observation has a horizontal axis coordinate of the x value 237.00 and a vertical axis coordinate

of the residual 40.264. It also follows that the point plotted in Figure 13.22(c) corresponding to

the first observation has a horizontal axis coordinate of the value 1,371.816, and a vertical axis

coordinate of the residual 40.264. Finally, note that the QHIC data are cross-sectional data, not

time series data. Therefore, we cannot make a residual plot versus time.

ŷ

 1,371.816,ŷy  1,412.08, x  237.00,

ŷ

ŷ
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Observation Upkeep Predicted Residual

1 1,412.080 1,371.816 40.264

2 797.200 762.703 34.497

3 872.480 993.371  120.891

4 1,003.420 1,263.378  259.958

5 852.900 817.866 35.034

6 288.480 375.112  86.632

7 1,288.460 1,314.041  25.581

8 423.080 390.354 32.726

9 1,351.740 1,523.224  171.484

10 378.040 350.434 27.606

11 918.080 892.771 25.309

12 1,627.240 1,328.412 298.828

13 1,204.760 1,308.815  104.055

14 857.040 1,146.084  289.044

15 775.000 999.613  224.613

16 869.260 876.658  7.398

17 1,396.000 1,444.835  48.835

18 711.500 780.558  69.058

19 1,475.180 1,278.911 196.269

20 1,413.320 1,118.068 295.252

Observation Upkeep Predicted Residual

21 849.140 762.413 86.727

22 1,313.840 1,336.832  22.992

23 602.060 562.085 39.975

24 642.140 884.206  242.066

25 1,038.800 938.353 100.447

26 697.000 833.398  136.398

27 324.340 525.793  201.453

28 965.100 1,038.662  73.562

29 920.140 804.075 116.065

30 950.900 947.208 3.692

31 1,670.320 1,627.307 43.013

32 125.400 6.537 118.863

33 479.780 410.532 69.248

34 2,010.640 1,728.778 281.862

35 368.360 259.270 109.090

36 425.600 277.270 148.330

37 626.900 621.167 5.733

38 1,316.940 1,196.602 120.338

39 390.160 537.261  147.101

40 1,090.840 1,088.889 1.951

(b) MINITAB output of a residual plot versus x (c) MINITAB output of a residual plot versus ŷ

(a) Excel add-in (MegaStat) output of the residuals
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The constant variance assumption To check the validity of the constant variance as-

sumption, we examine plots of the residuals against values of x, , and time (if the regression data

are time series data). When we look at these plots, the pattern of the residuals’ fluctuation around

0 tells us about the validity of the constant variance assumption. A residual plot that “fans out”

[as in Figure 13.23(a)] suggests that the error terms are becoming more spread out as the hori-

zontal plot value increases and that the constant variance assumption is violated. Here we would

say that an increasing error variance exists. A residual plot that “funnels in” [as in Fig-

ure 13.23(b)] suggests that the spread of the error terms is decreasing as the horizontal plot value

increases and that again the constant variance assumption is violated. In this case we would say

that a decreasing error variance exists. A residual plot with a “horizontal band appearance” [as

in Figure 13.23(c)] suggests that the spread of the error terms around 0 is not changing much as

the horizontal plot value increases. Such a plot tells us that the constant variance assumption 

(approximately) holds. 

As an example, consider the QHIC case and the residual plot in Figure 13.22(b). This plot

appears to fan out as x increases, indicating that the spread of the error terms is increasing as x

increases. That is, an increasing error variance exists. This is equivalent to saying that the vari-

ance of the population of potential yearly upkeep expenditures for houses worth x (thousand

dollars) appears to increase as x increases. The reason is that the model y b0 b1x e says that

the variation of y is the same as the variation of e. For example, the variance of the population of

potential yearly upkeep expenditures for houses worth $200,000 would be larger than the vari-

ance of the population of potential yearly upkeep expenditures for houses worth $100,000.

Increasing variance makes some intuitive sense because people with more expensive homes

generally have more discretionary income. These people can choose to spend either a substantial

amount or a much smaller amount on home upkeep, thus causing a relatively large variation in

upkeep expenditures.

Another residual plot showing the increasing error variance in the QHIC case is Fig-

ure 13.22(c). This plot tells us that the residuals appear to fan out as (predicted y) increases,

which is logical because is an increasing function of x. Also, note that the scatter plot of y versus

x in Figure 13.21 shows the increasing error variance—the y values appear to fan out as x in-

creases. In fact, one might ask why we need to consider residual plots when we can simply look at

scatter plots of y versus x. One answer is that, in general, because of possible differences in scal-

ing between residual plots and scatter plots of y versus x, one of these types of plots might be more

informative in a particular situation. Therefore, we should always consider both types of plots.

When the constant variance assumption is violated, we cannot use the formulas of this chap-

ter to make statistical inferences. Later in this section we discuss how we can make statistical

inferences when a nonconstant error variance exists.

ŷ

ŷ

ŷ

Residual

Residual

Residual

(c) Constant error variance

(a) Increasing error variance (b) Decreasing error variance

Residuals fan out
Residuals funnel in

Residuals form a horizontal band  
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The assumption of correct functional form If the functional form of a regression model

is incorrect, the residual plots constructed by using the model often display a pattern suggesting

the form of a more appropriate model. For instance, if we use a simple linear regression model

when the true relationship between y and x is curved, the residual plot will have a curved

appearance. For example, the scatter plot of upkeep expenditure, y, versus home value, x, in

Figure 13.21 (page 556) has either a straight-line or slightly curved appearance. We used a simple

linear regression model to describe the relationship between y and x, but note that there is a “dip,”

or slightly curved appearance, in the upper left portion of each residual plot in Figure 13.22.

Therefore, both the scatter plot and residual plots indicate that there might be a slightly curved re-

lationship between y and x. Later in this section we discuss one way to model curved relation-

ships.

The normality assumption If the normality assumption holds, a histogram and/or stem-

and-leaf display of the residuals should look reasonably bell-shaped and reasonably symmetric

about 0. Figure 13.24(a) gives the MINITAB output of a stem-and-leaf display of the residuals

from the simple linear regression model describing the QHIC data. The stem-and-leaf display

looks fairly bell-shaped and symmetric about 0. However, the tails of the display look somewhat

long and “heavy” or “thick,” indicating a possible violation of the normality assumption.

Another way to check the normality assumption is to construct a normal plot of the residu-

als. To make a normal plot, we first arrange the residuals in order from smallest to largest. 

Letting the ordered residuals be denoted as e(1), e(2), . . . , e(n) we denote the ith residual in the

ordered listing as e(i). We plot e(i) on the vertical axis against a point called z(i) on the horizontal

axis. Here z(i) is defined to be the point on the horizontal axis under the standard normal curve

so that the area under this curve to the left of z(i) is (3i 1)兾(3n 1). For example, recall in

the QHIC case that there are n 40 residuals given in Figure 13.22(a). It follows that, when 

i 1, then

Therefore, z(1) is the normal point having an area of .0165 under the standard normal curve to its

left. Thus, as illustrated in Figure 13.24(b), z(1) equals  2.13. Because the smallest residual in

Figure 13.22(a) is  289.044, the first point plotted is e(1)   289.044 on the vertical scale ver-

sus z(1)   2.13 on the horizontal scale. When i 2, it can be verified that (3i  1)兾(3n  1)

equals .0413 and thus that z(2)   1.74. Therefore, because the second-smallest residual in Fig-

ure 13.24(a) is  259.958, the second point plotted is e(2)   259.958 on the vertical scale ver-

sus z(2)   1.74 on the horizontal scale. This process is continued until the entire normal plot is

constructed. The Excel add-in (MegaStat) output of this plot is given in Figure 13.24(c).

An equivalent plot is shown in Figure 13.24(d), which is a MINITAB output. In this figure, we

plot the percentage p(i) of the area under the standard normal curve to the left of z(i) on the verti-

cal axis. Thus, the first point plotted in this normal plot is e(1)   289.044 on the horizontal scale

versus p(1)  (.0165)(100)  1.65 on the vertical scale, and the second point plotted is

e(2)   259.958 on the horizontal scale versus p(2)  (.0413)(100)  4.13 on the vertical scale.

It is important to note that the scale on the vertical axis does not have the usual spacing between

the percentages. The spacing reflects the distance between the z-scores that correspond to the

percentages in the standard normal distribution. Hence, if we wished to create the plot in 

Figure 13.24(d) by hand, we would need special graphing paper with this vertical scale.

It can be proven that, if the normality assumption holds, then the expected value of the ith

ordered residual e(i) is proportional to z(i). Therefore, a plot of the e(i) values on the horizontal

scale versus the z(i) values on the vertical scale (or equivalently, the e(i) values on the horizontal

scale versus the p(i) values on the vertical scale) should have a straight-line appearance. That is,

if the normality assumption holds, then the normal plot should have a straight-line appearance.

A normal plot that does not look like a straight line (admittedly, a subjective decision) indicates

that the normality assumption is violated. Since the normal plots in Figure 13.24 have some cur-

vature (particularly in the upper right portion), there is a possible violation of the normality

assumption.

3i  1

3n  1
 

3(1)  1

3(40)  1
 

2

121
 .0165
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It is important to realize that violations of the constant variance and correct functional form

assumptions can often cause a histogram and/or stem-and-leaf display of the residuals to look

nonnormal and can cause the normal plot to have a curved appearance. Because of this, it is

usually a good idea to use residual plots to check for nonconstant variance and incorrect func-

tional form before making any final conclusions about the normality assumption. Later in this

section we discuss a procedure that sometimes remedies simultaneous violations of the constant

variance, correct functional form, and normality assumptions.

We have concluded that the QHIC data may violate the assumptions underlying a simple lin-

ear regression model because the relationship between x and y may not be linear and because the

errors may not be normally distributed with constant variance. However, the fanning out seen in

the residual plots in Figure 13.22(a) and (b) and the slight curvature seen in Figure 13.21 are not

extreme. Also, the heavy-tailed nature of the stem-and-leaf display of the residuals and the

nonlinearity of the normal probability plots in Figure 13.24 are not pronounced. In optional

Section 15.6 we will discuss procedures for transforming data that do not satisfy the regres-

sion assumptions into data that do. When we use these procedures to fit a new model to the QHIC

data, we will find the expenditure predictions given by the transformed regression model do

not differ much from the predictions given by the simple linear regression model of this chapter.

This is good evidence that the model of the current chapter does allow QHIC managers to make

reasonable decisions about which homeowners should be sent brochures. Note that optional

Section 15.6 can be read now without loss of continuity.

The independence assumption The independence assumption is most likely to be violated

when the regression data are time series data—that is, data that have been collected in a time se-

quence. For such data the time-ordered error terms can be autocorrelated. Intuitively, we say

(a) MINITAB output of the stem-and-leaf display (b) Calculating z(1) for a normal plot

Standard normal

 curve
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3(40)   1

2
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z(1)    2.13 0

Stem-and-leaf of RESI1 N = 40 

Leaf Unit = 10 
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(c) Excel add-in (MegaStat) normal plot (d) MINITAB normal plot
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that error terms occurring over time have positive autocorrelation if a positive error term in time

period i tends to produce, or be followed by, another positive error term in time period i k

(some later time period) and if a negative error term in time period i tends to produce, or be

followed by, another negative error term in time period i k. In other words, positive autocorre-

lation exists when positive error terms tend to be followed over time by positive error terms and

when negative error terms tend to be followed over time by negative error terms. Positive auto-

correlation in the error terms is depicted in Figure 13.25(a), which illustrates that positive

autocorrelation can produce a cyclical error term pattern over time. The simple linear

regression model implies that a positive error term produces a greater-than-average value of y

and a negative error term produces a smaller-than-average value of y. It follows that positive

autocorrelation in the error terms means that greater-than-average values of y tend to be followed

by greater-than-average values of y, and smaller-than-average values of y tend to be followed by

smaller-than-average values of y. A hypothetical example of positive autocorrelation could be

provided by a simple linear regression model relating demand for a product to advertising

expenditure. Here we assume that the data are time series data observed over a number of con-

secutive sales periods. One of the factors included in the error term of the simple linear regres-

sion model is competitors’ advertising expenditure for their similar products. If, for the moment,

we assume that competitors’ advertising expenditure significantly affects the demand for the

product, then a higher-than-average competitors’ advertising expenditure probably causes

demand for the product to be lower than average and hence probably causes a negative error

term. On the other hand, a lower-than-average competitors’ advertising expenditure probably

causes the demand for the product to be higher than average and hence probably causes a posi-

tive error term. If, then, competitors tend to spend money on advertising in a cyclical fashion—

spending large amounts for several consecutive sales periods (during an advertising campaign)

and then spending lesser amounts for several consecutive sales periods—a negative error term in

one sales period will tend to be followed by a negative error term in the next sales period, and a

positive error term in one sales period will tend to be followed by a positive error term in the next

sales period. In this case the error terms would display positive autocorrelation, and thus these

error terms would not be statistically independent.

Intuitively, error terms occurring over time have negative autocorrelation if a positive error

term in time period i tends to produce, or be followed by, a negative error term in time period

i k and if a negative error term in time period i tends to produce, or be followed by, a positive

error term in time period i k. In other words, negative autocorrelation exists when posi-

tive error terms tend to be followed over time by negative error terms and negative error terms

tend to be followed over time by positive error terms. An example of negative autocorrelation in

the error terms is depicted in Figure 13.25(b), which illustrates that negative autocorrelation in

the error terms can produce an alternating pattern over time. It follows that negative auto-

correlation in the error terms means that greater-than-average values of y tend to be followed by
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smaller-than-average values of y and smaller-than-average values of y tend to be followed

by greater-than-average values of y. An example of negative autocorrelation might be provided

by a retailer’s weekly stock orders. Here a larger-than-average stock order one week might result

in an oversupply and hence a smaller-than-average order the next week.

The independence assumption basically says that the time-ordered error terms display no

positive or negative autocorrelation. This says that the error terms occur in a random pattern

over time. Such a random pattern would imply that the error terms (and their corresponding y

values) are statistically independent.

Because the residuals are point estimates of the error terms, a residual plot versus time is

used to check the independence assumption. If a residual plot versus the data’s time sequence

has a cyclical appearance, the error terms are positively autocorrelated, and the independence

assumption is violated. If a plot of the time-ordered residuals has an alternating pattern, the

error terms are negatively autocorrelated, and again the independence assumption is violated.

However, if a plot of the time-ordered residuals displays a random pattern, the error terms have

little or no autocorrelation. In such a case, it is reasonable to conclude that the independence

assumption holds. Note that a statistical test for autocorrelation is presented in Section 15.7. This

test is called the Durbin-Watson test, and you are prepared to read about it now if you wish to

do so.

EXAMPLE 13.12

Figure 13.26(a) on the next page presents data concerning weekly sales at Pages’ Bookstore

(Sales), Pages’ weekly advertising expenditure (Adver), and the weekly advertising expenditure

of Pages’ main competitor (Compadv). Here the sales values are expressed in thousands of dol-

lars, and the advertising expenditure values are expressed in hundreds of dollars. Figure 13.26(a)

also gives the residuals that are obtained when a simple linear regression analysis is performed

relating Pages’ sales to Pages’ advertising expenditure. These residuals are plotted versus time in

Figure 13.26(b). We see that the residual plot has a cyclical pattern. This tells us that the error

terms for the model are positively autocorrelated and the independence assumption is violated.

Furthermore, there tend to be positive residuals when the competitor’s advertising expenditure is

lower (in weeks 1 through 8 and weeks 14, 15, and 16) and negative residuals when the com-

petitor’s advertising expenditure is higher (in weeks 9 through 13). Therefore, the competitor’s

advertising expenditure seems to be causing the positive autocorrelation.

To conclude this example, note that the simple linear regression model relating Pages’ sales

to Pages’ advertising expenditure has a standard error, s, of 5.038. The residual plot in Fig-

ure 13.26(b) includes grid lines that are placed one and two standard errors above and below the

residual mean of 0. Such grid lines help us to better diagnose potential violations of the regres-

sion assumptions.

When the independence assumption is violated, various remedies can be employed. One ap-

proach is to identify which independent variable left in the error term (for example, competitors’

advertising expenditure) is causing the error terms to be autocorrelated. We can then remove this

independent variable from the error term and insert it directly into the regression model, forming

a multiple regression model. (Multiple regression models are discussed in Chapter 14.)

Exercises for Section 13.9

CONCEPTS

13.56 In a regression analysis, what variables should the residuals be plotted against? What types of

patterns in residual plots indicate violations of the regression assumptions?

13.57 In regression analysis, how do we check the normality assumption?

13.58 What is one possible remedy for violations of the constant variance, correct functional form, and

normality assumptions?



METHODS AND APPLICATIONS

13.59 THE FUEL CONSUMPTION CASE FuelCon1

Figure 13.27(a) gives the Excel output of a plot of the residuals obtained by fitting a simple

linear regression model to the fuel consumption data. Describe the appearance of this plot. Does

the plot indicate any violations of the regression assumptions?

13.60 THE FRESH DETERGENT CASE Fresh

Figure 13.27(b) gives the MINITAB output of residual diagnostics that are obtained 

when the simple linear regression model is fit to the Fresh detergent demand data. 

Interpret the diagnostics and determine if they indicate any violations of the regression 

assumptions.

13.61 THE SERVICE TIME CASE SrvcTime

The residuals given by the service time model are given in Figure 13.28(a), and residual plots

versus x and are given in Figures 13.28(b) and (c). Do the plots indicate any violations of the

regression assumptions?

 y ˆ

DS

DS

DS
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Observation Adver Compadv Sales Predicted Residual

1 18 10 22 18.7 3.3

2 20 10 27 23.0 4.0

3 20 15 23 23.0  0.0

4 25 15 31 33.9  2.9

5 28 15 45 40.4 4.6

6 29 20 47 42.6 4.4

7 29 20 45 42.6 2.4

8 28 25 42 40.4 1.6

9 30 35 37 44.7  7.7

10 31 35 39 46.9  7.9

11 34 35 45 53.4  8.4

12 35 30 52 55.6  3.6

13 36 30 57 57.8  0.8

14 38 25 62 62.1  0.1

15 41 20 73 68.6 4.4

16 45 20 84 77.3 6.7

Durbin-Watson  0.65
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(b) A plot of the residuals in Figure 13.26(a) versus time

(a) The data and the residuals from a simple linear regression relating Pages’ sales to Pages’

advertising expenditure BookSalesDS
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13.62 THE SERVICE TIME CASE SrvcTime

Figure 13.28(a) gives the residuals from the simple linear regression model describing the service

time data in Exercise 13.5.

a In this exercise we construct a normal plot of the residuals from the simple linear regression

model. To construct this plot, we must first arrange the residuals in order from smallest to

largest. These ordered residuals are given in Table 13.3 on the next page. Denoting the ith

ordered residual as e(i) (i 1, 2, . . . , 11), we next compute for each value of i the point z(i).

These computations are summarized in Table 13.3. Show how z(4)  .46 and z(10) 1.05

have been obtained.
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F I G U R E 1 3 . 2 7 Residual Diagnostics for Exercises 13.59 and 13.60

Observation Minutes Predicted Residual

1 109.0 109.9 ⴚ0.9

2 58.0 60.7 ⴚ2.7

3 138.0 134.5 3.5

4 189.0 183.7 5.3

5 37.0 36.1 0.9

6 82.0 85.3 ⴚ3.3

7 103.0 109.9 ⴚ6.9

8 134.0 134.5 ⴚ0.5

9 68.0 60.7 7.3

10 112.0 109.9 2.1

11 154.0 159.1 ⴚ5.1

F I G U R E 1 3 . 2 8 Residual Analysis for the Service Time Model (for Exercise 13.61)
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b The ordered residuals (the e(i)’s) are plotted against the z(i)’s in Figure 13.29. Does this figure

indicate a violation of the normality assumption?

13.63 A simple linear regression model is employed to analyze the 24 monthly observations given

in Table 13.4. Residuals are computed and are plotted versus time. The resulting residual plot

is shown in Figure 13.30. Discuss why the residual plot suggests the existence of positive

autocorrelation. SalesAdvDS
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F I G U R E 1 3 . 2 9 Normal Plot of the Residuals for 

Exercise 13.62(b)

T A B L E 1 3 . 3 Ordered Residuals and Normal Plot

Calculations for Exercise 13.62(a)

Ordered
i Residual, e(i)

z(i)

1  6.9 .0588  1.565

2  5.1 .1470  1.05

3  3.3 .2353  .72

4  2.7 .3235  .46

5  0.9 .4118  .22

6  0.5 .5000 0

7 0.9 .5882 .22

8 2.1 .6765 .46

9 3.5 .7647 .72

10 5.3 .8529 1.05

11 7.3 .9412 1.565

3i  1

3n  1

T A B L E 1 3 . 4 Sales and Advertising Data for 

Exercise 13.63 SalesAdvDS

Monthly Advertising
Month Total Sales, y Expenditures, x

1 202.66 116.44

2 232.91 119.58

3 272.07 125.74

4 290.97 124.55

5 299.09 122.35

6 296.95 120.44

7 279.49 123.24

8 255.75 127.55

9 242.78 121.19

10 255.34 118.00

11 271.58 121.81

12 268.27 126.54

13 260.51 129.85

14 266.34 122.65

15 281.24 121.64

16 286.19 127.24

17 271.97 132.35

18 265.01 130.86

19 274.44 122.90

20 291.81 117.15

21 290.91 109.47

22 264.95 114.34

23 228.40 123.72

24 209.33 130.33

Source: Forecasting Methods and Applications, “Sales and
Advertising Data,” by S. Makridakis, S. C. Wheelwright, and 
V. E. McGee, Forecasting: Methods and Applications (Copyright 
© 1983 John Wiley & Sons, Inc.). Reprinted by permission of John
Wiley & Sons, Inc.
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13.64 THE TASTY SUB SHOP CASE
A residual plot for the Tasty Sub Shop problem is shown in Figure 13.31. Discuss why the plot

indicates the regression assumptions are reasonable.

13.65 THE UNEQUAL VARIANCES SERVICE TIME CASE SrvcTime2

Figure 13.32(a) presents data concerning the time, y, required to perform service and the number

of microcomputers serviced, x, for 15 service calls. Figure 13.32(b) gives a plot of y versus x,

and Figure 13.32(c) gives the Excel output of a plot of the residuals versus x for a simple linear

regression model. What regression assumption appears to be violated?

13.10 Some Shortcut Formulas (Optional) 
Calculating the sum of squared residuals A shortcut formula for the sum of squared

residuals is

where

For example, consider the Tasty Sub Shop case. If we square each of the ten observed yearly rev-

enues in Table 13.1 (page 518) and add up the resulting squared values, we find that

We have also found in Example 13.2 (page 523) that

and It follows that

 7,897,109.47  
(8603.1)2

10
 495,776.51SSyy  a y2

i  

冢a yi冣
2
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and

 495,776.51 465,316.30 30,460.21

Finally, note that SS2
xy兾SSxx equals b1SSxy. However, we recommend using the first of these expres-

sions, because doing so usually gives less round-off error.

Calculating the total, explained, and unexplained variations The unexplained vari-

ation is SSE, and thus the shortcut formula for SSE is a shortcut formula for the unexplained vari-

ation. The quantity SSyy defined on page 547 is the total variation, and thus the shortcut formula

for SSyy is a shortcut formula for the total variation. Lastly, it can be shown that the expression

SS2
xy兾SSxx equals the explained variation and thus is a shortcut formula for this quantity.

SSE  SSyy  
SSxy

2

SSxx

 495,776.51  
(29,836.389)2

1913.129
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Glossary of Terms

dependent variable: The variable that is being described, pre-

dicted, or controlled. (page 517)

distance value: A measure of the distance between a particular

value x0 of the independent variable x and , the average of the

previously observed values of x (the center of the experimental

region). (page 541)

error term: The difference between an individual value of the

dependent variable and the corresponding mean value of the de-

pendent variable. (page 520)

experimental region: The range of the previously observed val-

ues of the independent variable. (page 526)

independent variable: A variable used to describe, predict, and

control the dependent variable. (page 517)

least squares point estimates: The point estimates of the slope

and y intercept of the simple linear regression model that mini-

mize the sum of squared residuals. (pages 521–522)

negative autocorrelation: The situation in which positive error

terms tend to be followed over time by negative error terms and

negative error terms tend to be followed over time by positive

error terms. (page 562)

normal plot: A residual plot that is used to check the normality

assumption. (page 560) 

positive autocorrelation: The situation in which positive error

terms tend to be followed over time by positive error terms and

x

negative error terms tend to be followed over time by negative

error terms. (page 562)

residual: The difference between the observed value of the

dependent variable and the corresponding predicted value of the

dependent variable. (pages 522, 557)

residual plot: A plot of the residuals against some criterion. The

plot is used to check the validity of one or more regression

assumptions. (page 557)

simple coefficient of determination: The proportion of the total

variation in the observed values of the dependent variable that is

explained by the simple linear regression model. (page 548)

simple correlation coefficient: A measure of the linear associa-

tion between two variables. (page 549)

simple linear regression model: An equation that describes the

straight-line relationship between a dependent variable and an

independent variable. (page 520)

slope (of the simple linear regression model): The change in

the mean value of the dependent variable that is associated with

a one-unit increase in the value of the independent variable. 

(page 520)

y-intercept (of the simple linear regression model): The mean

value of the dependent variable when the value of the indepen-

dent variable is 0. (page 520)

Chapter Summary

This chapter has discussed simple linear regression analysis,

which relates a dependent variable to a single independent

(predictor) variable. We began by considering the simple lin-

ear regression model, which employs two parameters: the

slope and y intercept. We next discussed how to compute the

least squares point estimates of these parameters and how to

use these estimates to calculate a point estimate of the mean

value of the dependent variable and a point prediction of an

individual value of the dependent variable. Then, after consid-

ering the assumptions behind the simple linear regression

model, we discussed testing the significance of the regression

relationship (slope), calculating a confidence interval for the

mean value of the dependent variable, and calculating a predic-

tion interval for an individual value of the dependent variable.

We next explained several measures of the utility of the simple

linear regression model. These include the simple coefficient of

determination and an F test for the simple linear model. We

concluded this chapter by giving an optional discussion of

using residual analysis to detect violations of the regression

assumptions.
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Important Formulas and Tests

Simple linear regression model: page 520

Least squares point estimates of b0 and b1: pages 521–522

Least squares line (prediction equation): page 522

The predicted value of y: page 522

The residual: pages 522 and 557

Sum of squared residuals: pages 522 and 547

Mean square error: page 532

Standard error: page 532

Standard error of the estimate b1: page 533

Testing the significance of the slope: page 534

Testing the significance of the y-intercept: page 536

Confidence interval for the slope: page 536

Point estimate of a mean value of y: page 540

Point prediction of an individual value of y: page 540

Standard error of : page 541

Confidence interval for a mean value of y: page 541

Prediction interval for an individual value of y: page 541

Explained variation: page 548

Unexplained variation: page 548

Total variation: page 548

Simple coefficient of determination: page 548

Simple correlation coefficient: page 549

Testing the significance of the population correlation 

coefficient: page 551

An F test for the simple linear regression model: page 552

Normal plot calculations: page 560

y ˆ

Supplementary Exercises

13.66 Consider the following data concerning the demand (y) and price (x) of a consumer 

product. Demand

Demand, y 252 244 241 234 230 223

Price, x $2.00 $2.20 $2.40 $2.60 $2.80 $3.00

a Plot y versus x. Does it seem reasonable to use the simple linear regression model to relate y to x?

b Calculate the least squares point estimates of the parameters in the simple linear regression model.

c Write the least squares prediction equation. Graph this equation on the plot of y versus x.

d Test the significance of the regression relationship between y and x.

e Find a point prediction of and a 95 percent prediction interval for the demand corresponding

to each of the prices $2.10, $2.75, and $3.10.

13.67 In an article in Public Roads (1983), Bissell, Pilkington, Mason, and Woods study bridge safety

(measured in accident rates per 100 million vehicles) and the difference between the width of the

bridge and the width of the roadway approach (road plus shoulder):4 AutoAcc

WidthDiff.  6  4  2 0 2 4 6 8 10 12

Accident 120 103 87 72 58 44 31 20 12 7

The MINITAB output of a simple linear regression analysis relating accident to width difference

is as follows:

The regression equation is 

Accident Rate = 74.7 – 6.44 WidthDif

Predictor        Coef     SE Coef          T         P 

Constant       74.727       1.904      39.25     0.000 

WidthDif      –6.4424      0.2938     –21.93     0.000 

S = 5.33627   R–Sq = 98.4%   R–Sq(adj) = 98.2% 

Analysis of Variance 

Source             DF        SS        MS          F         P 

Regression          1     13697     13697     480.99     0.000 

Residual Error      8       228        28 

Total               9     13924 

DS

DS

4Source: H. H. Bissell, G. B. Pilkington II, J. M. Mason, and D. L. Woods, “Roadway Cross Section and Alignment,” Public Roads

46 (March 1983), pp. 132–41.
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Using the MINITAB output

a Identify and interpret the least squares point estimate of the slope of the simple linear regression

model.

b Identify and interpret the p-value for testing H0: b1  0 versus Ha: b1 0.

c Identify and interpret r2.

13.68 The data in Table 13.5 concerning the relationship between smoking and lung cancer death

are presented in a course of The Open University, Statistics in Society, Unit C4, The

Open University Press, Milton Keynes, England, 1983. The original source of the data is

Occupational Mortality: The Registrar General’s Decennial Supplement for England and Wales,

1970–1972, Her Majesty’s Stationery Office, London, 1978. In the table, a smoking index

greater (less) than 100 indicates that men in the occupational group smoke more (less) than

average when compared to all men of the same age. Similarly, a lung cancer death index greater

(less) than 100 indicates that men in the occupational group have a greater (less) than average

lung cancer death rate when compared to all men of the same age. In Figure 13.33 we present a

portion of a MINITAB output of a simple linear regression analysis relating the lung cancer

death index to the smoking index. In Figure 13.34 we present a plot of the lung cancer death

index versus the smoking index. SmokingDS

T A B L E 1 3 . 5 The Smoking and Lung Cancer Death Data SmokingDS

Occupational Group Smoking Index Lung Cancer Death Index

Farmers, foresters, and fisherman 77 84

Miners and quarrymen 137 116

Gas, coke, and chemical makers 117 123

Glass and ceramics makers 94 128

Furnace, forge, foundry, and rolling mill workers 116 155

Electrical and electronics workers 102 101

Engineering and allied trades 111 118

Woodworkers 93 113

Leather workers 88 104

Textile workers 102 88

Clothing workers 91 104

Food, drink, and tobacco workers 104 129

Paper and printing workers 107 86

Makers of other products 112 96

Construction workers 113 144

Painters and decorators 110 139

Drivers of stationary engines, cranes, etc. 125 113

Laborers not included elsewhere 133 146

Transport and communications workers 115 128

Warehousemen, storekeepers, packers, and bottlers 105 115

Clerical workers 87 79

Sales workers 91 85

Service, sport, and recreation workers 100 120

Administrators and managers 76 60

Professionals, technical workers, and artists 66 51

F I G U R E 1 3 . 3 3 MINITAB Output of a Simple Linear Regression Analysis of 

the Data in Table 13.5

The regression equation is 

Death Index = – 2.9 + 1.09 Smoking Index

Predictor           Coef       SE Coef           T           P 

Constant           –2.89         23.03       –0.13       0.901 

Smoking Index     1.0875        0.2209        4.92        0.00 

S = 18.6154   R–Sq = 51.3%   R–Sq(adj) = 49.2% 
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a Although the data do not prove that smoking increases your chance of getting lung cancer, can

you think of a third factor that would cause the two indexes to move together?

b Does the slope of the hypothetical line relating the two indexes when the smoking index is

less than 100 seem to equal the slope of the hypothetical line relating the two indexes when

the smoking index is greater than 100? If you wish, use simple linear regression to make a

more precise determination. What practical conclusion might you make?

13.69 On January 28, 1986, the space shuttle Challenger exploded soon after takeoff, killing all eight

astronauts aboard. The temperature at the Kennedy Space Center at liftoff was 31 F. Before the

launch, several scientists argued that the launch should be delayed because the shuttle’s O-rings

might harden in the cold and leak. Other scientists used the data plot in Figure 13.35 to argue that

there was no relationship between temperature and O-ring failure. On the basis of this figure and

other considerations, Challenger was launched to its disastrous, last flight.

Scientists using the data plot in Figure 13.35 made a horrible mistake. They relied on a data

plot that was created by using only the seven previous launches where there was at least one 

O-ring failure. A plot based on all 24 previous launches—17 of which had no O-ring failures—is

given in Figure 13.36 on the next page.

a Intuitively, do you think that Figure 13.36 indicates that there is a relationship between tempera-

ture and O-ring failure? Use simple linear regression to justify your answer.

b Even though the figure using only seven launches is incomplete, what about it should have

cautioned the scientists not to make the launch?

60

40

80 100

Smoking Index

120 140

60

80

100
L
u

n
g

 C
a
n

ce
r 

D
e
a
th

 I
n

d
e
x

120

140

160

F I G U R E 1 3 . 3 4 A Plot of the Lung Cancer Death Index versus the Smoking Index

3

2

1

50 60 70 80

0

N
u

m
b

e
r 

o
f 

O
-r

in
g

fa
il
u

re
s

Temperature

F I G U R E 1 3 . 3 5 A Data Plot Based on Seven Launches



13.70 In an article in the Journal of Accounting Research, Benzion Barlev and Haim Levy consider re-

lating accounting rates on stocks and market returns. Fifty-four companies were selected. For

each company the authors recorded values of x, the mean yearly accounting rate for the period

1959 to 1974, and y, the mean yearly market return rate for the period 1959 to 1974. The data in

Table 13.6 were obtained. Here the accounting rate can be interpreted to represent input into in-

vestment and therefore is a logical predictor of market return. Use the simple linear regression

model and a computer to do the following: AcctRetDS

572 Chapter 13 Simple Linear Regression Analysis

T A B L E 1 3 . 6 Accounting Rates on Stocks and Market Returns for 54 Companies AcctRetDS

Source: Reprinted by permission from Benzion Barlev and Haim Levy, “On the Variability of Accounting Income Numbers,” Journal of Accounting Research

(Autumn 1979), pp. 305–315. Copyright © 1979. Used with permission of Blackwell Publishers.

Market Accounting Market Accounting
Company Rate Rate Company Rate Rate

McDonnell Douglas 17.73 17.96 FMC 5.71 13.30

NCR 4.54 8.11 Caterpillar Tractor 13.38 17.66

Honeywell 3.96 12.46 Georgia Pacific 13.43 14.59

TRW 8.12 14.70 Minnesota Mining & Manufacturing 10.00 20.94

Raytheon 6.78 11.90 Standard Oil (Ohio) 16.66 9.62

W. R. Grace 9.69 9.67 American Brands 9.40 16.32

Ford Motors 12.37 13.35 Aluminum Company of America .24 8.19

Textron 15.88 16.11 General Electric 4.37 15.74

Lockheed Aircraft  1.34 6.78 General Tire 3.11 12.02

Getty Oil 18.09 9.41 Borden 6.63 11.44

Atlantic Richfield 17.17 8.96 American Home Products 14.73 32.58

Radio Corporation
of America 6.78 14.17 Standard Oil (California) 6.15 11.89

Westinghouse Electric 4.74 9.12 International Paper 5.96 10.06

Johnson & Johnson 23.02 14.23 National Steel 6.30 9.60

Champion International 7.68 10.43 Republic Steel .68 7.41

R. J. Reynolds 14.32 19.74 Warner Lambert 12.22 19.88

General Dynamics  1.63 6.42 U.S. Steel .90 6.97

Colgate-Palmolive 16.51 12.16 Bethlehem Steel 2.35 7.90

Coca-Cola 17.53 23.19 Armco Steel 5.03 9.34

International
Business Machines 12.69 19.20 Texaco 6.13 15.40

Allied Chemical 4.66 10.76 Shell Oil 6.58 11.95

Uniroyal 3.67 8.49 Standard Oil (Indiana) 14.26 9.56

Greyhound 10.49 17.70 Owens Illinois 2.60 10.05

Cities Service 10.00 9.10 Gulf Oil 4.97 12.11

Philip Morris 21.90 17.47 Tenneco 6.65 11.53

General Motors 5.86 18.45 Inland Steel 4.25 9.92

Philips Petroleum 10.81 10.06 Kraft 7.30 12.27
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a Find a point estimate of and a 95 percent confidence interval for the mean market return rate

of all stocks having an accounting rate of 15.00.

b Find a point prediction of and a 95 percent prediction interval for the market return rate of an

individual stock having an accounting rate of 15.00.

13.71 In New Jersey, banks have been charged with withdrawing from counties having a high

percentage of minorities. To substantiate this charge, P. D’Ambrosio and S. Chambers (1995)

present the data in Table 13.7 concerning the percentage, x, of minority population and the

number of county residents, y, per bank branch in each of New Jersey’s 21 counties. If we use

Excel to perform a simple linear regression analysis of this data, we obtain the output given in 

Figure 13.37. NJBank

a Determine if there is a significant relationship between x and y.

b Describe the exact nature of any relationship that exists between x and y. (Hint: Estimate b1

by a point estimate and a confidence interval.)

DS

T A B L E 1 3 . 7 The New Jersey Bank Data NJBankDS

Percentage Number of 
of Minority Residents Per 

County Population, x Bank Branch, y

Atlantic 23.3 3,073

Bergen 13.0 2,095

Burlington 17.8 2,905

Camden 23.4 3,330

Cape May 7.3 1,321

Cumberland 26.5 2,557

Essex 48.8 3,474

Gloucester 10.7 3,068

Hudson 33.2 3,683

Hunterdon 3.7 1,998

Mercer 24.9 2,607

Middlesex 18.1 3,154

Monmouth 12.6 2,609

Morris 8.2 2,253

Ocean 4.7 2,317

Passaic 28.1 3,307

Salem 16.7 2,511

Somerset 12.0 2,333

Sussex 2.4 2,568

Union 25.6 3,048

Warren 2.8 2,349

Source: P. D’Ambrosio and S. Chambers, “No Checks and Balances,”
Asbury Park Press, September 10, 1995. Copyright © 1995 Asbury Park
Press. Used with permission.

F I G U R E 1 3 . 3 7 Excel Output of a Simple Linear Regression Analysis of the New Jersey Bank Data

Regression Statistics

Multiple R 0.7256

R Square 0.5265

Adjusted R Square 0.5016

Standard Error 400.2546

Observations 21

ANOVA df SS MS F Significance F

Regression 1 3385090.234 3385090 21.1299 0.0002

Residual 19 3043870.432 160203.7

Total 20 6428960.667

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 2082.0153 159.1070 13.0856 5.92E-11 1749.0005 2415.0301

% Minority Pop (x) 35.2877 7.6767 4.5967 0.0002 19.2202 51.3553



13.72 In analyzing the stock market, we sometimes use the model to relate y, the

rate of return on a particular stock, to x, the rate of return on the overall stock market. When

using the preceding model, we can interpret b1 to be the percentage point change in the mean 

(or expected) rate of return on the particular stock that is associated with an increase of one 

percentage point in the rate of return on the overall stock market.

If regression analysis can be used to conclude (at a high level of confidence) that b1 is greater

than 1 (for example, if the 95 percent confidence interval for b1 were [1.1826, 1.4723]), this indi-

cates that the mean rate of return on the particular stock changes more quickly than the rate of

return on the overall stock market. Such a stock is called an aggressive stock because gains for

such a stock tend to be greater than overall market gains (which occur when the market is bullish).

However, losses for such a stock tend to be greater than overall market losses (which occur when

the market is bearish). Aggressive stocks should be purchased if you expect the market to rise and

avoided if you expect the market to fall.

If regression analysis can be used to conclude (at a high level of confidence) that b1 is less

than 1 (for example, if the 95 percent confidence interval for b1 were [.4729, .7861]), this indi-

cates that the mean rate of return on the particular stock changes more slowly than the rate of

return on the overall stock market. Such a stock is called a defensive stock. Losses for such a

stock tend to be less than overall market losses, whereas gains for such a stock tend to be less

than overall market gains. Defensive stocks should be held if you expect the market to fall and

sold off if you expect the market to rise.

If the least squares point estimate b1 of b1 is nearly equal to 1, and if the 95 percent confidence

interval for b1 contains 1, this might indicate that the mean rate of return on the particular stock

changes at roughly the same rate as the rate of return on the overall stock market. Such a stock is

called a neutral stock.

In a 1984 article in Financial Analysts Journal, Haim Levy considers how a stock’s value

of b1 depends on the length of time for which the rate of return is calculated. Levy calculated

estimated values of b1 for return length times varying from 1 to 30 months for each of 38 aggres-

sive stocks, 38 defensive stocks, and 68 neutral stocks. Each estimated value was based on data

from 1946 to 1975. In the following table we present the average estimate of b1 for each stock

type for different return length times:

y  b0  b1x  e

574 Chapter 13 Simple Linear Regression Analysis

Average Estimate of B1 Beta
Return
Length Aggressive Defensive Neutral
Time Stocks Stocks Stocks

1 1.37 .50 .98

3 1.42 .44 .95

6 1.53 .41 .94

9 1.69 .39 1.00

12 1.83 .40 .98

15 1.67 .38 1.00

18 1.78 .39 1.02

24 1.86 .35 1.14

30 1.83 .33 1.22

Source: Reprinted by permission from H. Levy, “Measuring Risk and Performance over
Alternative Investment Horizons,” Financial Analysts Journal (March–April 1984),
pp. 61–68. Copyright © 1984, CFA Institute. Reproduced and modified from Financial
Analysts Journal with permission of CFA Institute.

DS

Let y average estimate of b1 and x  return length time, and consider relating y to x for

each stock type by using the simple linear regression model

Here and are regression parameters relating y to x. We use the asterisks to indicate that

these regression parameters are different from b0 and b1. Calculate a 95 percent confidence

interval for for each stock type. Carefully interpret the meaning of each interval.b
*
1

b
*
1b

*
0

y  b
*
0  b

*
1x  e
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13.73 Internet Exercise

The U.S. News & World Report website provides rank-
ings of the best colleges and universities in the United
States. The free version of Best Colleges gives informa-
tion such as number of students enrolled, tuition rates,
and so forth. Among the data provided are the percent-
age acceptance rate (at the time of this writing the data
is for the fall semester of 2008) and the average fresh-
man retention rate (at the time of this writing, the aver-
age percentage of freshman entering starting in 2005
through 2008 who returned to school the following fall
is given).

One might wonder if there is a statistically significant
relationship between average freshman percentage re-
tention rate and the percentage acceptance rate at col-
leges and universities in the United States. To investi-
gate this possible relationship, go to the U.S. News &
World Report website (www.usnews.com). Then make
selections as follows: Education; Best Colleges; National
Universities; View National Universities Rankings. From
the rankings, compile a list of the ranked universities
and their most recent acceptance rates. Note that fol-
lowing the list of ranked universities is a list of unranked

schools. Omit these unranked schools from your analy-
sis. Next, return to the National Universities page and
select Freshman Retention Rate from the National Uni-
versities Quick Comparison list. Compile a list of average
retention rates for the schools in your list of ranked uni-
versities. Finally, enter the ranked universities and their
corresponding acceptance rates and average freshman
retention rates into a spreadsheet.

Using Excel or MINITAB, construct a scatter plot of av-
erage freshman retention rate versus acceptance rate.
Describe any apparent relationship between these vari-
ables. Develop a simple linear regression model express-
ing average freshman retention rate as a linear function
of acceptance rate. Then use Excel or MINITAB to fit the
model. Using the computer output, identify the key sum-
mary measures-r2, the standard error, and the F-statistic
from the ANOVA table. Identify and interpret the esti-
mated regression coefficients. Suppose that a university
has an acceptance rate of 90 percent. Use your regres-
sion model to predict the average freshman retention
rate for this school. Prepare a brief report summarizing
your analysis and conclusions.
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Appendix 13.1 ■ Simple Linear Regression Analysis Using Excel
The instruction blocks in this section each begin by describing the entry of data into an Excel spreadsheet. Alterna-
tively, the data may be downloaded from this book’s website. The appropriate data file name is given at the top of
each instruction block. Please refer to Appendix 1.1 for further information about entering data, saving data, and
printing results when using Excel.

Simple linear regression in Exercise 13.3 on page 526
(data file: FuelCon1.xlsx):

• Enter the fuel consumption data from Exercise 13.3
(page 527) with the temperatures in column A
with label Temp and the fuel consumptions in 
column B with label FuelCons.

• Select Data : Data Analysis : Regression and click
OK in the Data Analysis dialog box.

• In the Regression dialog box:

Enter B1 : B9 into the “Input Y Range” box.

Enter A1 : A9 into the “Input X Range” box.

• Place a checkmark in the Labels checkbox.

• Be sure that the “Constant is Zero” checkbox is
NOT checked.

• Select the “New Worksheet Ply” option.

• Click OK in the Regression dialog box to obtain the
regression results in a new worksheet.

To produce residual plots similar to Figure 13.27
(page 565):

• In the Regression dialog box, place a checkmark in
the Residuals check box to request predicted 
values and residuals.

• Place a checkmark in the Residual Plots checkbox.

• Place a checkmark in the Normal Probability Plots
checkbox.

• Click OK in the Regression dialog box.

• Move the plots to chart sheets to format them for 
effective viewing. Additional residual plots—
residuals versus predicted values and residuals 
versus time—can be produced using the Excel
charting features.

To compute a point prediction for fuel consumption
when temperature is 40°F (data file: FuelCon1.xlsx):

• The Excel Analysis ToolPak does not provide an 
option for computing point or interval predictions.
A point prediction can be computed from the 
regression results using Excel cell formulas.

• In the regression output, the estimated intercept
and slope parameters from cells A17 : B18 have
been copied to cells D2 : E3 and the predictor
value 40 has been placed in cell E5.

• In cell E6, enter the Excel formula = E2 + E3*E5 
(= 10.7210) to compute the prediction.
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Appendix 13.2 ■ Simple Linear Regression Analysis Using MegaStat
The instructions in this section begin by describing the entry of data into an Excel worksheet. Alternatively, the data
may be downloaded from this book’s website. The appropriate data file name is given at the top of each instruc-
tion block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing
results in Excel. Please refer to Appendix 1.2 for more information about using MegaStat. 

Simple linear regression for the service time data in
Exercise 13.5 on page 527 (data file: SrvcTime.xlsx):

• Enter the service time data (page 528) with the
numbers of copiers serviced in column A with
label Copiers and with the service times in 
column B with label Minutes. 

• Select Add-Ins : MegaStat : Correlation/
Regression : Regression Analysis.

• In the Regression Analysis dialog box, click in
the Independent Variables window and use the 
autoexpand feature to enter the range A1 : A12.

• Click in the Dependent Variable window and
use the autoexpand feature to enter the range
B1 : B12.

• Check the appropriate Options and Residuals
checkboxes as follows: 

1 Check “Test Intercept” to include a 
y-intercept and to test its significance.

2 Check “Output Residuals” to obtain a list of
the model residuals.

3 Check “Plot Residuals by Observation,” and
“Plot Residuals by Predicted Y and X” to 
obtain residual plots versus time, versus the
predicted values of y, and versus the values
of the independent variable.

4 Check “Normal Probability Plot of Residuals”
to obtain a normal plot.

5 Check “Durbin-Watson” for the Durbin–
Watson statistic (to be explained in 
Chapter 15).

To obtain a point prediction of y when four comput-
ers will be serviced (as well as a confidence interval
and prediction interval):

• Click on the drop-down menu above the 
Predictor Values window and select “Type in
predictor values.”

• Type the value of the independent variable for
which a prediction is desired (here equal to 4)
into the Predictor Values window.

• Select a desired level of confidence (here 95%)
from the Confidence Level drop-down menu or
type in a value.

• Click OK in the Regression Analysis dialog box.
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To compute several point predictions of y—say, when
1, 2, 3, and 4 computers will be serviced—(and corre-
sponding confidence and prediction intervals): 

• Enter the values of x for which predictions are 
desired into a column in the spreadsheet—these
values can be in any column. Here we have 
entered the values 1, 2, 3, and 4 into cells A15
through A18.

• Click on the drop-down menu above the 
Predictor Values box and select “Predictor values
from spreadsheet cells.”

• Enter the range A15 : A18 into the Predictor 
Values box.

• Click OK in the Regression Analysis dialog box.
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Appendix 13.3 ■ Simple Linear Regression Analysis Using MINITAB
The instruction blocks in this section each begin by describing the entry of data into the MINITAB data window.
Alternatively, the data may be downloaded from this book’s website. The appropriate data file name is given at the
top of each instruction block. Please refer to Appendix 1.3 for further information about entering data, saving data,
and printing results when using MINITAB.

Simple linear regression of the fuel consumption data
in Exercise 13.3 on page 526 (data file: FuelCon1.
MTW):

• In the Data window, enter the fuel consumption
data from Exercise 13.3 on page 527—average
hourly temperatures in column C1 with variable
name Temp and weekly fuel consumptions in 
column C2 with variable name FuelCons. 

• Select Stat : Regression : Regression.

• In the Regression dialog box, select FuelCons into
the Response window.

• Select Temp into the Predictors window.

To compute a prediction for fuel consumption when
temperature is 40ºF:

• In the Regression dialog box, click on the 
Options... button.

• In the “Regression—Options” dialog box, type 40
in the “Prediction intervals for new observations” 
window.

• Click OK in the “Regression—Options” dialog
box.

To produce residual analysis similar to Figure 13.27
on page 565:

• In the Regression dialog box, click on the 
Graphs... button.

• In the “Regression—Graphs” dialog box, select
the “Residuals for Plots: Regular” option.

• To obtain a histogram and normal plot of the 
residuals, a plot of the residuals versus the fitted
values, and a plot of the residuals versus time
order, select “Four in one” in the list of options
under Residual Plots. (Note that the plot versus
time order is generally informative only if the
data are in time sequence order.)

• Enter Temp in the “Residuals versus the 
variables” window to obtain a plot of the 
residuals versus the values of average hourly 
temperature.

• Click OK in the “Regression—Graphs” dialog box.

• To see the regression results in the Session 
window and high-resolution graphs in two
graphics windows, click OK in the Regression 
dialog box.
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Multiple
Regression

Chapter Outline

After mastering the material in this chapter, you will be able to:

LO6 Find and interpret a confidence interval for
a mean value of the dependent variable
and a prediction interval for an individual
value of the dependent variable.

LO7 Use dummy variables to model qualitative
independent variables.

LO8 Test the significance of a portion of a
regression model by using an F test.

LO9 Use residual analysis to check the
assumptions of multiple regression.

Learning Objectives

LO1 Explain the multiple regression model and
the related least squares point estimates.

LO2 Explain the assumptions behind multiple
regression and calculate the standard error.

LO3 Calculate and interpret the multiple and
adjusted multiple coefficients of
determination.

LO4 Test the significance of a multiple
regression model by using an F test.

LO5 Test the significance of a single
independent variable.



ften we can more accurately describe,

predict, and control a dependent variable

by using a regression model that employs

more than one independent variable. Such a model

is called a multiple regression model, which is the

subject of this chapter.

In order to explain the ideas of this chapter, we

consider the following cases:

O

The Tasty Sub Shop Case: The business

entrepreneur more accurately predicts the yearly

revenue for a potential restaurant site by using a

multiple regression model that employs as

independent variables (1) the number of

residents living near the site and (2) a rating of

the amount of business and shopping near the

site. The entrepreneur uses the more accurate

predictions given by the multiple regression

model to more accurately assess the profitability

of the potential restaurant site.

The Sales Territory Performance Case: A sales

manager evaluates the performance of sales

representatives by using a multiple regression 

model that predicts sales performance on the

basis of five independent variables. Salespeople

whose actual performance is far worse than

predicted performance will get extra training to

help improve their sales techniques.

C

14.1 The Multiple Regression Model and the Least 
Squares Point Estimates 

Regression models that employ more than one independent variable are called multiple regres-

sion models. We begin our study of these models by considering the following example.

Explain the
multiple

regression model
and the related
least squares point
estimates.

LO1

T A B L E 1 4 . 1 The Tasty Sub Shop Revenue Data TastySub2DS

Population Size, x1 Yearly Revenue, y
Restaurant (Thousands of Residents) Business Rating, x2 (Thousands of Dollars)

1 20.8 3 527.1

2 27.5 2 548.7

3 32.3 6 767.2

4 37.2 5 722.9

5 39.6 8 826.3

6 45.1 3 810.5

7 49.9 9 1040.5

8 55.4 5 1033.6

9 61.7 4 1090.3

10 64.6 7 1235.8

EXAMPLE 14.1 The Tasty Sub Shop Case

Part 1: The data and a regression model Consider the Tasty Sub Shop problem in which

the business entrepreneur wishes to predict yearly revenue for potential Tasty Sub restaurant

sites. In Chapter 13 we used the number of residents, or population size x, living near a site to

predict y, the yearly revenue for a Tasty Sub Shop built on the site. We now consider predicting

y on the basis of the population size and a second predictor variable—the business rating. The

business rating for a restaurant site reflects the amount of business and shopping near the site.

This rating is expressed as a whole number between 1 and 10. Sites having only limited business

and shopping nearby do not provide many potential customers—shoppers or local employees

likely to eat in a Tasty Sub Shop—so they receive ratings near 1. However, sites located near sub-

stantial business and shopping activity do provide many potential customers for a Tasty Sub

Shop, so they receive much higher ratings. The best possible rating for business activity is 10.

The business entrepreneur has collected data concerning yearly revenue (y), population size

(x1), and business rating (x2) for 10 existing Tasty Sub restaurants that are built on sites similar to

the site the entrepreneur is considering. These data are given in Table 14.1.

C
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Figure 14.1 presents a scatter plot of y versus x1. This plot shows that y tends to increase in a

straight-line fashion as x1 increases. Figure 14.2 shows a scatter plot of y versus x2. This plot

shows that y tends to increase in a straight-line fashion as x2 increases. Together, the scatter plots

in Figures 14.1 and 14.2 imply that a reasonable multiple regression model relating y (yearly rev-

enue) to x1 (population size) and x2 (business rating) is

y  b0  b1x1  b2x2  e

This model says that the values of y can be represented by a mean level—my b0 b1x1  b2x2—

that changes as x1 and x2 change, combined with random fluctuations—described by the error

term e—that cause the values of y to deviate from the mean level. Here:

1 The mean level my b0  b1x1   b2x2 is the mean yearly revenue for all Tasty Sub restau-

rants that could potentially be built near populations of size x1 and business/shopping areas

having a rating of x2. Furthermore, the equation

my  b0  b1x1  b2x2

is the equation of a plane—called the plane of means—in three-dimensional space. The

plane of means is the shaded plane illustrated in Figure 14.3. Different mean yearly revenues

corresponding to different population size–business rating combinations lie on the plane of

means. For example, Table 14.1 tells us that restaurant 3 is built near a population of 32,300

residents and a business/shopping area having a rating of 6. It follows that

b0  b1(32.3)  b2(6)

is the mean yearly revenue for all Tasty Sub restaurants that could potentially be built near

populations of 32,300 residents and business/shopping areas having a rating of 6.

2 b0, b1, and b2 are (unknown) regression parameters that relate mean yearly revenue to x1

and x2. Specifically:

• b0—the intercept of the model—is the mean yearly revenue for all Tasty Sub restaurants

that could potentially be built near populations of zero residents and business/shopping

areas having a rating of 0. This interpretation, however, is of dubious practical value,

because we have not observed any Tasty Sub restaurants that are built near populations

of zero residents and business/shopping areas having a rating of zero. (The lowest

business rating is 1.)

F I G U R E 1 4 . 1 Plot of y (Yearly Revenue) versus

x1 (Population Size)
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• b1—the regression parameter for the variable x1—is the change in mean yearly rev-

enue that is associated with a one-unit (1000 resident) increase in the population size

(x1) when the business rating (x2) does not change. Intuitively, b1 is the slope of the

plane of means in the x1 direction.

• b2—the regression parameter for the variable x2—is the change in mean yearly rev-

enue that is associated with a one-unit increase in the business rating (x2) when the

population size (x1) does not change. Intuitively, b2 is the slope of the plane of means 

in the x2 direction.

3 e is an error term that describes the effect on y of all factors other than x1 and x2. One such

factor is the skill of the owner as an operator of the restaurant under consideration. For

example, Figure 14.3 shows that the error term for restaurant 3 is positive. This implies that

the observed yearly revenue for restaurant 3, y  767.2, is greater than the mean yearly rev-

enue for all Tasty Sub restaurants that could potentially be built near populations of 32,300

residents and business/shopping areas having a rating of 6. In general, positive error terms

cause their respective observed yearly revenues to be greater than the corresponding mean

yearly revenues. On the other hand, negative error terms cause their respective observed

yearly revenues to be less than the corresponding mean yearly revenues.

Part 2: The least squares point estimates If b0, b1, and b2 denote point estimates of b0,

b1, and b2, then the point prediction of an observed yearly revenue y  b0  b1x1  b2x2  e is

 b0  b1x1  b2x2

which we call a predicted yearly revenue. Here, since the regression assumptions (to be discussed

in Section 14.2) imply that the error term e has a 50 percent chance of being positive and a 

50 percent chance of being negative, we predict e to be zero. Now, consider the 10 Tasty Sub

restaurants in Table 14.1. If any particular values of b0, b1, and b2 are good point estimates, they

will make the predicted yearly revenue for each restaurant fairly close to the observed yearly rev-

enue for the restaurant. This will make the restaurant’s residual—the difference between the

restaurant’s observed and predicted yearly revenues—fairly small (in magnitude). We define the

least squares point estimates to be the values of b0, b1, and b2 that minimize SSE, the sum of

squared residuals for the 10 restaurants.

ŷ

F I G U R E 1 4 . 3 A Geometrical Interpretation of the Regression Model Relating y to x1 and x2

y

x1

x2

(32.3, 6)

y   767.2   the observed yearly revenue for restaurant 3

The plane of means  y    0    1x1    2x2

0

    the error term for restaurant 3 (a positive error term)

 0    1(32.3)    2(6)   mean yearly revenue when x1   32.3 and x2   6
 0



The formula for the least squares point estimates of the parameters in a multiple regression

model is expressed using a branch of mathematics called matrix algebra. This formula is

presented in Appendix G on this book’s website. In the main body of the book, we will rely on

Excel and MINITAB to compute the needed estimates. For example, consider the Excel and

MINITAB outputs in Figure 14.4. These outputs tell us that the least squares point estimates of

b0, b1, and b2 in the Tasty Sub Shop revenue model are b0  125.29, b1  14.1996, and b2  

22.811 (see , , and ). The point estimate b1  14.1996 of b1 says we estimate that mean

yearly revenue increases by $14,199.60 when the population size increases by 1,000 residents and

the business rating does not change. The point estimate b2  22.811 of b2 says we estimate that

mean yearly revenue increases by $22,811 when there is a one-unit increase in the business rating

and the population size does not change.

321
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F I G U R E 1 4 . 4 Excel and MINITAB Outputs of a Regression Analysis of the Tasty Sub Shop Revenue Data 

in Table 14.1 Using the Model y  B0  B1x1  B2x2  E

Regression Statistics

Multiple R 0.9905

R Square 0.9810

Adjusted R Square 0.9756

Standard Error 36.6856

Observations 10

ANOVA df SS MS F Significance F

Regression 2 486355.7 243177.8 180.689 9.46E-07

Residual 7 9420.8 1345.835

Total 9 495776.5

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 125.289 40.9333 3.06 0.0183 28.4969 222.0807 

population 14.1996 0.9100 15.60 1.07E-06 12.0478 16.3517

bus_rating 22.8107 5.7692 3.95 0.0055 9.1686 36.4527

(b) The MINITAB output

(a) The Excel output

8

9

7

The regression equation is

revenue = 125 + 14.2 population + 22.8 bus_rating

Predictor Coef SE Coef T P

Constant 125.29 40.93 3.06 0.018

population 14.1996 0.91 15.6 0.000

bus_rating 22.811 5.769 3.95 0.006

S = 36.6856 R-Sq = 98.10% R-Sq(adj) = 97.6%

Analysis of Variance

Source DF SS MS F P

Regression 2 486356 243178 180.69 0.000

Residual Error 7 9421 1346

Total 9 495777

Predicted Values for New Observations

New Obs Fit SE Fit 95% CI 95% PI

1 956.6 15 (921.0, 992.2) (862.8, 1050.4)

Values of Predictors for New Observations

New Obs population bus_rating

1 47.3 7

171615

12

11

141310

87

3

2

1

654

10 13 14

11

12

1

4 5 6 19 19

2

3

b0 b1 b2 standard error of the estimate bj t statistics p-values for t statistics s standard error

R2 Adjusted R2 Explained variation SSE Unexplained variation Total variation F(model) statistic

p-value for F(model) point prediction when x1 47.3 and x2 7 standard error of the estimate 

95% confidence interval when x1 47.3 and x2 7 95% prediction interval when x1 47.3 and x2 7 95% confidence interval for bj19  18  17

ŷ sŷ16   ŷ1514

1312 111098

 765 sbj
4321

18

9
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The equation

is called the least squares prediction equation. In Table 14.2 we summarize using this predic-

tion equation to calculate the predicted yearly revenues and the residuals for the 10 observed

Tasty Sub restaurants. For example, since the population size and business rating for restaurant 1

were 20.8 and 3, the predicted yearly revenue for restaurant 1 is

It follows, since the observed yearly revenue for restaurant 1 was y 527.1, that the residual for

restaurant 1 is

If we consider all of the residuals in Table 14.2 and add their squared values, we find that SSE,

the sum of squared residuals, is 9420.8. This SSE value is given on the Excel and MINITAB

outputs in Figure 14.4 (see ) and will be used throughout this chapter.

Part 3: Estimating means and predicting individual values The least squares predic-

tion equation is the equation of a plane—called the least squares plane—in three-dimensional

space. The least squares plane is the estimate of the plane of means. It follows that the point on the

least squares plane corresponding to the population size x1 and the business rating x2

is the point estimate of b0  b1x1  b2x2, the mean yearly revenue for all Tasty Sub restaurants

that could potentially be built near populations of size x1 and business/shopping areas having a

rating of x2. In addition, since we predict the error term to be 0, ŷ is also the point prediction of

y  b0  b1x1  b2x2   e, the yearly revenue for a single Tasty Sub restaurant that is built near

a population of size x1 and a business/shopping area having a rating of x2.

For example, suppose that one of the business entrepreneur’s potential restaurant sites is near

a population of 47,300 residents and a business/shopping area having a rating of 7. It follows that

  956.6 (that is, $956.600)

 ŷ  125.29  14.1996(47.3)  22.811(7)

  125.29  14.1996x1  22.811x2

 ŷ  b0  b1x1  b2x2

11

y  ŷ  527.1  489.07  38.03

  489.07

 ŷ  125.29  14.1996(20.8)  22.811(3)

  125.29  14.1996x1  22.811x2

 ŷ  b0  b1x1  b2x2

T A B L E 1 4 . 2 The Point Predictions and Residuals Using the Least Squares Point Estimates,

b0  125.29, b1  14.1996, and b2  22.811

Population Size, x1 Yearly Revenue, y Predicted Yearly Revenue
(Thousands of Business (Thousands ŷ  125.29  14.1996x1 Residual,

Restaurant Residents) Rating, x2 of Dollars)   22.811x2 y  ŷ

1 20.8 3 527.1 489.07 38.03

2 27.5 2 548.7 561.40  12.70

3 32.3 6 767.2 720.80 46.40

4 37.2 5 722.9 767.57  44.67

5 39.6 8 826.3 870.08  43.78

6 45.1 3 810.5 834.12  23.62

7 49.9 9 1040.7 1039.15 1.55

8 55.4 5 1033.6 1026.00 7.60

9 61.7 4 1090.3 1092.65  2.35

10 64.6 7 1235.8 1202.26 33.54

SSE  (38.03)2  ( 12.70)2        (33.54)2  9420.8



is

1 The point estimate of the mean yearly revenue for all Tasty Sub restaurants that could

potentially be built near populations of 47,300 residents and business/shopping areas

having a rating of 7, and

2 The point prediction of the yearly revenue for a single Tasty Sub restaurant that is built near

a population of 47,300 residents and a business/shopping area having a rating of 7.

Notice that ŷ  956.6 is given at the bottom of the MINITAB output in Figure 14.4 (see ).

Moreover, recall that the yearly rent and other fixed costs for the entrepreneur’s potential restau-

rant will be $257,550 and that (according to Tasty Sub corporate headquarters) the yearly food

and other variable costs for the restaurant will be 60 percent of the yearly revenue. Because we

predict that the yearly revenue for the restaurant will be $956,600, it follows that we predict that

the yearly total operating cost for the restaurant will be $257,550  .6($956,600)  $831,510. In

addition, if we subtract this predicted yearly operating cost from the predicted yearly revenue of

$956,600; we predict that the yearly profit for the restaurant will be $125,090. Of course, these

predictions are point predictions. In Section 14.6 we will predict the restaurant’s yearly revenue

and profit with confidence.

The Tasty Sub Shop revenue model expresses the dependent variable as a function of two in-

dependent variables. In general, we can use a multiple regression model to express a dependent

variable as a function of any number of independent variables. For example, in the past, natural

gas utilities serving the Cincinnati, Ohio, area have predicted daily natural gas consumption by

using four independent (predictor) variables—average temperature, average wind velocity, av-

erage sunlight, and change in average temperature from the previous day. The general form of

a multiple regression model expresses the dependent variable y as a function of k independent

variables x1, x2, . . . , xk. We express this general form in the following box.

15

586 Chapter 14 Multiple Regression

BI

The Multiple Regression Model

The multiple regression model relating y to x1, x2, . . . , xk is

y  b0  b1x1  b2x2      bkxk  e

2 b0, b1, b2, . . . , bk are (unknown) regression

parameters relating the mean value of y to x1,

x2, . . . , xk.

3 e is an error term that describes the effects on y

of all factors other than the values of the inde-

pendent variables x1, x2, . . . , xk.

Here

1 my  b0  b1x1  b2x2      bkxk is the mean

value of the dependent variable y when the

values of the independent variables are x1,

x2, . . ., xk.

If b0, b1, b2, . . . , bk denote point estimates of b0, b1, b2, . . . , bk, then

ŷ  b0  b1x1  b2x2  
. . .  bkxk

is the point estimate of the mean value of the dependent variable when the values of the indepen-

dent variables are x1, x2, . . . , xk. In addition, since we predict the error term e to be 0, ŷ is also the

point prediction of an individual value of the dependent variable when the values of the inde-

pendent variables are x1, x2, . . . , xk. Now, assume that we have obtained n observations, where

each observation consists of an observed value of the dependent variable y and corresponding

observed values of the independent variables x1, x2, . . . , xk. For the ith observation, let yi and 

ŷi denote the observed and predicted values of the dependent variable, and define the residual

to be ei  yi  ŷi. It then follows that the least squares point estimates are the values of 

b0, b1, b2, . . . , bk that minimize the sum of squared residuals:

As illustrated in Example 14.1, we use Excel and MINITAB to find the least squares point estimates.

SSE  a
n

i 1

(yi  ŷi)
2
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To conclude this section, consider an arbitrary independent variable, which we will denote as

xj, in a multiple regression model. We can then interpret the parameter bj to be the change in the

mean value of the dependent variable that is associated with a one-unit increase in xj when the

other independent variables in the model do not change. This interpretation is based, however, on

the assumption that xj can increase by one unit without the other independent variables in the

model changing. In some situations (as we will see) this assumption is not reasonable.

Exercises for Section 14.1
CONCEPTS

14.1 In the multiple regression model, what sum of squared deviations do the least squares point

estimates minimize?

14.2 When using the multiple regression model, how do we obtain a point estimate of the mean value 

of the dependent variable and a point prediction of an individual value of the dependent variable?

METHODS AND APPLICATIONS

14.3 THE FUEL CONSUMPTION CASE FuelCon2

Consider the fuel consumption problem in which a natural gas company wishes to predict weekly

fuel consumption for its city. In the exercises of Chapter 13, we used the single predictor variable x,

average hourly temperature, to predict y, weekly fuel consumption. We now consider predicting y on

the basis of average hourly temperature and a second predictor variable—the chill index. The chill

index for a given average hourly temperature expresses the combined effects of all other major

weather-related factors that influence fuel consumption, such as wind velocity, sunlight, cloud cover,

and the passage of weather fronts. The chill index is expressed as a whole number between 0 and 30.

A weekly chill index near 0 indicates that, given the average hourly temperature during the week, all

other major weather-related factors will only slightly increase weekly fuel consumption. A weekly

chill index near 30 indicates that, given the average hourly temperature during the week, other

weather-related factors will greatly increase weekly fuel consumption. The natural gas company has

collected data concerning weekly fuel consumption (y, in MMcF of natural gas), average hourly

temperature (x1, in degrees Fahrenheit), and the chill index (x2) for the last eight weeks. The data are

given in Table 14.3, and scatter plots of y versus x1 and y versus x2 are given below the data. More-

over, Figure 14.5 on the next page gives Excel and MINITAB outputs of a regression analysis of

these data using the model 

y  b0  b1x1  b2x2  e

a Using the Excel or MINITAB output (depending on the package used in your class), find

(on the output) b1 and b2, the least squares point estimates of b1 and b2, and report their values.

Then interpret b1 and b2.

b Calculate a point estimate of the mean fuel consumption for all weeks that have an average

hourly temperature of 40 and a chill index of 10, and a point prediction of the amount of fuel

consumed in a single week that has an average hourly temperature of 40 and a chill index of

10. Find this point estimate (prediction), which is given at the bottom of the MINITAB output,

and verify that it equals (within rounding) your calculated value.

14.4 THE REAL ESTATE SALES PRICE CASE RealEst2

A real estate agency collects the data in Table 14.4 concerning

y  sales price of a house (in thousands of dollars)

x1  home size (in hundreds of square feet)

x2  rating (an overall “niceness rating” for the house expressed on a scale

from 1 [worst] to 10 [best], and provided by the real estate agency)

Scatter plots of y versus x1 and y versus x2 are as follows:

P
ri

ce

Size, x1

P
ri

ce

Rating, x2

DS

DS

T A B L E 1 4 . 4

The Real Estate

Sales Price Data

RealEst2DS

y x1 x2

180 23 5

98.1 11 2

173.1 20 9

136.5 17 3

141 15 8

165.9 21 4

193.5 24 7

127.8 13 6

163.5 19 7

172.5 25 2

Source: R. L. Andrews and

J. T. Ferguson, “Integrating

Judgement with a Regres-

sion Appraisal,” The Real

Estate Appraiser and

Analyst 52, no. 2 (1986).

Reprinted by permission.

T A B L E 1 4 . 3

The Fuel

Consumption Data

FuelCon2DS

y x1 x2

12.4 28.0 18

11.7 28.0 14

12.4 32.5 24

10.8 39.0 22

9.4 45.9 8

9.5 57.8 16

8.0 58.1 1

7.5 62.5 0

F
u
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Chill, x2

F
u
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l

Temp, x1
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F I G U R E 1 4 . 6 MINITAB Output of a Regression Analysis of the Real Estate Sales Price Data Using

the Model y  B0  B1x1  B2x2  E

The regression equation is 

SalesPrice = 29.3 + 5.61 HomeSize + 3.83 Rating

Predictor    Coef  SE Coef      T      P 

Constant   29.347    4.891   6.00  0.001 

HomeSize   5.6128   0.2285  24.56  0.000 

Rating     3.8344   0.4332   8.85  0.000 

S = 3.24164   R-Sq = 99.0%   R-Sq(adj) = 98.7% 

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression 2 7374.0 3687.0 350.87 0.000

Residual Error   7    73.6    10.5 

Total            9  7447.5 

Values of Predictors for New Obs   Predicted Values for New Observations 

New Obs  HomeSize  Rating          New Obs     Fit   SE Fit       95% CI            95% PI 

1      20.0    8.00                1  172.28     1.57  (168.56, 175.99)  (163.76, 180.80) 

F I G U R E 1 4 . 5 Excel and MINITAB Outputs of a Regression Analysis of the Fuel Consumption Data 

Using the Model y  B0  B1x1  B2x2  E

Regression Statistics

Multiple R 0.9867

R Square 0.9736

Adjusted R Square 0.9631

Standard Error 0.3671

Observations 8

ANOVA df SS MS F Significance F

Regression 2 24.8750 12.4375 92.3031 0.0001

Residual 5 0.6737 0.1347

Total 7 25.5488

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 13.1087 0.8557 15.3193 2.15E-05 10.9091 15.3084 

TEMP -0.0900 0.0141 -6.3942 0.0014 -0.1262 -0.0538

CHILL 0.0825 0.0220 3.7493 0.0133 0.0259 0.1391

(b) The MINITAB output

(a) The Excel output

The regression equation is

FuelCons = 13.1 - 0.0900 Temp + 0.0825 Chill

Predictor           Coef SE Coef             T              P

Constant 13.1087 0.8557         15.32          0.000

Temp -0.09001 0.01408         -6.39          0.001

Chill 0.08249 0.02200          3.75          0.013

s = 0.367078 R-Sq = 97.4% R-Sq(adj) = 96.3%

Analysis of Variance

Source DF SS MS F             P

Regression 2         24.875 12.438 92.30         0.000

Residual Error 5          0.674 0.135

Total 7         25.549

Values of Predictors for New Obs Predicted Values for New Observations

New Obs Temp Chill New Obs Fit SE Fit 95% CI 95% PI

1 40.0 10.0 1 10.333 0.170   (9.895, 10.771) (9.293, 11.374)
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The agency wishes to develop a regression model that can be used to predict the sales prices of

future houses it will list. Figure 14.6 gives the MINITAB output of a regression analysis of the real

estate sales price data in Table 14.4 using the model

y  b0  b1x1  b2x2  e

a Using the MINITAB output, identify and interpret b1 and b2, the least squares point estimates

of b1 and b2.

b Calculate a point estimate of the mean sales price of all houses having 2,000 square feet and

a rating of 8, and a point prediction of the sales price of a single house having 2,000 square feet

and a rating of 8. Find this point estimate (prediction), which is given at the bottom of the

MINITAB output, and verify that it equals (within rounding) your calculated value.

14.5 THE FRESH DETERGENT CASE Fresh2

Enterprise Industries produces Fresh, a brand of liquid laundry detergent. In order to manage its

inventory more effectively and make revenue projections, the company would like to better predict

demand for Fresh. To develop a prediction model, the company has gathered data concerning

demand for Fresh over the last 30 sales periods (each sales period is defined to be a four-week

period). The demand data are presented in Table 14.5. Here, for each sales period,

y  the demand for the large size bottle of Fresh (in hundreds of thousands of bottles) in the

sales period

x1  the price (in dollars) of Fresh as offered by Enterprise Industries in the sales period

x2  the average industry price (in dollars) of competitors’ similar detergents in the sales 

period

x3  Enterprise Industries’ advertising expenditure (in hundreds of thousands of dollars) to

promote Fresh in the sales period

Figure 14.7 gives the Excel output of a regression analysis of the Fresh Detergent demand data in

Table 14.5 using the model 

y  b0  b1x1  b2x2  b3x3  e

a Find (on the output) and report the values of b1, b2, and b3, the least squares point estimates of

b1, b2, and b3. Interpret b1, b2, and b3.

DS

T A B L E 1 4 . 5 Historical Data Concerning Demand for Fresh Detergent Fresh2DS

Price Average Advertising Price Average Advertising

Sales for Industry Expenditure Demand Sales for Industry Expenditure Demand

Period Fresh, x1 Price, x2 for Fresh, x3 for Fresh, y Period Fresh, x1 Price, x2 for Fresh, x3 for Fresh, y

1 3.85 3.80 5.50 7.38 16 3.80 4.10 6.80 8.87

2 3.75 4.00 6.75 8.51 17 3.70 4.20 7.10 9.26

3 3.70 4.30 7.25 9.52 18 3.80 4.30 7.00 9.00

4 3.70 3.70 5.50 7.50 19 3.70 4.10 6.80 8.75

5 3.60 3.85 7.00 9.33 20 3.80 3.75 6.50 7.95

6 3.60 3.80 6.50 8.28 21 3.80 3.75 6.25 7.65

7 3.60 3.75 6.75 8.75 22 3.75 3.65 6.00 7.27

8 3.80 3.85 5.25 7.87 23 3.70 3.90 6.50 8.00

9 3.80 3.65 5.25 7.10 24 3.55 3.65 7.00 8.50

10 3.85 4.00 6.00 8.00 25 3.60 4.10 6.80 8.75

11 3.90 4.10 6.50 7.89 26 3.65 4.25 6.80 9.21

12 3.90 4.00 6.25 8.15 27 3.70 3.65 6.50 8.27

13 3.70 4.10 7.00 9.10 28 3.75 3.75 5.75 7.67

14 3.75 4.20 6.90 8.86 29 3.80 3.85 5.80 7.93

15 3.75 4.10 6.80 8.90 30 3.70 4.25 6.80 9.26
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b Consider the demand for Fresh Detergent in a future sales period when Enterprise Industries’

price for Fresh will be x1  3.70, the average price of competitors’ similar detergents will be

x2  3.90 and Enterprise Industries’ advertising expenditure for Fresh will be x3  6.50. The

point prediction of this demand is given at the bottom of the Excel add-in output. Report this

point prediction and show (within rounding) how it has been calculated.

14.6 THE HOSPITAL LABOR NEEDS CASE HospLab

Table 14.6 presents data concerning the need for labor in 16 U.S. Navy hospitals. Here,

y  monthly labor hours required; x1  monthly X-ray exposures; x2  monthly occupied bed

DS
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F I G U R E 1 4 . 7 Excel Output of a Regression Analysis of the Fresh Detergent Demand Data Using 

the Model y  B0  B1x1  B2x2  B3x3  E

(a) The Excel output

Regression Statistics

Multiple R 0.9453

R Square 0.8936

Adjusted R Square 0.8813

Standard Error 0.2347

Observations 30

ANOVA df SS MS F Significance F

Regression 3 12.0268 4.0089 72.797 8.883E-13

Residual 26 1.4318 0.0551

Total 29 13.4586

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 7.5891 2.4450 3.1039 0.0046 2.5633 12.6149

Price (X1) -2.3577 0.6379 -3.6958 0.0010 -3.6690 -1.0464

IndPrice (X2) 1.6122 0.2954 5.4586 0.0000 1.0051 2.2193

AdvExp (X3) 0.5012 0.1259 3.9814 0.0005 0.2424 0.7599

(b) Prediction using an Excel add-in (MegaStat)

Predicted values for: Demand (y)
95% Confidence Interval 95% Prediction Interval

Price (x1) IndPrice (x2) AdvExp (x3) Predicted lower upper lower upper Leverage

3.7 3.9 6.5 8.4107 8.3143 8.5070 7.9188 8.9025 0.040

T A B L E 1 4 . 6 Hospital Labor Needs Data HospLabDS

Monthly X-Ray Monthly Occupied Average Length Monthly Labor
Hospital Exposures, x1 Bed Days, x2 of Stay, x3 Hours Required, y

1 2,463 472.92 4.45 566.52

2 2,048 1,339.75 6.92 696.82

3 3,940 620.25 4.28 1,033.15

4 6,505 568.33 3.90 1,603.62

5 5,723 1,497.60 5.50 1,611.37

6 11,520 1,365.83 4.60 1,613.27

7 5,779 1,687.00 5.62 1,854.17

8 5,969 1,639.92 5.15 2,160.55

9 8,461 2,872.33 6.18 2,305.58

10 20,106 3,655.08 6.15 3,503.93

11 13,313 2,912.00 5.88 3,571.89

12 10,771 3,921.00 4.88 3,741.40

13 15,543 3,865.67 5.50 4,026.52

14 34,703 12,446.33 10.78 11,732.17

15 39,204 14,098.40 7.05 15,414.94

16 86,533 15,524.00 6.35 18,854.45

Source: Procedures and Analysis for Staffing Standards Development Regression Analysis Handbook (San Diego, CA: Navy

Manpower and Material Analysis Center, 1979).
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days (a hospital has one occupied bed day if one bed is occupied for an entire day); and x3  

average length of patients’ stay (in days). Figure 14.8 gives the Excel output of a regression 

analysis of the data using the model

y  b0  b1x1  b2x2  b3x3  e

Note that the variables x1, x2, and x3 are denoted as XRay, BedDays, and LengthStay on the 

output.

a Find (on the output) and report the values of b1, b2, and b3, the least squares point estimates of

b1, b2, and b3. Interpret b1, b2, and b3.

b Consider a questionable hospital for which XRay = 56,194, BedDays = 14,077.88, and 

LengthStay 6.89. A point prediction of the labor hours corresponding to this combination 

of values of the independent variables is given on the Excel add-in output. Report this point

prediction and show (within rounding) how it has been calculated.

c If the actual number of labor hours used by the questionable hospital was y  17,207.31, how

does this y value compare with the point prediction?

14.2 Model Assumptions and the Standard Error 
Model assumptions In order to perform hypothesis tests and set up various types of inter-

vals when using the multiple regression model

we need to make certain assumptions about the error term e. At any given combination of values

of x1, x2, . . . , xk, there is a population of error term values that could potentially occur. These

error term values describe the different potential effects on y of all factors other than the combi-

nation of values of x1, x2, . . . , xk. Therefore, these error term values explain the variation in the y

values that could be observed at the combination of values of x1, x2, . . . , xk. We make the fol-

lowing four assumptions about the potential error term values.

y  b0  b1x1  b2x2          bk xk  e

F I G U R E 1 4 . 8 Excel Output of a Regression Analysis of the Hospital Labor Needs Data 

Using the Model y  B0  B1x1  B2x2  B3x3  E

(a) The Excel output

Regression Statistics

Multiple R 0.9981

R Square 0.9961

Adjusted R Square 0.9952

Standard Error 387.1598

Observations 16

ANOVA df SS MS F Significance F

Regression 3 462327889.4 154109296.5 1028.1309 9.92E-15

Residual 12 1798712.2 149892.7

Total 15 464126601.6

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1946.8020 504.1819 3.8613 0.0023 848.2840 3045.3201

XRay (x1) 0.0386 0.0130 2.9579 0.0120 0.0102 0.0670

BedDays (x2) 1.0394 0.0676 15.3857 2.91E-09 0.8922 1.1866

LengthStay (x3) -413.7578 98.5983 -4.1964 0.0012 -628.5850 -198.9306

(b) Prediction Using an Excel add-in (MegaStat)

Predicted values for: LaborHours
95% Confidence Interval 95% Prediction Interval

XRay (x1) BedDays (x2) LengthStay (x3) Predicted lower upper lower upper Leverage

56194 14077.88 6.89 15,896.2473 15,378.0313 16,414.4632 14,906.2361 16,886.2584 0.3774

Explain the
assumptions

behind multiple
regression and cal-
culate the standard
error.

LO2



Taken together, the first three assumptions say that, at any given combination of values of

x1, x2, . . . , xk, the population of potential error term values is normally distributed with mean 0

and a variance s2 that does not depend on the combination of values of x1, x2, . . . , xk. Because

the potential error term values cause the variation in the potential y values, the first three as-

sumptions imply that, at any given combination of values of x1, x2, . . . , xk, the population of

y values that could be observed is normally distributed with mean b0  b1x1  b2x2  
. . .  

bkxk and a variance s2 that does not depend on the combination of values of x1, x2, . . . , xk. Fur-

thermore, the independence assumption says that, when time series data are utilized in a re-

gression study, there are no patterns in the error term values. In Section 14.10 we show how to

check the validity of the regression assumptions. That section can be read at any time after Sec-

tion 14.7. As in simple linear regression, only pronounced departures from the assumptions

must be remedied.

The mean square error and the standard error To present statistical inference formulas

in later sections, we need to be able to compute point estimates of s2 and s (the constant vari-

ance and standard deviation of the different error term populations). We show how to do this in

the following box:
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Assumptions for the Multiple Regression Model

3 Normality assumption: At any given combina-

tion of values of x1, x2, . . . , xk, the population of

potential error term values has a normal

distribution.

4 Independence assumption: Any one value of the

error term e is statistically independent of any

other value of e. That is, the value of the error

term e corresponding to an observed value of y is

statistically independent of the error term corre-

sponding to any other observed value of y.

1 At any given combination of values of x1, 

x2, . . . , xk, the population of potential error term

values has a mean equal to 0.

2 Constant variance assumption: At any given

combination of values of x1, x2, . . . , xk, the pop-

ulation of potential error term values has a vari-

ance that does not depend on the combination

of values of x1, x2 , . . . , xk. That is, the different

populations of potential error term values corre-

sponding to different combinations of values of

x1, x2, . . . , xk have equal variances. We denote

the constant variance as s2.

In order to explain these point estimates, recall that s2 is the variance of the population of y val-

ues (for given values of x1, x2, . . . , xk) around the mean value my. Since ŷ is the point estimate of

this mean, it seems natural to use to help construct a point estimate of s2. We

divide SSE by because it can be proven that doing so makes the resulting s2 an unbi-

ased point estimate of s2. We call the number of degrees of freedom associated

with SSE.

n  (k  1)

n  (k  1)

SSE   (yi  ŷi)
2

The Mean Square Error and the Standard Error

1 A point estimate of s2 is the mean square error

2 A point estimate of s is the standard error

s  A
SSE

n  (k  1)

s2
 

SSE

n  (k  1)

Suppose that the multiple regression model

y  b0  b1x1  b2x2      bk xk  e

utilizes k independent variables and thus has (k  1)

parameters b0, b1, b2, . . . , bk. Then, if the regression

assumptions are satisfied, and if SSE denotes the sum

of squared residuals for the model:
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We will see in Section 14.6 that if a particular regression model gives a small standard error,

then the model will give short prediction intervals and thus accurate predictions of individual y val-

ues. For example, Table 14.2 (page 585) shows that SSE for the Tasty Sub Shop revenue model

y  b0  b1x1  b2x2  e

is 9420.8. Since this model utilizes k 2 independent variables and thus has k 1  3 parame-

ters (b0, b1, and b2), a point estimate of s2 is the mean square error

and a point estimate of s is the standard error Note that

and are given on the Excel and MINITAB outputs

in Figure 14.4 (page 584). Also note that the s of 36.6856 for the two independent variable model

is less than the s of 61.7052 for the simple linear regression model that uses only the population

size to predict yearly revenue (see Example 13.3, page 532).

14.3 R2 and Adjusted R2

The multiple coefficient of determination, R2 In this section we discuss several ways to

assess the utility of a multiple regression model. We first discuss a quantity called the multiple

coefficient of determination, which is denoted R2. The formulas for R2 and several other related

quantities are given in the following box:

s  36.6856s2
 1345.835,SSE  9420.8,

s  11345.835  36.6856.

s2
 

SSE

n  (k  1)
 

9420.8

10  3
 

9420.8

7
 1345.835

Calculate
and inter-

pret the multiple
and adjusted multi-
ple coefficients of
determination.

LO3

The Multiple Coefficient of Determination, R2

5 The multiple coefficient of determination is

6 R2 is the proportion of the total variation in the

n observed values of the dependent variable that

is explained by the overall regression model.

7 Multiple correlation coefficient  R  2R2

R2
 

Explained variation

Total variation

For the multiple regression model:

1 Total variation  

2 Explained variation  

3 Unexplained variation  

4 Total variation  Explained variation

 Unexplained variation

a (yi  ŷi)
2

a (ŷi  y )2

a (yi  y )2

As an example, consider the Tasty Sub Shop revenue model

y  b0  b1x1  b2x2  e

and the following MINITAB output:

This output tells us that the total variation (SS Total), explained variation (SS Regression), and

unexplained variation (SS Residual Error) for the model are, respectively, 495,777, 486,356, and

9,421. The output also tells us that the multiple coefficient of determination is

R2
 

Explained variation

Total variation
 

486,356

495,777
 .981  (98.1% on the output)

S = 36.6856   R–Sq = 98.10%   R–Sq(adj) = 97.6% 

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression    2  486356  243178  180.69  0.000 

Residual Error   7    9421    1346 

Total            9  495777 



which implies that the multiple correlation coefficient is The value of

says that the two independent variable Tasty Sub Shop revenue model explains 

98.1 percent of the total variation in the 10 observed yearly revenues. Note this R2 value is larger

than the r2 of .939 for the simple linear regression model that uses only the population size to pre-

dict yearly revenue. Also note that the quantities given on the MINITAB output are given on the

following Excel output.

R2
 .981

R  1.981  .9905.
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Regression Statistics

Multiple R 0.9905

R Square 0.9810

Adjusted R Square 0.9756

Standard Error 36.6856

Observations 10

ANOVA df SS MS F Significance F

Regression 2 486355.7 243177.8 180.689 9.46E-07

Residual 7 9420.8 1345.835

Total 9 495776.5

Adjusted R2 Even if the independent variables in a regression model are unrelated to the

dependent variable, they will make R2 somewhat greater than 0. To avoid overestimating the im-

portance of the independent variables, many analysts recommend calculating an adjusted multiple

coefficient of determination.

Adjusted R2

where R2 is the multiple coefficient of determina-

tion, n is the number of observations, and k is the

number of independent variables in the model

under consideration.

The adjusted multiple coefficient of determina-

tion (adjusted R2) is

R2
 冢R2

 
k

n  1冣冢
n  1

n  (k  1)冣

To briefly explain this formula, note that it can be shown that subtracting k兾(n 1) from R2 helps

avoid overestimating the importance of the k independent variables. Furthermore, multiplying

[R2  (k兾(n 1))] by (n 1)兾(n  (k  1)) makes equal to 1 when R2 equals 1.

As an example, consider the Tasty Sub Shop revenue model

Since we have seen that R2  .981, it follows that

which is given on the MINITAB and Excel outputs.

If R2 is less than k兾(n 1) (which can happen), then will be negative. In this case, statisti-

cal software systems set equal to 0. Historically, R2 and have been popular measures of

model utility—possibly because they are unitless and between 0 and 1. In general, we desire R2

and to be near 1. However, sometimes even if a regression model has an R2 and an that are

near 1, the model is still not able to predict accurately. We will discuss assessing a model’s abil-

ity to predict accurately, as well as using to help choose a regression model, as we pro-

ceed through the rest of this chapter and Chapter 15.

R2 and R 2

 R 2 R 2

 R 2 R 2
 R 2

  .9756

  冢.981  
2

10  1冣冢
10  1

10  (2  1)冣

  R 2
 冢R2

 
k

n  1冣冢
n  1

n  (k  1)冣

y  b0  b1x1  b2x2  e

R 2
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14.4 The Overall F Test 
Another way to assess the utility of a regression model is to test the significance of the regression

relationship between y and x1, x2, . . . , xk. For the multiple regression model, we test the null

hypothesis H0: b1 b2     bk 0, which says that none of the independent variables x1,

x2, . . . , xk is significantly related to y (the regression relationship is not significant), versus

the alternative hypothesis Ha: At least one of b1, b2, . . . , bk does not equal 0, which says that at

least one of the independent variables is significantly related to y (the regression relation-

ship is significant). If we can reject H0 at level of significance a, we say that the multiple

regression model is significant at level of significance A. We carry out the test as follows:

Test the sig-
nificance of

a multiple regres-
sion model by using
an F test.

LO4

An F Test for the Multiple Regression Model

Also define the p-value related to F(model) to be the

area under the curve of the F distribution (having k

and [n  (k  1)] degrees of freedom) to the right of

F(model). Then, we can reject H0 in favor of Ha at

level of significance a if either of the following

equivalent conditions holds:

1 F (model)  Fa

2 p-value  a

Here the point Fa is based on k numerator and

n  (k  1) denominator degrees of freedom.

Suppose that the regression assumptions hold and

that the multiple regression model has (k  1)

parameters, and consider testing 

H0: b1  b2      bk  0 

versus

Ha: At least one of b1, b2, . . . , bk does not equal 0.

We define the overall F statistic to be

F(model)  
(Explained variation)兾k

(Unexplained variation)兾[n  (k  1)]

Condition 1 is intuitively reasonable because a large value of F(model) would be caused by an

explained variation that is large relative to the unexplained variation. This would occur if at least

one independent variable in the regression model significantly affects y, which would imply that

H0 is false and Ha is true.

EXAMPLE 14.2 The Tasty Sub Shop Case

Consider the Tasty Sub Shop revenue model

y  b0  b1x1  b2x2  e

and the following MINITAB output

This output tells us that the explained and unexplained variations for this model are, respectively,

486,356 and 9,421. It follows, since there are k  2 independent variables, that

  180.69

  
486,356兾2

9421兾[10  (2  1)]
 

243,178

1345.8

 F(model)  
(Explained variation)兾k

(Unexplained variation)兾[n  (k  1)]

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression       2  486356  243178  180.69  0.000 

Residual Error   7    9421    1346 

Total            9  495777 

C



Note that this overall F statistic is given on the MINITAB output and is also given on the

following Excel output:
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ANOVA df SS MS F Significance F

Regression 2 486355.7 243177.8 180.689 9.46E-07

Residual 7 9420.8 1345.835

Total 9 495776.5

The p-value related to F(model) is the area to the right of 180.69 under the curve of the F distri-

bution having k  2 numerator and n (k 1) 10 3 7 denominator degrees of freedom.

Both the MINITAB and Excel outputs say this p-value is less than .001.

If we wish to test the significance of the regression model at level of significance a  .05,

we use the critical value F.05 based on 2 numerator and 7 denominator degrees of freedom.

Using Table A.6 (page 865), we find that F.05  4.74. Since F(model)  180.69  F.05  4.74,

we can reject H0 in favor of Ha at level of significance .05. Alternatively, since the p-value is

smaller than .05, .01, and .001, we can reject H0 at level of significance .05, .01, and .001.

Therefore, we have extremely strong evidence that the Tasty Sub Shop revenue model is signif-

icant. That is, we have extremely strong evidence that at least one of the independent variables

x1 and x2 in the model is significantly related to y.

If the overall F test tells us that at least one independent variable in a regression model is

significant, we next attempt to decide which independent variables are significant. In the next

section we discuss one way to do this.

Exercises for Sections 14.2, 14.3, and 14.4
CONCEPTS

14.7 What is estimated by the mean square error, and what is estimated by the standard error?

14.8 a What do R2 and measure? b How do R2 and differ?

14.9 What is the purpose of the overall F test?

METHODS AND APPLICATIONS

In Exercises 14.10 to 14.13 we give Excel and MINITAB outputs of regression analyses of the data sets

related to four case studies introduced in Section 14.1. Above each output we give the regression model

and the number of observations, n, used to perform the regression analysis under consideration. Using the

appropriate model, sample size n, and output:

1 Report SSE, s2, and s as shown on the output. Calculate s2 from SSE and other numbers.

2 Report the total variation, unexplained variation, and explained variation as shown on the output.

3 Report R2 and as shown on the output. Interpret . Show how has been calculated 

from R2 and other numbers.

4 Calculate the F(model) statistic by using the explained variation, the unexplained variation, and 

other relevant quantities. Find F(model) on the output to check your answer (within rounding).

5 Use the F(model) statistic and the appropriate critical value to test the significance of the linear

regression model under consideration by setting a equal to .05.

6 Use the F(model) statistic and the appropriate critical value to test the significance of the linear

regression model under consideration by setting a equal to .01.

7 Find the p-value related to F(model) on the output. Using the p-value, test the significance of the

linear regression model by setting a  .10, .05, .01, and .001. What do you conclude?

14.10 THE FUEL CONSUMPTION CASE FuelCon2

Model: y b0  b1x1  b2x2  e Sample size: n 8

The output follows on the next page:

DS

R2R 2 and R 2R2

R2R2
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14.11 THE REAL ESTATE SALES PRICE CASE RealEst2

Model: y b0  b1x1  b2x2  e Sample size: n 10

14.12 THE FRESH DETERGENT CASE Fresh2

Model: y b0  b1x1  b2x2  b3x3  e Sample size: n 30

DS

S = 3.24164   R–Sq = 99.0%   R–Sq(adj) = 98.7% 

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression    2  7374.0  3687.0  350.87  0.000 

Residual Error   7    73.6    10.5 

Total            9  7447.5 

DS

S = 0.367078   R–Sq = 97.4%   R–Sq(adj) = 96.3% 

Analysis of Variance 

Source          DF      SS      MS      F      P 

Regression       2  24.875  12.438  92.30  0.000 

Residual Error   5   0.674   0.135 

Total            7  25.549 

Regression Statistics

Multiple R 0.9453

R Square 0.8936

Adjusted R Square 0.8813

Standard Error 0.2347

Observations 30

ANOVA df SS MS F Significance F

Regression 3 12.0268 4.0089 72.7973 0.0000

Residual 26 1.4318 0.0551

Total 29 13.4586

14.13 THE HOSPITAL LABOR NEEDS CASE HospLab

Model: y b0  b1x1  b2x2  b3x3  e Sample size: n 16

DS

Regression Statistics

Multiple R 0.9981

R Square 0.9961

Adjusted R Square 0.9952

Standard Error 387.1598

Observations 16

ANOVA df SS MS F Significance F

Regression 3 462327889.4 154109296.5 1028.1309 9.92E-15

Residual 12 1798712.2 149892.7

Total 15 464126601.6

14.5 Testing the Significance of an Independent 
Variable 

Consider the multiple regression model

y  b0  b1x1  b2x2      bkxk  e

In order to gain information about which independent variables significantly affect y, we can test

the significance of a single independent variable. We arbitrarily refer to this variable as xj and

assume that it is multiplied by the parameter bj. For example, if j  1, we are testing the signifi-

cance of x1, which is multiplied by b1; if j  2, we are testing the significance of x2, which is

Test the
significance

of a single indepen-
dent variable.

LO5



multiplied by b2. To test the significance of xj, we test the null hypothesis H0: bj 0. We usually

test H0 versus the alternative hypothesis Ha: bj   0. It is reasonable to conclude that xj is sig-

nificantly related to y in the regression model under consideration if H0 can be rejected in

favor of Ha at a small level of significance. Here the phrase in the regression model under con-

sideration is very important. This is because it can be shown that whether xj is significantly

related to y in a particular regression model can depend on what other independent variables are

included in the model. This issue will be discussed in detail in Section 15.4.

Testing the significance of xj in a multiple regression model is similar to testing the significance

of the slope in the simple linear regression model (recall we test H0: b1 0 in simple regression).

It can be proved that, if the regression assumptions hold, the population of all possible values of the

least squares point estimate bj is normally distributed with mean bj and standard deviation . The

point estimate of is called the standard error of the estimate bj and is denoted . The formula

for involves matrix algebra and is discussed in Appendix G on this book’s website. In our dis-

cussion here, we will rely on Excel and MINITAB to compute . It can be shown that, if the re-

gression assumptions hold, then the population of all possible values of

has a t distribution with n  (k  1) degrees of freedom. It follows that, if the null hypothesis

H0: bj  0 is true, then the population of all possible values of the test statistic

has a t distribution with n  (k  1) degrees of freedom. Therefore, we can test the significance

of xj as follows:

t  
bj

sbj

bj  bj

sbj

sbj

sbj

sbj
sbj

sbj
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Testing the Significance of the Independent Variable xj

Define the test statistic

and suppose that the regression assumptions hold. Then we can test H0: bj  0 versus a particular alternative

hypothesis at significance level a by using the appropriate critical value rule, or, equivalently, the corre-

sponding p-value.

Alternative Critical Value Rule:
Hypothesis Reject H0 if p-Value (reject H0 if p-value  A)

Ha: bj  0 兩t 兩  ta兾2 Twice the area under the t curve to the right of 

Ha: bj  0 t  ta The area under the t curve to the right of t

Ha: bj  0 t   ta The area under the t curve to the left of t

Here ta兾2, ta, and all p-values are based on n  (k  1) degrees of freedom.

冷 t 冷

t  
bj

sbj

As in testing H0: b1  0 in simple linear regression, we usually use the two-sided alternative

hypothesis Ha: bj 0. Excel and MINITAB present the results for the two-sided test.

It is customary to test the significance of each and every independent variable in a regression

model. Generally speaking,

1 If we can reject H0: bj  0 at the .05 level of significance, we have strong evidence that 

the independent variable xj is significantly related to y in the regression model.

2 If we can reject H0: bj  0 at the .01 level of significance, we have very strong evidence

that xj is significantly related to y in the regression model.

3 The smaller the significance level a at which H0 can be rejected, the stronger is the 

evidence that xj is significantly related to y in the regression model.
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EXAMPLE 14.3 The Tasty Sub Shop Case

T A B L E 1 4 . 7 t Statistics and p-Values for Testing the Significance of the Intercept, x1, and x2 in 

the Tasty Sub Shop Revenue Model y  B0  B1x1  B2x2  E

(a) Calculation of the t statistics

Independent Null
Variable Hypothesis bj p-Value

Intercept H0: b0  0 b0  125.29 .0183

x1 H0: b1  0 b1  14.1996  .001

x2 H0: b2  0 b2  22.811 .0055t  
b2

sb2

 
22.811

5.769
 3.95sb2

 5.769

t  
b1

sb1

 
14.1996

.91
 15.6sb1

 0.91

t  
b0

sb0

 
125.29

40.93
 3.06sb0

 40.93

t  
bj

sbj
sbj

(c) The Excel output

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 125.289 40.9333 3.06 0.0183 28.4969 222.0807

population 14.1996 0.9100 15.60 1.07E-06 12.0478 16.3515

bus_rating 22.8107 5.7692 3.95 0.0055 9.1686 36.4527

Again consider the Tasty Sub Shop revenue model

y  b0  b1x1  b2x2  e

Table 14.7(a) summarizes the calculation of the t statistics and related p-values for testing the

significance of the intercept and each of the independent variables x1 and x2. Here the values

of and the p-value have been obtained from the MINITAB and Excel outputs of

Table 14.7(b) and (c). If we wish to carry out tests at the .05 level of significance, we use the

critical value t.05兾2 t.025 2.365, which is based on n ( k 1)  10  3  7 degrees of free-

dom. Looking at Table 14.7 (a), we see that

1 For the intercept,  3.06  2.365.

2 For x1,  15.6  2.365.

3 For x2,  3.95  2.365.

Since in each case  t.025, we reject each of the null hypotheses in Table 14.7(a) at the .05

level of significance. Furthermore, because the p-value related to x1 is less than .001, we can re-

ject H0: b1  0 at the .001 level of significance. Also, because the p-value related to x2 is less

than .01, we can reject H0: b2  0 at the .01 level of significance. On the basis of these results,

we have extremely strong evidence that in the above model x1 (population size) is significantly

related to y. We also have very strong evidence that in this model x2 (business rating) is

significantly related to y.

冷 t 冷

冷 t 冷

冷 t 冷

冷 t 冷

bj, sbj
, t,

C

We next consider how to calculate a confidence interval for a regression parameter.

Predictor     Coef  SE Coef      T      P 

(b) The MINITAB output

Constant    125.29    40.93   3.06  0.018 

population   14.1996     0.91   15.6  0.000 

bus_rating      22.811    5.769   3.95  0.006 
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A Confidence Interval for the Regression Parameter Bj

If the regression assumptions hold, a 100(1  A) percent confidence interval for Bj is

Here ta兾2 is based on n  (k  1) degrees of freedom.

[bj  ta兾2sbj
]

Consider the Tasty Sub Shop revenue model

y  b0  b1x1  b2x2  e

The MINITAB and Excel outputs in Table 14.7 tell us that b1  14.1996 and sb1
 .91. It follows,

since t.025 based on n (k 1)  10  3  7 degrees of freedom equals 2.365, that a 95 percent

confidence interval for b1 is (see the Excel output)

This interval says we are 95 percent confident that, if the population size increases by 1,000

residents and the business rating does not change, then mean yearly revenue will increase by

between $12,048 and $16,352. Furthermore, since this 95 percent confidence interval does not

contain 0, we can reject H0: b1  0 in favor of Ha: b1  0 at the .05 level of significance.

  [12.048, 16.352]

 [b1  t.025sb1
]  [14.1996  2.365(.91)]

C

Exercises for Section 14.5
CONCEPTS

14.14 What do we conclude about xj if we can reject H0: bj  0 in favor of Ha: bj  0 by setting

a a equal to .05?

b a equal to .01?

14.15 Give an example of a practical application of the confidence interval for bj.

METHODS AND APPLICATIONS

In Exercises 14.16 through 14.19 we refer to Excel and MINITAB outputs of regression analyses of the

data sets related to four case studies introduced in Section 14.1. The outputs are given in Figure 14.9.

Using the appropriate output, do the following for each parameter bj in the model under consideration:

1 Find bj, sbj
, and the t statistic for testing H0: bj  0 on the output and report their values. Show how t

has been calculated by using bj and sbj
.

2 Using the t statistic and appropriate critical values, test H0: bj  0 versus Ha: bj  0 by setting a

equal to .05. Which independent variables are significantly related to y in the model with a  .05?

3 Using the t statistic and appropriate critical values, test H0: bj  0 versus Ha: bj  0 by setting a

equal to .01. Which independent variables are significantly related to y in the model with a  .01?

4 Find the p-value for testing H0: bj  0 versus Ha: bj  0 on the output. Using the p-value, determine

whether we can reject H0 by setting a equal to .10, .05, .01, and .001. What do you conclude about 

the significance of the independent variables in the model?

5 Calculate the 95 percent confidence interval for bj. Discuss one practical application of this interval.

6 Calculate the 99 percent confidence interval for bj.

14.16 THE FUEL CONSUMPTION CASE FuelCon2

Use the MINITAB output in Figure 14.9(a) to do (1) through (6) for each of b0, b1, and b2.

DS
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14.17 THE REAL ESTATE SALES PRICE CASE RealEst2

Use the MINITAB output in Figure 14.9(b) to do (1) through (6) for each of b0, b1, and b2.

14.18 THE FRESH DETERGENT CASE Fresh2

Use the Excel output in Figure 14.9(c) to do (1) through (6) for each of b0, b1, b2, and b3.

14.19 THE HOSPITAL LABOR NEEDS CASE HospLab

Use the Excel output in Figure 14.9(d) to do (1) through (6) for each of b0, b1, b2, and b3.

14.6 Confidence and Prediction Intervals 
In this section we show how to use the multiple regression model to find a confidence interval

for a mean value of y and a prediction interval for an individual value of y. We first present

an example of these intervals, and we then discuss (in an optional technical note) the formulas

used to compute the intervals.

DS

DS

DS

F I G U R E 1 4 . 9 t Statistics and p-Values for Four Case Studies

Predictor      Coef  SE Coef      T      P

Constant    13.1087   0.8557  15.32  0.000 

Temp       –0.09001  0.01408  –6.39  0.001 

Chill       0.08249  0.02200   3.75  0.013 

(a) MINITAB output for the fuel consumption case (sample size : n = 8)

(d) Excel output for the hospital labor needs case (sample size: n = 16)

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1946.8020 504.1819 3.8613 0.0023 848.2840 3045.3201

XRay (x1) 0.0386 0.0130 2.9579 0.0120 0.0102 0.0670

BedDays (x2) 1.0394 0.0676 15.3857 2.91E-09 0.8922 1.1866

LengthStay (x3) -413.7578 98.5983 -4.1964 0.0012 -628.5850 -198.9306

(c) Excel output for the Fresh detergent case (sample size: n = 30)

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 7.5891 2.4450 3.1039 0.0046 2.5633 12.6149

Price (x1) -2.3577 0.6379 -3.6958 0.0010 -3.6690 -1.0464

IndPrice (x2) 1.6122 0.2954 5.4586 0.0000 1.0051 2.2193

AdvExp (x3) 0.5012 0.1259 3.9814 0.0005 0.2424 0.7599

Find and
interpret a

confidence interval
for a mean value
and a prediction
interval for an
individual value.

LO6

EXAMPLE 14.5 The Tasty Sub Shop Case

In the Tasty Sub Shop problem, recall that one of the business entrepreneur’s potential sites is

near a population of 47,300 residents and a business/shopping area having a rating of 7. Also,

recall that

  956.6 (that is, $956,600)

  125.29  14.1996 (47.3)  22.811(7)

 ̂y  b0  b1x1  b2x2

C

Predictor    Coef  SE Coef      T      P 

(b) MINITAB output for the real estate sales price case (sample size: n   10)

Constant   29.347    4.891   6.00  0.001 

HomeSize   5.6128   0.2285  24.56  0.000 

Rating     3.8344   0.4332   8.85  0.000 



is:

1 The point estimate of the mean yearly revenue for all Tasty Sub restaurants that could po-

tentially be built near populations of 47,300 residents and business/shopping areas having a

rating of 7, and

2 The point prediction of the yearly revenue for a single Tasty Sub restaurant that is built

near a population of 47,300 residents and a business/shopping area having a rating of 7.

This point estimate and prediction are given at the bottom of the MINITAB output in Figure 14.4,

which we repeat here as follows:

In addition to giving ŷ 956.6, the MINITAB output also gives a 95 percent confidence interval

and a 95 percent prediction interval. The 95 percent confidence interval—[921.0, 992.2]—says

that we are 95 percent confident that the mean yearly revenue for all Tasty Sub restaurants that

could potentially be built near populations of 47,300 residents and business/shopping areas hav-

ing a rating of 7 is between $921,000 and $992,200. The 95 percent prediction interval—[862.8,

1050.4]—says that we are 95 percent confident that the yearly revenue for a single Tasty Sub

restaurant that is built near a population of 47,300 residents and a business/shopping area having

a rating of 7 will be between $862,800 and $1,050,400.

Now, recall that the yearly rent and other fixed costs for the entrepreneur’s potential restaurant

will be $257,550 and that (according to Tasty Sub corporate headquarters) the yearly food and

other variable costs for the restaurant will be 60 percent of the yearly revenue. Using the lower end

of the 95 percent prediction interval [862.8, 1050.4], we predict that (1) the restaurant’s yearly op-

erating cost will be $257,550  .6(862,800)  $775,230 and (2) the restaurant’s yearly profit will

be $862,800  $775,230  $87,570. Using the upper end of the 95 percent prediction interval

[862.8, 1050.4], we predict that (1) the restaurant’s yearly operating cost will be $257,550  

.6(1,050,400)  $887,790 and (2) the restaurant’s yearly profit will be $1,050,400  $887,790  

$162,610. Combining the two predicted profits, it follows that we are 95 percent confident that the

potential restaurant’s yearly profit will be between $87,570 and $162,610. If the entrepreneur de-

cides that this is an acceptable range of potential yearly profits, then the entrepreneur might decide

to purchase a Tasty Sub franchise for the potential restaurant site.

A technical note (optional) In general

is the point estimate of the mean value of the dependent variable y when the values of the

independent variables are x1, x2, . . ., xk and is the point prediction of an individual value of

the dependent variable y when the values of the independent variables are x1, x2, . . . , xk.

Furthermore:

ŷ  b0  b1x1  b2x2        bkxk

    New Obs      Fit  SE Fit       95% CI           95% PI

          1    956.6      15  (921.0, 992.2)  (862.8, 1050.4) 
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A Confidence Interval and a Prediction Interval

If the regression assumptions hold,

1 A 100(1  A) percent confidence interval for the mean value of y when the values of the 

independent variables are x1, x2, . . . , xk is

2 A 100(1  A) percent prediction interval for an individual value of y when the values of the 

independent variables are x1, x2, . . . , xk is

Here ta兾2 is based on n  (k  1) degrees of freedom and s is the standard error (see Section 14.2).

Furthermore, the formula for the distance value (also sometimes called the leverage value) involves matrix

algebra and is given in Appendix G on this book’s website. In practice, we can obtain the distance value from

the outputs of statistical software packages (such as MINITAB and an Excel add-in).

[ ŷ  ta兾2 s11  distance value]

[ŷ  ta兾2 s1distance value]
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Intuitively, the distance value is a measure of the distance of the combination of values x1, 

x2, . . . , xk from the center of the observed data. The farther that this combination is from the

center of the observed data, the larger is the distance value, and thus the longer are both the con-

fidence interval and the prediction interval.

MINITAB gives under the heading “SE Fit.” Since the MINITAB output

also gives s, the distance value can be found by calculating . For example, the MINITAB

output in Figure 14.4 (page 584) tells us that (see “Fit”) and (see “SE Fit”).

Therefore, since s for the two-variable Tasty Sub Shop revenue model equals 36.6856 (see

Figure 14.4, page 584), the distance value equals It follows that the

95 percent confidence and prediction intervals given on the MINITAB output of Figure 14.4 have

been calculated (within rounding) as follows:

Here ta兾2  t.025  2.365 is based on n  (k  1)  10  3  7 degrees of freedom.

 [862.9, 1050.3] [921.1, 992.1]

 [956.6  93.73] [956.6  35.47]

 [956.6  2.365(36.6856)11.1671826] [956.6  2.365(36.6856)1.1671826]

[ŷ  t.025 s11  distance value][ŷ  t.025 s1distance value]

(15兾36.6856)2
 .1671826.

sŷ  15ŷ  956.6

(sŷ兾s)2
sŷ  s1distance value

Exercises for Section 14.6
CONCEPTS

14.20 What is the difference between a confidence interval and a prediction interval?

14.21 What does the distance value measure? How does the distance value affect a confidence or

prediction interval? (Note: You must read the optional technical note to answer this question).

METHODS AND APPLICATIONS

14.22 THE FUEL CONSUMPTION CASE FuelCon2

The following partial MINITAB regression output for the fuel consumption data relates to pre-

dicting the city’s fuel consumption (in MMcF of natural gas) in a week that has an average hourly

temperature of 40°F and a chill index of 10.

a Report (as shown on the computer output) a point estimate of and a 95 percent confidence in-

terval for the mean fuel consumption for all weeks having an average hourly temperature of

40°F and a chill index of 10.

b Report (as shown on the computer output) a point prediction of and a 95 percent prediction in-

terval for the fuel consumption in a single week that has an average hourly temperature of

40°F and a chill index of 10.

c Suppose that next week the city’s average hourly temperature will be 40°F and the city’s chill

index will be 10. Also, suppose the city’s natural gas company will use the point prediction

ŷ  10.333 and order 10.333 MMcF of natural gas to be shipped to the city by a pipeline

transmission system. The city will have to pay a fine to the transmission system if the city’s

actual gas useage y differs from the order of 10.333 MMCF by more than 10.5 percent—that

is, is outside of the range [10.333  .105(10.333)]  [9.248, 11.418]. Discuss why the 

95 percent prediction interval for y—[9.293, 11.374]—says that y is likely to be inside the

allowable range and thus makes the city 95 percent confident that it will avoid paying, a fine.

d Find 99 percent confidence and prediction intervals for the mean and actual fuel consumption

referred to in parts a and b. Hint: n  8 and s  .367078. Optional technical note needed.

14.23 THE REAL ESTATE SALES PRICE CASE RealEst2

The following MINITAB output relates to a house having 2,000 square feet and a rating of 8.

      New Obs     Fit   SE Fit       95% CI            95% PI 

            1  172.28     1.57  (168.56, 175.99)  (163.76, 180.80)

DS

    New Obs      Fit  SE Fit       95% CI           95% PI

          1   10.333   0.170  (9.895, 10.771)  (9.293, 11.374) 

DS



a Report (as shown on the output) a point estimate of and a 95 percent confidence interval for

the mean sales price of all houses having 2,000 square feet and a rating of 8.

b Report (as shown on the output) a point prediction of and a 95 percent prediction interval for

the actual sales price of an individual house having 2,000 square feet and a rating of 8.

c Find 99 percent confidence and prediction intervals for the mean and actual sales prices

referred to in parts a and b. Hint: n 10 and s  3.24164. Optional technical note needed.

14.24 THE FRESH DETERGENT CASE Fresh2

Consider the demand for Fresh Detergent in a future sales period when Enterprise Industries’

price for Fresh will be x1  3.70, the average price of competitors’ similar detergents will

be x2  3.90, and Enterprise Industries’ advertising expenditure for Fresh will be x3  6.50.

A 95 percent prediction interval for this demand is given on the following Excel add-in 

(MegaStat) output:

DS
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95% Confidence Interval 95% Prediction Interval
Predicted lower upper lower upper Leverage

8.4107 8.3143 8.5070 7.9188 8.9025 0.040

a Find and report the 95 percent prediction interval on the output. If Enterprise Industries plans

to have in inventory the number of bottles implied by the upper limit of this interval, it can be

very confident that it will have enough bottles to meet demand for Fresh in the future sales

period. How many bottles is this? If we multiply the number of bottles implied by the lower

limit of the prediction interval by the price of Fresh ($3.70), we can be very confident that the

resulting dollar amount will be the minimal revenue from Fresh in the future sales period.

What is this dollar amount?

b Calculate a 99 percent prediction interval for the demand for Fresh in the future sales period.

Hint: n 30 and s .235. Optional technical note needed. The distance value equals Leverage.

14.25 THE HOSPITAL LABOR NEEDS CASE HospLab

Consider a questionable hospital for which XRay  56,194, BedDays  14,077.88, and

LengthStay 6.89. A 95 percent prediction interval for the labor hours corresponding to this

combination of values of the independent variables is given on the following Excel add-in

(MegaStat) output:

DS

95% Confidence Interval 95% Prediction Interval
Predicted lower upper lower upper Leverage

15,896.2473 15,378.0313 16,414.4632 14,906.2361 16,886.2584 0.3774

Find and report the prediction interval on the output. Then, use this interval to determine if the

actual number of labor hours used by the questionable hospital (y  17,207.31) is unusually low

or high.

14.7 The Sales Territory Performance Case 
Suppose the sales manager of a company wishes to evaluate the performance of the company’s

sales representatives. Each sales representative is solely responsible for one sales territory, and

the manager decides that it is reasonable to measure the performance, y, of a sales representative

by using the yearly sales of the company’s product in the representative’s sales territory. The

manager feels that sales performance y substantially depends on five independent variables:

x1  number of months the representative has been employed by the company

x2  sales of the company’s product and competing products in the sales territory (a measure

of sales potential)

x3  dollar advertising expenditure in the territory

x4  weighted average of the company’s market share in the territory for the previous 

four years

x5  change in the company’s market share in the territory over the previous

four years

In Figure 14.10 we present values of y and x1 through x5 for 25 randomly selected sales

representatives. To understand the values of y and x2 in the table, note that sales of the company’s
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product or any competing product are measured in hundreds of units of the product sold.

Therefore, for example, the first sales figure of 3,669.88 in Figure 14.10 means that the first

randomly selected sales representative sold 366,988 units of the company’s product during

the year.

Plots of y versus x1 through x5 are given in Figure 14.10. Since each plot has an approximate

straight-line appearance, it is reasonable to relate y to x1 through x5 by using the regression model

y  b0  b1x1  b2x2  b3x3  b4x4  b5x5  e

The main objective of the regression analysis is to help the sales manager evaluate sales perfor-

mance by comparing actual performance to predicted performance. The manager has randomly

selected the 25 representatives from all the representatives the company considers to be effective

and wishes to use a regression model based on effective representatives to evaluate questionable

representatives. 

Figure 14.11 on the next page gives the Excel output of a regression analysis of the sales ter-

ritory performance data using the five independent variable model. This output tells us that the

least squares point estimates of the model parameters are b0   1,113.7879, b1  3.6121, b2  

.0421, b3 .1289, b4 256.9555, and b5 324.5334. In addition, because the output tell us that

the p-values associated with Time, MktPoten, Adver, and MktShare are all less than .01, we have

very strong evidence that these variables are significantly related to y and, thus are important in

this model. Since the p-value associated with Change is .0530, we have close to strong evidence

that this variable is also important.

F I G U R E 1 4 . 1 0 Sales Territory Performance Study Data SalePerfDS

Source: This data set is from a research study published in “An Analytical Approach for Evaluation of Sales Territory Perfor-

mance,” Journal of Marketing, January 1972, 31–37 (authors are David W. Cravens, Robert B. Woodruff, and Joseph C.

Stamper). We have updated the situation in our case study to be more modern.

Time with Market Market Market Share
Sales, y Company, x1 Potential, x2 Advertising, x3 Share, x4 Change, x5

3,669.88 43.10 74,065.11 4,582.88 2.51 0.34

3,473.95 108.13 58,117.30 5,539.78 5.51 0.15

2,295.10 13.82 21,118.49 2,950.38 10.91  0.72

4,675.56 186.18 68,521.27 2,243.07 8.27 0.17

6,125.96 161.79 57,805.11 7,747.08 9.15 0.50

2,134.94 8.94 37,806.94 402.44 5.51 0.15

5,031.66 365.04 50,935.26 3,140.62 8.54 0.55

3,367.45 220.32 35,602.08 2,086.16 7.07  0.49

6,519.45 127.64 46,176.77 8,846.25 12.54 1.24

4,876.37 105.69 42,053.24 5,673.11 8.85 0.31

2,468.27 57.72 36,829.71 2,761.76 5.38 0.37

2,533.31 23.58 33,612.67 1,991.85 5.43  0.65

2,408.11 13.82 21,412.79 1,971.52 8.48 0.64

2,337.38 13.82 20,416.87 1,737.38 7.80 1.01

4,586.95 86.99 36,272.00 10,694.20 10.34 0.11

2,729.24 165.85 23,093.26 8,618.61 5.15 0.04

3,289.40 116.26 26,878.59 7,747.89 6.64 0.68

2,800.78 42.28 39,571.96 4,565.81 5.45 0.66

3,264.20 52.84 51,866.15 6,022.70 6.31  0.10

3,453.62 165.04 58,749.82 3,721.10 6.35  0.03

1,741.45 10.57 23,990.82 860.97 7.37  1.63

2,035.75 13.82 25,694.86 3,571.51 8.39  0.43

1,578.00 8.13 23,736.35 2,845.50 5.15 0.04

4,167.44 58.54 34,314.29 5,060.11 12.88 0.22

2,799.97 21.14 22,809.53 3,552.00 9.14  0.74
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Consider a questionable sales representative for whom Time 85.42, MktPoten  35,182.73,

Adver  7,281.65, MktShare  9.64, and Change .28. The point prediction of the sales, y,

corresponding to this combination of values of the independent variables is

ŷ   1,113.7879  3.6121(85.42) .0421(35,182.73)

 .1289(7,281.65)  256.9555(9.64)  324.5334(.28)

  4,181.74 (that is, 418,174 units)

In addition to giving this point prediction, the Excel output tells us that a 95 percent prediction in-

terval for y is [3233.59, 5129.89]. Furthermore, suppose that the actual sales y for the questionable

representative were 3,087.52. This actual sales figure is less than the point prediction ŷ  4,181.74

and is less than the lower bound of the 95 percent prediction interval for y, [3233.59, 5129.89].

Therefore, we conclude that there is strong evidence that the actual performance of the question-

able representative is less than predicted performance. We should investigate the reason for this.

Perhaps the questionable representative needs special training.

14.8 Using Dummy Variables to Model Qualitative
Independent Variables 

While the levels (or values) of a quantitative independent variable are numerical, the levels of a

qualitative independent variable are defined by describing them. For instance, the type of sales

technique used by a door-to-door salesperson is a qualitative independent variable. Here we

might define three different levels—high pressure, medium pressure, and low pressure.
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F I G U R E 1 4 . 1 1 Excel Output of a Regression Analysis of the Sales Territory Performance Data Using 

the Model y  B0  B1x1  B2x2  B3x3  B4x4  B5x5  E

(a) The Excel output

Regression Statistics

Multiple R 0.9566

R Square 0.9150

Adjusted R Square 0.8926

Stdandard Error 430.2319

Observations 25

ANOVA df SS MS F Significance F

Regression 5 37862658.9002 7572531.7800 40.9106 0.0000

Residual 19 3516890.0266 185099.4751

Total 24 41379548.9269

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept -1113.7879 419.8869 -2.6526 0.0157 -1992.6213 -234.9545

Time 3.6121 1.1817 3.0567 0.0065 1.1388 6.0854

MktPoten 0.0421 0.0067 6.2527 0.0000 0.0280 0.0562

Adver 0.1289 0.0370 3.4792 0.0025 0.0513 0.2064

MktShare 256.9555 39.1361 6.5657 0.0000 175.0428 338.8683

Change 324.5334 157.2831 2.0634 0.0530 -4.6638 653.7307

(b) Prediction using an Excel add-in (MegaStat)

Predicted values for: Sales
95% Confidence Interval 95% Prediction Interval

Predicted lower upper lower upper Leverage

4,181.74333 3,884.90651 4,478.58015 3,233.59431 5,129.89235 0.109

Use dummy
variables to

model qualitative
independent
variables.

LO7
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We can model the effects of the different levels of a qualitative independent variable by using

what we call dummy variables (also called indicator variables). Such variables are usually

defined so that they take on two values—either 0 or 1. To see how we use dummy variables, we

begin with an example.
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F I G U R E 1 4 . 1 2 Plot of the Sales Volume Data and a

Geometrical Interpretation of the 

Model y  B0  B1x  B2DM  E
Number of Sales
Households, Volume,

Store x Location y

1 161 Street 157.27

2 99 Street 93.28

3 135 Street 136.81

4 120 Street 123.79

5 164 Street 153.51

6 221 Mall 241.74

7 179 Mall 201.54

8 204 Mall 206.71

9 214 Mall 229.78

10 101 Mall 135.22

T A B L E 1 4 . 8 The Electronics World Sales Volume Data

Electronics1DS

EXAMPLE 14.6

Part 1: The data and data plots Suppose that Electronics World, a chain of stores that sells

audio and video equipment, has gathered the data in Table 14.8. These data concern store sales vol-

ume in July of last year (y, measured in thousands of dollars), the number of households in the store’s

area (x, measured in thousands), and the location of the store (on a suburban street or in a suburban

shopping mall—a qualitative independent variable). Figure 14.12 gives a data plot of y versus x.

Stores having a street location are plotted as solid dots, while stores having a mall location are plot-

ted as asterisks. Notice that the line relating y to x for mall locations has a higher y-intercept than does

the line relating y to x for street locations.

Part 2: A dummy variable model In order to model the effects of the street and shopping

mall locations, we define a dummy variable denoted DM as follows:

Using this dummy variable, we consider the regression model

y b0 b1x b2DM  e

This model and the definition of DM imply that

1 For a street location, mean sales volume equals

b0 b1x b2DM  b0 b1x b2(0)

 b0 b1x

2 For a mall location, mean sales volume equals

b0 b1x b2DM  b0 b1x b2(1)

 (b0 b2) b1x

DM  再1    if a store is in a mall location

0    otherwise



Thus, the dummy variable allows us to model the situation illustrated in Figure 14.12. Here, the

lines relating mean sales volume to x for street and mall locations have different y intercepts—b0

and (b0 b2)—and the same slope b1. Note that b2 is the difference between the mean monthly

sales volume for stores in mall locations and the mean monthly sales volume for stores in street

locations, when all these stores have the same number of households in their areas. That is, we

can say that b2 represents the effect on mean sales of a mall location compared to a street

location. The Excel output in Figure 14.13 tells us that the least squares point estimate of b2 is

b2  29.2157. This says that for any given number of households in a store’s area, we estimate

that the mean monthly sales volume in a mall location is $29,215.70 greater than the mean

monthly sales volume in a street location.

Part 3: A dummy variable model for comparing three locations In addition to the

data concerning street and mall locations in Table 14.8, Electronics World has also collected data

concerning downtown locations. The complete data set is given in Table 14.9 and plotted in Fig-

ure 14.14. Here stores having a downtown location are plotted as open circles. A model

describing these data is

y b0 b1x b2DM b3DD  e

Here the dummy variable DM is as previously defined and the dummy variable DD is defined as

follows

It follows that

1 For a street location, mean sales volume equals

b0 b1x b2DM b3DD  b0 b1x b2(0) b3(0)

 b0 b1x

2 For a mall location, mean sales volume equals

b0 b1x b2DM b3DD  b0 b1x b2(1) b3(0)

 (b0 b2) b1x

DD  再1  if a store is in a downtown location

0  otherwise
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F I G U R E 1 4 . 1 3 Excel Output of a Regression Analysis of the Sales Volume Data Using the Model

y  B0  B1x  B2DM  E

Regression Statistics
Multiple R 0.9913
R Square 0.9827
Adjusted R Square 0.9778
Standard Error 7.3288
Observations 10

ANOVA df SS MS F Significance F
Regression 2 21411.7977 10705.8989 199.3216 6.75E-07
Residual 7 375.9817 53.7117
Total 9 21787.7795

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 17.3598 9.4470 1.8376 0.1087 -4.9788 39.6985
Households (x) 0.8510 0.0652 13.0439 3.63E-06 0.6968 1.0053
DummyMall 29.2157 5.5940 5.2227 0.0012 15.9881 42.4434
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3 For a downtown location, mean sales volume equals

b0  b1x b2DM  b3DD  b0  b1x b2(0) b3(1)

 (b0  b3)  b1x

Thus the dummy variables allow us to model the situation illustrated in Figure 14.14. Here

the lines relating mean sales volume to x for street, mall, and downtown locations have different

y-intercepts—b0, (b0  b2), and (b0  b3)—and the same slope b1. Note that b2 represents the

effect on mean sales of a mall location compared to a street location, and b3 represents the effect

on mean sales of a downtown location compared to a street location. Furthermore, the difference

between b2 and b3, b2  b3, represents the effect on mean sales of a mall location compared to a

downtown location.

Part 4: Comparing the three locations Figure 14.15 gives the MINITAB and Excel outputs

of a regression analysis of the sales volume data using the dummy variable model. These outputs

tell us that the least squares point estimate of b2 is b2  28.374. This says that for any given num-

ber of households in a store’s area, we estimate that the mean monthly sales volume in a mall lo-

cation is $28,374 greater than the mean monthly sales volume in a street location. Furthermore,

since the Excel output tells us that a 95 percent confidence interval for b2 is [18.5545, 38.193],

we are 95 percent confident that for any given number of households in a store’s area, the mean

monthly sales volume in a mall location is between $18,554.50 and $38,193 greater than the

mean monthly sales volume in a street location. The MINITAB and Excel outputs also show that

the t statistic for testing H0: b2  0 versus Ha: b2  0 equals 6.36 and that the related p-value is

less than .001. Therefore, we have very strong evidence that there is a difference between the

mean monthly sales volumes in mall and street locations.

We next note that the outputs in Figure 14.15 show that the least squares point estimate of b3

is b3  6.864. Therefore, we estimate that for any given number of households in a store’s area,

the mean monthly sales volume in a downtown location is $6,864 greater than the mean monthly

sales volume in a street location. Furthermore, the Excel output shows that a 95 percent confi-

dence interval for b3 is [ 3.636, 17.3635]. This says we are 95 percent confident that for any

given number of households in a store’s area, the mean monthly sales volume in a downtown

F I G U R E 1 4 . 1 4 Plot of the Complete Electronics World

Sales Volume Data and a Geometrical

Interpretation of the Model

y ⴝ B0 ⴙ B1x ⴙ B2DM ⴙ B3DD ⴙ E
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1 161 Street 157.27

2 99 Street 93.28

3 135 Street 136.81

4 120 Street 123.79

5 164 Street 153.51

6 221 Mall 241.74

7 179 Mall 201.54

8 204 Mall 206.71

9 214 Mall 229.78

10 101 Mall 135.22

11 231 Downtown 224.71

12 206 Downtown 195.29

13 248 Downtown 242.16

14 107 Downtown 115.21

15 205 Downtown 197.82

T A B L E 1 4 . 9 The Complete Electronics World

Sales Volume Data

Electronics2DS
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location is between $3,636 less than and $17,363.50 greater than the mean monthly sales volume

in a street location. The MINITAB and Excel outputs also show that the t statistic and p-value for

testing H0: b3 0 versus Ha: b3 0 are t 1.44 and p-value  .178. Therefore, we do not have

strong evidence that there is a difference between the mean monthly sales volumes in downtown

and street locations.

Finally, note that, since b2 28.374 and b3 6.864, the point estimate of b2 b3 is b2 b3 

28.374  6.864  21.51. Therefore, we estimate that mean monthly sales volume in a mall lo-

cation is $21,510 higher than mean monthly sales volume in a downtown location. Near the end

of this section we show how to compare the mall and downtown locations by using a confidence

interval and a hypothesis test. We will find that there is very strong evidence that the mean

monthly sales volume in a mall location is higher than the mean monthly sales volume in a down-

town location. In summary, the mall location seems to give a higher mean monthly sales volume

than either the street or downtown location.

Part 5: Predicting a future sales volume Suppose that Electronics World wishes to predict

the sales volume in a future month for an individual store that has 200,000 households in its area

and is located in a shopping mall. The point prediction of this sales volume is (since DM  1

610 Chapter 14 Multiple Regression

F I G U R E 1 4 . 1 5 MINITAB and Excel Outputs of a Regression Analysis of the Sales Volume Data Using the Model

y  B0  B1x  B2DM  B3DD  E

The regression equation is 

(a) The MINITAB output

Sales = 15.0 + 0.869 Households + 28.4 DMall + 6.86 DDowntown

Predictor      Coef  SE Coef      T      P 

Constant 14.978 6.188 2.42 0.034

Households  0.86859  0.04049  21.45  0.000 

DMall 28.374 4.461 6.36 0.000

DDowntown     6.864    4.770   1.44  0.178 

S = 6.34941   R–Sq = 98.7%   R–Sq(adj) = 98.3% 

Analysis of Variance 

Source          DF     SS     MS       F      P 

Regression       3  33269  11090  275.07  0.000 

Residual Error  11    443     40 

Total           14  33712 

Values of Predictors for New Obs       Predicted Values for New Observations 

New Obs  Households  DMall DDowntown   New Obs     Fit  SE Fit       95% CI           95% PI 

      1         200      1         0         1  217.07    2.91  (210.65, 223.48) (201.69, 232.45)

(b) The Excel output

Regression Statistics
Multiple R 0.9934
R Square 0.9868
Adjusted R Square 0.9833
Standard Error 6.3494
Observations 15

ANOVA df SS MS F Significance F
Regression 3 33268.6953 11089.5651 275.0729 1.27E-10
Residual 11 443.4650 40.3150
Total 14 33712.1603

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 14.9777 6.1884 2.4203 0.0340 1.3570 28.5984
Households (x) 0.8686 0.0405 21.4520 2.52E-10 0.7795 0.9577
DummyMall 28.3738 4.4613 6.3600 5.37E-05 18.5545 38.1930
DummyDtown 6.8638 4.7705 1.4388 0.1780 -3.6360 17.3635
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and DD  0 when a store is in a shopping mall)

 b0  b1(200)  b2(1)  b3(0)

 14.978 .8686(200)  28.374(1)

 217.07

This point prediction is given at the bottom of the MINITAB output in Figure 14.15(a). The

corresponding 95 percent prediction interval, which is [201.69, 232.45], says we are 95 percent

confident that the sales volume in a future sales period for an individual mall store that has

200,000 households in its area will be between $201,690 and $232,450.

Part 6: Interaction models Consider the Electronics World data for street and mall locations

given in Table 14.8 (page 607) and the model

y  b0 b1x b2DM  b3xDM  e

This model uses the cross-product, or interaction, term xDM and implies that

1 For a street location, mean sales volume equals (since DM  0)

b0 b1x b2(0) b3x(0) b0 b1x

2 For a mall location, mean sales volume equals (since DM  1)

b0 b1x b2(1) b3x(1) (b0 b2)  (b1  b3)x

As illustrated in Figure 14.16, if we use this model, then the straight lines relating mean sales

volume to x for street and mall locations have different y-intercepts and different slopes. The dif-

ferent slopes imply that this model assumes interaction between x and store location. Such a

model is appropriate if the relationship between mean sales volume and x depends on (that is, is

different for) the street and mall store locations. In general, interaction exists between two in-

dependent variables if the relationship between (for example, the slope of the line relating) the

mean value of the dependent variable and one of the independent variables depends upon the 

value (or level) of the other independent variable. Figure 14.17 gives the Excel output of a

regression analysis of the sales volume data using the interaction model. Here DM and xDM are

labeled as DM and XDM, respectively, on the output. The Excel output tells us that the p-value

related to the significance of xDM is .5886. This large p-value tells us that the interaction term is

not significant. It follows that the no-interaction model on page 607 seems best.

ŷ

F I G U R E 1 4 . 1 6 Geometrical Interpretation of the Sales Volume Model 
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Next, consider the Electronics World data for street, mall, and downtown locations given in

Table 14.9 (page 609). In modeling these data, if we believe that interaction exists between the

number of households in a store’s area and store location, we might consider using the model

y b0 b1x b2DM b3DD b4xDM  b5xDD  e

Similar to Figure 14.16, this model implies that the straight lines relating mean sales volume to x

for the street, mall, and downtown locations have different y-intercepts and different slopes. If we

perform a regression analysis of the sales volume data using this interaction model, we find that

the p-values related to the significance of xDM and xDD are large  .5334 and .8132, respectively.

Since these interaction terms are not significant, it seems best to employ the no-interaction model

on page 608.

In general, if we wish to model the effect of a qualitative independent variable having a levels,

we use a 1 dummy variables. Consider the kth such dummy variable Dk (k 1, 2, . . . or a 1).

The parameter bk multiplying Dk represents the mean difference between the level of y when the

qualitative variable assumes level k and when it assumes the level a. For example, if we wish to

compare the effects on sales, y, of four different types of advertising campaigns—television (T ),

radio (R), magazine (M), and mailed coupons (C)—we might employ the model

y b0 b1DT b2DR b3DM e

Since this model does not use a dummy variable to represent the mailed coupon advertising

campaign, the parameter b1 is the difference between mean sales when a television advertising

campaign is used and mean sales when a mailed coupon advertising campaign is used. The in-

terpretations of b2 and b3 follow similarly. As another example, if we wish to employ a confi-

dence interval and a hypothesis test to compare the mall and downtown locations in the Elec-

tronics World example, we can use the model

y  b0  b1x  b2DS  b3DM  e

Here the dummy variable DM is as previously defined, and

Since this model does not use a dummy variable to represent the downtown location, the

parameter b2 expresses the effect on mean sales of a street location compared to a downtown

DS  再1  if a store is in a street location

0  otherwise
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Regression Statistics
Multiple R 0.9918
R Square 0.9836
Adjusted R Square 0.9755
Standard Error 7.7092
Observations 10

ANOVA df SS MS F Significance F
Regression 3 21431.1861 7143.7287 120.1995988 9.531E-06

Residual 6 356.5933 59.4322

Total 9 21787.7795

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 7.9004 19.3142 0.4090 0.6967 -39.3598 55.1606

Households 0.9207 0.1399 6.5792 0.0006 0.5783 1.2631

DM 42.7297 24.3812 1.7526 0.1302 -16.9289 102.3884

XDM -0.0917 0.1606 -0.5712 0.5886 -0.4846 0.3012

F I G U R E 1 4 . 1 7 Excel Output Using the Interaction Model

y  B0  B1x  B2DM  B3xDM  E
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location, and the parameter b3 expresses the effect on mean sales of a mall location compared

to a downtown location.

The Excel output of the least squares point estimates of the parameters of this model is as

follows:

Since the least squares point estimate of b3 is b3 21.51, we estimate that for any given number

of households in a store’s area, the mean monthly sales volume in a mall location is $21,510

higher than the mean monthly sales volume in a downtown location. The Excel output tells us

that a 95 percent confidence interval for b3 is [12.5628, 30.4572]. Therefore, we are 95 percent

confident that for any given number of households in a store’s area, the mean monthly sales vol-

ume in a mall location is between $12,562.80 and $30,457.20 greater than the mean monthly

sales volume in a downtown location. The Excel output also shows that the t statistic and p-value

for testing H0: b3 0 versus Ha: b3 0 in this model are, respectively, 5.2914 and .0003. There-

fore, we have very strong evidence that there is a difference between the mean monthly sales

volumes in mall and downtown locations.

In some situations dummy variables represent the effects of unusual events or occurrences that

may have an important impact on the dependent variable. For instance, suppose we wish to build

a regression model relating quarterly sales of automobiles (y) to automobile prices (x1), fuel

prices (x2), and personal income (x3). If an autoworkers’ strike occurred in a particular quarter

that had a major impact on automobile sales, then we might define a dummy variable DS to be

equal to 1 if an autoworkers’ strike occurs and to be equal to 0 otherwise. The least squares point

estimate of the regression parameter multiplied by DS would estimate the effect of the strike on

mean auto sales. Finally, dummy variables can be used to model the impact of regularly occuring

seasonal influences on time series data—for example, the impact of the hot summer months on

soft drink sales. This is discussed in Chapter 16.

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 21.8415 8.5585 2.5520 0.0269 3.0044 40.6785

Households (x) 0.8686 0.0405 21.4520 2.52E-10 0.7795 0.9577

DummyStreet -6.8638 4.7705 -1.4388 0.1780 -17.3635 3.6360

DummyMall 21.5100 4.0651 5.2914 0.0003 12.5628 30.4572

Exercises for Section 14.8
CONCEPTS

14.26 What is a qualitative independent variable?

14.27 How do we use dummy variables to model the effects of a qualitative independent variable?

14.28 What does the parameter multiplied by a dummy variable express?

METHODS AND APPLICATIONS

14.29 Neter, Kutner, Nachtsheim, and Wasserman (1996) relate the speed, y, with which a particular

insurance innovation is adopted to the size of the insurance firm, x, and the type of firm. The

dependent variable y is measured by the number of months elapsed between the time the first firm

adopted the innovation and the time the firm being considered adopted the innovation. The size

of the firm, x, is measured by the total assets of the firm, and the type of firm—a qualitative

independent variable—is either a mutual company or a stock company. The data in Table 14.10

on the next page are observed. InsInnov

a Discuss why the data plot in the page margin indicates that the model

y b0 b1x b2DS  e

might appropriately describe the observed data. Here DS equals 1 if the firm is a stock

company and 0 if the firm is a mutual company.

b The model of part (a) implies that the mean adoption time of an insurance innovation by

mutual companies having an asset size x equals

b0 b1x b2(0)  b0 b1x

DS

M
o

n
th

s

Size

Mutual

Stock

Linear (Mutual)

Linear (Stock)

Plot of the Insurance

Innovation Data



and that the mean adoption time by stock companies having an asset size x equals

b0 b1x b2(1)  b0 b1x b2

The difference between these two means equals the model parameter b2. In your own words,

interpret the practical meaning of b2.

c Figure 14.18 presents the Excel output of a regression analysis of the insurance innovation

data using the model of part a. Using the output, test H0: b2  0 versus Ha: b2  0 by setting

a  .05 and .01. Interpret the practical meaning of the result of this test. Also, use the

computer output to find, report, and interpret a 95 percent confidence interval for b2.

d If we add the interaction term xDS to the model of part a, we find that the p-value related to

this term is .9821. What does this imply?

14.30 THE FLORIDA POOL HOME CASE PoolHome

Table 3.12 (page 145) gives the selling price (Price, expressed in thousands of dollars), the

square footage (SqrFt), the number of bathrooms (Bathrms), and the niceness rating (Niceness,

expressed as an integer from 1 to 7) of 80 homes randomly selected from all homes sold in a

Florida city during the last six months. (The random selections were made from homes having

between 2,000 and 3,500 square feet.) Table 3.12 also gives values of the dummy variable Pool?,

which equals 1 if a home has a pool and 0 otherwise. Figure 14.19 presents the MINITAB output

of a regression analysis of these data using the model

Price  b0  b1  SqrFt  b2 · Bathrms  b3 · Niceness  b4 · Pool?  e

a Noting that b4 is the effect on mean sales price of a home having a pool, find (on the output) a

point estimate of this effect. If the average current purchase price of the pools in the sample is

DS
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Number of Size of Firm
Months Elapsed, (Millions of Dollars), Type 

Firm y x of Firm

1 17 151 Mutual

2 26 92 Mutual

3 21 175 Mutual

4 30 31 Mutual

5 22 104 Mutual

6 0 277 Mutual

7 12 210 Mutual

8 19 120 Mutual

9 4 290 Mutual

10 16 238 Mutual

Number of Size of Firm
Months Elapsed, (Millions of Dollars), Type 

Firm y x of Firm

11 28 164 Stock

12 15 272 Stock

13 11 295 Stock

14 38 68 Stock

15 31 85 Stock

16 21 224 Stock

17 20 166 Stock

18 13 305 Stock

19 30 124 Stock

20 14 246 Stock

T A B L E 1 4 . 1 0 The Insurance Innovation Data InsInnovDS

F I G U R E 1 4 . 1 8 Excel Output of a Regression Analysis of the Insurance Innovation Data Using the Model

y  B0  B1x  B2DS  E

Regression Statistics
Multiple R 0.9461
R Square 0.8951
Adjusted R Square 0.8827
Standard Error 3.2211
Observations 20

ANOVA df SS MS F Significance F
Regression 2 1,504.4133 752.2067 72.4971 4.77E-09
Residual 17 176.3867 10.3757
Total 19 1,680.8

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 33.8741 1.8139 18.6751 9.15E-13 30.0472 37.7010
Size of Firm (x) -0.1017 0.0089 -11.4430 2.07E-09 -0.1205 -0.0830
DummyStock 8.0555 1.4591 5.5208 3.74E-05 4.9770 11.1339
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$32,500, find a point estimate of the percentage of a pool’s cost that a customer buying a pool

can expect to recoup when selling his (or her) home.

b If we add various combinations of the interaction terms SqrFt · Pool?, Bathrooms · Pool?, and

Niceness · Pool? to the above model, we find that the p-values related to these terms are

greater than .05. What does this imply?

14.31 THE SHELF DISPLAY CASE BakeSale

The Tastee Bakery Company supplies a bakery product to many supermarkets in a metropolitan

area. The company wishes to study the effect of the height of the shelf display employed by the

supermarkets on monthly sales, y (measured in cases of 10 units each), for this product. Shelf

display height has three levels—bottom (B), middle (M ), and top (T ). For each shelf display

height, six supermarkets of equal sales potential will be randomly selected, and each supermarket

will display the product using its assigned shelf height for a month. At the end of the month, sales

of the bakery product at the 18 participating stores will be recorded. When the experiment is

carried out, the data in Table 14.11 are obtained. Here we assume that the set of sales amounts for

each display height is a sample that has been randomly selected from the population of all sales

amounts that could be obtained (at supermarkets of the given sales potential) when using that

display height. To compare the population mean sales amounts mB, mM, and mT that would be

obtained by using the bottom, middle, and top display heights, we use the following dummy

variable regression model:

y bB bMDM  bTDT e

Here DM equals 1 if a middle display height is used and 0 otherwise; DT equals 1 if a top display

height is used and 0 otherwise. Figure 14.20 on the next page presents the MINITAB output of a

regression analysis of the bakery sales study data using this model.1

a By using the definitions of the dummy variables, show that

mB bB mM bB bM mT bB bT

b Use the overall F statistic to test H0: bM  bT 0, or, equivalently, H0: mB  mM  mT.

Interpret the practical meaning of the result of this test.

c Show that your results in part a, imply that

mM mB bM mT mB bT mM mT bM  bT

DS

Shelf Display Height

Bottom Middle Top
(B) (M) (T )
58.2 73.0 52.4

53.7 78.1 49.7

55.8 75.4 50.9

55.7 76.2 54.0

52.5 78.4 52.1

58.9 82.1 49.9

T A B L E 1 4 . 1 1

Bakery Sales Study

Data (Sales in Cases)

BakeSaleDS

F I G U R E 1 4 . 1 9 MINITAB Output of a Regression Analysis of the Florida Pool Home Data Using the

Model Price B0 B1  SqrFt B2 · Bathrms B3 · Niceness B4  Pool? E

1In general, the regression approach of this exercise produces the same comparisons of several population means that are

produced by one-way analysis of variance (see Section 11.2). In Appendix H on this book’s website we discuss the regression

approach to two-way analysis of variance (see Section 11.4).

The regression equation is 

Price = 25.0 + 0.0526 SqrFt + 10.0 Bathrms + 10.0 Niceness + 25.9 Pool?

Predictor    Coef  SE Coef       T      P 

Constant    24.98    16.63    1.50  0.137 

SqrFt    0.05264  0.00659    7.98  0.000 

Bathrms    10.043    3.729    2.69  0.009 

Niceness    10.042   0.7915   12.69  0.000 

Pool?       25.862    3.575    7.23  0.000 

S = 13.532   R–Sq = 87.40%   R–Sq(adj) = 86.80% 

Analysis of Variance 

Source          DF       SS      MS       F      P 

Regression       4    95665   23916  130.61  0.000 

Residual Error  75    13734     183 

Total           79   109399 



Then use the least squares point estimates of the model parameters to find a point estimate of

each of the three differences in means. Also, find a 95 percent confidence interval for and test

the significance of each of the first two differences in means. Interpret your results.

d Find a point estimate of mean sales when using a middle display height, a 95 percent confi-

dence interval for mean sales when using a middle display height, and a 95 percent prediction

interval for sales at an individual supermarket that employs a middle display height (see the

bottom of the MINITAB output in Figure 14.20).

e Consider the following alternative model

y  bT bBDB bMDM e

Here DB equals 1 if a bottom display height is used and 0 otherwise. The MINITAB output of

the least squares point estimates of the parameters of this model is as follows:

Since bM expresses the effect of the middle display height with respect to the effect of the top

display height, bM equals mM   mT. Use the MINITAB output to calculate a 95 percent

confidence interval for and test the significance of mM   mT. Interpret your results.

14.32 THE FRESH DETERGENT CASE Fresh3

Recall from Exercise 14.5 that Enterprise Industries has observed the historical data in Table 14.5

(page 589) concerning y (demand for Fresh liquid laundry detergent), x1 (the price of Fresh), 

x2 (the average industry price of competitors’ similar detergents), and x3 (Enterprise Industries’

advertising expenditure for Fresh). To ultimately increase the demand for Fresh, Enterprise

Industries’ marketing department is comparing the effectiveness of three different advertising

campaigns. These campaigns are denoted as campaigns A, B, and C. Campaign A consists entirely

of television commercials, campaign B consists of a balanced mixture of television and radio

commercials, and campaign C consists of a balanced mixture of television, radio, newspaper, and

magazine ads. To conduct the study, Enterprise Industries has randomly selected one advertising

campaign to be used in each of the 30 sales periods in Table 14.5. Although logic would indicate

that each of campaigns A, B, and C should be used in 10 of the 30 sales periods, Enterprise

Industries has made previous commitments to the advertising media involved in the study. As a

result, campaigns A, B, and C were randomly assigned to, respectively, 9, 11, and 10 sales periods.

Furthermore, advertising was done in only the first three weeks of each sales period, so that the

carryover effect of the campaign used in a sales period to the next sales period would be

minimized. Table 14.12 lists the campaigns used in the sales periods.

To compare the effectiveness of advertising campaigns A, B, and C, we define two dummy

variables. Specifically, we define the dummy variable DB to equal 1 if campaign B is used in a

DS

Predictor      Coef    SE Coef        T        P 

Constant     51.500      1.013    50.83    0.000 

DBottom       4.300      1.433     3.00    0.009 

DMiddle      25.700      1.433    17.94    0.000 
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F I G U R E 1 4 . 2 0 MINITAB Output of a Dummy Variable Regression Analysis of 

the Bakery Sales Data in Table 14.11

Sales Advertising
Period Campaign
1 B

2 B

3 B

4 A

5 C

6 A

7 C

8 C

9 B

10 C

11 A

12 C

13 C

14 A

15 B

16 B

17 B

18 A

19 B

20 B

21 C

22 A

23 A

24 A

25 A

26 B

27 C

28 B

29 C

30 C

T A B L E 1 4 . 1 2

Advertising

Campaigns Used

by Enterprise

Industries

Fresh3DS

The regression equation is 

Bakery Sales = 55.8 + 21.4 DMiddle – 4.30 DTop 

Predictor    Coef  SE Coef      T      P 

Constant   55.800    1.013  55.07  0.000 

DMiddle    21.400    1.433  14.93  0.000 

DTop       –4.300    1.433  –3.00  0.009 

S = 2.48193   R–Sq = 96.1%   R–Sq(adj) = 95.6% 

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression       2  2273.9  1136.9  184.57  0.000 

Residual Error  15    92.4     6.2 

Total           17  2366.3 

Values of Predictors for New Obs    Predicted Values for New Observations 

New Obs  DMiddle  DTop              New Obs     Fit  SE Fit       95% CI           95% PI 

1        1     0                    1  77.200   1.013  (75.040, 79.360)  (71.486, 82.914) 
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sales period and 0 otherwise. Furthermore, we define the dummy variable DC to equal 1 if

campaign C is used in a sales period and 0 otherwise. Figure 14.21 presents the Excel add-in

(MegaStat) output of a regression analysis of the Fresh demand data by using the model

y b0 b1x1  b2x2 b3x3 b4DB b5DC e

a In this model the parameter b4 represents the effect on mean demand of advertising campaign

B compared to advertising campaign A, and the parameter b5 represents the effect on mean

demand of advertising campaign C compared to advertising campaign A. Use the regression

output to find and report a point estimate of each of the above effects and to test the signifi-

cance of each of the above effects. Also, find and report a 95 percent confidence interval for

each of the above effects. Interpret your results.

b The prediction results at the bottom of the output correspond to a future period when Fresh’s

price will be x1  3.70, the average price of similar detergents will be x2  3.90, Fresh’s

advertising expenditure will be x3 6.50, and advertising campaign C will be used. Show

(within rounding) how  8.61621 is calculated. Then find, report, and interpret a 95 percent

confidence interval for mean demand and a 95 percent prediction interval for an individual de-

mand when x1 3.70, x2 3.90, x3 6.50, and campaign C is used.

c Consider the alternative model

y  b0  b1x1  b2x2  b3x3  b4DA  b5DC  e

Here DA equals 1 if advertising campaign A is used and equals 0 otherwise. Describe the

effect represented by the regression parameter b5.

d The Excel output of the least squares point estimates of the parameters of the model of 

part c is as follows.

   

ŷ

 

Regression Statistics
Multiple R 0.9797
R Square 0.9597
Adjusted R Square 0.9513
Standard Error 0.1503
Observations 30

ANOVA df SS MS F Significance F

Regression 5 12.9166 2.5833 114.3862 6.237E-16
Residual 24 0.5420 0.0226
Total 29 13.4586

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 8.7154 1.5849 5.4989 1.1821E-05 5.4443 11.9866
Price (X1) -2.7680 0.4144 -6.6790 6.5789E-07 -3.6234 -1.9127
Ind Price (X2) 1.6667 0.1913 8.7110 6.7695E-09 1.2718 2.0616
AdvExp (X3) 0.4927 0.0806 6.1100 2.6016E-06 0.3263 0.6592
DB 0.2695 0.0695 3.8804 0.0007 0.1262 0.4128
DC 0.4396 0.0703 6.2496 1.8506E-06 0.2944 0.5847

Predicted values for: Demand using an Excel add-in (MegaStat)
95% Confidence Interval 95% Prediction Interval

Predicted lower upper lower upper Leverage

8.61621 8.51380 8.71862 8.28958 8.94285 0.109

F I G U R E 1 4 . 2 1 Excel Output of a Dummy Variable Regression Model Analysis of 

the Fresh Demand Data

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 8.9849 1.5971 5.6259 8.61E-06 5.6888 12.2811

Price (X1) -2.7680 0.4144 -6.6790 6.58E-07 -3.6234 -1.9127

Ind Price (X2) 1.6667 0.1913 8.7110 6.77E-09 1.2718 2.0616

AdvExp (X3) 0.4927 0.0806 6.1100 2.60E-06 0.3263 0.6592

DA -0.2695 0.0695 -3.8804 0.0007 -0.4128 -0.1262

DC 0.1701 0.0669 2.5429 0.0179 0.0320 0.3081



Use the Excel output to test the significance of the effect represented by b5 and find a 95 percent

confidence interval for b5. Interpret your results.

14.33 THE FRESH DETERGENT CASE Fresh3

Figure 14.22 presents the Excel output of a regression analysis of the Fresh demand data using

the model

y b0 b1x1  b2x2 b3x3 b4DB b5DC  b6x3DB  b7x3DC e

where the dummy variables DB and DC are defined as in Exercise 14.32.

a This model assumes that there is interaction between advertising expenditure x3 and type of

advertising campaign. What do the p-values related to the significance of the cross-product

terms x3DB and x3DC say about the need for these interaction terms and about whether there is

interaction between x3 and type of advertising campaign?

b The prediction results at the bottom of Figure 14.22 are for a future sales period in which 

x1  3.70, x2  3.90, x3  6.50, and advertising campaign C will be used. Use the output to

find and report a point prediction of and a 95 percent prediction interval for Fresh demand in

such a sales period. Is the 95 percent prediction interval given by this model shorter or longer

than the 95 percent prediction interval given by the model that utilizes DB and DC in 

Exercise 14.32? What are the implications of this comparison?

14.9 The Partial F Test: Testing the Significance of a
Portion of a Regression Model 

We now present a partial F test that allows us to test the significance of a set of independent vari-

ables in a regression model. That is, we can use this F test to test the significance of a portion of

a regression model. For example, in the Electronics World situation, we employed the dummy

variable model

y b0 b1x b2DM b3DD e

It might be useful to test the significance of the dummy variables DM and DD. We can do this by

testing the null hypothesis

H0: b2 b3 0

which says that neither dummy variable significantly affects y, versus the alternative hypothesis

Ha: At least one of b2 and b3 does not equal 0

which says at least one of the dummy variables significantly affects y. Intuitively, since b2 and b3

represent the effects of the mall and downtown locations with respect to the street location, the

DS
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Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 8.7619 1.7071 5.1327 3.82E-05 5.2217 12.3021

Price (X1) -2.7895 0.4339 -6.4284 1.81E-06 -3.6894 -1.8895

Ind Price (X2) 1.6365 0.2062 7.9376 6.72E-08 1.2089 2.0641

AdvExp (X3) 0.5160 0.1288 4.0069 0.0006 0.2489 0.7831

DB 0.2539 0.8722 0.2911 0.7737 -1.5550 2.0628

DC 0.8435 0.9739 0.8661 0.3958 -1.1762 2.8631

X3DB 0.0030 0.1334 0.0226 0.9822 -0.2736 0.2797

X3DC -0.0629 0.1502 -0.4189 0.6794 -0.3744 0.2486

Predicted values for: Demand using an Excel add-in (MegaStat) R2 0.960

95% Confidence Interval 95% Prediction Interval Adjusted R2 0.948

Predicted lower upper lower upper Leverage R 0.980

8.61178 8.50372 8.71984 8.27089 8.95266 0.112 Std. Error 0.156

F I G U R E 1 4 . 2 2 Excel Output of a Regression Analysis of the Fresh Demand Data Using the Model

y  B0  B1x1  B2x2  B3x3  B4DB  B5DC  B6x3DB  B7x3DC  E

Test the
significance

of a portion of a
regression model
by using an F test.

LO8
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null hypothesis says that the effects of the mall, downtown, and street locations on mean sales

volume do not differ (insignificant dummy variables). The alternative hypothesis says that at

least two locations have different effects on mean sales volume (at least one significant dummy

variable).

In general, consider the regression model

y b0 b1x1      bgxg bg 1xg 1     bkxk e

Suppose we wish to test the null hypothesis

H0: bg 1 bg 2     bk 0

which says that none of the independent variables xg 1, xg 2, . . . , xk affects y, versus the alterna-

tive hypothesis

Ha: At least one of bg 1, bg 2, . . . , bk does not equal 0

which says that at least one of the independent variables xg 1, xg 2, . . . , xk affects y. If we can

reject H0 in favor of Ha by specifying a small probability of a Type I error, then it is reasonable to

conclude that at least one of xg 1, xg 2, . . . , xk significantly affects y. In this case we should use

t statistics and other techniques to determine which of xg 1, xg 2, . . . , xk significantly affect y. To

test H0 versus Ha, consider the following two models:

Complete model: y b0 b1x1     bgxg bg 1xg 1     bkxk e

Reduced model: y b0 b1x1     bgxg e

Here the complete model is assumed to have k independent variables, the reduced model is the

complete model under the assumption that H0 is true, and (k g) denotes the number of regres-

sion parameters we have set equal to 0 in the statement of H0.

To carry out this test, we calculate SSEC, the unexplained variation for the complete model,

and SSER, the unexplained variation for the reduced model. The appropriate test statistic is

based on the difference

SSER SSEC

which is called the drop in the unexplained variation attributable to the independent vari-

ables xg 1, xg 2, . . . , xk. In the following box we give the formula for the test statistic and show

how to carry out the test:

The Partial F Test: An F Test for a Portion of a Regression Model

Also define the p-value related to F to be the area

under the curve of the F distribution [having k g

and n (k 1) degrees of freedom] to the right of F.

Then, we can reject H0 in favor of Ha at level of

significance a if either of the following equivalent

conditions holds:

1 F  Fa

2 p-value  a

Here the point Fa is based on k g numerator and

n (k 1) denominator degrees of freedom.

Suppose that the regression assumptions hold and

consider testing 

H0: bg 1 bg 2     bk 0 

versus 

Ha: At least one of bg 1, bg 2, . . . , bk does not 

equal 0

We define the partial F statistic to be

F  
(SSER  SSEC)兾(k  g)

SSEC兾[n  (k  1)]

It can be shown that the “extra” independent variables xg 1, xg 2, . . . , xk will always explain

some of the variation in the observed y values and, therefore, will always make SSEC somewhat



smaller than SSER. Condition 1 says that we should reject H0 if

is large. This is reasonable because a large value of F would result from a large value of (SSER 

SSEC), which would be obtained if at least one of the independent variables xg 1, xg 2, . . . , xk

makes SSEC substantially smaller than SSER. This would suggest that H0 is false and that Ha

is true.

Before looking at an example, we should point out that testing the significance of a single in-

dependent variable by using a partial F test is equivalent2 to carrying out this test by using the

previously discussed t test (see Section 14.5).

F  
(SSER  SSEC)兾(k  g)

SSEC兾[n  (k  1)]
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EXAMPLE 14.7

In Section 14.8 we used the dummy variable model

y b0 b1x b2DM b3DD e

to make pairwise comparisons of the street, mall, and downtown store locations. Before making

these pairwise comparisons, however, some people think that we should test for overall differ-

ences between the effects of the locations. To do this, we test the null hypothesis

H0: b2 b3 0

which says that the street, mall, and downtown locations have the same effects on mean sales vol-

ume (no differences between locations), versus the alternative hypothesis

Ha: At least one of b2 and b3 does not equal 0

which says that at least two locations have different effects on mean sales volume.

To carry out this test we consider the following:

Complete model: y b0 b1x b2DM b3DD e

For this complete model (which has k 3 independent variables), we obtain an unexplained vari-

ation equal to SSEC 443.4650. The reduced model is the complete model when H0 is true.

Therefore, we obtain

Reduced model: y b0 b1x e

For this model the unexplained variation is SSER  2,467.8067. Noting that two parameters 

(b2 and b3) are set equal to 0 in the statement of H0, we have k g 2. Therefore, the needed

partial F statistic is

  25.1066

  
(2,467.8067  443.4650)兾2

443.4650兾[15  4]

 F  
(SSER  SSEC)兾(k  g)

SSEC兾[n  (k  1)]

2It can be shown that when we test H0: bj 0 versus Ha: bj 0 using a partial F test,

F t2 and Fa (ta兾2)
2

Here ta兾2 is based on n (k 1) degrees of freedom, and Fa is based on 1 numerator and n (k 1) denominator degrees of

freedom. Hence the rejection conditions

冷t 冷  ta兾2 and F Fa

are equivalent. It can also be shown that in this case the p-value related to t equals the p-value related to F.
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We compare F with F.01 7.21, which is based on k g 2 numerator and n (k 1) 

15 4 11 denominator degrees of freedom. Since

F 25.1066 7.21

we can reject H0 at the .01 level of significance, and we have very strong statistical evidence that

at least two locations have different effects on mean sales volume. Having reached this conclu-

sion, it makes sense to compare the effects of specific pairs of locations. We have already done

this in Section 14.8. It should also be noted that even if H0 were not rejected, some practitioners

feel that pairwise comparisons should still be made. This is because there is always a possibility

that we have erroneously decided to not reject H0.

Exercises for Section 14.9
CONCEPTS

14.34 When we perform a partial F test, what are the complete and reduced models?

14.35 When we perform a partial F test, what is (k g)? What is n (k 1)?

METHODS AND APPLICATIONS

THE FRESH DETERGENT CASE Fresh3

In Exercises 14.36 through 14.38, you will perform partial F tests by using the following three Fresh

detergent models:

Model 1:

Model 2:

Model 3:

The values of SSE for models 1, 2, and 3 are, respectively, 1.4318, .5420, and .5347.

14.36 In Model 2, test H0: b4 b5 0 by setting a equal to .05 and .01. Interpret your results.

14.37 In Model 3, test H0: b4 b5 b6 b7 0 by setting a equal to .05 and .01. Interpret.

14.38 In Model 3, test H0: b6 b7 0 by setting a equal to .05 and .01. Interpret your results.

14.10 Residual Analysis in Multiple Regression 
In Section 13.9 we showed how to use residual analysis to check the regression assumptions for a

simple linear regression model. In multiple regression we proceed similarly. Specifically, for a

multiple regression model we plot the residuals given by the model against (1) values of each in-

dependent variable, (2) values of the predicted value of the dependent variable, and (3) the time

order in which the data have been observed (if the regression data are time series data). A fanning-

out pattern on a residual plot indicates an increasing error variance; a funneling-in pattern indicates

a decreasing error variance. Both violate the constant variance assumption. A curved pattern on a

residual plot indicates that the functional form of the regression model is incorrect. If the regres-

sion data are time series data, a cyclical pattern on the residual plot versus time suggests positive

autocorrelation, while an alternating pattern suggests negative autocorrelation. Both violate the

independence assumption. On the other hand, if all residual plots have (at least approximately) a

horizontal band appearance, then it is reasonable to believe that the constant variance, correct

functional form, and independence assumptions approximately hold. To check the normality

assumption, we can construct a histogram, stem-and-leaf display, and normal plot of the residuals.

The histogram and stem-and-leaf display should look bell-shaped and symmetric about 0; the nor-

mal plot should have a straight-line appearance.

y  b0  b1x1  b2x2  b3 x3  b4 DB  b5 DC  b6 x3 DB  b7 x3DC  e

y  b0  b1x1  b2x2  b3x3  b4DB  b5DC  e

y  b0  b1x1  b2x2  b3x3  e

DS

Use residual
analysis to

check the assump-
tions of multiple
regression.

LO9



To illustrate these ideas, consider the sales territory performance data in Figure 14.10

(page 605). Figure 14.11 (page 606) gives the Excel output of a regression analysis of these data

using the model

y b0 b1x1 b2x2 b3x3 b4x4 b5x5 e

The least squares point estimates on the output give the prediction equation

Using this prediction equation, we can calculate the predicted sales values and residuals given on

the Excel add-in (MegaStat) output of Figure 14.23. For example, observation 10 on this output

corresponds to a sales representative for whom x1 105.69, x2 42,053.24, x3 5,673.11, x4 

8.85, and x5  .31. If we insert these values into the prediction equation, we obtain a predicted

sales value of ŷ10  4,143.597. Since the actual sales for the sales representative are y10  

4,876.370, the residual e10 equals the difference between y10  4,876.370 and ŷ10  4,143.597,

which is 732.773. The normal plot of the residuals in Figure 14.24(a) has an approximate

straight-line appearance. The plot of the residuals versus predicted sales in Figure 14.24(b) has a

horizontal band appearance, as do the plots of the residuals versus the independent variables [the

plot versus x3, advertising, is shown in Figure 14.24(c)]. We conclude that the regression as-

sumptions approximately hold for the sales territory performance model (note that since the data

are cross-sectional, a residual plot versus time is not appropriate).

ŷ   1,113.7879  3.6121x1  .0421x2  .1289x3  256.9555x4  324.5334x5
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Observation Sales Predicted Residual
1 3,669.880 3,504.990 164.890

2 3,473.950 3,901.180  427.230

3 2,295.100 2,774.866  479.766

4 4,675.560 4,911.872  236.312

5 6,125.960 5,415.196 710.764

6 2,134.940 2,026.090 108.850

7 5,031.660 5,126.127  94.467

8 3,367.450 3,106.925 260.525

9 6,519.450 6,055.297 464.153

10 4,876.370 4,143.597 732.773

11 2,468.270 2,503.165  34.895

12 2,533.310 1,827.065 706.245

13 2,408.110 2,478.083  69.973

14 2,337.380 2,351.344  13.964

15 4,586.950 4,797.688  210.738

16 2,729.240 2,904.099  174.859

17 3,289.400 3,362.660  73.260

18 2,800.780 2,907.376  106.596

19 3,264.200 3,625.026  360.826

20 3,453.620 4,056.443  602.823

21 1,741.450 1,409.835 331.615

22 2,035.750 2,494.101  458.351

23 1,578.000 1,617.561  39.561

24 4,167.440 4,574.903  407.463

25 2,799.970 2,488.700 311.270

Figure 14.23 Excel add-in (MegaStat) Output of the Sales

Territory Performance Model Residuals

(a) Normal plot of the residuals

(c) Plot of the residuals versus advertising

(b) Plot of the residuals versus predicted sales
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Exercises for Section 14.10
CONCEPTS

14.39 Discuss how we use residual plots to check the regression assumptions for a multiple regression

model.

14.40 Discuss how we check the normality assumption for a multiple regression model.

METHODS AND APPLICATIONS

14.41 THE TASTY SUB SHOP CASE TastySub2

Consider the Tasty Sub Shop revenue data in Table 14.1 (page 581). Figures 14.25(a) and (b) give

residual plots obtained when we perform a regression analysis using the model

y  b0  b1x1  b2x2  e

Interpret the plots of the residuals versus Population (x1) and versus Business rating (x2).

14.42 THE HOSPITAL LABOR NEEDS CASE HospLab

Consider the hospital labor needs data in Table 14.6 (page 590). Figures 14.25(c) and (d) give

residual plots that are obtained when we perform a regression analysis of these data by using the

model

y  b0  b1x1  b2x2  b3x3  e

a Interpret the normal plot of the residuals.

b Interpret the residual plot versus BedDays (x2).

14.43 Recall that Figure 13.26(a) (page 564) gives n 16 weekly values of Pages’ Bookstore sales (y),

Pages’ advertising expenditure (x1), and competitor’s advertising expenditure (x2). Use MINITAB

or Excel, to fit the model

y  b0  b1x1  b2x2  e

and plot the model’s residuals versus time. Does the residual plot indicate that using x2 in the

model has removed the autocorrelation that is apparent in Figure 13.26(b)? BookSalesDS

DS

DS

(c) Normal probability plot
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Glossary of Terms

dummy variable: A variable that takes on the values 0 or 1 and

is used to describe the effects of the different levels of a qualita-

tive independent variable in a regression model. (page 607)

interaction: The situation in which the relationship between

the mean value of the dependent variable and an independent

variable is dependent on the value of another independent vari-

able. (page 611)

multiple regression model: An equation that describes the rela-

tionship between a dependent variable and more than one inde-

pendent variable. (page 586)

Important Formulas and Tests

The multiple regression model: page 586

The least squares point estimates: page 583

Mean square error: page 592

Standard error: page 592

Total variation: page 593

Explained variation: page 593

Unexplained variation: page 593

Multiple coefficient of determination: page 593

Multiple correlation coefficient: page 593

Adjusted multiple coefficient of determination: page 594

An F test for the multiple regression model: page 595

Testing the significance of an independent variable: page 598

Confidence interval for bj: page 600

Point estimate of a mean value of y: page 602

Point prediction of an individual value of y: page 602

Confidence interval for a mean value of y: pages 601 and 602

Prediction interval for an individual value of y: pages 601 

and 602

Distance (leverage) value: page 602

The partial F test: page 619

Supplementary Exercises

14.44 In a September 1982 article in Business Economics, C. I. Allmon related y Crest toothpaste sales

in a given year (in thousands of dollars) to x1 Crest advertising budget in the year (in thousands

of dollars), x2 ratio of Crest’s advertising budget to Colgate’s advertising budget in the year, and

x3 U.S. personal disposable income in the year (in billions of dollars). The data analyzed are

given in Table 14.13. When we perform a regression analysis of these data using the model

y  b0  b1x1  b2x2  b3x3  e

we find that the least squares point estimates of the model parameters and their associated p-values

(given in parentheses) are b0 30,626(.156), b1 3.893(.094), b2  29,607(.245), and b3 

86.52( .001). Suppose it was estimated at the end of 1979 that in 1980 the advertising budget for

Crest would be 28,000; the ratio of Crest’s advertising budget to Colgate’s advertising budget would

be 1.56; and the U.S. personal disposable income would be 1,821.7. Using the model, a point predic-

tion of and a 95 percent prediction interval for Crest sales in 1980 are 251,059 and [221,988,

280,130]. Show (within rounding) how the point prediction has been calculated. CrestDS

Chapter Summary

This chapter has discussed multiple regression analysis. We

began by considering the multiple regression model. We next dis-

cussed the least squares point estimates of the model parameters,

the assumptions behind the model, and some ways to judge over-

all model utility—the standard error, the multiple coefficient of

determination, the adjusted multiple coefficient of determina-

tion, and the overallF test. Then we considered testing the signif-

icance of a single independent variable in a multiple regression

model, calculating a confidence interval for the mean value of the

dependent variable, and calculating a prediction interval for an

individual value of the dependent variable. We continued this

chapter by discussing using dummy variables to model qualita-

tive independent variables and using cross-product terms to

model interaction. We then considered how to use the partial F

test to evaluate a portion of a regression model. We concluded this

chapter by showing how to use residual analysis to check the re-

gression assumptions for multiple regression models.
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Source: C. I. Allmon, “Advertising and Sales Relationships for Toothpaste: Another Look,” Business Economics (September

1982), pp. 17, 58. Reprinted by permission. Copyright © 1982 National Association for Business Economics.

U.S. Personal Disposable
Year Crest Sales, y Crest Budget, x1 Ratio, x2 Income, x3

1967 105,000 16,300 1.25 547.9

1968 105,000 15,800 1.34 593.4

1969 121,600 16,000 1.22 638.9

1970 113,750 14,200 1.00 695.3

1971 113,750 15,000 1.15 751.8

1972 128,925 14,000 1.13 810.3

1973 142,500 15,400 1.05 914.5

1974 126,000 18,250 1.27 998.3

1975 162,000 17,300 1.07 1,096.1

1976 191,625 23,000 1.17 1,194.4

1977 189,000 19,300 1.07 1,311.5

1978 210,000 23,056 1.54 1,462.9

1979 224,250 26,000 1.59 1,641.7

Sales Square Sales Square
Price, y Feet, Rooms, Bedrooms, Age, Price, y Feet, Rooms, Bedrooms, Age,

Residence ( $1,000) x1 x2 x3 x4 Residence ( $1,000) x1 x2 x3 x4

1 53.5 1,008 5 2 35 33 63.0 1,053 5 2 24

2 49.0 1,290 6 3 36 34 60.0 1,728 6 3 26

3 50.5 860 8 2 36 35 34.0 416 3 1 42

4 49.9 912 5 3 41 36 52.0 1,040 5 2 9

5 52.0 1,204 6 3 40 37 75.0 1,496 6 3 30

6 55.0 1,204 5 3 10 38 93.0 1,936 8 4 39

7 80.5 1,764 8 4 64 39 60.0 1,904 7 4 32

8 86.0 1,600 7 3 19 40 73.0 1,080 5 2 24

9 69.0 1,255 5 3 16 41 71.0 1,768 8 4 74

10 149.0 3,600 10 5 17 42 83.0 1,503 6 3 14

11 46.0 864 5 3 37 43 90.0 1,736 7 3 16

12 38.0 720 4 2 41 44 83.0 1,695 6 3 12

13 49.5 1,008 6 3 35 45 115.0 2,186 8 4 12

14 105.0 1,950 8 3 52 46 50.0 888 5 2 34

15 152.5 2,086 7 3 12 47 55.2 1,120 6 3 29

16 85.0 2,011 9 4 76 48 61.0 1,400 5 3 33

17 60.0 1,465 6 3 102 49 147.0 2,165 7 3 2

18 58.5 1,232 5 2 69 50 210.0 2,353 8 4 15

19 101.0 1,736 7 3 67 51 60.0 1,536 6 3 36

20 79.4 1,296 6 3 11 52 100.0 1,972 8 3 37

21 125.0 1,996 7 3 9 53 44.5 1,120 5 3 27

22 87.9 1,874 5 2 14 54 55.0 1,664 7 3 79

23 80.0 1,580 5 3 11 55 53.4 925 5 3 20

24 94.0 1,920 5 3 14 56 65.0 1,288 5 3 2

25 74.0 1,430 9 3 16 57 73.0 1,400 5 3 2

26 69.0 1,486 6 3 27 58 40.0 1,376 6 3 103

27 63.0 1,008 5 2 35 59 141.0 2,038 12 4 62

28 67.5 1,282 5 3 20 60 68.0 1,572 6 3 29

29 35.0 1,134 5 2 74 61 139.0 1,545 6 3 9

30 142.5 2,400 9 4 15 62 140.0 1,993 6 3 4

31 92.2 1,701 5 3 15 63 55.0 1,130 5 2 21

32 56.0 1,020 6 3 16

S
a
le

s

Budget

S
a
le

s

Income

S
a
le

s

Ratio

T A B L E 1 4 . 1 3 Crest Toothpaste Sales Data CrestDS

T A B L E 1 4 . 1 4 Measurements Taken on 63 Single-Family Residences OxHomeDS
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14.45 THE OXFORD HOME BUILDER CASE OxHome

The trend in home building in recent years has been to emphasize open spaces and great rooms,

rather than smaller living rooms and family rooms. A builder of speculative homes in the college

community of Oxford, Ohio, had been building such homes, but his homes had been taking many

months to sell and selling for substantially less than the asking price. In order to determine what

types of homes would attract residents of the community, the builder contacted a statistician 

at a local college. The statistician went to a local real estate agency and obtained the data in 

Table 14.14. This table presents the sales price y, square footage x1, number of rooms x2, number

of bedrooms x3, and age x4 for each of 63 single-family residences recently sold in the

community. When we perform a regression analysis of these data using the model

y b0 b1x1 b2x2 b3x3 b4x4 e

we find that the least squares point estimates of the model parameters and their associated

p-values (given in parentheses) are b0  10.3676(.3710), b1  .0500( .001), b2  6.3218(.0152),

b3   11.1032(.0635), and b4   .4319(.0002). Discuss why the estimates b2  6.3218 and

b3   11.1032 suggest that it might be more profitable when building a house of a specified

square footage (1) to include both a (smaller) living room and family room rather than a (larger)

great room and (2) to not increase the number of bedrooms (at the cost of another type of room)

that would normally be included in a house of the specified square footage.

Note: Based on the statistical results, the builder realized that there are many families with

children in a college town and that the parents in such families would rather have one living area

for the children (the family room) and a separate living area for themselves (the living room). The

builder started modifying his open-space homes accordingly and greatly increased his profits.

14.46 In the article “The Effect of Promotion Timing on Major League Baseball Attendance” (Sport

Marketing Quarterly, December 1999), T. C. Boyd and T. C. Krehbiel use data from six major

league baseball teams having outdoor stadiums to study the effect of promotion timing on

major league baseball attendance. One of their regression models describes game attendance in

1996 as follows (p-values less than .10 are shown in parentheses under the appropriate

independent variables):

Attendance 2,521  106.5 Temperature  12.33 Winning % .2248 OpWin %

( .001) ( .001) ( .001)

 424.2 DayGame 4,845 Weekend 1,192 Rival 4,745 Promotion

( .001) ( .10) ( .001)

 5,059 Promo*DayGame  4,690 Promo*Weekend  696.5 Promo*Rival

( .001) ( .001)

In this model, Temperature is the high temperature recorded in the city on game day; Winning %

is the home team’s winning percentage at the start of the game; OpWin % is a dummy variable

that equals 1 if the opponent’s winning percentage was .500 or higher and 0 otherwise; DayGame

is a dummy variable that equals 1 if the game was a day game and 0 otherwise; Weekend is a

dummy variable that equals 1 if the game was on a Friday, Saturday, or Sunday and 0 otherwise;

Rival is a dummy variable that equals 1 if the opponent was a rival and 0 otherwise; Promotion

is a dummy variable that equals 1 if the home team ran a promotion during the game and 0

otherwise. Using the model, which is based on 475 games and has an R2 of .6221, Boyd and

Krehbiel obtain the following table, which estimates increased attendance due to promotions

under different conditions:

DS

Weekday Weekend
Nonrival Rival Nonrival Rival

Day Promotion  Promotion  Promotion  Promotion  
(Promo*DayGame) (Promo*DayGame)  (Promo*DayGame)  (Promo*DayGame)  

(Promo*Rival) (Promo*Weekend ) (Promo*Weekend )   
(Promo*Rival )

9,804 10,500 5,114 5,810

Night Promotion Promotion  Promotion  Promotion  
(Promo*Rival ) (Promo*Weekend ) (Promo*Weekend)  

(Promo*Rival )
4,745 5,441 55 751



Supplementary Exercises 627

By adding the estimated coefficients for the independent variables shown in the table, verify the

increased attendance estimates given by Boyd and Krehbiel. Based on these increased attendance

estimates, Boyd and Krehbiel conclude that “promotions run during day games and on weekdays

are likely to result in greater attendance increases.” Explain the authors’ conclusions. Given that

major league baseball teams tend to run promotions during night games and on weekends, what

are the practical consequences of the authors’ conclusions?

14.47 THE FLORIDA POOL HOME CASE PoolHome

Recall the Florida pool home case discussed in Exercise 14.30. Residual plots resulting from fit-

ting the model

Price b0  b1 SqrFt  b2 Bathrms  b3 Niceness b4 Pool?  e

are as shown in Figure 14.26 on the next page.

a The residuals are plotted against the predicted prices and against each of the four predictor

variables. Do these plots reassure you that the regression assumptions are being met? 

Explain.

b Which regression assumption is addressed by the normal probability plot of the residuals?

What do you decide about the validity of this assumption?

14.48 CLASSIFICATION RULES: DISCRIMINANT ANALYSIS PerfTest

The personnel director of a firm has developed two tests to help determine whether potential

employees would perform successfully in a particular position. To help estimate the usefulness

of the tests, the director gives both tests to 43 employees who currently hold the position.

Table 14.15 gives the scores of each employee on both tests and indicates whether the employee

is currently performing successfully or unsuccessfully in the position. If the employee is perform-

ing successfully, we say that the employee is in group 1; if the employee is performing unsuc-

cessfully, we say that the employee is in group 0. We can use discriminant analysis to classify a

potential employee into group 0 or group 1. In discriminant analysis we develop a discriminant

function

d  b0  b1x1  b2x2

that is used to discriminate between employees in group 0 and employees in group 1. One way to

determine the discriminant coefficients b0, b1, and b2 is to calculate the least squares point

estimates of the parameters of the regression model y b0  b1x1  b2x2  e. Here, we set the

dependent variable y equal to 1 if an employee is in group 1 and equal to 0 if an employee is in

group 0. If we use the data in Table 14.15, we find that b0   5.9291, b1  .05858, and 

b2  .015322. It follows that the discriminant function is

d   5.9291  .05858x1  .015322x2

To use the discriminant function to classify future potential employees, we calculate d for each

observed employee in Table 14.15. We next calculate the average of the d values for the 

employees in group 0, which is and the average of the d values for the 

employees in group 1, which is We then compute the cutoff value

It can be proven that we minimize the probability of misclassification if we classify a prospective

employee into group 1 if and only if d for the prospective employee is greater than the cutoff

value c. For example, consider a prospective employee who scores a 93 on test 1 and an 84 on

test 2. For this prospective employee

d   5.9291  .05858(93) .015322(84) .805888

Since d .805888 is greater than c  .5349, the employee is classified into group 1.

a Calculate d for a prospective employee who scores an 85 on test 1 and an 82 on test 2. Then,

classify this employee into group 0 or group 1.

b Statistical software packages do not use regression analysis to determine the discriminant

function. They use a somewhat more sophisticated technique that produces either equivalent

c  
n0d0  n1d1

n0  n1

 
20(.2475)  23(.7848)

20  23
 .5349

d1  .7848.

n1  23d0  .2475,

n0  20

DS

DS

Group Test 1 Test 2
1 96 85

1 96 88

1 91 81

1 95 78

1 92 85

1 93 87

1 98 84

1 92 82

1 97 89

1 95 96

1 99 93

1 89 90

1 94 90

1 92 94

1 94 84

1 90 92

1 91 70

1 90 81

1 86 81

1 90 76

1 91 79

1 88 83

1 87 82

0 93 74

0 90 84

0 91 81

0 91 78

0 88 78

0 86 86

0 79 81

0 83 84

0 79 77

0 88 75

0 81 85

0 85 83

0 82 72

0 82 81

0 81 77

0 86 76

0 81 84

0 85 78

0 83 77

0 81 71

Source: Applied Regres-

sion Analysis for Business

and Economics, 2nd Edition

by T.E. Dielman.  ©1996.

Reprinted with permission

of Brooks/Cole, a division

of Cengage Learning:

www.cengagerights.com.

Fax 800 730-2215.
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or slightly different results. For example, Figure 14.27 presents the MINITAB output of a

discriminant analysis of the data in Table 14.15. This figure gives a discriminant equation

for group 0 and a discriminant equation for group 1. Denoting these equations as and

, the MINITAB output tells us that

A prospective employee is classified into group 1 if and only if is greater than . For

example, consider a prospective employee who scores a 93 on test 1 and an 84 on test 2. For 

this prospective employee, Since is greater than ,

the prospective employee is classified into group 1. Calculate and for a prospective 

employee who scores an 85 on test 1 and an 82 on test 2. Then, classify this employee into 

group 0 or group 1. Interpret what your classification means.

Note: Discriminant analysis is a multivariate statistical technique. In Appendix I on this

book’s website, we discuss three other multivariate techniques—factor analysis, cluster

analysis, and multidimensional scaling.

In this chapter, the Internet exercise follows the appendices.

ŷ(1)ŷ(0)

ŷ(0)ŷ(1)ŷ(0)  350.81 and ŷ(1)  352.99.

ŷ(0)ŷ(1)

ŷ(0)   298.27  5.20x1  1.97x2   and   ŷ(1)   351.65  5.68x1  2.10x2

ŷ(1)

ŷ(0)

Appendix 14.1 ■ Multiple Regression Analysis Using Excel
The instruction blocks in this section each begin by describing the entry of data into an Excel spreadsheet. Alterna-
tively, the data may be downloaded from this book’s website. The appropriate data file name is given at the top of
each instruction block. Please refer to Appendix 1.1 for further information about entering data, saving data, and
printing results when using Excel.

Linear Discriminant Function for Groups 

                0        1 

Constant  -298.27  -351.65 

Test 1       5.20     5.68 

Test 2       1.97     2.10 

F I G U R E 1 4 . 2 7 MINITAB Output of a Discriminant Analysis of the Performance Data
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Multiple regression in Figure 14.5(a) on page 588
(data file: FuelCon2.xlsx):

• Enter the fuel consumption data from 
Table 14.3 (page 587)—temperatures (with
label Temp) in column A, chill indexes (with
label Chill) in column B, and fuel consumptions
(with label FuelCons) in column C.

• Select Data : Data Analysis : Regression and
click OK in the Data Analysis dialog box.

• In the Regression dialog box:
Enter C1 : C9 into the “Input Y Range” window.
Enter A1 : B9 into the “Input X Range” window.

• Place a checkmark in the Labels checkbox.

• Be sure that the “Constant is Zero” checkbox is
NOT checked.

• Select the “New Worksheet Ply” Output option.

• Click OK in the Regression dialog box to obtain
the regression output in a new worksheet.

Note: The independent variables must be in adja-
cent columns because the “Input X Range” must
span the range of the values for all of the indepen-
dent variables.

To compute a point prediction for fuel consump-
tion when temperature is 40ºF and the chill index 
is 10:

• The Excel Analysis ToolPak does not provide 
an option for computing point or interval 
predictions. A point prediction can be 
computed from the regression results using
Excel cell formulas as follows. 

(Continues across page)

• The estimated regression
coefficients and their labels are
in cells A8 : B10 of the output
worksheet and the predictor
values 40 and 10 have been
placed in cells I2 and I3.

• In cell I4, enter the
Excel formula
 B8 B9*I2 B10*I3
to compute the point
prediction ( 10.3331).

Multiple regression with indicator (dummy) vari-
ables in Figure 14.15(b) on page 610 (data file:
Electronics2.xlsx):

• Enter the sales volume data from Table 14.9
(page 609)—sales volumes (with label Sales) in
column A, store locations (with label Location)
in column B, and number of households (with
label Households) in column C. (The order of
the columns is chosen to arrange for an 
adjacent block of predictor variables.)

• Enter the labels DM and DD in cells D1 and E1.

• Following the definition of the dummy 
variables DM and DD in Example 14.6 (pages 607
and 608), enter the appropriate values of 0 and
1 for these two variables into columns D and E.

• Select Data : Data Analysis : Regression and
click OK in Data Analysis dialog box.

• In the Regression dialog box:
Enter A1 : A16 into the “Input Y Range” window.
Enter C1 : E16 into the “Input X Range” window.

• Place a checkmark in the Labels checkbox.

• Select the “New Worksheet Ply” Output option.

• Click OK in the Regression dialog box to obtain
the regression results in a new worksheet.
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Appendix 14.2 ■ Multiple Regression Analysis Using MegaStat
The instructions in this section begin by describing the entry of data into an Excel worksheet. Alternatively, the data
may be downloaded from this book’s website. The appropriate data file name is given at the top of each instruc-
tion block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing
results in Excel. Please refer to Appendix 1.2 for more information about using MegaStat. 

Multiple regression similar to Figure 14.5 on page 588
(data file: FuelCon2.xlsx):

• Enter the fuel consumption data in Table 14.3 
(page 587) as shown—temperature (with label
Temp) in column A, chill index (with label Chill)
in column B, and fuel consumption (with label
FuelCons) in column C. Note that Temp and 
Chill are contiguous columns (that is, they are
next to each other). This is not necessary, but it
makes selection of the independent variables 
(as described below) easiest.

• Select Add-Ins : MegaStat : Correlation/
Regression : Regression Analysis

• In the Regression Analysis dialog box, click in 
the Independent Variables window and use the 
autoexpand feature to enter the range A1 : B9.
Note that if the independent variables are not
next to each other; hold the CTRL key down
while making selections and then autoexpand.

• Click in the Dependent Variable window and
enter the range C1 : C9.

• Check the appropriate Options and Residuals
checkboxes as follows:

1 Check “Test Intercept” to include a 
y-intercept and to test its significance.

2 Check “Output Residuals” to obtain a list of
the model residuals. 

3 Check “Plot Residuals by Observation,” 
and “Plot Residuals by Predicted Y and X” 
to obtain residual plots versus time, versus
the predicted values of y, and versus the 
values of each independent variable 
(see Section 14.10).

4 Check “Normal Probability Plot of Residuals”
to obtain a normal plot (see Section 14.10).

5 Check “Diagnostics and Influential Residuals”
to obtain diagnostics (see Chapter 15).

6 Check “Durbin-Watson” to obtain the Durbin
Watson statistic (see Chapter 15) and check
“Variance Inflation Factors” (see Chapter 15).

To obtain a point prediction of y when temperature
equals 40 and chill index equals 10 (as well as a con-
fidence interval and prediction interval):

• Click on the drop-down menu above the 
Predictor Values window and select “Type in 
predictor values.”

• Type 40 and 10 (separated by at least one blank
space) into the Predictor Values window.

(Continues across page)

• Select a desired level of confidence (here 95%)
from the Confidence Level drop-down menu or
type in a value. 

• Click OK in the Regression Analysis dialog box.
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Predictions can also be obtained by placing the values
of the predictor variables into spreadsheet cells. For
example, suppose that we wish to compute predictions
of y for each of the following three temperature—chill
index combinations: 50 and 15; 55 and 20; 30 and 12.
To do this:

• Enter the values for which predictions are 
desired in spreadsheet cells as illustrated in the
screenshot—here temperatures are entered in
column F and chill indexes are entered in 
column G. However, the values could be entered
in any contiguous columns.

• In the drop-down menu above the Predictor 
Values window, select “Predictor values from
spreadsheet cells.” 

• Select the range of cells containing the predictor
values (here F1 : G3) into the predictor values
window.

• Select a desired level of confidence from the
Confidence Level drop-down menu or type in a
value.

• Click OK in the Regression Analysis dialog box.

Multiple regression with indicator (dummy) variables
similar to Figure 14.15 on page 610 (data file: Elec-
tronics2.xlsx):

• Enter the sales volume data from Table 14.9
(page 609)—sales volume (with label Sales) in 
column A, store location (with label Location) in
column B, and number of households (with label
Households) in column C. Again note that the
order of the variables is chosen to allow for a 
contiguous block of predictor variables.

• Enter the labels DM and DD into cells D1 and E1.

• Following the definitions of the dummy variables
DM and DD in Example 14.6 (pages 607 and 608),
enter the appropriate values of 0 and 1 for these
two variables into columns D and E as shown in
the screen.

• Select Add-Ins : MegaStat : Correlation/
Regression : Regression Analysis.

• In the Regression Analysis dialog box, click in the
Independent Variables window and use the
autoexpand feature to enter the range C1 : E16.

• Click in the Dependent Variable window and
enter the range A1 : A16.

To compute a prediction of sales volume for 200,000
households and a mall location: 

• Select “Type in predictor values” from the drop-
down menu above the Predictor Values window.

• Type 200 1 0 into the Predictor Values window.

• Select or type a desired level of confidence (here
95%) in the Confidence Level box.

• Click the Options and Residuals checkboxes as
shown (or as desired).

• Click OK in the Regression Analysis dialog box.
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Appendix 14.3 ■ Multiple Regression Analysis Using MINITAB
The instruction blocks in this section each begin by describing the entry of data into the MINITAB Data window.
Alternatively, the data may be downloaded from this book’s website. The appropriate data file name is given at the
top of each instruction block. Please refer to Appendix 1.3 for further information about entering data, saving data,
and printing results when using MINITAB.

Multiple regression in Figure 14.5(b) on page 588
(data file: FuelCon2.MTW):

• In the Data window, enter the fuel consumption
data from Table 14.3 (page 587)—the average
hourly temperatures in column C1 with variable
name Temp, the chill indices in column C2 with
variable name Chill, and the weekly fuel 
consumptions in column C3 with variable name
FuelCons.

• Select Stat : Regression : Regression.

• In the Regression dialog box, select FuelCons into
the Response window.

• Select Temp and Chill into the Predictors window.

To compute a prediction for fuel consumption when
the temperature is 40°F and the chill index is 10:

• In the Regression dialog box, click on the 
Options… button.

• In the “Regression Options” dialog box, enter 40
and 10 into the “Prediction intervals for new 
observations” window. (The number and order
of values in this window must match the 
Predictors list in the Regression dialog box.)

• Click OK in the Regression—Options dialog box.

To obtain residual plots:

• Click on the Graphs… button and check the 
desired plots (see Appendix 13.3).

• Click OK in the Regression—Graphs dialog box.

To see the regression results in the Session window
and the high-resolution graphs:

• Click OK in the Regression dialog box.

Multiple regression with indicator (dummy) variables
in Figure 14.15(a) on page 610 (data file: Electronics2.
MTW):

• In the Data window, enter the sales volume data
from Table 14.9 on page 609 with sales volume in
column C1, location in column C2, and number of
households in column C3 with variable names 
Sales, Location, and Households.
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To create indicator/dummy variable predictors:

• Select Calc : Make Indicator Variables.

• In the “Make Indicator Variables” dialog box,
enter Location into the “Indicator variables for”
window.

• The “Store indicator variables in columns” 
window lists the distinct values of Location in
alphabetical order. Corresponding to each distinct
value, enter the variable name to be used for that
value’s indicator variable—here we have used the
names DDowntown, DMall, and DStreet (or you
can use default names that are supplied by
MINITAB if you wish). The first indicator variable
(DDowntown) will have 1’s in all rows where the
Location equals Downtown and 0’s elsewhere. 
The second indicator variable (DMall) will have 1’s
in all rows where Location equals Mall and 0’s
elsewhere. The third indicator variable (DStreet)
will have 1’s in all rows where Location equals
Street and 0’s elsewhere.

• Click OK in the “Make Indicator Variables” dialog
box to create the indicator variables in the data
window.

To fit the multiple regression model:

• Select Stat : Regression : Regression.

• In the Regression dialog box, select Sales into the
Response window.

• Select Households DMall DDowntown into the
Predictors window.

To compute a prediction of sales volume for 200,000
households and a mall location:

• Click on the Options… button.

• In the “Regression—Options” dialog box, type
200 1 0 in the “Prediction intervals for new 
observations” window. 

• Click OK in the “Regression—Options” dialog box.

• Click OK in the Regression dialog box.

14.49 Internet Exercise

What attributes of automobiles influence or help pre-
dict gasoline mileage? In an article from the Journal of
Statistics Education, Robin Lock provides an extensive
collection of data on selected vehicle attributes for a
sample of 1993-model new cars. Our interest here is in
predicting city gas mileage as a function of other vehicle
attributes such as length, weight, and engine size. You
can retrieve the 1993-cars data set and related docu-
mentation from the Journal of Statistics Education (JSE)
web archive. [www.amstat.org/publications/jse_data_
archive.html]. Click on “93cars.dat” for data, “93cars.txt”
for documentation, and “article associated with this data
set” for a full text of the article. Excel and MINITAB data

files are also included on this book’s website, 93cars.xlsx
and 93cars.MTW.]

a Familiarize yourself with the data and variable defini-
tions by reading through the data documentation
and the associated JSE article. Construct plots of
CityMPG versus several selected vehicle attributes like
Length, Weight, Disp, and HP. Interpret your plots.

b Using MINITAB, Excel or other available statistical soft-
ware, develop a multiple regression model of the
dependent variable CityMPG versus independent vari-
ables Weight, WhlBase, Disp, and Domestic. Identify
and interpret the estimated regression coefficients.
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Chapter Outline

After mastering the material in this chapter, you will be able to:

LO6 Use diagnostic measures to detect outlying
and influential observations.

LO7 Use data transformations to help remedy
violations of the regression assumptions.

LO8 Use the Durbin–Watson test to detect
autocorrelated error terms.

Learning Objectives

LO1 Model quadratic relationships by using the
quadratic regression model.

LO2 Detect and model interaction between two
independent variables.

LO3 Use a logistic model to estimate
probabilities and odds ratios.

LO4 Describe and measure multicollinearity.

LO5 Use various model comparison criteria to
identify one or more appropriate
regression  models.



n Chapter 14 we have studied basic multiple

regression analysis. In this chapter we will

extend the discussion of Chapter 14 in

several important ways. First, the examples of

Chapter 14 assume that there is a straight-line

relationship between the dependent variable and

each of the independent variables. In this chapter

we will consider situations where there is a

quadratic, or curved, relationship between the

dependent variable and one or more independent

variables and where there might be interaction

between the independent variables. We will also

discuss how to use a nonlinear procedure called

logistic regression to estimate the probability that

an event will occur. In Chapter 14 we used t statistics

and associated p-values to assess the importance of

the independent variables in a regression model.

In this chapter we will learn that, because of a

situation called multicollinearity, we need other

methods to decide which independent variables

should be retained in a regression model. We will

study these other methods, which include various

model comparison and stepwise regression

procedures. We will also study how to use various

techniques to improve regression models. These

techniques include identifying outlying and

influential observations, transforming the

dependent and independent variables, and using

the Durbin–Watson test to assess autocorrelation.

To illustrate the ideas of this chapter, we will

continue our discussion of several previously

introduced cases. Specifically, in:

The Sales Territory Performance Case: We will

determine the best regression model to use to

assess the sales performance of questionable sales

representatives.

The QHIC Case: We will improve the QHIC simple

linear regression model and determine a better

model for deciding which homes should be sent

advertising brochures.

C

I

The Quadratic Regression Model

2 b0, b1, and b2 are (unknown) regression parame-

ters relating the mean value of y to x.

3 e is an error term that describes the effects on y

of all factors other than x and x2.

The quadratic regression model relating y to x is

y  b0  b1x  b2x
2  e

where

1 b0  b1x  b2x
2 is my, the mean value of the

dependent variable y when the value of the

independent variable is x.

15.1 The Quadratic Regression Model 
One useful form of the multiple regression model is what we call the quadratic regression

model. Assuming that we have obtained n observations—each consisting of an observed value of

y and a corresponding value of x—the model is as follows:

The quadratic equation my  b0  b1x  b2x
2 that relates my to x is the equation of a

parabola. Two parabolas are shown in Figure 15.1(a) and (b) and help to explain the meanings

of the parameters b0, b1, and b2. Here b0 is the y-intercept of the parabola (the value of my when

x  0). Furthermore, b1 is the shift parameter of the parabola: the value of b1 shifts the parabola

to the left or right. Specifically, increasing the value of b1 shifts the parabola to the left. Lastly, b2

is the rate of curvature of the parabola. If b2 is greater than 0, the parabola opens upward [see

Figure 15.1(a)]. If b2 is less than 0, the parabola opens downward [see Figure 15.1(b)]. If a scat-

ter plot of y versus x shows points scattered around a parabola, or a part of a parabola [some typ-

ical parts are shown in Figure 15.1(c), (d), (e), and (f)], then the quadratic regression model might

appropriately relate y to x.

Model
quadratic

relationships by
using the quadratic
regression model.

LO1
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F I G U R E 1 5 . 1 The Mean Value of the Dependent Variable Changing in a Quadratic Fashion

as x Increases (My  B0  B1x  B2x
2)

y

x

(d) The mean value decreasing

 at an increasing rate as

 x increases

y

x

x

x

(e) The mean value increasing

 at a decreasing rate as

 x increases

y

x

(f) The mean value decreasing

 at a decreasing rate as

 x increases

y

x

y

(b) The mean value changing

      according to a parabola that

      opens downward as x increases

y

(a) The mean value changing

     according to a parabola that

     opens upward as x increases

(c) The mean value increasing

 at an increasing rate as

 x increases

EXAMPLE 15.1 The Gasoline Additive Case

An oil company wishes to improve the gasoline mileage obtained by cars that use its premium

unleaded gasoline. Company chemists suggest that an additive, ST-3000, be blended with the

gasoline. In order to study the effects of this additive, mileage tests are carried out in a laboratory

using test equipment that simulates driving under prescribed conditions. The amount of additive

ST-3000 blended with the gasoline is varied, and the gasoline mileage for each test run is

recorded. Table 15.1(a) gives the results of the test runs. Here the dependent variable y is gaso-

line mileage (in miles per gallon) and the independent variable x is the amount of additive ST-

3000 used (measured as the number of units of additive added to each gallon of gasoline). One of

the study’s goals is to determine the number of units of additive that should be blended with the

gasoline to maximize gasoline mileage. The company would also like to predict the maximum

mileage that can be achieved using additive ST-3000.

Table 15.1(b) gives a scatter plot of y versus x. Since the scatter plot has the appearance of a

quadratic curve (that is, part of a parabola), it seems reasonable to relate y to x by using the qua-

dratic model

y  b0  b1x  b2x
2  e

Figure 15.2 gives the MINITAB output of a regression analysis of the data using this quadratic

model. Here the squared term x2 is denoted as UnitsSq on the output. The MINITAB output tells

us that the least squares point estimates of the model parameters are b0  25.7152, b1  4.9762,

C
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T A B L E 1 5 . 1 The Gasoline Mileage Study Data and a Scatter Plot of the Data GasAddDS

BI

Number of Units, x, Gasoline Mileage, y
of Additive ST-3000 (Miles per Gallon)

0 25.8

0 26.1

0 25.4

1 29.6

1 29.2

1 29.8

2 32.0

2 31.4

2 31.7

3 31.7

3 31.5

3 31.2

4 29.4

4 29.0

4 29.5

(a) The Data

Units of Additive ST-3000
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25

Gas Mileage vs Units of ST-3000

(b) Scatter plot of y versus x

F I G U R E 1 5 . 2 MINITAB Output of a Regression Analysis of the Gasoline Mileage Data Using the Quadratic Model

The regression equation is 

Mileage = 25.7 + 4.98 Units – 1.02 UnitsSq 

Predictor      Coef  SE Coef       T      P 

Constant    25.7152   0.1554  165.43  0.000 

Units        4.9762   0.1841   27.02  0.000 

UnitsSq    -1.01905  0.04414  -23.09  0.000 

S = 0.286079   R–Sq = 98.6%   R–Sq(adj) = 98.3% 

Analysis of Variance 

Source          DF      SS      MS       F      P

Regression 2 67.915 33.958 414.92 0.000

Residual Error  12   0.982   0.082 

Total           14  68.897 

Values of Predictors for New Obs   Predicted Values for New Observations 

New Obs  Unit   UnitsSq            New Obs      Fit  SE Fit        95% CI            95% PI

      1  2.44   5.9536                   1  31.7901  0.1111 (31.5481, 32.0322) (31.1215, 32.4588)

and b2   1.01905. These estimates give us the least squares prediction equation

Intuitively, this is the equation of the best quadratic curve that can be fitted to the data plotted in

Table 15.1(b). The MINITAB output also tells us that the p-values related to x and x2 are less than

.001. This implies that we have very strong evidence that each of these model components is sig-

nificant. The fact that x2 seems significant confirms the graphical evidence that there is a qua-

dratic relationship between y and x. Once we have such confirmation, we usually retain the linear

term x in the model no matter what the size of its p-value. The reason is that geometrical consid-

erations indicate that it is best to use both x and x2 to model a quadratic relationship.

The oil company wishes to find the value of x that results in the highest predicted mileage.

Using calculus, it can be shown that the value x  2.44 maximizes predicted gas mileage. There-

fore, the oil company can maximize predicted mileage by blending 2.44 units of additive

ST-3000 with each gallon of gasoline. This will result in a predicted gas mileage equal to

ŷ  25.7152   4.9762(2.44)   1.01905(2.44)2

 31.7901 miles per gallon

ŷ  25.7152  4.9762x  1.01905x2
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This predicted mileage is the point estimate of the mean mileage that would be obtained by all gal-

lons of the gasoline (when blended as just described) and is the point prediction of the mileage that

would be obtained by an individual gallon of the gasoline. Note that ŷ 31.7901 is given at the bot-

tom of the MINITAB output in Figure 15.2. In addition, the MINITAB output tells us that a 95 per-

cent confidence interval for the mean mileage that would be obtained by all gallons of the gasoline

is [31.5481, 32.0322]. If the test equipment simulates driving conditions in a particular automobile,

this confidence interval implies that an owner of the automobile can be 95 percent confident that he

or she will average between 31.5481 mpg and 32.0322 mpg when using a very large number of gal-

lons of the gasoline. The MINITAB output also tells us that a 95 percent prediction interval for the

mileage that would be obtained by an individual gallon of the gasoline is [31.1215, 32.4588].

We now consider a model that employs both a linear and a quadratic term for one independent

variable and also employs another linear term for a second independent variable.

EXAMPLE 15.2 The Fresh Detergent Case

Enterprise Industries produces Fresh, a brand of liquid laundry detergent. In order to manage its in-

ventory more effectively and make revenue projections, the company would like to better predict

demand for Fresh. To develop a prediction model, the company has gathered data concerning

demand for Fresh over the last 30 sales periods (each sales period is defined to be a four-week

period). The demand data are presented in Table 15.2. Here, for each sales period,

y  the demand for the large size bottle of Fresh (in hundreds of thousands of bottles) in

the sales period

x1  the price (in dollars) of Fresh as offered by Enterprise Industries in the sales period

x2  the average industry price (in dollars) of competitors’ similar detergents in the sales

period

x3  Enterprise Industries’ advertising expenditure (in hundreds of thousands of dollars)

to promote Fresh in the sales period

x4  x2  x1  the “price difference” in the sales period

To begin our analysis, suppose that Enterprise Industries believes on theoretical grounds that the

single independent variable x4 adequately describes the effects of x1 and x2 on y. That is, perhaps

demand for Fresh depends more on how the price for Fresh compares to competitors’ prices than

it does on the absolute levels of the prices for Fresh and other competing detergents. This makes

sense since most consumers must buy a certain amount of detergent no matter what the price

might be. We will examine the validity of using x4 to predict y more fully in Exercise 15.4 on

page 641. For now, we will build a prediction model utilizing x3 and x4.

Figure 15.3 presents scatter plots of y versus x4 and y versus x3. The plot in Figure 15.3(a) indicates

that y tends to increase in a straight-line fashion as x4 increases. This suggests that the simple linear

model

y  b0  b1x4  e

might appropriately relate y to x4. The plot in Figure 15.3(b) indicates that y tends to increase in

a curved fashion as x3 increases. Since this curve appears to have the shape of Figure 15.1(c), this

suggests that the quadratic model

y  b0  b1x3  b2x3
2  e

might appropriately relate y to x3.

To construct a prediction model based on both x3 and x4, it seems reasonable to combine these

two models to form the regression model

y  b0  b1x4  b2x3  b3x3
2  e

Here we have arbitrarily ordered the x4, x3, and x3
2 terms in the combined model, and we have

renumbered the subscripts on the bs appropriately. In the combined model

b0  b1x4  b2x3  b3x3
2

C
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T A B L E 1 5 . 2 Historical Data, Including Price 

Differences, Concerning Demand for 

Fresh Detergent Fresh2DS

F I G U R E 1 5 . 3 Scatter Plots of the Fresh 

Demand Data

Advertising

Expenditure Demand

for Fresh, x3 for Fresh, y

Price Average Price (Hundreds (Hundreds

for Industry Difference, of Thou- of Thou-

Sales Fresh, x1 Price, x2 x4  x2  x1 sands of sands of

Period (Dollars) (Dollars) (Dollars) Dollars) Bottles)

1 3.85 3.80  .05 5.50 7.38

2 3.75 4.00 .25 6.75 8.51

3 3.70 4.30 .60 7.25 9.52

4 3.70 3.70 0 5.50 7.50

5 3.60 3.85 .25 7.00 9.33

6 3.60 3.80 .20 6.50 8.28

7 3.60 3.75 .15 6.75 8.75

8 3.80 3.85 .05 5.25 7.87

9 3.80 3.65  .15 5.25 7.10

10 3.85 4.00 .15 6.00 8.00

11 3.90 4.10 .20 6.50 7.89

12 3.90 4.00 .10 6.25 8.15

13 3.70 4.10 .40 7.00 9.10

14 3.75 4.20 .45 6.90 8.86

15 3.75 4.10 .35 6.80 8.90

16 3.80 4.10 .30 6.80 8.87

17 3.70 4.20 .50 7.10 9.26

18 3.80 4.30 .50 7.00 9.00

19 3.70 4.10 .40 6.80 8.75

20 3.80 3.75  .05 6.50 7.95

21 3.80 3.75  .05 6.25 7.65

22 3.75 3.65  .10 6.00 7.27

23 3.70 3.90 .20 6.50 8.00

24 3.55 3.65 .10 7.00 8.50

25 3.60 4.10 .50 6.80 8.75

26 3.65 4.25 .60 6.80 9.21

27 3.70 3.65  .05 6.50 8.27

28 3.75 3.75 0 5.75 7.67

29 3.80 3.85 .05 5.80 7.93

30 3.70 4.25 .55 6.80 9.26

y

x4

7.0

– . 2 – .1 0 .1 .2 .3 .4 .5 .6 .7 .8

7.5

8.0

8.5

9.0

9.5

10.0

(a) Plot of y (Demand for Fresh Detergent) versus x4

(Price Difference)

(b) Plot of y (Demand for Fresh Detergent) versus x3

(Advertising Expenditure for Fresh)

y

x3

7.0

5.0 5.5 6.0 6.5 7.0 7.5 8.0

7.5

8.0

8.5

9.0

9.5

10.0

is the mean demand for Fresh when the price difference is x4 and the advertising expenditure is

x3. The error term describes the effects on demand of all factors other than x4 and x3.

Figure 15.4(a) presents the Excel output of a regression analysis of the Fresh demand data

using the combined model. The output tells us that the least squares point estimates of the model

parameters are b0   17.3244, b1   1.3070, b2    3.6956, and b3   .3486. The output also tells

us that the p-values related to x4, x3, and x3
2 are .0002, .0564, and .0293. Therefore, we have strong

evidence that each of the model components x4 and x3
2 is significant. Furthermore, although the

p-value related to x3 is slightly greater than .05, we will (as discussed in Example 15.1) retain x3

in the model because x3
2 is significant.

In order to predict demand in a future sales period, Enterprise Industries must determine future

values of x3 and x4   x2   x1. Of course, the company can set x1 (its price for Fresh) and x3 (its

advertising expenditure). Also, it feels that by examining the prices of competitors’ similar prod-

ucts immediately prior to a future period, it can very accurately predict x2 (the average industry

price for competitors’ similar detergents). Furthermore, the company can react to any change in

competitors’ price to maintain any desired price difference x4   x2   x1. This is an advantage of

predicting on the basis of x4 rather than on the basis of x1 and x2 (which the company cannot con-

trol). Therefore, suppose that the company will maintain a price difference of $.20 (x4   .20) and
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F I G U R E 1 5 . 4 Excel and Excel add-in (MegaStat) Output of a Regression Analysis of the Fresh Demand Data

in Table 15.2 Using the Model y  B0  B1x4  B2x3  B3x3
2

 E

(b) Prediction using an Excel add-in (MegaStat)

Predicted values for: Y

95% Confidence Interval 95% Prediction Interval

Predicted lower upper lower upper Leverage

8.29330 8.17378 8.41281 7.82298 8.76362 0.069

(a) The Excel output

Regression Statistics

Multiple R 0.9515
R Square 0.9054
Adjusted R Square 0.8945
Standard Error 0.2213
Observations 30

ANOVA df SS MS F Significance F
Regression 3 12.1853 4.0618 82.9409 1.94E-13
Residual 26 1.2733 0.0490
Total 29 13.4586

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 17.3244 5.6415 3.0709 0.0050 5.7282 28.9206
PriceDif (x4) 1.3070 0.3036 4.3048 0.0002 0.6829 1.9311
AdvExp (x3) -3.6956 1.8503 -1.9973 0.0564 -7.4989 0.1077
x3Sq 0.3486 0.1512 2.3060 0.0293 0.0379 0.6594

BI

Exercises for Section 15.1
CONCEPTS

15.1 When does a scatter plot suggest the use of the quadratic regression model?

15.2 In the quadratic regression model, what are y, (b0  b1x  b2x2), and e?

will spend $650,000 on advertising (x3   6.50) in a future sales period. It follows that a point

prediction of demand in the future sales period is

ŷ  17.3244  1.3070x4  3.6956x3  .3486x3
2

  17.3244   1.3070(.20)   3.6956(6.50)   .3486(6.50)2

  8.29330 (that is, 829,330 bottles)

This quantity, in addition to being the point prediction of demand in a single sales period when

the price difference is $.20 and the advertising expenditure is $650,000, is also the point esti-

mate of the mean of all possible demands when x4  .20 and x3  6.50. Note that  8.29330

is given in Figure 15.4(b). The output also gives a 95 percent confidence interval for mean de-

mand when x4 equals .20 and x3 equals 6.50, which is [8.17378, 8.41281], and a 95 percent

prediction interval for an individual demand when x4 equals .20 and x3 equals 6.50, which is

[7.82298, 8.76362]. This latter interval says we are 95 percent confident that the actual demand

in the future sales period will be between 782,298 bottles and 876,362 bottles. The upper limit

of this interval can be used for inventory control. It says that if Enterprise Industries plans to

have 876,362 bottles on hand to meet demand in the future sales period, then the company can

be very confident that it will have enough bottles. The lower limit of the interval can be used

to better understand Enterprise Industries’ cash flow situation. It says the company can be very

confident that it will sell at least 782,298 bottles in the future sales period. Therefore, for

example, if the average competitors’ price is $3.90 and thus Enterprise Industries’ price is

$3.70, the company can be very confident that its minimum revenue from the large size bottle

of Fresh in the future period will be at least 782,298  $3.70  $2,894,502.60.

ŷ
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F I G U R E 1 5 . 5 MINITAB Output of a Regression Analysis of the Real Estate Sales Price Data

Using the Model y ⴝ B0 ⴙ B1x1 ⴙ B2x2 ⴙ B3x2
2
ⴙ E

The regression equation is 

SalesPrice = 19.1 + 5.56 x1 + 9.22 x2 – 0.513 x2sq

Predictor     Coef  SE Coef      T      P         

Constant    19.074    3.632   5.25  0.002 

x1          5.5596   0.1255  44.29  0.000 

x2           9.223    1.312   7.03  0.000 

x2sq       –0.5129   0.1228  –4.18  0.006 

S = 1.77128   R–Sq = 99.7%   R–Sq(adj) = 99.6% 

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression       3  7428.7  2476.2  789.25  0.000 

Residual Error   6    18.8     3.1 

Total            9  7447.5 

Values of Predictors for New Obs  Predicted Values for New Observations 

New Obs    x1    x2  x2sq         New Obs      Fit  SE Fit        95% CI              95% PI 

1  20.0  8.00  64.0               1  171.222   0.895  (169.033, 173.411)  (166.367, 176.078)

METHODS AND APPLICATIONS

15.3 THE REAL ESTATE SALES PRICE CASE RealEst2

Figure 15.5 presents the MINITAB output of a regression analysis of the real estate sales price data

(see the page margin) using the model

a Discuss why the plots of y versus x1 and y versus x2 in the page margin below the data indicate

that this model might appropriately relate y to x1 and x2.

b Do the p-values for the independent variables in this model indicate that these independent

variables are significant? Explain your answer.

c Report and interpret a point prediction of and a 95 percent prediction interval for the sales

price of an individual house having 2,000 square feet and a rating of 8 (see the bottom of the

MINITAB output in Figure 15.5).

15.4 THE FRESH DETERGENT CASE Fresh2

Consider the demand for Fresh Detergent in a future sales period when Enterprise Industries’

price for Fresh will be x1 ⫽ 3.70, the average price of competitors’ similar detergents will be 

x2 ⫽ 3.90, the price difference x4 ⫽ x2 ⫺ x1 will be .20, and Enterprise Industries’ advertising

expenditure for Fresh will be x3 ⫽ 6.50. We have seen in Example 15.2 that the 95 percent

prediction interval for this demand given by the model

y⫽ b0⫹ b1x4⫹ b2x3 ⫹ b3x3
2
⫹ e

is [7.82298, 8.76362]. The 95 percent prediction interval for this demand given by the model

y⫽ b0⫹ b1x1⫹ b2x2 ⫹ b3x3 ⫹ b4x3
2
⫹ e

is [7.84139, 8.79357]. Which interval is shorter? Based on this, which model seems better?

15.5 United Oil Company is attempting to develop a reasonably priced unleaded gasoline that will

deliver higher gasoline mileages than can be achieved by its current unleaded gasolines. As

part of its development process, United Oil wishes to study the effect of two independent

variables—x1, amount of gasoline additive RST (0, 1, or 2 units), and x2, amount of gasoline

additive XST (0, 1, 2, or 3 units), on gasoline mileage, y. Mileage tests are carried out using

equipment that simulates driving under prescribed conditions. The combinations of x1 and x2

used in the experiment, along with the corresponding values of y, are given in Table 15.3.

a Discuss why the data plots given on the page margin indicate that the model

UnitedOil

y⫽ b0⫹ b1x1⫹ b2x1
2
⫹ b3x2 ⫹ b4x2

2
⫹ e

might appropriately relate y to x1 and x2.

b If we use Excel to analyze the data in Table 15.3 by using the model in part a, we 

obtain the output in Figure 15.6. Noting from Table 15.3 that the combination of one unit of

DS

DS

y ⫽ b0 ⫹ b1x1 ⫹ b2x2 ⫹ b3x
2
2 ⫹ e

DS

The Real Estate

Sales Price Data

RealEst2DS

Sales Home
Price Size Rating
(y) (x1) (x2)

180 23 5

98.1 11 2

173.1 20 9

136.5 17 3

141 15 8

165.9 21 4

193.5 24 7

127.8 13 6

163.5 19 7

172.5 25 2

Source: “The Real Estate

Sales Price Data” from R. L.

Andrews and J. T. Ferguson,

“Integrating Judgment

with a Regression

Appraisal,” The Real Estate

Appraiser and Analyst,

vol. 52, No. 2 1986. Copy-

right © 1986. Reprinted

with permission from The

Appraisal Institute,

Chicago, IL.

P
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T A B L E 1 5 . 3 United Oil Company Unleaded Gasoline Mileage Data UnitedOilDS

Gasoline Mileage, Amount of Amount of 
y (mpg) Additive RST, x1 Additive XST, x2

27.4 0 0

28.0 0 0

28.6 0 0

29.6 1 0

30.6 1 0

28.6 2 0

29.8 2 0

32.0 0 1

33.0 0 1

33.3 1 1

34.5 1 1

Gasoline Mileage, Amount of Amount of 
y (mpg) Additive RST, x1 Additive XST, x2

32.3 0 2

33.5 0 2

34.4 1 2

35.0 1 2

35.6 1 2

33.3 2 2

34.0 2 2

34.7 2 2

33.4 1 3

32.0 2 3

33.0 2 3

gasoline additive RST and two units of gasoline additive XST seems to maximize gasoline

mileage, assume that United Oil Company will use this combination to make its unleaded 

gasoline. The estimation and prediction results at the bottom of the output are for the

combination x1  1 and x2  2.

(1) Use the computer output to find and report a point estimate of and a 95 percent confidence

interval for the mean mileage obtained by all gallons of the gasoline when it is made

using one unit of RST and two units of XST.

(2) Use the computer output to find and report a point prediction of and a 95 percent

prediction interval for the mileage that would be obtained by an individual gallon of 

the gasoline when it is made using one unit of RST and two units of XST.

15.2 Interaction 
Multiple regression models often contain interaction variables. We form an interaction variable

by multiplying two independent variables together. For instance, if a regression model includes the

independent variables x1 and x2, then we can form the interaction variable x1x2. It is appropriate to

F I G U R E 1 5 . 6 Excel and Excel add-in (MegaStat) Output of a Regression Analysis of the United Oil Company Data

Using the Model y  B0  B1x1  B2x1
2

 B3x2  B4x2
2

 E

(b) Prediction using an Excel add-in (MegaStat)

95% Confidence Interval 95% Prediction Interval

Predicted lower upper lower upper Leverage

35.0261 34.4997 35.5525 33.5954 36.4568 0.157

(a) The Excel output

Regression Statistics

Multiple R 0.9731
R Square 0.9470
Adjusted R Square 0.9345
Standard Error 0.6305
Observations 22

ANOVA df SS MS F Significance F
Regression 4 120.7137 30.1784 75.9039 1.302E-10
Residual 17 6.7590 0.3976
Total 21 127.4727

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 28.1589 0.2902 97.0401 9.01E-25 27.5467 28.7711
X1 3.3133 0.5896 5.6193 3.07E-05 2.0693 4.5573
X1SQ -1.4111 0.2816 -5.0116 0.00011 -2.0051 -0.8170
X2 5.2752 0.4129 12.7763 3.83E-10 4.4041 6.1463
X2SQ -1.3964 0.1509 -9.2566 4.74E-08 -1.7146 -1.0781

Detect and
model in-

teraction between
two independent
variables.

LO2
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employ an interaction variable if the relationship between the dependent variable y and one of the

independent variables depends upon the value of the other independent variable. We illustrate the

concept of interaction with the following example.

EXAMPLE 15.3 The Bonner Frozen Foods Case

Bonner Frozen Foods, Inc. has designed an experiment to study the effects of electronic and print

advertising on sales of one of its frozen foods lines. Bonner has used five levels of radio and tele-

vision advertisements (x1) in combination with five levels of print advertisements (x2) in 25 sales

regions of equal sales potential. Table 15.4 shows the advertising mix used in each region last Au-

gust along with the resulting sales, y. Advertising amounts are recorded in $1,000 units, while

sales are recorded in units of $10,000.

Figure 15.7 shows five simultaneous plots of y versus x1. The plot using black dots shows the

plot of y versus x1 when x2 equals 1. The plot using red squares shows the plot of y versus x1 when

x2 equals 2. Similarly, the last three plots show the plots of y versus x1 when x2 equals 3 (using

green diamonds), when x2 equals 4 (using blue triangles), and when x2 equals 5 (using orange tri-

angles). This allows us to see that the relationship between y and x1 depends on the level of x2.

The figure shows that the line relating y to x1 has a steeper slope when x2  1 than when x2  5.

In fact, the higher the level of x2, the more gradual is the slope of the line relating y to x1. Thus,

the sales response to a unit increase in electronic ads is more modest in sales territories where

Bonner spends more on print ads.

If you plot y versus x2 using different colors to code for the value of x1, you can show that the

slopes of the lines representing the relationship between y and x2 also decrease as the level of x1

increases.

The plots make a very practical point. The change in sales in response to a change in one of

the independent variables depends on the level of the other independent variable. Because of this,

we say there is interaction between x1 and x2. Interaction exists because if Bonner is already

spending a lot of money on one type of advertising, it cannot expect increased spending on the

other ad type to boost sales a great deal. Ad money is most effective in regions where some con-

sumers are not already aware of Bonner’s foods. The standard regression model of the form

fails to account for interaction, because if we hold x2 at the level L, the model implies the mean

of y is

The slope of this line remains constant at b1, whatever the value of L. This contradicts what we

b0  b1x1  b2L  (b0  b2L)  b1x1.

y  b0  b1x1  b2x2  e

C

T A B L E 1 5 . 4 Bonner Frozen Foods, Inc., Sales Volume Data BonnerDS

Radio and Television Print Sales
Sales Expenditures, Expenditures, Volume,
Region x1 x2 y

1 1 1 3.27

2 1 2 8.38

3 1 3 11.28

4 1 4 14.50

5 1 5 19.63

6 2 1 5.84

7 2 2 10.01

8 2 3 12.46

9 2 4 16.67

10 2 5 19.83

11 3 1 8.51

12 3 2 10.14

13 3 3 14.75

Radio and Television Print Sales
Sales Expenditures, Expenditures, Volume,
Region x1 x2 y

14 3 4 17.99

15 3 5 19.85

16 4 1 9.46

17 4 2 12.61

18 4 3 15.50

19 4 4 17.68

20 4 5 21.02

21 5 1 12.23

22 5 2 13.58

23 5 3 16.77

24 5 4 20.56

25 5 5 21.05
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see in Figure 15.7. However, the expanded model

y  b0  b1x1  b2x2  b3x1x2  e

which includes the new interaction variable x1x2, mirrors the relationship between sales and

advertising illustrated in Figure 15.7. To investigate how this new model works, consult Fig-

ure 15.8, which shows the MINITAB output from fitting this model to the data given in

Table 15.4. If we want to estimate future sales in a region where Bonner will spend $5,000 on

print advertisements (x2  5), then

  2.3497  2.3611(x1)  4.1831(5)  0.3489(x1)(5)

 18.5658  .6166x1

is the least squares line relating y to x1. However, if Bonner plans to spend only $1,000 on print

advertisements, the line would be

  2.3497  2.3611(x1)  4.1831(1)  0.3489(x1)(1)

 1.8334  2.0122x1.

We can see that the estimated slope increases from .6166 when x2  5 to 2.0122 when x2  1.

The interaction variable x1x2 introduces this flexibility to the model. This term, like the other

explanatory variables, has a highly significant p-value in the output. The p-value (p  0.001)

confirms that the interaction we saw in the data plots is real and needs to be accounted for in the

model. (Had our conclusions about the plots been wrong, the interaction term would have been

insignificant.)

Figure 15.8 also shows that if Bonner decides on the advertising mix of $2,000 for electronic

ads and $5,000 for print ads, a point prediction of sales is

  2.3497  2.3611(2)  4.1831(5)  0.3489(2)(5)  19.799, or $197,990.

In addition, a 95% confidence interval for the mean sales volume at this advertising mix is

($192,470, $203,510), while a 95% prediction interval for the actual sales is ($183,850, $212,130).

y ˆ

y ˆ
y ˆ

F I G U R E 1 5 . 7 Bonner Sales Volume Plotted against Radio and Television Expenditures

Sales vs Radio TV
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It is easy to use data plots to check for interaction in the Bonner example, because the com-

pany designed an experiment where each level of x1 was combined with each level of x2. This al-

lowed us to make the plots in Figure 15.7 and compare their slopes. However, in many regression

problems, our data lack this structure and such plots are not possible. For example, we might sus-

pect that increases in advertising expenditures would be more effective at some price differences

than at others in the Fresh demand data in Table 15.2. This would imply there is an interaction be-

tween x3 (advertising expenditure) and x4 (price difference). Unfortunately, we would not be able

to see this interaction from data plots, because we have observed only a few y and x3 combina-

tions at each particular price difference, x4. In cases like this, we must rely on t-statistics and p-

values to decide whether we should include interaction terms in our models. We illustrate this in

the following example.

EXAMPLE 15.4 The Fresh Detergent Case

In Example 15.2 we considered the Fresh demand model

y  b0  b1x4  b2x3  b3x3
2  e.

Because there might be interaction between x4 and x3, we add the interaction term x4x3 to the

model and propose the new model

y  b0  b1x4  b2x3  b3x3
2  b4x4x3  e.

Figure 15.9 on the next page presents the Excel output obtained when this model is fit to the Fresh

demand data. The p-values for testing the significance of the intercept and the independent variables

are all below .05. Therefore, we have strong evidence that each of these terms should be included

in the model. In particular, since the p-value related to x4x3 is .0361, we have strong evidence that

x4 and x3 interact. We will examine the nature of this interaction in the paragraphs to come.

Suppose again that Enterprise Industries wishes to predict demand for Fresh in a future sales

period when the price difference will be $.20 and when advertising expenditure will be $650,000.

Using the least squares point estimates in Figure 15.9, the point prediction is

 29.1133  11.1342(.20)  7.6080(6.50)  0.6712(6.50)2  1.4777(.20)(6.50)

 8.32725 (832,725 bottles).

Figure 15.9(b) gives this point prediction along with the 95 percent confidence interval 

for mean demand and the 95 percent prediction interval for the actual demand when x4 equals

0.20 and x3 equals 6.50. Notice that the prediction interval given by the interaction model,

[7.88673, 8.76777], is shorter than [7.82298, 8.76362], the corresponding prediction interval

obtained using the model employing only x4, x3, and x3
2 to predict y (omitting the interaction

term). This is another indication that x4x3 plays a useful role in our model.

y ˆ

F I G U R E 1 5 . 8 MINITAB Output from Fitting the Interaction Model to the Bonner Frozen Foods Data

C

The regression equation is 

SalesVol = – 2.35 + 2.36 RadioTV + 4.18 Print – 0.349 Interaction

Predictor       Coef  SE Coef      T      P         

Constant     –2.3497   0.6883  –3.41  0.003 

RadioTV            2.3611   0.2075  11.38  0.000 

Print           4.1831   0.2075  20.16  0.000

Interaction       –0.34890  0.06257  –5.58  0.000

S = 0.625710 R–Sq = 98.6% R–Sq(adj) = 98.4% 

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression       3  590.41   196.80  502.67  0.000

Residual Error  21    8.22  0.39

Total           24  598.63

Predicted Values for New Observations 

New Obs      Fit  SE Fit       95% CI           95% PI 

1   19.799   0.265  (19.247, 20.351)  (18.385, 21.213)

Values of Predictors for New Observations

      New Obs   RadioTV    Print   Interaction

            1      2.00     5.00          10.0
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To investigate the nature of the interaction between x3 and x4, consider the prediction equation

from Figure 15.9. If we set x4 equal to .10 in the prediction equation, we obtain

Demand is predicted by this quadratic function of advertising expenditure when the price

difference is .10. Alternatively, if we wish to predict demand when the price difference is .30, we

obtain

We have a different quadratic function now because we have changed x4 from .10 to .30.

In Figure 15.10(a) and (b) we calculate three points (predicted demands) on each of these qua-

dratic curves. Figure 15.10(c) shows graphs of the two quadratic curves with the predicted

demands (the squares) plotted on these graphs. Comparing these graphs, we see that predicted de-

mand is higher when x4 equals .30 than when x4 equals .10. This makes sense—predicted demand

should be higher when Enterprise Industries has a larger price advantage. Furthermore, for each

curve we see that predicted demand increases at an increasing rate as x3 increases. However, the

rate of increase in predicted demand is slower when x4 equals .30 than when x4 equals .10—this is

the effect of the interaction between x3 and x4.

This type of interaction is logical because when the price difference is large (the price for

Fresh is low relative to the average industry price), the mean demand for Fresh will be high

(assuming the quality of Fresh is comparable to competing brands). Thus with mean demand

already high because many consumers are buying Fresh on the basis of price, there may be little

opportunity for increased advertising expenditure to increase mean demand. However, when the

 32.4535  8.0513x3  0.6712x3
2.

y ˆ  29.1133  11.1342(.30)  7.6080x3  0.6712x3
2
 1.4777(.30)x3

 30.2267  7.7558x3  0.6712x3
2.

y ˆ  29.1133  11.1342(.10)  7.6080x3  0.6712x3
2
 1.4777(.10)x3

y ˆ  29.1133  11.1342x4  7.6080x3  0.6712x3
2
 1.4777x4x3

F I G U R E 1 5 . 9 Excel and Excel add-in (MegaStat) Output of a Regression Analysis of the Fresh Demand Data by Using

the Interaction Model y  B0  B1x4  B2x3  B3x3
2

 B4x4x3  E

(b) Prediction using an Excel add-in (MegaStat)

Predicted values for: Y

95% Confidence Interval 95% Prediction Interval

Predicted  lower upper   lower upper  Leverage

8.32725 8.21121  8.44329  7.88673  8.76777  0.075

(a) The Excel output

Regression Statistics

Multiple R 0.9596
R Square 0.9209
Adjusted R Square 0.9083
Standard Error 0.2063
Observations 30

ANOVA df SS MS F Significance F
Regression 4 12.3942 3.0985 72.7771 2.11E-13
Residual 25 1.0644 0.0426
Total 29 13.4586

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 29.1133 7.4832 3.8905 0.0007 13.7013 44.5252
PriceDif (x4) 11.1342 4.4459 2.5044 0.0192 1.9778 20.2906
AdvExp (x3) -7.6080 2.4691 -3.0813 0.0050 -12.6932 -2.5228
x3sq 0.6712 0.2027 3.3115 0.0028 0.2538 1.0887
x4x3 -1.4777 0.6672 -2.2149 0.0361 -2.8518 -0.1037
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price difference is smaller, there may be more potential consumers who are not buying Fresh

who can be convinced to do so by increased advertising. Thus when the price difference is

smaller, increased advertising expenditure is more effective than it is when the price difference

is larger.

While it is possible to debate our explanation for why interaction exists between the variables

x3 and x4, the fact that it does exist is shown by the p-value of .0361 for x4x3 in Figure 15.9. Of

course, our model is based on the data in Table 15.2, where Fresh either enjoyed a price advan-

tage or a slight disadvantage. We should not apply this model to potential situations where Fresh

is sold at a large price disadvantage. We do not have data telling us consumers’ reactions to this

situation.

A final comment is in order. If a p-value indicates that an interaction term (say, x1x2) is impor-

tant, then it is usual practice to retain the corresponding linear terms (x1 and x2) in the model no

matter what the size of their p-values. The reason is that doing so can be shown to give a model

that will better describe the interaction between x1 and x2.

F I G U R E 1 5 . 1 0 Interaction between x4 and x3 in the Fresh Detergent Case

(a) Calculating values of predicted demand when
x4 equals .10

x3  30.2267  7.7558x3  .6712x3
2

6.0  30.2267  7.7558(6.0)  .6712(6.0)2  7.86

6.4  30.2267  7.7558(6.4)  .6712(6.4)2  8.08

6.8  30.2267  7.7558(6.8)  .6712(6.8)2  8.52

(b) Calculating values of predicted demand when
x4 equals .30

x3  32.4535  8.0513x3  .6712x3
2

6.0  32.4535  8.0513(6.0)  .6712(6.0)2  8.31

6.4  32.4535  8.0513(6.4)  .6712(6.4)2  8.42

6.8  32.4535  8.0513(6.8)  .6712(6.8)2  8.74y ˆy ˆy ˆ
y ˆ
y ˆy ˆy ˆ
y ˆ (c) Illustrating the interaction

6.0 6.2 6.4 6.6 6.8 7.0

8.00

8.25

8.50

8.75

9.00

x3

y
^

y
^ 

when x4   .30

y
^ 

when x4   .10

Exercises for Section 15.2
CONCEPTS

15.6 If a regression model utilizes the independent variables x1 and x2, how do we form an interaction

variable involving x1 and x2?

15.7 What is meant when we say that interaction exists between two independent variables?

METHODS AND APPLICATIONS

15.8 THE REAL ESTATE SALES PRICE CASE RealEst2

We concluded in Exercise 15.3 (page 641) that the model

y  b0  b1x1  b2x2  b3x2
2  e

might appropriately relate y to x1 and x2. To investigate whether interaction exists between x1 and

x2, we consider the model

y  b0  b1x1  b2x2 b3x2
2  b4x1x2  e

Figure 15.11 on the next page presents the MINITAB output of a regression analysis of the real es-

tate sales price data using this model.

a Does the p-value for x1x2 indicate that this interaction variable is important? Do the p-values 

for the other independent variables in the model indicate that these variables are important? 

DS
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b Report and interpret a point prediction of and a 95 percent prediction interval for the sales

price of an individual house having 2,000 square feet and a rating of 8 (see the bottom of the

MINITAB output in Figure 15.11). Is the 95 percent prediction interval given by the model

y  b0  b1x1  b2x2 b3x2
2  b4x1x2  e

shorter than the 95 percent prediction interval given by the model

y  b0  b1x1  b2x2  b3x2
2   e

(see the MINITAB output in Figure 15.5 on page 641). If so, what does this mean?

15.9 THE REAL ESTATE SALES PRICE CASE RealEst2

In this exercise we study the nature of the interaction between x1, square footage, and x2, rating.

a Consider all houses with a rating of 2. In this case, predicted sales price is (using the least

squares point estimates in Figure 15.11)

 b0  b1x1  b2x2  b3x2
2  b4x1x2

 27.438  5.0813x1  7.2899(2)  .5311(2)2  .11473x1(2)

Calculate when x1  13 and 22. Plot versus x1, for x1  13 and 22.

b Consider all houses with a rating of 8. In this case, predicted sales are (using the least squares

point estimates in Figure 15.11)

 b0  b1x1  b2x2  b3x2
2  b4x1x2

 27.438  5.0813x1  7.2899(8)  .5311(8)2  .11473x1(8)

Calculate when x1  13 and 22. Plot versus x1, for x1  13 and 22.

c By comparing the plots you made in a and b, discuss the nature of the interaction between

x1 and x2.

15.3 Logistic Regression 
Suppose that in a study of the effectiveness of offering a price reduction on a given product,

300 households having similar incomes were selected. A coupon offering a price reduction, x,

on the product, as well as advertising material for the product, was sent to each household. The

coupons offered different price reductions (10, 20, 30, 40, 50, and 60 dollars), and 50 homes

were assigned at random to each price-reduction. The following table summarizes the number,

y, and proportion, , of households redeeming coupons for each price reduction, x (expressedp̂

ŷŷ

 y ˆ
ŷŷ

 y ˆ
DS

F I G U R E 1 5 . 1 1 MINITAB Output of a Regression Analysis of the Real Estate Sales Price Data Using 

the Model y  B0  B1x1  B2x2  B3x2
2

 B4x1x2  E

The regression equation is 

SalesPrice = 27.4 + 5.08 x1 + 7.29 x2 – 0.531 x2sq + 0.115 x1x2

Predictor      Coef  SE Coef      T      P        

Constant     27.438    3.059   8.97  0.000 

x1           5.0813   0.1476  34.42  0.000 

x2           7.2899   0.9089   8.02  0.000 

x2sq       –0.53110  0.06978  –7.61  0.001 

x1x2        0.11473  0.03103   3.70  0.014 

S = 1.00404   R–Sq = 99.9%   R–Sq(adj) = 99.9% 

Analysis of Variance 

Source          DF      SS      MS        F      P 

Regression 4 7442.5 1860.6 1845.66 0.000

Residual Error   5     5.0     1.0 

Total            9  7447.5 

Values of Predictors for New Obs   Predicted Values for New Observations 

New Obs    x1    x2  x2sq  x1x2    New Obs      Fit  SE Fit       95% CI            95% PI 

1  20.0  8.00  64.0   160          1  171.751   0.527 (170.396, 173.105) (168.836, 174.665) 

Use a logis-
tic model to

estimate probabili-
ties and odds ratios.

LO3
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in units of $10): PreRed

x 1 2 3 4 5 6

y 4 7 20 35 44 46

.08 .14 .40 .70 .88 .92

On the left side of Figure 15.12 we plot the values versus the x values and draw a hypothetical

curve through the plotted points. A theoretical curve having the shape of the curve in Figure 15.12

is the logistic curve

where p(x) denotes the probability that a household receiving a coupon having a price reduction

of x will redeem the coupon. The MINITAB output in Figure 15.12 tells us that the point esti-

mates of b0 and b1 are b0   3.7456 and b1  1.1109. (The point estimates in logistic regression

are usually obtained by an advanced statistical procedure called maximum likelihood estimation.)

Using these estimates, it follows that, for example

That is, is the point estimate of the probability that a household receiving a coupon

having a price reduction of $50 will redeem the coupon. The MINITAB output in Figure 15.12

gives the values of for x  1, 2, 3, 4, 5, and 6.

The general logistic regression model relates the probability that an event (such as redeem-

ing a coupon) will occur to k independent variables x1, x2, . . . , xk. This general model is

where p(x1, x2, . . . , xk) is the probability that the event will occur when the values of the inde-

pendent variables are x1, x2, . . . , xk. In order to estimate b0, b1, b2, . . . , bk we obtain n observa-

tions, with each observation consisting of observed values of x1, x2, . . . , xk and of a dependent

variable y. Here, y is a dummy variable that equals 1 if the event has occurred and 0 otherwise. 

For example, suppose that the personnel director of a firm has developed two tests to help

determine whether potential employees would perform successfully in a particular position.

p(x1, x2, . . . , xk)  
e(b0 b1x1 b2x2 

…  bkxk)

1  e(b0 b1x1 b2x2 
…  bkxk)

p̂(x)

p̂(5)  .8593

p̂(5)  
e( 3.7456 1.1109(5))

1  e( 3.7456 1.1109(5))  
6.1037

1  6.1037
 .8593

p(x)  
e(b0 b1x)

1  e(b0 b1x)

p̂

p̂

DS

F I G U R E 1 5 . 1 2 MINITAB Output of a Logistic Regression of the Price Reduction Data

                                          Logistic Regression Table 

                                          Predictor      Coef   SE Coef      Z      P

                                          Constant   -3.74558  0.434355  -8.62  0.000 

                                          x           1.11095  0.119364   9.31  0.000  

  Price      Probability    Price      Probability   

Reduction, x   Estimate  Reduction, x   Estimate 
                                            1        0.066943      4        0.667791 

                                            2        0.178920      5        0.859260 

                                            3        0.398256      6        0.948831 R
e
d
e
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To help estimate the usefulness of the tests, the director gives both tests to 43 employees that cur-

rently hold the position. Table 15.5 gives the scores of each employee on both tests and indicates

whether the employee is currently performing successfully or unsuccessfully in the position. If

the employee is performing successfully, we set the dummy variable Group equal to 1; if the em-

ployee is performing unsuccessfully, we set Group equal to 0. Let x1 and x2 denote the scores of

a potential employee on tests 1 and 2, and let p(x1, x2) denote the probability that a potential em-

ployee having the scores x1 and x2 will perform successfully in the position. We can estimate the

relationship between p(x1, x2) and x1 and x2 by using the logistic regression model

The MINITAB output in Figure 15.13 tells us that the point estimates of b0, b1, and b2 are

b0 ⫽⫺56.17, b1⫽ .4833, and b2⫽ .1652. Consider, therefore, a potential employee who scores

a 93 on test 1 and an 84 on test 2. It follows that a point estimate of the probability that the

potential employee will perform successfully in the position is

If we classify a potential employee into group 1 (“will perform successfully”), as opposed to

group 2 (“will not perform successfully”), if and only if (x1, x2) is greater than .5, this potential

employee is classified into group 1.

To further analyze the logistic regression output, we consider several hypothesis tests that are

based on the chi-square distribution (see Section 9.6, page 384). We first consider testing H0:

b1 ⫽ b2 ⫽ 0 versus Ha: At least one of b1 or b2 does not equal 0. The p-value for this test is the

area under the chi-square curve having k ⫽ 2 degrees of freedom to the right of the test statistic

value G⫽ 31.483. Although the calculation of G is too complicated to demonstrate in this book,

the MINITAB output gives the value of G and the related p-value, which is less than .001. This

p-value implies that we have extremely strong evidence that at least one of b1 or b2 does not

equal zero. The p-value for testing H0: b1⫽ 0 versus Ha: b1� 0 is the area under the chi-square

curve having one degree of freedom to the right of the square of ⫽ (.4833兾.1578) ⫽

3.06. The MINITAB output tells us that this p-value is .002, which implies that we have very

strong evidence that the score on test 1 is related to the probability of a potential employee’s suc-

cess. The p-value for testing H0: b2⫽ 0 versus Ha: b2� 0 is the area under the chi-square curve

having one degree of freedom to the right of the square of z ⫽ (b2兾 ) ⫽ (.1652兾.1021) ⫽ 1.62.

The MINITAB output tells us that this p-value is .106, which implies that we do not have strong

evidence that the score on test 2 is related to the probability of a potential employee’s success. In

Exercise 15.12 we will consider a logistic regression model that uses only the score on test 1 to

estimate the probability of a potential employee’s success. 

sb2

z ⫽ (b1兾sb1
)

p̂

p̂(93, 84) ⫽
e(⫺56.17⫹ .4833(93)⫹ .1652(84))

1 ⫹ e(⫺56.17⫹ .4833(93)⫹ .1652(84)) ⫽
14.206506

15.206506
⫽ .9342

p(x1, x2) ⫽
e(b0⫹b1x1⫹b2x2)

1 ⫹ e(b0⫹b1x1⫹b2x2)

Response Information 

Variable  Value  Count 

Group     1 23 (Event)

0         20 

Total     43 

Logistic Regression Table 

                                              Odds     95% CI 

Predictor      Coef   SE Coef      Z      P  Ratio  Lower  Upper 

Constant   -56.1704   17.4516  -3.22  0.001 

Test 1     0.483314  0.157779   3.06  0.002   1.62   1.19   2.21 

Test 2     0.165218  0.102070   1.62  0.106   1.18   0.97   1.44 

Log-Likelihood = -13.959 

Test that all slopes are zero: G = 31.483, DF = 2, P-Value = 0.000 

F I G U R E 1 5 . 1 3 MINITAB Output of a Logistic Regression of the Performance DataT A B L E 1 5 . 5

The Performance

Data PerfTestDS

Group Test 1 Test 2
1 96 85

1 96 88

1 91 81

1 95 78

1 92 85

1 93 87

1 98 84

1 92 82

1 97 89

1 95 96

1 99 93

1 89 90

1 94 90

1 92 94

1 94 84

1 90 92

1 91 70

1 90 81

1 86 81

1 90 76

1 91 79

1 88 83

1 87 82

0 93 74

0 90 84

0 91 81

0 91 78

0 88 78

0 86 86

0 79 81

0 83 84

0 79 77

0 88 75

0 81 85

0 85 83

0 82 72

0 82 81

0 81 77

0 86 76

0 81 84

0 85 78

0 83 77

0 81 71

Source: Performance data

from APPLIED REGRESSION

ANALYSIS FOR BUSINESS

AND ECONOMICS, 2nd

Edition by T.E. Dielman. 

© 1996. Reprinted with

permission of Brooks/Cole,

a division of Cengage

Learning: www.

cengagerights.com.

Fax 800 730-2215.
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The odds of success for a potential employee is defined to be the probability of success

divided by the probability of failure for the employee. That is,

For the potential employee who scores a 93 on test 1 and an 84 on test 2, we estimate that the odds

of success are .9342兾(1  .9342)  14.22. That is, we estimate that the odds of success for the po-

tential employee are about 14 to 1. It can be shown that is a point estimate of

the odds ratio for x1, which is the proportional change in the odds (for any potential employee)

that is associated with an increase of one in x1 when x2 stays constant. This point estimate of the

odds ratio for x1 is shown on the MINITAB output and says that, for every one point increase in

the score on test 1 when the score on test 2 stays constant, we estimate that a potential employee’s

odds of success increase by 62 percent. Furthermore, the 95 percent confidence interval for the

odds ratio for x1—[1.19, 2.21]—does not contain 1. Therefore, as with the (equivalent) chi-square

test of H0: b1  0, we conclude that there is strong evidence that the score on test 1 is related to the

probability of success for a potential employee. Similarly, it can be shown that 

is a point estimate of the odds ratio for x2, which is the proportional change in the odds (for any

potential employee) that is associated with an increase of one in x2 when x1 stays constant. This

point estimate of the odds ratio for x2 is shown on the MINITAB output and says that, for every

one point increase in the score on test 2 when the score on test 1 stays constant, we estimate that a

potential employee’s odds of success increases by 18 percent. However, the 95 percent confidence

interval for the odds ratio for x2—[.97, 1.44]—contains 1. Therefore, as with the equivalent chi-

square test of H0: b2  0, we cannot conclude that there is strong evidence that the score on test 2

is related to the probability of success for a potential employee.

To conclude this section, consider the general logistic regression model

where p(x1, x2, . . . , xk) is the probability that the event under consideration will occur when the

values of the independent variables are x1, x2, . . . , xk. The odds of the event occurring is defined

to be p(x1, x2, . . . , xk)兾(1  p(x1, x2, . . . , xk)), which is the probability that the event will occur

divided by the probability that the event will not occur. It can be shown that the odds equals

. The natural logarithm of the odds is (b0  b1x1  b2x2  · · ·  bkxk),

which is called the logit. If b0, b1, b2, . . . , bk are the point estimates of b0, b1, b2, . . . , bk,

the point estimate of the logit, denoted , is (b0  b1x1  b2x2  · · ·  bkxk). It follows that the

point estimate of the probability that the event will occur is

Finally, consider an arbitrary independent variable xj. It can be shown that is the point estimate

of the odds ratio for xj, which is the proportional change in the odds that is associated with a one

unit increase in xj when the other independent variables stay constant.

ebj

p̂(x1, x2, . . . , xk)  
eᐉĝ

1  eᐉĝ
 

e(b0 b1x1 b2x2 …  bkxk)

1  e(b0 b1x1 b2x2 
…

 bkxk)

ᐉĝ

e(b0 b1x1 b2x2 …  bkxk)

p(x1, x2, . . . , xk)  
e(b0 b1x1 b2x2 …  bkxk)

1  e(b0 b1x1 b2x2 
…

 bkxk)

eb2
 e.1652

 1.18

eb1
 e.4833

 1.62

odds  
p(x1, x2)

1  p(x1, x2)

Exercises for Section 15.3

CONCEPTS

15.10 What two values does the dependent variable equal in logistic regression? What do these values

represent?

15.11 What is the odds? What is the odds ratio?

METHODS AND APPLICATIONS

15.12 If we use the logistic regression model

to analyze the performance data in Table 15.5, we find that the point estimates of the model

parameters and their associated p-values (given in parentheses) are b0    43.37(.001) and 

p(x1)  
e(b0 b1x1)

1  e(b0 b1x1)
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b1  .4897(.001). Find a point estimate of the probability of success for a potential employee

who scores a 93 on test 1. Using b1  .4897, find a point estimate of the odds ratio for x1.

Interpret this point estimate.

15.13 Mendenhall and Sincich (1993) present data that can be used to investigate allegations of gender

discrimination in the hiring practices of a particular firm. These data are as follows: GenderDS

Hiring Status Education Experience Gender Hiring Status Education Experience Gender
y x1, years x2, years x3 y x1, years x2, years x3

0 6 2 0 1 4 5 1

0 4 0 1 0 6 4 0

1 6 6 1 0 8 0 1

1 6 3 1 1 6 1 1

0 4 1 0 0 4 7 0

1 8 3 0 0 4 1 1

0 4 2 1 0 4 5 0

0 4 4 0 0 6 0 1

0 6 1 0 1 8 5 1

1 8 10 0 0 4 9 0

0 4 2 1 0 8 1 0

0 8 5 0 0 6 1 1

0 4 2 0 1 4 10 1

0 6 7 0 1 6 12 0

Source: William Mendenhall and Terry Sincich, A Second Course in Business Statistics: Regression Analysis, Fourth edition, 
© 1993. Reprinted with permission of Prentice Hall.

In this table, y is a dummy variable that equals 1 if a potential employee was hired and 0 other-

wise; x1 is the number of years of education of the potential employee; x2 is the number of years

of experience of the potential employee; and x3 is a dummy variable that equals 1 if the potential

employee was a male and 0 if the potential employee was a female. If we use the logistic regres-

sion model

to analyze these data, we find that the point estimates of the model parameters and their associated

p-values (given in parentheses) are b0   14.2483(.0191), b1  1.1549(.0552), b2  .9098 (.0341),

and b3  5.6037(.0313).

a Consider a potential employee having 4 years of education and 5 years of experience. Find a

point estimate of the probability that the potential employee will be hired if the potential

employee is a male, and find a point estimate of the probability that the potential employee

will be hired if the potential employee is a female.

b Using b3  5.6037, find a point estimate of the odds ratio for x3. Interpret this odds ratio.

Using the p-value describing the importance of x3, can we conclude that there is strong

evidence that gender is related to the probability that a potential employee will be hired?

15.4 Model Building and the Effects
of Multicollinearity 

Multicollinearity Recall the sales territory performance data in Figure 14.10 (page 605).

These data consist of values of the dependent variable y (SALES) and of the independent vari-

ables x1 (TIME), x2 (MKTPOTEN), x3 (ADVER), x4 (MKTSHARE), and x5 (CHANGE). The

complete sales territory performance data analyzed by Cravens, Woodruff, and Stomper (1972)

consist of the data presented in Figure 14.10 and data concerning three additional independent

variables. These three additional variables are defined as follows:

x6  number of accounts handled by the representative (we will sometimes denote this

variable as ACCTS)

x7  average workload per account, measured by using a weighting based on the sizes of the

orders by the accounts and other workload-related criteria (we will sometimes denote

this variable as WKLOAD)

p(x1, x2, x3)  
e(b0 b1x1 b2x2 b3x3)

1  e(b0 b1x1 b2x2 b3x3)

Describe
and

measure multi-
collinearity.

LO4
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x8 ⫽ an aggregate rating on eight dimensions of the representative’s performance, made by a

sales manager and expressed on a 1–7 scale (we will sometimes denote this variable as

RATING)

Table 15.6 gives the observed values of x6, x7, and x8, and Figure 15.14 presents the MINITAB

output of a correlation matrix for the sales territory performance data. Examining the first

column of this matrix, we see that the simple correlation coefficient between SALES and WK-

LOAD is ⫺.117 and that the p-value for testing the significance of the relationship between

SALES and WKLOAD is .577. This indicates that there is little or no relationship between

SALES and WKLOAD. However, the simple correlation coefficients between SALES and the

other seven independent variables range from .402 to .754, with associated p-values ranging from

.046 to .000. This indicates the existence of potentially useful relationships between SALES and

these seven independent variables.

While simple correlation coefficients (and scatter plots) give us a preliminary understanding of

the data, they cannot be relied upon alone to tell us which independent variables are significantly

related to the dependent variable. One reason for this is a condition called multicollinearity.

Multicollinearity is said to exist among the independent variables in a regression situation if

these independent variables are related to or dependent upon each other. One way to investigate

multicollinearity is to examine the correlation matrix. To understand this, note that all of the sim-

ple correlation coefficients not located in the first column of this matrix measure the simple cor-

relations between the independent variables. For example, the simple correlation coefficient

between ACCTS and TIME is .758, which says that the ACCTS values increase as the TIME

values increase. Such a relationship makes sense because it is logical that the longer a sales rep-

resentative has been with the company, the more accounts he or she handles. Statisticians often

regard multicollinearity in a data set to be severe if at least one simple correlation coefficient

between the independent variables is at least .9. Since the largest such simple correlation coeffi-

cient in Figure 15.14 is .758, this is not true for the sales territory performance data. Note, how-

ever, that even moderate multicollinearity can be a potential problem. This will be demonstrated

later using the sales territory performance data.

Another way to measure multicollinearity is to use variance inflation factors. Consider a

regression model relating a dependent variable y to a set of independent variables x1, . . . , xj⫺1, xj,

xj⫹1, . . . , xk. The variance inflation factor VIFj for the independent variable xj in this set is

denoted VIFj and is defined by the equation

where R2
j is the multiple coefficient of determination for the regression model that relates xj to

all the other independent variables x1, . . . , xj⫺1, xj⫹1, . . . , xk in the set. For example, Fig-

ure 15.15 gives the MINITAB output of the t statistics, p-values, and variance inflation factors

VIFj ⫽
1

1 ⫺ R2
j

F I G U R E 1 5 . 1 4 MINITAB Output of a Correlation Matrix for the Sales Territory

Performance Data

Sales Time MktPoten Adver MktShare Change Accts WkLoad

Time 0.623
0.001

MktPoten 0.598 0.454
0.002 0.023

Adver 0.596 0.249 0.174 Cell contents: Pearson correlation

0.002 0.230 0.405 P-Valve

MktShare 0.484 0.106 -0.211 0.264
0.014 0.613 0.312 0.201

Change 0.489 0.251 0.268 0.377 0.085
0.013 0.225 0.195 0.064 0.685

Accts 0.754 0.758 0.479 0.200 0.403 0.327
0.000 0.000 0.016 0.338 0.046 0.110

WkLoad -0.117 -0.179 -0.259 -0.272 0.349 -0.288 -0.199
0.577 0.391 0.212 0.188 0.087 0.163 0.341

Rating 0.402 0.101 0.359 0.411 -0.024 0.549 0.229 -0.277
0.046 0.631 0.078 0.041 0.911 0.004 0.272 0.180

TA B L E 1 5 . 6

Values of ACCTS,

WKLOAD, and

RATING

SalePerf2DS

Work-

Accounts, load, Rating,

x6 x7 x8

74.86 15.05 4.9

107.32 19.97 5.1

96.75 17.34 2.9

195.12 13.40 3.4

180.44 17.64 4.6

104.88 16.22 4.5

256.10 18.80 4.6

126.83 19.86 2.3

203.25 17.42 4.9

119.51 21.41 2.8

116.26 16.32 3.1

142.28 14.51 4.2

89.43 19.35 4.3

84.55 20.02 4.2

119.51 15.26 5.5

80.49 15.87 3.6

136.58 7.81 3.4

78.86 16.00 4.2

136.58 17.44 3.6

138.21 17.98 3.1

75.61 20.99 1.6

102.44 21.66 3.4

76.42 21.46 2.7

136.58 24.78 2.8

88.62 24.96 3.9
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for the sales territory performance model that relates y to all eight independent variables. The

largest variance inflation factor is VIF6  5.639. To calculate VIF6, MINITAB first calculates

the multiple coefficient of determination for the regression model that relates x6 to x1, x2, x3,

x4, x5, x7, and x8 to be R2
6  .822673. It then follows that

In general, if which says that xj is not related to the other independent variables, then

the variance inflation factor VIFj equals 1. On the other hand, if which says that xj is

related to the other independent variables, then is less than 1, making VIFj greater than 1.

Both the largest variance inflation factor among the independent variables and the mean of the

variance inflation factors for the independent variables indicate the severity of multicollinearity.

Generally, the multicollinearity between independent variables is considered severe if

1 The largest variance inflation factor is greater than 10 (which means that the largest is

greater than .9).

2 The mean of the variance inflation factors is substantially greater than 1.

The largest variance inflation factor in Figure 15.15 is not greater than 10, and the average of the

variance inflation factors, which is 2.667, would probably not be considered substantially greater

than 1. Therefore, we would probably not consider the multicollinearity among the eight inde-

pendent variables to be severe.

The reason that VIFj is called the variance inflation factor is that it can be shown that, when

VIFj is greater than 1, then the standard deviation sbj
of the population of all possible values of

the least squares point estimate bj is likely to be inflated beyond its value when If sbj
is

greatly inflated, two slightly different samples of values of the dependent variable can yield two

substantially different values of bj. To intuitively understand why strong multicollinearity can

significantly affect the least squares point estimates, consider the so-called “picket fence” display

on the page margin. This figure depicts two independent variables (x1 and x2) exhibiting strong

multicollinearity (note that as x1 increases, x2 increases). The heights of the pickets on the fence

represent the y observations. If we assume that the model

y  b0  b1x1  b2x2  e

adequately describes this data, then calculating the least squares point estimates amounts to

fitting a plane to the points on the top of the picket fence. Clearly, this plane would be quite un-

stable. That is, a slightly different height of one of the pickets (a slightly different y value) could

cause the slant of the fitted plane (and the least squares point estimates that determine this slant)

to change radically. It follows that, when strong multicollinearity exists, sampling variation can

result in least squares point estimates that differ substantially from the true values of the regres-

sion parameters. In fact, some of the least squares point estimates may have a sign (positive or

R2
j  0.

VIF

R2
j

VIF

(1  R2
j )

R2
j  0,

R2
j  0,

VIF6  
1

1  R2
6

 
1

1  .822673
 5.639

x2

x1

y

The picket fence

display

F I G U R E 1 5 . 1 5 MINITAB Output of the t Statistics, p-Values, and Variance Inflation Factors for the Sales Territory

Performance Model y  B0  B1x1  B2x2  B3x3  B4x4  B5x5  B6x6  B7x7  B8x8  E

The regression equation is 
Sales = – 1508 + 2.01 Time + 0.0372 MktPoten + 0.151 Adver + 199 MktShare

+ 291 Change + 5.55 Accts + 19.8 WkLoad + 8 Rating

Predictor     Coef  SE Coef      T      P    VIF         

Constant   –1507.8    778.6  –1.94  0.071   

Time   2.010    1.931   1.04  0.313  3.343

MktPoten   0.037205 0.008202   4.54  0.000  1.978

Adver 0.15099  0.04711   3.21  0.006  1.910

MktShare 199.02    67.03   2.97  0.009  3.236

Change 290.9    186.8   1.56  0.139  1.602

Accts 5.551    4.776   1.16  0.262  5.639

WkLoad 19.79    33.68   0.59  0.565  1.818

Rating   8.2    128.5   0.06  0.950  1.809
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negative) that differs from the sign of the true value of the parameter (we will see an example of

this in the exercises). Therefore, when strong multicollinearity exists, it is dangerous to interpret

the individual least squares point estimates.

The most important problem caused by multicollinearity is that, even when multicollinearity

is not severe, it can hinder our ability to use the t statistics and related p-values to assess the im-

portance of the independent variables. Recall that we can reject H0: bj  0 in favor of Ha: bj  0

at level of significance a if and only if the absolute value of the corresponding t statistic is greater

than ta兾2 based on n  (k  1) degrees of freedom, or, equivalently, if and only if the related

p-value is less thana. Thus the larger (in absolute value) the t statistic is and the smaller the p-value

is, the stronger is the evidence that we should reject H0: bj  0 and the stronger is the evidence

that the independent variable xj is significant. When multicollinearity exists, the sizes of the t sta-

tistic and of the related p-value measure the additional importance of the independent vari-

able xj over the combined importance of the other independent variables in the regression

model. Since two or more correlated independent variables contribute redundant information,

multicollinearity often causes the t statistics obtained by relating a dependent variable to a set of

correlated independent variables to be smaller (in absolute value) than the t statistics that would

be obtained if separate regression analyses were run, where each separate regression analysis re-

lates the dependent variable to a smaller set (for example, only one) of the correlated independent

variables. Thus multicollinearity can cause some of the correlated independent variables to ap-

pear less important—in terms of having small absolute t statistics and large p-values—than they

really are. Another way to understand this is to note that since multicollinearity inflates sbj
, it in-

flates the point estimate sbj
of sbj

. Since t  bj兾sbj
, an inflated value of sbj

can (depending on the

size of bj) cause t to be small (and the related p-value to be large). This would suggest that xj is

not significant even though xj may really be important.

For example, Figure 15.15 tells us that when we perform a regression analysis of the sales

territory performance data using a model that relates y to all eight independent variables, the 

p-values related to TIME, MKTPOTEN,ADVER, MKTSHARE, CHANGE,ACCTS, WKLOAD,

and RATING are, respectively, .313, .000, .006, .009, .139, .262, .565, and .950. By contrast, re-

call from Figure 14.11 (page 606) that when we perform a regression analysis of the sales territory

performance data using a model that relates y to the first five independent variables, the p-

values related to TIME, MKTPOTEN, ADVER, MKTSHARE, and CHANGE are, respectively,

.0065, .0001, .0025, .0001, and .0530. Note that TIME (p-value  .0065) seems highly significant

and CHANGE (p-value  .0530) seems somewhat significant in the five independent variable

model. However, when we consider the model that uses all eight independent variables, TIME

(p-value  .313) seems insignificant and CHANGE (p-value  .139) seems somewhat insignifi-

cant. The reason that TIME and CHANGE seem more significant in the five independent variable

model is that, since this model uses fewer variables, TIME and CHANGE contribute less overlap-

ping information and thus have more additional importance in this model.

Comparing regression models on the basis of R2, s, adjusted R2, prediction interval
length, and the C statistic We have seen that when multicollinearity exists in a model, the

p-value associated with an independent variable in the model measures the additional importance

of the variable over the combined importance of the other variables in the model. Therefore, it

can be difficult to use the p-values to determine which variables to retain and which variables to

remove from a model. The implication of this is that we need to evaluate more than the additional

importance of each independent variable in a regression model. We also need to evaluate how

well the independent variables work together to accurately describe, predict, and control the

dependent variable. One way to do this is to determine if the overall model gives a high R2 and

, a small s, and short prediction intervals.

It can be proved that adding any independent variable to a regression model, even an unim-

portant independent variable, will decrease the unexplained variation and will increase the

explained variation. Therefore, since the total variation depends only on the observed

y values and thus remains unchanged when we add an independent variable to a regression model,

it follows that adding any independent variable to a regression model will increase

R
2

 
Explained variation

Total variation

 (yi  y)2

R 2

Use various
model com-

parison criteria to
identify one or
more appropriate
regression models.

LO5
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This implies that R2 cannot tell us (by decreasing) that adding an independent variable is unde-

sirable. That is, although we wish to obtain a model with a large R2, there are better criteria than

R2 that can be used to compare regression models.

One better criterion is the standard error

When we add an independent variable to a regression model, the number of model parameters

(k  1) increases by one, and thus the number of degrees of freedom n  (k  1) decreases by

one. If the decrease in n  (k  1), which is used in the denominator to calculate s, is proportion-

ally more than the decrease in SSE (the unexplained variation) that is caused by adding the inde-

pendent variable to the model, then s will increase. If s increases, this tells us that we should

not add the independent variable to the model. To see one reason why, consider the formula

for the prediction interval for y

Since adding an independent variable to a model decreases the number of degrees of freedom,

adding the variable will increase the ta兾2 point used to calculate the prediction interval. To under-

stand this, look at any column of the t table in Table A.4 (pages 862–863) and scan from the bot-

tom of the column to the top—you can see that the t points increase as the degrees of freedom

decrease. It can also be shown that adding any independent variable to a regression model will

not decrease (and usually increases) the distance value. Therefore, since adding an independent

variable increases ta兾2 and does not decrease the distance value, if s increases, the length of the

prediction interval for y will increase. This means the model will predict less accurately and

thus we should not add the independent variable.

On the other hand, if adding an independent variable to a regression model decreases s, the

length of a prediction interval for y will decrease if and only if the decrease in s is enough to off-

set the increase in ta兾2 and the (possible) increase in the distance value. Therefore, an indepen-

dent variable should not be included in a final regression model unless it reduces s enough to

reduce the length of the desired prediction interval for y. However, we must balance the length

of the prediction interval, or in general, the “goodness” of any criterion, against the difficulty and

expense of using the model. For instance, predicting y requires knowing the corresponding values

of the independent variables. So we must decide whether including an independent variable

reduces s and prediction interval lengths enough to offset the potential errors caused by possible

inaccurate determination of values of the independent variables, or the possible expense of deter-

mining these values. If adding an independent variable provides prediction intervals that are only

slightly shorter while making the model more difficult and/or more expensive to use, we might

decide that including the variable is not desirable.

Since a key factor is the length of the prediction intervals provided by the model, one might

wonder why we do not simply make direct comparisons of prediction interval lengths (without

looking at s). It is useful to compare interval lengths, but these lengths depend on the distance

value, which depends on how far the values of the independent variables we wish to predict for are

from the center of the observed data. We often wish to compute prediction intervals for several dif-

ferent combinations of values of the independent variables (and thus for several different values

of the distance value). Thus we would compute prediction intervals having slightly different

lengths. However, the standard error s is a constant factor with respect to the length of prediction

intervals (as long as we are considering the same regression model). Thus it is common practice

to compare regression models on the basis of s (and s2). Finally, note that it can be shown that

the standard error s decreases if and only if (adjusted R2) increases. It follows that, if we are

comparing regression models, the model that gives the smallest s gives the largest .R 2
R 2

 [y ̂  ta兾2s11  distance value]

s  B
SSE

n  (k  1)

EXAMPLE 15.5 The Sales Territory Performance Case

Figure 15.16 gives MINITAB output resulting from calculating R2, , and s for all possible

regression models based on all possible combinations of the eight independent variables in the

sales territory performance situation (the values of Cp on the output will be explained after we

R 2

C
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complete this example). The MINITAB output in part (a) gives the two best models of each size

in terms of s and —the two best one-variable models, the two best two-variable models, the

two best three-variable models, and so on. The output in part (b) gives the best single model of

each size. Examining the output, we see that the three models having the smallest values of s and

largest values of are

1 The six-variable model that contains

TIME, MKTPOTEN, ADVER, MKTSHARE, CHANGE, ACCTS

and has s  428.00 and ; we refer to this model as Model 1.R 2
 89.4

R 2

R 2

F I G U R E 1 5 . 1 6 MINITAB Output of Some of the Best Sales Territory Performance

Regression Models

                                                       M     M 

                                                       k     k 

                                                       t     t  C W  R 

                                                       P  A  S  h  A  k  a 

T  o  d  h  a  c  L  t 

i  t  v  a  n  c  o  i 

                             Mallows m  e  e  r  g  t  a  n 

Vars    R-Sq    R-Sq(adj)        C-p          S e  n  r  e  e  s d  g

1    56.8         55.0       67.6     881.09                    X 

1    38.8         36.1      104.6     1049.3     X  

2    77.5         75.5       27.2     650.39           X        X 

2    74.6         72.3       33.1     691.10        X     X 

3    84.9         82.7       14.0     545.51        X  X  X 

3    82.8         80.3       18.4     582.64        X  X        X 

4    90.0         88.1        5.4     453.84        X  X  X     X 

4 89.6 87.5 6.4 463.95 X X X X

5    91.5         89.3        4.4     430.23     X  X  X  X  X 

5    91.2         88.9        5.0     436.75        X  X  X  X  X 

6    92.0         89.4        5.4     428.00     X  X  X  X  X  X 

6    91.6         88.9        6.1     438.20        X  X  X  X  X  X 

7    92.2         89.0        7.0     435.67     X  X  X  X  X  X  X 

7 92.0 88.8 7.3 440.30 X X X X X X X

8    92.2         88.3        9.0     449.03     X  X  X  X  X  X  X  X

(a) The MINITAB output of the two best models of each size

                                                       M     M 

                                                       k     k 

                                                       t     t  C W  R 

                                                       P  A  S  h  A  k  a 

T  o  d  h  a  c  L  t 

i  t  v  a  n  c  o  i 

                             Mallows m  e  e  r  g  t  a  n 

Vars    R-Sq    R-Sq(adj)         Cp          S e  n  r  e  e  s d  g

1    56.8         55.0       67.6     881.09                    X 

2    77.5         75.5       27.2     650.39           X        X

3    84.9         82.7       14.0     545.51        X  X  X

4    90.0         88.1        5.4     453.84        X  X  X     X 

5    91.5         89.3        4.4     430.23     X  X  X  X  X

6    92.0         89.4        5.4     428.00     X  X  X  X  X  X   

7 92.2 89.0 7.0 435.67 X X X X X X X

8    92.2         88.3        9.0     449.03     X  X  X  X  X  X  X  X

(b) The MINITAB output of the best single model of each size
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2 The five-variable model that contains

TIME, MKTPOTEN, ADVER, MKTSHARE, CHANGE

and has s  430.23 and ; we refer to this model as Model 2.

3 The seven-variable model that contains

TIME, MKTPOTEN, ADVER, MKTSHARE, CHANGE, ACCTS, WKLOAD

and has s  435.67 and ; we refer to this model as Model 3.

To see that s can increase when we add an independent variable to a regression model, note

that s increases from 428.00 to 435.67 when we add WKLOAD to Model 1 to form Model 3. In

this case, although it can be verified that adding WKLOAD decreases the unexplained variation

from 3,297,279.3342 to 3,226,756.2751, this decrease has not been enough to offset the change

in the denominator of

which decreases from 25   7   18 to 25   8   17. To see that prediction interval lengths might

increase even though s decreases, consider adding ACCTS to Model 2 to form Model 1. This

decreases s from 430.23 to 428.00. However, consider a questionable sales representative for

whom TIME  85.42, MKTPOTEN   35,182.73, ADVER  7,281.65, MKTSHARE  9.64,

CHANGE  .28, and ACCTS  120.61. The 95 percent prediction interval given by Model 2 for

sales corresponding to this combination of values of the independent variables is [3,233.59,

5,129.89] and has length 5,129.89   3,233.59   1896.3. The 95 percent prediction interval given

by Model 1 for such sales is [3,193.86, 5,093.14] and has length 5,093.14  3,193.86  

1,899.28. In other words, the slight decrease in s accomplished by adding ACCTS to Model 2 to

form Model 1 is not enough to offset the increases in ta兾2 and the distance value (which can be

shown to increase from .109 to .115), and thus the length of the prediction interval given by

Model 1 increases. In addition, the extra independent variable ACCTS in Model 1 can be verified

to have a p-value of .2881. Therefore, we conclude that Model 2 is better than Model 1 and is, in

fact, the “best” sales territory performance model (using only linear terms).

Another quantity that can be used for comparing regression models is called the C statistic

(also often called the Cp statistic). To show how to calculate the C statistic, suppose that we wish

to choose an appropriate set of independent variables from p potential independent variables. We

first calculate the mean square error, which we denote as , for the model using all p potential

independent variables. Then, if SSE denotes the unexplained variation for another particular

model that has k independent variables, it follows that the C statistic for this model is

For example, consider the sales territory performance case. It can be verified that the mean square

error for the model using all p  8 independent variables is 201,621.21 and that the SSE for the

model using the first k  5 independent variables (Model 2 in the previous example) is

3,516,812.7933. It follows that the C statistic for this latter model is

Since the C statistic for a given model is a function of the model’s SSE, and since we want SSE

to be small, we want C to be small. Although adding an unimportant independent variable to a

regression model will decrease SSE, adding such a variable can increase C. This can happen when

the decrease in SSE caused by the addition of the extra independent variable is not enough to offset

the decrease in n  2(k  1) caused by the addition of the extra independent variable (which

increases k by 1). It should be noted that although adding an unimportant independent variable to

a regression model can increase both s2 and C, there is no exact relationship between s2 and C.

While we want C to be small, it can be shown from the theory behind the C statistic that we

also wish to find a model for which the C statistic roughly equals k 1, the number of

C  
3,516,812.7933

201,621.21
 [25  2(5  1)]  4.4

C  
SSE

sp
2  [n  2(k  1)]

sp
2

s2
 

SSE

n  (k  1)

R 2
 89.0

R 2
 89.3
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parameters in the model. If a model has a C statistic substantially greater than k 1, it can be

shown that this model has substantial bias and is undesirable. Thus, although we want to find

a model for which C is as small as possible, if C for such a model is substantially greater than

k  1, we may prefer to choose a different model for which C is slightly larger and more nearly

equal to the number of parameters in that (different) model. If a particular model has a small

value of C and C for this model is less than k 1, then the model should be considered

desirable. Finally, it should be noted that for the model that includes all p potential independent

variables (and thus utilizes p  1 parameters), it can be shown that C   p   1.

If we examine Figure 15.16 (page 657), we see that Model 2 of the previous example has the

smallest C statistic. The C statistic for this model equals 4.4. Since C  4.4 is less than k  1  6, the

model is not biased. Therefore, this model should be considered best with respect to the C statistic.

Thus far we have considered how to find the best model using linear independent variables. In

Exercise 15.18 we illustrate, using the sales territory performance case, a systematic procedure

for deciding which squared and interaction terms (see Sections 15.1 and 15.2) to include in a

regression model. We have found that this systematic procedure often identifies important

squared and interaction terms that are not identified by simply using scatter and residual plots.

After finding one or more potential final regression models, we use the techniques of Sec-

tions 13.9 and 14.10 to check the regression assumptions and the techniques of Section 15.5 to

identify outlying and influential observations. Based on this analysis, we make needed improve-

ments and eventually find one or more final regression models that can be used to describe,

predict, and control the dependent variable.

Stepwise regression and backward elimination In some situations it is useful to em-

ploy an iterative model selection procedure, where at each step a single independent variable

is added to or deleted from a regression model, and a new regression model is evaluated. We

discuss here two such procedures—stepwise regression and backward elimination.

There are slight variations in the way different computer packages carry out stepwise regres-

sion. Assuming that y is the dependent variable and x1, x2, . . . , xp are the p potential independent

variables (where p will generally be large), we explain how most of the computer packages

perform stepwise regression. Stepwise regression uses t statistics (and related p-values) to deter-

mine the significance of the independent variables in various regression models. In this context we

say that the t statistic indicates that the independent variable xj is significant at the A level if

and only if the related p-value is less than A. Then stepwise regression is carried out as follows.

Choice of Aentry and Astay Before beginning the stepwise procedure, we choose a value of aentry,

which we call the probability of a Type I error related to entering an independent variable into

the regression model. We also choose a value of astay, which we call the probability of a Type I

error related to retaining an independent variable that was previously entered into the model.

Although there are many considerations in choosing these values, it is common practice to set

both aentry and astay equal to .05 or .10.

Step 1 The stepwise procedure considers the p possible one-independent-variable regression

models of the form

y   b0   b1xj   e

Each different model includes a different potential independent variable. For each model the t

statistic (and p-value) related to testing H0: b1  0 versus Ha: b1  0 is calculated. Denoting the

independent variable giving the largest absolute value of the t statistic (and the smallest p-value)

by the symbol x[1], we consider the model

y   b0   b1x[1]   e

If the t statistic does not indicate that x[1] is significant at the aentry level, then the stepwise proce-

dure terminates by concluding that none of the independent variables is significant at the aentry

level. If the t statistic indicates that the independent variable x[1] is significant at the aentry level,

then x[1] is retained for use in Step 2.

Step 2 The stepwise procedure considers the p  1 possible two-independent-variable regres-

sion models of the form

y   b0   b1x[1]   b2xj   e
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Each different model includes x[1], the independent variable chosen in Step 1, and a different

potential independent variable chosen from the remaining p  1 independent variables that were

not chosen in Step 1. For each model the t statistic (and p-value) related to testing H0: b2  0

versus Ha: b2  0 is calculated. Denoting the independent variable giving the largest absolute

value of the t statistic (and the smallest p-value) by the symbol x[2], we consider the model

y   b0   b1x[1]   b2x[2]   e

If the t statistic indicates that x[2] is significant at the aentry level, then x[2] is retained in this model,

and the stepwise procedure checks to see whether x[1] should be allowed to stay in the model. This

check should be made because multicollinearity will probably cause the t statistic related to the

importance of x[1] to change when x[2] is added to the model. If the t statistic does not indicate that

x[1] is significant at the astay level, then the stepwise procedure returns to the beginning of Step 2.

Starting with a new one-independent-variable model that uses the new significant independent

variable x[2], the stepwise procedure attempts to find a new two-independent-variable model

y   b0   b1x[2]   b2xj   e

If the t statistic indicates that x[1] is significant at the astay level in the model

y   b0   b1x[1]   b2x[2]   e

then both the independent variables x[1] and x[2] are retained for use in further steps.

Further steps The stepwise procedure continues by adding independent variables one at a time to

the model.At each step an independent variable is added to the model if it has the largest (in absolute

value) t statistic of the independent variables not in the model and if its t statistic indicates that it is

significant at theaentry level.After adding an independent variable the stepwise procedure checks all

the independent variables already included in the model and removes an independent variable if it

has the smallest (in absolute value) t statistic of the independent variables already included in the

model and if its t statistic indicates that it is not significant at the astay level. This removal proce-

dure is sequentially continued, and only after the necessary removals are made does the stepwise

procedure attempt to add another independent variable to the model. The stepwise procedure ter-

minates when all the independent variables not in the model are insignificant at the aentry level or

when the variable to be added to the model is the one just removed from it.

For example, again consider the sales territory performance data. We let x1, x2, x3, x4, x5, x6, x7,

and x8 be the eight potential independent variables employed in the stepwise procedure. Fig-

ure 15.17(a) gives the MINITAB output of the stepwise regression employing these independent

variables where both aentry and astay have been set equal to .10. The stepwise procedure

1 Adds ACCTS (x6) on the first step.

2 Adds ADVER (x3) and retains ACCTS on the second step.

3 Adds MKTPOTEN (x2) and retains ACCTS and ADVER on the third step.

4 Adds MKTSHARE (x4) and retains ACCTS, ADVER, and MKTPOTEN on the fourth step.

The procedure terminates after step 4 when no more independent variables can be added. There-

fore, the stepwise procedure arrives at the model that utilizes x2, x3, x4, and x6.

To carry out backward elimination, we perform a regression analysis by using a regression

model containing all the p potential independent variables. Then the independent variable having

the smallest (in absolute value) t statistic is chosen. If the t statistic indicates that this independent

variable is significant at the astay level (astay is chosen prior to the beginning of the procedure),

then the procedure terminates by choosing the regression model containing all p independent

variables. If this independent variable is not significant at the astay level, then it is removed from

the model, and a regression analysis is performed by using a regression model containing all the

remaining independent variables. The procedure continues by removing independent variables

one at a time from the model. At each step an independent variable is removed from the model if

it has the smallest (in absolute value) t statistic of the independent variables remaining in the

model and if it is not significant at the astay level. The procedure terminates when no independent

variable remaining in the model can be removed. Backward elimination is generally considered

a reasonable procedure, especially for analysts who like to start with all possible independent

variables in the model so that they will not “miss any important variables.”
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To illustrate backward elimination, we first note that choosing the independent variable that

has the smallest (in absolute value) t statistic in a model is equivalent to choosing the independent

variable that has the largest p-value in the model. With this in mind, Figure 15.17(b) gives the

MINITAB output of a backward elimination of the sales territory performance data. Here the back-

ward elimination uses astay  .05, begins with the model using all eight independent variables, and

removes (in order) RATING (x8), then WKLOAD (x7), then ACCTS (x6), and finally CHANGE

(x5). The procedure terminates when no independent variable remaining can be removed—that is,

when no independent variable has a related p-value greater thanastay  .05—and arrives at a model

that uses TIME (x1), MKTPOTEN (x2), ADVER (x3), and MKTSHARE (x4). This model has an s

of 464 and an of .8752 and is inferior to the model arrived at by stepwise regression, which has

an s of 454 and an of .8805 [see Figure 15.17(a)]. However, the backward elimination process

allows us to find a model that is better than either of these. If we look at the model considered by

backward elimination after RATING (x8), WKLOAD (x7), andACCTS (x6) have been removed, we

have the model using x1, x2, x3, x4, and x5. This model has an s of 430 and an of .8926, and in

Example 15.5 we reasoned that this model is perhaps the best sales territory performance model.

Interestingly, this is the model that backward elimination would arrive at if we were to set astay

equal to .10 rather than .05—note that this model has no p-values greater than .10.

The sales territory performance example brings home two important points. First, the models

obtained by backward elimination and stepwise regression depend on the choices of aentry and

astay (whichever is appropriate). Second, it is best not to think of these methods as “automatic

model-building procedures.” Rather, they should be regarded as processes that allow us to find

and evaluate a variety of model choices.

R 2

R 2
R 2

F I G U R E 1 5 . 1 7 The MINITAB Output of Stepwise Regression and Backward Elimination for the Sales

Territory Performance Problem

Alpha-to-Enter: 0.1  Alpha-to-Remove: 0.1 

Response is Sales on 8 predictors, with N = 25 

Step              1      2        3         4 

Constant     709.32  50.30  -327.23  -1441.94 

Accts          21.7   19.0     15.6       9.2 

T-Value        5.50   6.41     5.19      3.22 

P-Value       0.000  0.000    0.000     0.004 

Adver                0.227    0.216     0.175 

T-Value               4.50     4.77      4.74 

P-Value              0.000    0.000     0.000 

MktPoten                     0.0219    0.0382 

T-Value                        2.53      4.79 

P-Value                       0.019     0.000 

MktShare                                  190 

T-Value                                  3.82 

P-Value                                 0.001 

S               881    650      583       454 

R-Sq          56.85  77.51    82.77     90.04 

R-Sq(adj)     54.97  75.47    80.31     88.05 

Mallows C-p    67.6   27.2     18.4       5.4 

(a) Stepwise regression (␣entry   ␣stay   .10)

Backward elimination.  Alpha-to-Remove: 0.05 

Response is Sales on 8 predictors, with N = 25

Step           1       2       3       4       5 

Constant   -1508   -1486   -1165   -1114   -1312 

Time 2.0 2.0 2.3 3.6 3.8

T-Value     1.04    1.10    1.34    3.06    3.01 

P-Value    0.313   0.287   0.198   0.006   0.007 

MktPoten  0.0372  0.0373  0.0383  0.0421  0.0444 

T-Value     4.54    4.75    5.07    6.25    6.20 

P-Value    0.000   0.000   0.000   0.000   0.000 

Adver 0.151 0.152 0.141 0.129 0.152

T-Value     3.21    3.51    3.66    3.48    4.01 

P-Value    0.006   0.003   0.002   0.003   0.001 

MktShare     199     198     222     257     259 

T-Value 2.97 3.09 4.38 6.57 6.15

P-Value    0.009   0.007   0.000   0.000   0.000 

Change 291 296 285 325

T-Value     1.56    1.80    1.78    2.06 

P-Value    0.139   0.090   0.093   0.053 

Accts 5.6 5.6 4.4

T-Value     1.16    1.23    1.09 

P-Value    0.262   0.234   0.288 

WkLoad 20 20

T-Value     0.59    0.61 

P-Value    0.565   0.550 

Rating 8

T-Value     0.06 

P-Value    0.950 

S 449 436 428 430 464

R-Sq 92.20 92.20 92.03 91.50 89.60

R-Sq(adj) 88.31 88.99 89.38 89.26 87.52

Mallows C-p  9.0     7.0     5.4     4.4     6.4 

(b) Backward elimination (␣stay   .05)
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Exercises for Section 15.4
CONCEPTS

15.14 What is multicollinearity? What problems can be caused by multicollinearity?

15.15 Discuss how we compare regression models.

METHODS AND APPLICATIONS

15.16 THE HOSPITAL LABOR NEEDS CASE HospLab2

Recall that Table 14.6 (page 590) presents data concerning the need for labor in 16 U.S. Navy

hospitals. This table gives values of the dependent variable Hours (monthly labor hours) and of

the independent variables Xray (monthly X-ray exposures), BedDays (monthly occupied bed

days—a hospital has one occupied bed day if one bed is occupied for an entire day), and Length

(average length of patients’ stay, in days). The data in Table 14.6 are part of a larger data set 

analyzed by the Navy. The complete data set consists of two additional independent variables—

Load (average daily patient load) and Pop (eligible population in the area, in thousands)—values

of which are given on the page margin. Figure 15.18 gives Excel and MINITAB outputs of

multicollinearity analysis and model building for the complete hospital labor needs data set.

a Find the three largest simple correlation coefficients between the independent variables in

Figure 15.18(a). Also, find the three largest variance inflation factors in Figure 15.18(b).

b Based on your answers to part a, which independent variables are most strongly involved in

multicollinearity?

c Do any least squares point estimates have a sign (positive or negative) that is different from

what we would intuitively expect—another indication of multicollinearity?

DS

Load Pop

15.57 18.0

44.02 9.5

20.42 12.8

18.74 36.7

49.20 35.7

44.92 24.0

55.48 43.3

59.28 46.7

94.39 78.7

128.02 180.5

96.00 60.9

131.42 103.7

127.21 126.8

409.20 169.4

463.70 331.4

510.22 371.6

F I G U R E 1 5 . 1 8 Excel and MINITAB Output of Multicollinearity Analysis and Model Building for

the Hospital Labor Needs Data 

(a) The Excel output of a correlation matrix

Hours(y) Xray(x1) BedDays(x2) Length(x3) Load(x4) Pop(x5)

Hours(y) 1

Xray(x1) 0.9425 1

BedDays(x2) 0.9889 0.9048 1

Length(x3) 0.5603 0.4243 0.6609 1

Load(x4) 0.9886 0.9051 0.9999 0.6610 1

Pop(x5) 0.9465 0.9124 0.9328 0.4515 0.9353 1

a  y  t  a 

X  D  L  L 

r  a g  o 

y  s  h  d  

                             Mallows x  x  x  x  

Vars    R-Sq    R-Sq(adj)         Cp          S 1  2  3

o

P

p

x

5  4  

1    97.8         97.6       52.3     856.71        X 

1    97.7         97.6         54     867.67              X 

2    99.3         99.2        9.5     489.13        X  X

2    99.3         99.2       11.1     509.82           X  X

3    99.6         99.5        3.3     387.16     X  X  X

3    99.6         99.4          5     415.47     X     X  X

4 99.7 99.5          4     381.56     X  X  X     X

4    99.6         99.5        4.5     390.88     X  X  X  X

(c) The MINITAB output of the best two models of each size

5    99.7         99.5          6     399.71     X  X  X  X  X

Predictor     Coef  SE Coef      T      P     VIF

Constant    2270.4    670.8   3.38  0.007 

Xray(x1)         0.04112  0.01368   3.01  0.013     8.1    

BedDays(x2)          1.413    1.925   0.73   0.48  8684.2 

Length(x3)       –467.9    131.6  –3.55  0.005     4.2 

Load(x4)        –9.30    60.81  –0.15  0.882  9334.5

Pop(x5)       –3.223    4.474  –0.72  0.488    23.0

(b) The MINITAB output of the variance inflation factors
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d The p-value associated with F(model) for the model in Figure 15.18(b) is less than .0001. 

In general, if the p-value associated with F(model) is much smaller than any of the p-values

associated with the independent variables, this is another indication of multicollinearity. Is

this true in this situation?

e Figure 15.18(c) indicates that the two best hospital labor needs models are the model using

Xray, BedDays, Pop, and Length, which we will call Model 1, and the model using Xray,

BedDays, and Length, which we will call Model 2. Which model gives the smallest value of s

and the largest value of ? Which model gives the smallest value of C? Consider a question-

able hospital for which Xray  56,194, BedDays  14,077.88, Pop   329.7, and Length  

6.89. The 95 percent prediction intervals given by Models 1 and 2 for labor hours correspond-

ing to this combination of values of the independent variables are, respectively, [14,888.43,

16,861.30] and [14,906.24, 16,886.26]. Which model gives the shortest prediction interval?

R2

Step            1       2       3 

Constant     -70.23  2741.24  1946.80 

BedDays       1.101    1.223    1.039 

T-Value       24.87    36.30    15.39 

P-Value       0.000    0.000    0.000 

Length                  -572     -414 

T-Value                -5.47    -4.20 

P-Value                0.000    0.001 

XRay 0.039

T-Value                          2.96 

P-Value                         0.012 

S               857      489      387 

R-Sq          97.79    99.33    99.61

(a) Stepwise regression (␣entry ⴝ ␣stay ⴝ .10) 

Step
Constant      2270    2311    1947 

1       2       3

-9Load 
     -0.15 T-Value

P-Value      0.882 

0.041 0.041 0.039XRay
      3.01    3.16    2.96 T-Value

P-Value      0.013   0.009   0.012 

      1.413   1.119   1.039 BedDays
       0.73   11.74   15.39 T-Value

P-Value      0.480   0.000   0.000 

-3.2 -3.7Pop
-0.72 -1.16T-Value

P-Value      0.488   0.269 

-468 -477 -414Length
      -3.55   -4.28   -4.20 T-Value

P-Value      0.005   0.001   0.001 

S              400     382     387 
R-Sq         99.66   99.65   99.61

(b) Backward elimination (␣stay ⴝ .05)

F I G U R E 1 5 . 1 9 MINITAB Output of a Stepwise Regression and a Backward Elimination 

of the Hospital Labor Needs Data

T A B L E 1 5 . 7 Prescription Sales Data PreSalesDS

Sales, Floor Space, Prescription Parking, Income, Shopping
Pharmacy y x1 Percentage, x2 x3 x4 Center, x5

1 22 4,900 9 40 18 1

2 19 5,800 10 50 20 1

3 24 5,000 11 55 17 1

4 28 4,400 12 30 19 0

5 18 3,850 13 42 10 0

6 21 5,300 15 20 22 1

7 29 4,100 20 25 8 0

8 15 4,700 22 60 15 1

9 12 5,600 24 45 16 1

10 14 4,900 27 82 14 1

11 18 3,700 28 56 12 0

12 19 3,800 31 38 8 0

13 15 2,400 36 35 6 0

14 22 1,800 37 28 4 0

15 13 3,100 40 43 6 0

16 16 2,300 41 20 5 0

17 8 4,400 42 46 7 1

18 6 3,300 42 15 4 0

19 7 2,900 45 30 9 1

20 17 2,400 46 16 3 0

Source: Prescription sales data table from INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, 2/e by L. Ott, 

© 1984. Reprinted with permission of Brooks/Cole, an imprint of Wadsworth Group, a division of Cengage Learning.

www.cengagerights.com. Fax 800 730-2215. 
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f Consider Figure 15.19 on the previous page. Which model is chosen by both stepwise regres-

sion and backward elimination? Overall, which model seems best?

15.17 Market Planning, Inc., a marketing research firm, has obtained the prescription sales data in

Table 15.7 on the previous page for n 20 independent pharmacies.1 In this table y is the average

weekly prescription sales over the past year (in units of $1,000), x1 is the floor space (in square feet),

x2 is the percentage of floor space allocated to the prescription department, x3 is the number of parking

spaces available to the store, x4 is the weekly per capita income for the surrounding community (in

units of $100), and x5 is a dummy variable that equals 1 if the pharmacy is located in a shopping

center and 0 otherwise. Use the MINITAB output in Figure 15.20 to discuss why the model using Flr

and Pct might be the best model describing prescription sales. The least squares point estimates of

the parameters of this model can be calculated to be b0 48.2909, b1  .003842, and b2 

 .5819. Discuss what b1 and b2 say about obtaining high prescription sales. PreSales

15.18 Recall from Example 15.5 (page 656) that we have concluded that perhaps the best sales territory

performance model using only linear terms is the model using TIME, MKTPOTEN, ADVER,

MKTSHARE, and CHANGE. For this model, s  430.23 and 2
 .893. To decide which

squared and pairwise interaction terms (see Sections 15.1 and 15.2) should be added to this

model, we consider all possible squares and pairwise interactions of the five linear independent

variables in this model. So that we can better understand a MINITAB output to follow, the

MINITAB notation for these squares and pairwise interactions is as follows:

SQT  TIME*TIME TC  TIME*CHANGE

SQMP MKTPOTEN*MKTPOTEN MPA  MKTPOTEN*ADVER

SQA  ADVER*ADVER MPMS  MKTPOTEN*MKTSHARE

SQMS MKTSHARE*MKTSHARE MPC  MKTPOTEN*CHANGE

SQC  CHANGE*CHANGE AMS  ADVER*MKTSHARE

TMP  TIME*MKTPOTEN AC  ADVER*CHANGE

TA  TIME*ADVER MSC  MKTSHARE*CHANGE

TMS  TIME*MKTSHARE

Consider having MINITAB evaluate all possible models involving these squared and pairwise

interaction terms, where the five linear terms TIME, MKTPOTEN, ADVER, MKTSHARE, and

CHANGE are included in each possible model. If we have MINITAB do this and find the best

single model of each size, we obtain the following output:

R

DS

1Problem taken from an example in INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, 2/e by L. Ott,

© 1984 Reprinted with permission of Brooks/Cole, an imprint of Wadsworth Group, a division of Cengage Learning.

www.cengagerights.com. Fax 800 730-2215.

F I G U R E 1 5 . 2 0 The MINITAB Output of the Single Best Model of Each Size for the Prescription Sales Data

S S M

S Q S Q S  T     T     M  P  M  A M 

                       Mallows Q M Q M Q M  T  M  T  P  M  P  M  A  S

Vars  R-Sq  R-Sq(adj)      C-p       S T P A S C P  A  S  C  A  S  C  S  C  C

1  94.2       92.2     43.2  365.87                       X   

2  95.8       94.1     29.7  318.19  X                    X   

3  96.5       94.7     25.8  301.61  X                    X     X 

4  97.0       95.3     22.5  285.54  X                 X  X        X 

5  97.5       95.7     20.3  272.05  X                 X  X        X     X 

6  98.1       96.5     16.4  244.00  X     X           X  X        X        X 

7  98.7       97.4     13.0  210.70  X  X              X  X        X     X  X 

8  99.0       97.8     12.3  193.95  X  X        X     X  X        X     X  X 

9  99.2       98.0     12.7  185.45  X  X     X        X  X        X     X  X  X 

10  99.3       98.2     13.3  175.70  X  X     X        X  X        X  X  X  X  X 

11  99.4       98.2     14.6  177.09  X  X     X     X  X  X        X  X  X  X  X 

12  99.5       98.2     15.8  174.60  X  X     X  X  X  X  X        X  X  X  X  X 

13  99.5       98.1     17.5  183.22  X  X  X     X  X  X  X  X     X  X  X  X  X 

14  99.6       97.9     19.1  189.77  X  X     X  X  X  X  X  X  X  X  X  X  X  X 

15  99.6       97.4     21.0  210.78  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X 

F  P  P  I  

                             Mallows l  c  r  n  

Vars    R-Sq    R-Sq(adj)         Cp         S r  t  k

C

t

r  c  

1    43.9         40.8       10.2     4.835         X 

2    66.6         62.6        1.6     3.842      X  X

3    69.1         63.3        2.4     3.809      X  X        X

4    69.9         61.8        4.1     3.883      X  X  X     X

5    70.0         59.3          6     4.010      X  X  X  X  X
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The model using 12 squared and pairwise interaction terms has the smallest s. However, if we

desire a somewhat simpler model, note that s does not increase substantially until we move from 

a model having seven squared and pairwise interaction terms to a model having six such terms.

It can also be verified that the model having seven squared and pairwise interaction terms is the

largest model for which all of the independent variables have p-values less than .05. Therefore, 

we might consider this model to have an optimal mix of a small s and simplicity. Identify s and 2

for this model. How do the s and 2 you have identified compare with the s and 2 for the model

using only the linear terms TIME, MKTPOTEN, ADVER, MKTSHARE, and CHANGE?

15.5 Improving the Regression Model I:
Diagnosing and Using Information about
Outlying and Influential Observations 

Introduction An observation that is well separated from the rest of the data is called an outlier.

An observation that would cause some important aspect of the regression analysis (for example, the

least squares point estimates or the standard error s) to substantially change if it were removed from

the data set is called influential.An observation may be an outlier with respect to its y value and/or

its x values, but an outlier may or may not be influential. We illustrate these ideas by considering

Figure 15.21, which is a hypothetical plot of the values of a dependent variable y against an inde-

pendent variable x. Observation 1 in this figure is outlying with respect to its y value. However, it

is not outlying with respect to its x value, since its x value is near the middle of the other x values.

Moreover, observation 1 may not be influential because there are several observations with simi-

lar x values and nonoutlying y values, which will keep the least squares point estimates from being

excessively influenced by observation 1. Observation 2 in Figure 15.21 is outlying with respect to

its x value, but since its y value is consistent with the regression relationship displayed by the

nonoutlying observations, it is probably not influential. Observation 3, however, is probably in-

fluential, because it is outlying with respect to its x value and because its y value is not consistent

with the regression relationship displayed by the other observations.

In addition to using data plots (such as Figure 15.21), we can use more sophisticated procedures

to detect outlying and influential observations. These procedures are particularly important when

we are performing a multiple regression analysis and thus simple data plots are unlikely to tell us

what we need to know. To illustrate, we consider the data in Table 15.8, which concerns the need

RR

R

Use diag-
nostic

measures to detect
outlying and influ-
ential observations.

LO6

F I G U R E 1 5 . 2 1 Data Plot Illustrating Outlying

and Influential Observations

T A B L E 1 5 . 8 Hospital Labor Needs Data HospLab3DS

Observation 1

Observation 2

Observation 3

y

x

Hours Xray BedDays Length
Hospital y x1 x2 x3

1 566.52 2463 472.92 4.45

2 696.82 2048 1339.75 6.92

3 1033.15 3940 620.25 4.28

4 1603.62 6505 568.33 3.90

5 1611.37 5723 1497.60 5.50

6 1613.27 11520 1365.83 4.60

7 1854.17 5779 1687.00 5.62

8 2160.55 5969 1639.92 5.15

9 2305.58 8461 2872.33 6.18

10 3503.93 20106 3655.08 6.15

11 3571.89 13313 2912.00 5.88

12 3741.40 10771 3921.00 4.88

13 4026.52 15543 3865.67 5.50

14 10343.81 36194 7684.10 7.00

15 11732.17 34703 12446.33 10.78

16 15414.94 39204 14098.40 7.05

17 18854.45 86533 15524.00 6.35

Source: Hospital Labor Needs Data from PROCEDURES AND ANALYSIS FOR

STAFFING STANDARDS DEVELOPMENT: REGRESSION ANALYSIS HANDBOOK,

© 1979.
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for labor in 17 U.S. Navy hospitals. Specifically, this table gives values of the dependent variable

Hours (y, monthly labor hours required) and of the independent variables Xray (x1, monthly X-ray

exposures), BedDays (x2, monthly occupied bed days—a hospital has one occupied bed day if one

bed is occupied for an entire day), and Length (x3, average length of patients’ stay, in days). When

we perform a regression analysis of these data using the model

we find that the least squares point estimates of the model parameters and their associated

p-values (given in parentheses) are b0  1,523.3892(.0749), b1  .0530(.0205), b2  .9785

( .0001) and b3   320.9508(.0563). In addition, Figure 15.22 gives an Excel add-in (MegaStat)

and MINITAB output of outlying and influential observation diagnostics for the model, which we

will sometimes refer to as Model I. Note that the MINITAB output is the output that uses grid

lines. The main objective of the regression analysis is to help the Navy evaluate the performance

of its hospitals in terms of how many labor hours are used relative to how many labor hours are

needed. The Navy selected hospitals 1 through 17 from hospitals that it thought were efficiently

run and wishes to use a regression model based on efficiently run hospitals to evaluate the effi-

ciency of questionable hospitals.

Leverage values To interpret the diagnostics in Figure 15.22, we first identify outliers with

respect to their x values. One way to do this is to employ leverage values. The leverage value for

an observation is the distance value that has been discussed in Section 14.6 and is used to calcu-

late a prediction interval for the y value of the observation. This value is a measure of the distance

between the observation’s x values and the center of the observed data. The leverage value 

is labeled as “Leverage” on the Excel add-in (MegaStat) output and as “HI1” on the MINITAB

output. If the leverage value for an observation is large, the observation is outlying with re-

spect to its x values. A leverage value is considered to be large if it is greater than twice the

average of all of the leverage values, which can be shown to be equal to 2(k  1)兾n (MegaStat

shades such a leverage value in dark blue). For example, since there are n  17 observations in

Table 15.8 on the previous page and since the model

y  b0  b1x1  b2x2  b3x3  e

utilizes k  3 independent variables, twice the average leverage value is 2(k  1)兾n   2(3  1)兾
17   .4706. Looking at Figure 15.22, we see that the leverage values for hospitals 15, 16, and 17

are, respectively, .682, .785, and .863. Since these leverage values are greater than .4706, we

y  b0  b1x1  b2x2  b3x3  e

F I G U R E 1 5 . 2 2 Excel add-in (MegaStat) and MINITAB Outputs of Outlying and Influential Observation 

Diagnostics for Model I

Studentized

Studentized Deleted

Observation Hours Predicted Residual Leverage Residual Residual Cook’s D TRES1 HI1 COOK1

1 566.520 688.409 -121.889 0.121 -0.211 -0.203 0.002 -0.2035 0.120749 0.00153

2 696.820 721.848 -25.028 0.226 -0.046 -0.044 0.000 -0.04447 0.226128 0.00016

3 1,033.150 965.393 67.757 0.130 0.118 0.114 0.001 0.11356 0.129664 0.00052

4 1,603.620 1,172.464 431.156 0.159 0.765 0.752 0.028 0.75174 0.158762 0.02759

5 1,611.370 1,526.780 84.590 0.085 0.144 0.138 0.000 0.1383 0.084914 0.00048

6 1,613.270 1,993.869 -380.599 0.112 -0.657 -0.642 0.014 -0.64194 0.112011 0.01361

7 1,854.170 1,676.558 177.612 0.084 0.302 0.291 0.002 0.29105 0.084078 0.00209

8 2,160.550 1,791.405 369.145 0.083 0.627 0.612 0.009 0.61176 0.083005 0.0089

9 2,305.580 2,798.761 -493.181 0.085 -0.838 -0.828 0.016 -0.82827 0.084596 0.01624

10 3,503.930 4,191.333 -687.403 0.120 -1.192 -1.214 0.049 -1.21359 0.120262 0.04857

11 3,571.890 3,190.957 380.933 0.077 0.645 0.630 0.009 0.62993 0.077335 0.00872

12 3,741.400 4,364.502 -623.102 0.177 -1.117 -1.129 0.067 -1.129 0.177058 0.06714

13 4,026.520 4,364.229 -337.709 0.064 -0.568 -0.553 0.006 -0.55255 0.064498 0.00556

14 10,343.810 8,713.307 1,630.503 0.146 2.871 4.558 0.353 4.55845 0.146451 0.35349

15 11,732.170 12,080.864 -348.694 0.682 -1.005 -1.006 0.541 -1.00588 0.681763 0.5414

16 15,414.940 15,133.026 281.914 0.785 0.990 0.989 0.897 0.98925 0.78548 0.89729

17 18,854.450 19,260.453 -406.003 0.863 -1.786 -1.975 5.033 -1.97506 0.863247 5.03294
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conclude that hospitals 15, 16, and 17 are outliers with respect to their x values. Intuitively, this

is because Table 15.8 indicates that x1 (monthly X-ray exposures) and x2 (monthly occupied bed

days) are substantially larger for hospitals 15, 16, and 17 than for hospitals 1 through 14. In other

words, hospitals 15, 16, and 17 are substantially larger hospitals than hospitals 1 through 14.

Residuals and studentized residuals To identify outliers with respect to their y values, we

can use residuals. Any residual that is substantially different from the others is suspect. For ex-

ample, note from Table 15.8 (page 665) that hospital 14’s values of Xray, BedDays, and Length

are 36,194, 7,684.1, and 7. Using the least squares point estimates for Model I, it follows that the

point prediction of labor hours for hospital 14 is

ŷ14  1,523.3892  .0530(36,194)  .9785(7,684.1)  320.9508(7)

 8,713.307

Since the actual number of labor hours for hospital 14 is y14  10,343.810, the residual e14 for

hospital 14 is the difference between y14  10,343.810 and ŷ14  8,713.307, which is 1,630.503.

Figure 15.22 shows the residuals for all 17 hospitals. Since e14  1,630.503 is much larger than

the other residuals, it seems that hospital 14 used a number of labor hours that is much larger than

predicted by the regression model. To obtain a somewhat more precise idea about whether an ob-

servation is an outlier with respect to its y value, we can calculate the studentized residual for the

observation. The studentized residual for an observation is the observation’s residual divided by

the residual’s standard error.2 As a very rough rule of thumb, if the studentized residual for an ob-

servation is greater than 2 in absolute value, we have some evidence that the observation is an

outlier with respect to its y value. For example, since Figure 15.22 tells us that the studentized

residual (see “Studentized Residual” on the MegaStat output) for hospital 14 is 2.871, we have

some evidence that hospital 14 is an outlier with respect to its y value.3

Deleted residuals and studentized deleted residuals Many statisticians feel that an

excellent way to identify an outlier with respect to its y value is to use the PRESS, or deleted,

residual. To calculate the deleted residual for observation i, we subtract from yi the point predic-

tion ŷ(i) computed using least squares point estimates based on all n observations except for

observation i. We do this because, if observation i is an outlier with respect to its y value, using this

observation to compute the usual least squares point estimates might “draw” the usual point pre-

diction ŷi toward yi and thus cause the resulting usual residual to be small. This would falsely imply

that observation i is not an outlier with respect to its y value. For example, consider using obser-

vation 3 in Figure 15.21 (page 665) to determine the least squares line. Doing this might draw the

least squares line toward observation 3, causing the point prediction ŷ3 given by the line to be near

y3 and thus the usual residual y3  ŷ3 to be small. This would falsely imply that observation 3 is not

an outlier with respect to its y value. To illustrate more precisely the concept of the deleted resid-

ual, recall that hospital 14’s values of Xray, BedDays, and Length are 36,194, 7,684.1, and 7.

Furthermore, let denote the least squares point estimates ofb0, b1, b2, and

b3 that are calculated by using all 17 observations in Table 15.8 except for observation 14. Then,

it can be shown that the point prediction of y14 using these least squares point estimates

equals 8,433.43. It follows that the deleted residual for hospital 14 is the difference between

y14  10,343.810 and ŷ(14)  8,433.43, which is 1,910.38. Standard statistical software packages

calculate the deleted residual for each observation and divide this residual by its standard error to

form the studentized deleted residual. The studentized deleted residual is labeled as “Studentized

Deleted Residual” on the MegaStat output and as “TRES1” on the MINITAB output. Examining

Figure 15.22, we see that the studentized deleted residual for hospital 14 is 4.558.

To evaluate the studentized deleted residual for an observation, we compare this quantity to

two t distribution points—t.025 and t.005—based on n  k  2 degrees of freedom. Specifically, if

the studentized deleted residual is greater in absolute value than t.025 (and thus is shaded in light

ŷ(14)  b0
(14)

 b(14)
1 (36,194)  b(14)

2 (7,684.1)  b(14)
3 (7)

b(14)
0 , b(14)

1 , b(14)
2 , and b(14)

3

2The formula for the residual’s standard error, as well as the formulas for the other outlying and influential observation
diagnostics discussed in this section, will be given in an optional technical note at the end of this section.
3Both MegaStat and MINITAB give all of the diagnostics discussed in this section.
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blue on the Excel add-in (MegaStat) output), then there is some evidence that the observation is

an outlier with respect to its y value. If the studentized deleted residual is greater in absolute value

than t.005 (and thus is shaded in dark blue on the Excel add-in (MegaStat) output), then there is

strong evidence that the observation is an outlier with respect to its y value. The data analysis

experience of the authors leads us to suggest that one should not be overly concerned that an

observation is an outlier with respect to its y value unless the studentized deleted residual is

greater in absolute value than t.005. For the hospital labor needs model, n k 2 17 3 2 

12, and therefore t.025  2.179 and t.005  3.055. The studentized deleted residual for hospital 14,

which equals 4.558, is greater in absolute value than both t.025  2.179 and t.005  3.055. There-

fore, we should be very concerned that hospital 14 is an outlier with respect to its y value.

Cook’s distance measure One way to determine if an observation is influential is to calcu-

late Cook’s distance measure, which we sometimes refer to as Cook’sD, or simplyD. Cook’s D

is labeled as “Cook’s D” on the MegaStat output and as “Cook1” on the MINITAB output. It can

be shown that, if Cook’s D for observation i is large, then the least squares point estimates calcu-

lated by using all n observations differ substantially (as a group) from the least squares point

estimates calculated by using all n observations except for observation i. This would say that

observation i is influential. To determine whether D is large, we compare D to two F distribution

points—F.80, the 20th percentile of the F distribution, and F.50, the 50th percentile of the F dis-

tribution—based on (k 1) numerator and [n (k  1)] denominator degrees of freedom. If D

is less than F.80, the observation should not be considered influential. If D is greater than F.50 (and

thus is shaded in dark blue on the Excel add-in (MegaStat) output), the observation should be con-

sidered influential. If D is between F.80 and F.50 (and thus is shaded in light blue on the MegaStat

output), then the nearer D is to F.50, the greater the influence of the observation. Examining Fig-

ure 15.22 on page 666, we see that for observation 17 Cook’s D is 5.033 and is the largest value

of Cook’s D on the output. This value of Cook’s D is greater than F.05  3.18, which is based on

k  1  4 numerator and n  (k  1)  17  4  13 denominator degrees of freedom. Since

F.05 is itself greater than F.50, Cook’s D for observation 17 is greater than F.50, which says that

removing hospital 17 from the data set would substantially change (as a group) the least

squares point estimates of the parameters b0, b1, b2, and b3. Therefore, hospital 17 is influen-

tial, as is hospital 16—note that the values of Cook’s D for both hospitals are shaded in dark blue

on the the Excel add-in (MegaStat) output.

In general, if we decide (by using Cook’s D) that removing observation i from the data set

would substantially change (as a group) the least squares point estimates, we might wish to de-

termine whether the point estimate of a particular parameter bj would change substantially. We

might also wish to determine if the point prediction of yi would change substantially. We discuss

in the supplementary exercises how to make such determinations.

What to do about outlying and influential observations To illustrate how we deal

with outlying and influential observations, we summarize what we have learned in the hospital

labor needs case:

1 Hospitals 15, 16, and 17, outliers with respect to their x values, are larger than the other hos-

pitals. Hospitals 16 and 17 are influential in that removing either from the data set would

substantially change (as a group) the least squares point estimates of the parameters b0, b1,

b2, and b3.

2 Hospital 14 is an outlier with respect to its y value. Furthermore, hospital 14 is influential in

that, since its residual (e14  1,630.5) is large, the sum of squared residuals and thus the

standard error s (which equals 614.779) are larger than they would be if hospital 14 were 

removed from the data set.

We recommend first dealing with outliers with respect to their y values, because they affect the

overall fit of the model. Often when we decide what to do with such outliers, other problems

become much less important or disappear. In general, we should first check to see if the y value

in question was recorded correctly. If it was recorded incorrectly, it should be corrected and the

regression should be rerun. If it cannot be corrected, the corresponding observation should be

discarded and the regression should be rerun. We will assume that the labor hours for hospital 14

(y14  10,343.8) were recorded correctly.
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If the y value has been recorded correctly, we must search for a reason for its unusual value.

The y value could have resulted from a situation that we do not wish the regression model to de-

scribe. For example, the fact that y14  10,343.8 is substantially greater than the point prediction

ŷ14  8,713.3 might have resulted from a one-time disaster at the naval base—such as a fire on a

ship—that we are not building a model to describe. We will assume there was no such disaster at

the naval base. In this case—and in the absence of any other reason—we might conclude that

y14  10,343.8 resulted from the fact that hospital 14 was run significantly more inefficiently

than any other hospital. We should then talk to the administrative staff at hospital 14 and try to

correct the problem. From the point of view of the regression model—and using it to predict and

evaluate labor needs for other hospitals—we would remove hospital 14 from the data set. This is

because we do not wish the model to be based on a hospital that is run inefficiently. If we remove

hospital 14 from the data set and use Model I to carry out a regression analysis of the remaining

16 hospitals, we find that the least squares point estimates of the model parameters and their as-

sociated p-values (given in parentheses) are b0  1,946.8020(.0023), b1  .0386(.0120), b2  

1.0394( .0001), and b4   413.7578(.0012). Furthermore, the standard error s for Model I with

hospital 14 removed is 387.160, which is considerably less than the s of 614.779 for Model I

using all 17 hospitals. Figure 15.23(a) gives the Excel add-in (MegaStat) output of outlying and

influential observation diagnostics for Model I with hospital 14 removed. Note that hospitals 14,

15, and 16 on this output are the original hospitals 15, 16, and 17. In the exercises the reader will

use the output to verify that removing hospital 14 has made the original hospital 17 considerably

less influential and the original hospital 16 only slightly more influential.

F I G U R E 1 5 . 2 3 Excel add-in (MegaStat) Outlying and Influential Observation Diagnostics and Residual Plots

1,844.338

R
e
si

d
u

a
l 
(g

ri
d

li
n

e
s

 
 s

td
. 
e
rr

o
r) 1,229.559

0 5000 10000 15000

Predicted

20000 25000

614.779

0.000

 614.779

 1,229.559

774.320

R
e
si

d
u

a
l 
(g

ri
d

li
n

e
s

 
 s

td
. 
e
rr

o
r)

0 5000 10000 15000

Predicted

20000

387.160

0.000

 387.160

 774.320

1,091.563

R
e
si

d
u

a
l 
(g

ri
d

li
n

e
s

 
 s

td
. 
e
rr

o
r)

0 5000 10000 15000

Predicted

20000

363.854

727.708

0.000

 363.854

 727.708

(c) Model I plot (d) Model I plot without hospital 14 (e) Model II plot

Studentized

Studentized Deleted

Obs Residual Leverage Residual Residual Cook’s D

1  125.624 0.121  0.346  0.333 0.004

2 141.691 0.235 0.418 0.404 0.013

3 60.555 0.130 0.168 0.161 0.001

4 428.812 0.159 1.208 1.234 0.069

5 162.866 0.087 0.440 0.425 0.005

6  294.287 0.114  0.808  0.795 0.021

7 256.296 0.086 0.692 0.677 0.011

8 409.814 0.084 1.106 1.117 0.028

9  396.076 0.088  1.071  1.078 0.028

10  472.953 0.135  1.313  1.359 0.067

11 517.698 0.083 1.397 1.461 0.044

12  677.234 0.178  1.929  2.224 0.202

13  262.164 0.066  0.701  0.685 0.009

14  29.679 0.714  0.143  0.137 0.013

15 218.990 0.787 1.225 1.254 1.384

16 61.298 0.933 0.613 0.597 1.317

Studentized

Studentized Deleted

Obs Residual Leverage Residual Residual Cook’s D

1  461.012 0.155  1.379  1.439 0.070

2 77.456 0.229 0.242 0.233 0.003

3  254.577 0.161  0.764  0.750 0.022

4 68.769 0.198 0.211 0.202 0.002

5 77.192 0.085 0.222 0.213 0.001

6  485.910 0.115  1.420  1.490 0.053

7 220.635 0.085 0.634 0.617 0.007

8 351.558 0.083 1.009 1.010 0.018

9  144.646 0.121  0.424  0.409 0.005

10  134.015 0.212  0.415  0.400 0.009

11 727.155 0.113 2.122 2.571 0.115

12  204.698 0.230  0.641  0.624 0.025

13 162.093 0.140 0.480 0.464 0.007

14 266.801 0.706 1.352 1.406 0.877

15  373.625 0.682  1.821  2.049 1.422

16 183.743 0.788 1.098 1.108 0.898

17  76.920 0.896  0.655  0.639 0.738

(a) Model I diagnostics without hospital 14 (b) Model II diagnostics
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Before deciding, however, that hospital 14 has been run inefficiently, we should consider

the possibility that Model I does not contain an independent variable that would explain the

seemingly large y value. For example, we have seen that hospitals 15, 16, and 17 are “large” hos-

pitals, and we note from Table 15.8 (page 665) that hospital 14 is “fairly large.” It is possible that

there is an inherent inefficiency due to large hospitals. This would suggest using a dummy vari-

able to model this inefficiency. Therefore, we might consider the model

y  b0  b1x1  b2x2  b3x3  b4DL  e (see HospLab4)

which we will refer to as Model II. In this model the dummy variable DL equals 1 if we are con-

sidering a “large hospital” (hospitals 14, 15, 16, and 17) and equals 0 otherwise (hospitals 1

through 13). It follows that b4 is an extra expected number of labor hours that is associated with

the inefficiency of large hospitals. If we use Model II to perform a regression analysis of the

data in Table 15.8, we find that the least squares point estimates of the model parameters and

their associated p-values (given in parentheses) are b0  2,462.21(.0004), b1  .0482(.0016),

b2  .7843( .0001), b3   432.4095(.0006), and b4  2,871.7828(.0003). Furthermore, the

standard error s for Model II is 363.854, which is less than even the s of 387.160 for Model

I with hospital 14 removed. Figure 15.23(b) on the previous page gives the Excel add-in

(MegaStat) output of outlying and influential observation diagnostics for Model II. In the exer-

cises the reader will use this output to verify that Model II has made hospital 17 considerably

less influential, hospital 15 slightly more influential, and hospital 14 no longer an outlier with

respect to its y value. In addition, consider the residual plots versus predicted labor given in

Figure 15.23(c), (d), and (e). The residual plot for Model II in Figure 15.23(e) has the most

“horizontal band” appearance. This implies that Model II has done the best at making the resid-

uals for small, medium, and large hospitals more of the same size. Finally, consider a question-

able large hospital (DL  1) for which Xray  56,194, BedDays  14,077.88, and Length  

6.89. Also, consider the labor needs in an efficiently run large hospital described by this com-

bination of values of the independent variables. The 95 percent prediction intervals for these

labor needs given by Model I using all 17 hospitals, Model I with hospital 14 removed, and

Model II are, respectively, [14,510.96, 17,618.15], [14,906.24, 16,886.26], and [15,175.04,

17,030.01]. The reader can verify that Model II has given the shortest interval and Model I with

hospital 14 removed has given a slightly longer interval. It is probably reasonable to use either

model to evaluate the labor needs of the questionable hospital.

We next note that the hospital labor needs data in Table 15.8 are part of a larger data set ana-

lyzed by the Navy. The complete data set consists of two additional variables—Load (average

DS

F I G U R E 1 5 . 2 4 Excel add-in (MegaStat) Model Building for the Hospital Labor Needs Data

(a) Using all 17 hospitals

Nvar Load Xray BedDays Pop Length s Adj R2 R2 Cp p-value

3 .0205 .0000 .0563 614.779 .988 .990 2.918 2.89E-13

4 .0175 .0000 .3441 .0400 615.489 .988 .991 4.026 4.18E-12

4 .0000 .0173 .2377 .0337 622.094 .987 .991 4.264 4.75E-12

(b) With hospital 14 removed

Nvar Load Xray BedDays Pop Length s Adj R2 R2 Cp p-value

4 .0091 .0000 .2690 .0013 381.555 .995 .997 4.023 1.86E-13

3 .0120 .0000 .0012 387.160 .995 .996 3.258 9.92E-15

4 .3981 .0121 .1381 .0018 390.876 .995 .996 4.519 2.43E-13

(c) Using all 17 hospitals (with the dummy variable Large)

Nvar Load Xray BedDays Pop Length Large s Adj R2 R2 Cp p-value

4 .0016 .0000 .0006 .0003 363.854 .996 .997 3.533 7.66E-15

4 .0000 .0019 .0005 .0002 365.057 .996 .997 3.602 7.97E-15

5 .0034 .0001 .5004 .0035 .0007 371.914 .996 .997 5.087 2.00E-13
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daily patient load) and Pop (eligible population in the area)—values of which are given on the

page margin. The additional variables imply that the transition from Model I using all 17 hospi-

tals to either Model I with hospital 14 removed or Model II is part of a larger model-building

process. Figure 15.24 gives Excel add-in (MegaStat) outputs summarizing this process. Fig-

ure 15.24(a) shows that, if we use all 17 hospitals and the five potential independent variables

listed across the top of the output, then Model I (the model using Xray, BedDays, and Length) is the

best model. This model has the smallest values of s andC (Section 15.4 discussesC). We have seen

that for Model I hospital 14 is an outlier with respect to its y value. Figure 15.24(b) shows that, if we

remove hospital 14 from the data set and use the same five potential independent variables, then

Model I is still the best model. Note that, although the model that uses Pop has a slightly smaller s

than Model I, Model I has a smaller value of C. Figure 15.24(c) shows that, if we use all 17 hospi-

tals and add the previously discussed dummy variable DL (referred to as Large on the output) as a

potential independent variable, then Model II (the model using Xray, BedDays, Length, and Large)

is the best model. This model has the smallest values of s and C.

A technical note (optional) Suppose we perform a regression analysis of n observations

by using a regression model that utilizes k independent variables. Let SSE and s denote the un-

explained variation and the standard error for the regression model. Also, let hi and ei  yi  ŷi
denote the leverage value and the usual residual for observation i. Then, the standard error of

the residual ei can be proven to equal This implies that the studentized residual for

observation i equals Furthermore, let denote the deleted residual

for observation i, and let sdi denote the standard error of di. Then, it can be shown that the

deleted residual d
i
and the studentized deleted residual d

i
兾s

di
can be calculated by using the

equations

Finally, if Di denotes the value of Cook’s D statistic for observation i, it can be proven that

Di  
e2
i

(k  1)s2 B hi

(1  hi)
2R

di  
ei

1  hi
    and    di

sdi
 ei B n  k  2

SSE(1  hi)  e2
i

R 1兾2

di  yi  ŷ(i)ei兾(s11  hi).

s11  hi.

Load Pop

15.57 18.0

44.02 9.5

20.42 12.8

18.74 36.7

49.20 35.7

44.92 24.0

55.48 43.3

59.28 46.7

94.39 78.7

128.02 180.5

96.00 60.9

131.42 103.7

127.21 126.8

252.90 157.7

409.20 169.4

463.70 331.4

510.22 371.6

Exercises for Section 15.5
CONCEPTS

15.19 What do leverage values identify? What do studentized deleted residuals identify?

15.20 What does Cook’s distance measure identify?

METHODS AND APPLICATIONS

15.21 Use Figure 15.23(a) on page 669 to explain why Model I without hospital 14 has made the original

hospital 17 considerably less influential and the original hospital 16 only slightly more influential.

15.22 Use Figure 15.23(b) on page 669 to explain why Model II has made hospital 17 considerably less

influential, hospital 15 slightly more influential, and hospital 14 no longer an outlier with respect

to its y value.

15.6 Improving the Regression Model II: Transforming 
the Dependent and Independent Variables 

If a data or residual plot indicates that the error variance of a regression model increases as an

independent variable or the predicted value of the dependent variable increases, then we can

sometimes remedy the situation by transforming the dependent variable. One transformation that

works well is to take each y value to a fractional power. As an example, we might use a transfor-

mation in which we take the square root (or one-half power) of each y value. Letting y* denote

Use data
transforma-

tions to help rem-
edy violations of
the regression
assumptions.

LO7
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the value obtained when the transformation is applied to y, we would write the square root

transformation as

Another commonly used transformation is the quartic root transformation. Here we take each

y value to the one-fourth power. That is,

If we consider a transformation that takes each y value to a fractional power (such as .5, .25, or

the like), as the power approaches 0, the transformed value y* approaches the natural logarithm

of y (commonly written lny). In fact, we sometimes use the logarithmic transformation

which takes the natural logarithm of each y value. In general, when we take a fractional power

(including the natural logarithm) of the dependent variable, the transformation not only tends to

equalize the error variance but also tends to “straighten out” certain types of nonlinear data plots.

Specifically, if a data plot indicates that the dependent variable is increasing at an increasing rate

(as in Figure 13.21 on page 556), then a fractional power transformation tends to straighten out

the data plot. A fractional power transformation can also help to remedy a violation of the nor-

mality assumption. Because we cannot know which fractional power to use before we actually

take the transformation, we recommend taking all of the square root, quartic root, and natural log-

arithm transformations and seeing which one best equalizes the error variance and (possibly)

straightens out a nonlinear data plot.

y*  lny

y*  y.25

y*  1y  y .5

EXAMPLE 15.6 The QHIC Case

Consider the QHIC upkeep expenditures in Figure 13.21. In Figures 15.25, 15.26, and 15.27 we

show the plots that result when we take the square root, quartic root, and natural logarithmic

transformations of the upkeep expenditures and plot the transformed values versus the home

values. The square root transformation seems to best equalize the error variance and straighten

out the curved data plot in Figure 13.21. Note that the natural logarithm transformation seems to

“overtransform” the data—the error variance tends to decrease as the home value increases and

the data plot seems to “bend down.” The plot of the quartic roots indicates that the quartic root

C
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transformation also seems to overtransform the data (but not by as much as the logarithmic trans-

formation). In general, as the fractional power gets smaller, the transformation gets stronger.

Different fractional powers are best in different situations.

Since the plot in Figure 15.25 of the square roots of the upkeep expenditures versus the home

values has a straight-line appearance, we consider the model

The MINITAB output of a regression analysis using this transformed model is given in 

Figure 15.28, and the MINITAB output of an analysis of the model’s residuals is given in

Figure 15.29 on the next page. Note that the residual plot versus x for the transformed model

in Figure 15.29(a) has a horizontal band appearance. It can also be verified that the transformed

model’s residual plot versus ŷ, which we do not give here, has a similar horizontal band appear-

ance. Therefore, we conclude that the constant variance and the correct functional form assump-

tions approximately hold for the transformed model. Next, note that the histogram of the

y*  b0  b1x  e  where y*  y
.5

F I G U R E 1 5 . 2 7 MINITAB Plot of the Natural Logarithms of the Upkeep Expenditures 
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F I G U R E 1 5 . 2 8 MINITAB Output of a Regression Analysis of the Upkeep Expenditure Data by Using the

Model y* ⴝ B0ⴙ B1x ⴙ E where y* ⴝ y
.5

The regression equation is 

SqRtUpkeep = 7.20 + 0.127 Value

Predictor      Coef   SE Coef      T      P       

Constant      7.201     1.205   5.98  0.000 

Value      0.127047  0.006577  19.32  0.000 

S = 2.32479   R–Sq = 90.8%   R–Sq(adj) = 90.5% 

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression 1 2016.8 2016.8 373.17 0.000

Residual Error  38   205.4     5.4 

Total           39  2222.2 

Values of Predictors for New Obs    Predicted Values for New Observations 

New Obs  Value                      New Obs     Fit  SE Fit       95% CI            95% PI 

1    220                            1  35.151   0.474  (34.191, 36.111)  (30.348, 39.954) 
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F I G U R E 1 5 . 2 9 MINITAB Output of Residual Analysis for the Upkeep Expenditure Model 
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transformed model’s residuals in Figure 15.29(b) looks reasonably bell-shaped and symmetric,

and note that the normal plot of these residuals in Figure 15.29(c) looks straighter than the normal

plot for the untransformed model (see Figure 13.24 on page 561). Therefore, we also conclude

that the normality assumption approximately holds for the transformed model.

Because the regression assumptions approximately hold for the transformed regression

model, we can use this model to make statistical inferences. Consider a home worth $220,000.

Using the least squares point estimates on the MINITAB output in Figure 15.28 on the previous

page, it follows that a point prediction of y* for such a home is

 35.151

This point prediction is given at the bottom of the MINITAB output, as is the 95 percent prediction

interval for y*, which is [30.348, 39.954]. It follows that a point prediction of the upkeep

expenditure for a home worth $220,000 is (35.151)2  $1,235.59 and that a 95 percent prediction

interval for this upkeep expenditure is [(30.348)2, (39.954)2]  [$921.00, $1596.32]. Suppose that

QHIC wishes to send an advertising brochure to any home that has a predicted yearly upkeep

expenditure of at least $500. It follows that a home worth $220,000 would be sent an advertising

brochure. This is because the predicted yearly upkeep expenditure for such a home is (as just

calculated) $1,235.59. Other homes can be evaluated in a similar fashion.

Recall that because there are many homes of a particular value in the metropolitan area, QHIC

is interested in estimating the mean upkeep expenditure corresponding to this value. Consider all

ŷ*  7.201  .127047(220)
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homes worth, for example, $220,000. The MINITAB output in Figure 15.28 (page 673) tells us

that a point estimate of the mean of the square roots of the upkeep expenditures for all such

homes is 35.151 and that a 95 percent confidence interval for this mean is [34.191, 36.111]. Un-

fortunately, because it can be shown that the mean of the square root is not the square root of

the mean, we cannot transform the results for the mean of the square roots back into a result for

the mean of the original upkeep expenditures. This is a major drawback to transforming the

dependent variable and one reason why many statisticians avoid transforming the dependent

variable unless the regression assumptions are badly violated. One remedy for violations of the

regression assumptions that does not have some of the drawbacks of transforming the depen-

dent variable is transforming the independent variable. This procedure is introduced in Exer-

cise 15.27 of this section and is applied to the QHIC situation—along with the techniques of

Section 15.1—in Exercise 15.33 of the supplemental exercises. Furthermore, if we reconsider

the residual analysis of the original, untransformed QHIC model in Figures 13.22 (page 558)

and 13.24 (page 561), we might conclude that the regression assumptions are not badly violated

for the untransformed model. Also, note that the point prediction of $1,235.59 obtained here

using the transformed model is not very different from the point prediction of $1,248.43

obtained in Section 13.8 (page 555) using the untransformed model. This implies that it might

be reasonable to rely on the results obtained using the untransformed model, or to at least rely

on the results for the mean upkeep expenditures obtained using the untransformed model.

Exercises for Section 15.6

CONCEPTS

15.23 What is the purpose of a fractional power transformation?

15.24 Compare the square root, quartic root, and natural logarithm transformations.

METHODS AND APPLICATIONS

15.25 USING A NATURAL LOGARITHM TRANSFORMATION WestStk

Western Steakhouses, a fast-food chain, opened 15 years ago. Each year since then the number

of steakhouses in operation, y, was recorded. An analyst for the firm wishes to use these data to

predict the number of steakhouses that will be in operation next year. The data are given in 

Figure 15.30(a) on the next page, and a plot of the data is given in Figure 15.30(b). Examining

the data plot, we see that the number of steakhouse openings has increased over time at an

increasing rate and with increasing variation. A plot of the natural logarithms of the steakhouse

values versus time (see Figure 15.30(c)) has a straight-line appearance with constant variation.

Therefore, we consider the model

ln yt   b0  b1t   et

If we use MINITAB, we find that the least squares point estimates of b0 and b1 are b0   2.07012

and b1   .256880. We also find that a point prediction of and a 95 percent prediction interval for

the natural logarithm of the number of steakhouses in operation next year (year 16) are 6.1802

and [5.9945, 6.3659]. See the MINITAB output in Figure 15.33 on page 677.

a Use the least squares point estimates to verify the point prediction.

b By exponentiating the point prediction and prediction interval—that is, by calculating e6.1802

and [e5.9945, e6.3659]—find a point prediction of and a 95 percent prediction interval for the

number of steakhouses in operation next year.

c The model ln yt  b0   b1t   et is called a growth curve model because it implies that

where , and . Here is called the growth rate of the y

values. Noting that the least squares point estimate of is estimate the growth

rate a1. Also, interpret this growth rate by using the fact that 

. This says that yt is expected to be approximately a1 times yt 1.(yt 1)a1ht

yt  a0 a1
t
ht  (a0a1

t 1)a1ht ⬇

b1  .256880,b1

a1  eb1ht  eeta0  eb0, a1  eb1

yt  e(b0 b1t et)
 (eb0)(eb1t)(eet)  a0a

t
1ht

DS
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F I G U R E 1 5 . 3 0 The Data and Data Plots for

Exercise 15.25 WestStkDS

(a) Western Steakhouse Openings for the Last 15 Years 
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(b) Time Series Plot of y versus t
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F I G U R E 1 5 . 3 1 The Data, Data Plot, and Residual Plot

for Exercise 15.26 SrvcTime2DS
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(a) Service time data for 15 service calls

0

50

 100

 50

100

MICROS

R
e
si

d
u

a
ls

2 4 8 100 126

F I G U R E 1 5 . 3 2 Residual Plot for Exercise 15.27

1 3 5 7 9 11

 10

0

5

 5

MICROS

R
e
si

d
u

a
l



15.6 Improving the Regression Model II 677

15.26 THE UNEQUAL VARIANCES SERVICE TIME CASE SrvcTime2
Figure 15.31(a) presents data concerning the time, y, required to perform service and the number

of microcomputers serviced, x, for 15 service calls. Figure 15.31(b) gives a plot of y versus x,

and Figure 15.31(c) gives the Excel output of a plot of the residuals versus x for a simple linear

regression model. What regression assumption appears to be violated?

15.27 THE UNEQUAL VARIANCES SERVICE TIME CASE SrvcTime2

Consider the simple linear regression model describing the service time data in Figure 15.31(a).

Figure 15.31(c) shows that the residual plot versus x for this model fans out, indicating that the

error term e tends to become larger in magnitude as x increases. To remedy this violation of the

constant variance assumption, we divide all terms in the simple linear regression model by x. This

gives the transformed model

Figure 15.34 and Figure 15.32 give a regression output and a residual plot versus x for this model.

a Does the residual plot indicate that the constant variance assumption holds for the transformed

model?

y

x
 b0冢1

x冣  b1  
e

x
  or, equivalently,  y

x
 b0  b1冢1

x冣  
e

x

DS

DS

F I G U R E 1 5 . 3 3 MINITAB Output of a Regression Analysis of the Steakhouse Data Using

the Model y*  B0  B1x  E, where y*  lny (for Exercise 15.25)

The regression equation is 

ln(y) = 2.07 + 0.257 Year 

Predictor        Coef     SE Coef        T        P 

Constant      2.07012     0.04103    50.45    0.000 

Year         0.256880    0.004513    56.92    0.000 

S = 0.0755161   R–Sq = 99.6%   R-Sq(adj) = 99.6%    Durbin-Watson statistic = 1.87643 

Analysis of Variance 

Source            DF        SS        MS          F        P 

Regression         1    18.477    18.477    3239.97    0.000 

Residual Error    13     0.074     0.006 

Total             14    18.551 

Values of Predictors for New Obs   Predicted Values for New Observations 

New Obs  Year                      Obs     Fit  SE Fit       95% CI            95% PI 

1    16                        1  6.1802  0.0410  (6.0916, 6.2689)  (5.9945, 6.3659)

F I G U R E 1 5 . 3 4 MINITAB Output of a Regression Analysis of the Service Time Data Using

the Model (for Exercise 15.27)y兾x   B0   B1(1兾x)   E兾x

The regression equation is 

Y/X = 24.0 + 6.76 1/X

Predictor       Coef     SE Coef        T        P 

Constant      24.041       2.246    10.70    0.000
      6.764       5.794     1.17    0.2641/X

S = 5.15816   R–Sq = 9.50%   R-Sq(adj) = 2.5%    

Analysis of Variance 

Source            DF        SS        MS       F       P 

Regression         1     36.27     36.27    1.36   0.264

Residual Error    13    345.89     26.61 

Total             14    382.15 

Predicted Values for New Observations 

Values of Predictors for New Observations 

New Obs          1/X

      1        0.143                                                          

New Obs          Fit    SE Fit            95% CI           95% PI 

1        25.01      1.65     (21.43, 28.58)   (13.30, 36.71)



678 Chapter 15 Model Building and Model Diagnostics

b Consider a future service call on which seven microcomputers will be serviced. Let m0

represent the mean service time for all service calls on which seven microcomputers will be

serviced, and let y0 represent the actual service time for an individual service call on which

seven microcomputers will be serviced. The bottom of the MINITAB output in Figure 15.34

tells us that

is a point estimate of and a point prediction of y0兾7. Multiply this result by 7 to obtain 

Multiply the ends of the confidence interval and prediction interval shown on the MINITAB

output by 7. This will give a 95 percent confidence interval for m0 and a 95 percent 

prediction interval for y0. If the number of minutes we will allow for the future service call

is the upper limit of the 95 percent confidence interval for m0, how many minutes will 

we allow?

15.7 Improving the Regression Model III: 
The Durbin–Watson Test and 
Dealing with Autocorrelation 

The Durbin–Watson test in simple linear regression One type of positive or negative

autocorrelation is called first-order autocorrelation. It says that et, the error term in time period

t, is related to et 1, the error term in time period t  1. To check for first-order autocorrelation,

we can use the Durbin–Watson statistic

where e1, e2, . . . , en are the time-ordered residuals.

Intuitively, small values of d lead us to conclude that there is positive autocorrelation. This is

because, if d is small, the differences (et  et 1) are small. This indicates that the adjacent resid-

uals et and et 1 are of the same magnitude, which in turn says that the adjacent error terms et and

et 1 are positively correlated. Consider testing the null hypothesis H0 that the error terms are

not autocorrelated versus the alternative hypothesis Ha that the error terms are positively

autocorrelated. Durbin and Watson have shown that there are points (denoted dL,a and dU,a) such

that, if a is the probability of a Type I error, then

1 If d  dL,a, we reject H0.

2 If d  dU,a, we do not reject H0.

3 If dL,a  d  dU,a, the test is inconclusive.

So that the Durbin–Watson test may be easily done, tables containing the points dL,a and dU,a

have been constructed. These tables give the appropriate dL,a and dU,a points for various values

of a; k, the number of independent variables used by the regression model; and n, the number of

observations. Tables A.10, A.11, and A.12 (pages 871–872) give these points for a  .05,

a .025, and a .01. A portion of Table A.10 is given in Table 15.9. Note that when we are con-

sidering a simple linear regression model, which uses one independent variable, we look up the

points dL,a and dU,a under the heading “k  1.” Other values of k are used when we consider mul-

tiple regression in the next subsection. 

For example, Figure 15.35 presents data concerning weekly sales at Pages’ Bookstore (Sales),

Pages’ weekly advertising expenditure (Adver), and the weekly advertising expenditure of

d  

a

n

t 2

(et  et 1)
2

a

n

t 1

e2
t

ŷ.m0兾7
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Pages’ main competitor (Compadv). Here the sales values are expressed in thousands of dollars,

and the advertising expenditure values are expressed in hundreds of dollars. Figure 15.35 also

gives the residuals that are obtained when MINITAB is used to perform a simple linear regres-

sion analysis relating Pages’ sales to Pages’ advertising expenditure. Using the residuals in Fig-

ure 15.35, the Durbin–Watson statistic for the simple linear regression model relating Pages’

sales to Pages’ advertising expenditure is calculated to be

A MINITAB output of the Durbin–Watson statistic is given at the bottom of Figure 15.35. To

test for positive autocorrelation, we note that there are n  16 observations and the regression

  .65

  
(4.0  3.3)2

 (0.0  4.0)2
       (6.7  4.4)2

(3.3)2
 (4.0)2

       (6.7)2

 d  

a
16

t 2

(et  et 1)
2

a
16

t 1

e2
t

T A B L E 1 5 . 9 Critical Values for the Durbin–Watson d Statistic (A  .05)

k  1 k  2 k  3 k  4

n dL,.05 dU,.05 dL,.05 dU,.05 dL,.05 dU,.05 dL,.05 dU,.05

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97

16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93

17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90

18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87

19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85

20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83

F I G U R E 1 5 . 3 5 The Data and the MINITAB Output of the Residuals from a Simple Linear

Regression Relating Pages’ Sales to Pages’ Advertising Expenditure

BookSalesDS

Observation Adver Compadv Sales Predicted Residual

1 18 10 22 18.7 3.3

2 20 10 27 23.0 4.0

3 20 15 23 23.0 -0.0

4 25 15 31 33.9 -2.9

5 28 15 45 40.4 4.6

6 29 20 47 42.6 4.4

7 29 20 45 42.6 2.4

8 28 25 42 40.4 1.6

9 30 35 37 44.7 -7.7

10 31 35 39 46.9 -7.9

11 34 35 45 53.4 -8.4

12 35 30 52 55.6 -3.6

13 36 30 57 57.8 -0.8

14 38 25 62 62.1 -0.1

15 41 20 73 68.6 4.4

16 45 20 84 77.3 6.7

Durbin–Watson = 0.65
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model uses k  1 independent variable. Therefore, if we set a  .05, Table 15.9 on the previous

page tells us that dL,.05  1.10 and dU,.05  1.37. Since d  .65 is less than dL,.05  1.10, we reject

the null hypothesis of no autocorrelation. That is, we conclude (at an a of .05) that there is posi-

tive (first-order) autocorrelation. Note that the positive autocorrelation is graphically indicated by

the cyclical pattern of the residual plot versus time in Figure 15.36.

It can be shown that the Durbin–Watson statistic d is always between 0 and 4. Large values

of d (and hence small values of 4  d) lead us to conclude that there is negative autocorrelation

because if d is large, this indicates that the differences (et  et 1) are large. This says that the

adjacent error terms et and et 1 are negatively autocorrelated. Consider testing the null

hypothesis H0 that the error terms are not autocorrelated versus the alternative hypothesis Ha
that the error terms are negatively autocorrelated. Durbin and Watson have shown that based

on setting the probability of a Type I error equal to a, the points dL,a and dU,a are such that

1 If (4  d )  dL,a, we reject H0.

2 If (4  d )  dU,a, we do not reject H0.

3 If dL,a  (4  d )  dU,a, the test is inconclusive.

As an example, for the Pages’ sales simple linear regression model, we see that

(4  d )  (4  .65)  3.35  dU,.05  1.37

Therefore, on the basis of setting a equal to .05, we do not reject the null hypothesis of no auto-

correlation. That is, there is no evidence of negative (first-order) autocorrelation.

We can also use the Durbin–Watson statistic to test for positive or negative autocorrelation.

Specifically, consider testing the null hypothesis H0 that the error terms are not autocorre-

lated versus the alternative hypothesis Ha that the error terms are positively or negatively

autocorrelated. Durbin and Watson have shown that, based on setting the probability of a Type I

error equal to a,

1 If d  dL,a兾2 or if (4  d )  dL,a兾2, we reject H0.

2 If d  dU,a兾2 and if (4  d )  dU,a兾2, we do not reject H0.

3 If dL,a兾2  d  dU,a兾2 or if dL,a兾2  (4  d)  dU,a兾2, the test is inconclusive.

For example, consider testing for positive or negative autocorrelation in the Pages’ sales model.

If we set a equal to .05, then a兾2  .025, and we need to find the points dL,.025 and dU,.025 when

n  16 and k  1. Looking up these points in Table A.11 (page 871), we find that dL,.025   .98

and dU,.025  1.24. Since d  .65 is less than dL,.025  .98, we reject the null hypothesis of no

autocorrelation. That is, we conclude (at an a of .05) that there is first-order autocorrelation.

Although we have used the Pages’ sales model in these examples to demonstrate the Durbin–

Watson tests for (1) positive autocorrelation, (2) negative autocorrelation, and (3) positive or

F I G U R E 1 5 . 3 6 MINITAB Output of a Plot of the Residuals in Figure 15.35 versus Time
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negative autocorrelation, we must in practice choose one of these Durbin–Watson tests in a

particular situation. Since positive autocorrelation is more common in real time series data than

negative autocorrelation, the Durbin–Watson test for positive autocorrelation is used more often

than the other two tests.Also, note that each Durbin–Watson test assumes that the population of all

possible residuals at any time t has a normal distribution.

If we detect positive or negative autocorrelation, the regression assumption of independent

error terms is violated. In the Pages’ Bookstore example, Figure 15.35 on page 679 shows that

there tend to be positive residuals when the competitor’s advertising expenditure is lower (in

weeks 1 through 8 and weeks 14, 15, and 16) and negative residuals when the competitor’s ad-

vertising expenditure is higher (in weeks 9 through 13). Therefore, the competitor’s advertising

expenditure seems to be causing the positive autocorrelation. It follows that, to remedy the vio-

lation of the independence assumption, we can consider a multiple regression model that predicts

sales on the basis of both Pages’ advertising expenditure and the competitor’s advertising expen-

diture. We discuss such a model in the next subsection. A reader who has not yet studied multi-

ple regression can do Exercises 15.28, 15.29, and 15.30 in the exercises of this section.

The Durbin–Watson test in multiple regression The Durbin–Watson test is carried out for

a multiple regression model exactly as it is for a simple linear regression model, except that we con-

sider k, the number of independent variables used by the model, when looking up the critical values

dL,a and dU,a. For example, recall that Figure 15.35 on page 679 gives n  16 weekly values of

Pages’ Bookstore sales (y), Pages’ advertising expenditure (x1), and competitor’s advertising ex-

penditure (x2). The Durbin–Watson statistic for the model

y  b0  b1x1  b2x2  e

is d  1.63. If we set a equal to .05, then we use Table A.10 (page 871)—a portion of which is

shown on the page margin. Since n  16 and k  2, the appropriate critical values for a test for

first-order positive autocorrelation are dL,.05  .98 and dU,.05  1.54. Since d  1.63 is greater

than dU,.05, we conclude that there is no first-order positive autocorrelation. The Durbin–

Watson test carried out in the previous subsection indicates that this autocorrelation does exist

for the model relating y to x1. Therefore, adding x2 to this model seems to have removed the

autocorrelation.

k  2

n dL,.05 dU,.05

15 0.95 1.54

16 0.98 1.54

17 1.02 1.54

18 1.05 1.53

Exercises for Section 15.7
CONCEPTS

15.28 What is the purpose of the Durbin–Watson test?

15.29 Intuitively, what does a small Durbin–Watson statistic indicate? What does a large Durbin–Watson

statistic indicate?

METHODS AND APPLICATIONS

15.30 A simple linear regression model is employed to analyze the 24 monthly observations given

in Table 15.10 on the next page. Residuals are computed and are plotted versus time. The

resulting residual plot is shown in Figure 15.37 on the next page. Discuss why the residual

plot suggests the existence of positive autocorrelation. The Durbin–Watson statistic d can be

calculated to be .473. Test for positive (first-order) autocorrelation at a  .05, and test for

negative (first-order) autocorrelation at a .05. SalesAdv

15.31 THE FRESH DETERGENT CASE Fresh2

Recall that Table 15.2 (page 639) gives values for n  30 sales periods of demand for Fresh

liquid laundry detergent (y), price difference (x4), and advertising expenditure (x3). Figure 15.38

on the next page gives the residual plot versus time and the Durbin–Watson statistic that are

obtained when the regression model relating y to x4, x3, and x2
3 is used to analyze the Fresh

detergent data. Test for positive autocorrelation by setting a equal to .05.

DS

DS
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Durbin - Watson Statistic = 1.62

T A B L E 1 5 . 1 0 Sales and Advertising Data for 

Exercise 15.30 SalesAdvDS

Monthly Advertising
Month Total Sales, y Expenditures, x

1 202.66 116.44

2 232.91 119.58

3 272.07 125.74

4 290.97 124.55

5 299.09 122.35

6 296.95 120.44

7 279.49 123.24

8 255.75 127.55

9 242.78 121.19

10 255.34 118.00

11 271.58 121.81

12 268.27 126.54

13 260.51 129.85

14 266.34 122.65

15 281.24 121.64

16 286.19 127.24

17 271.97 132.35

18 265.01 130.86

19 274.44 122.90

20 291.81 117.15

21 290.91 109.47

22 264.95 114.34

23 228.40 123.72

24 209.33 130.33

Source: “Sales and Advertising Data,” by S. Makridakis, S. C.
Wheelwright, and V. E. McGee, Forecasting: Methods and
Applications. Copyright © 1983 John Wiley & Sons, Inc. 
Reprinted by permission of John Wiley & Sons, Inc.

In this chapter we have discussed model building and model

diagnostics. We began by discussing using squared terms to

model quadratic relationships and using cross-product terms

to model interaction. We then considered how to use logistic

regression to estimate the probability that an event will occur.

We next discussed multicollinearity, which can adversely affect

the ability of the t statistics and associated p-values to assess the

importance of the independent variables in a regression model.

For this reason, we need to determine if the overall model gives a

highR2, a small s, a high adjustedR2, short prediction intervals,

and a small C. We considered how to compare regression models

on the basis of these criteria, and we also showed how to use step-

wise regression and backward elimination to help select a

regression model. We concluded this chapter by showing (1) how

to identify and use information about outlying and influential

observations, (2) how to improve regression models by trans-

forming the dependent and independent variables and (3) how

to detect autocorrelation by using the Durbin–Watson test.

Glossary of Terms

influential observation: An observation that causes the least

squares point estimates (or other aspects of the regression analy-

sis) to be substantially different from what they would be if the

observation were removed from the data. (page 665)

interaction: The situation in which the relationship between

the mean value of the dependent variable and an independent

variable is dependent on the value of another independent vari-

able. (page 643)

multicollinearity: The situation in which the independent vari-

ables used in a regression analysis are related to each other.

(page 653)

outlier: An observation that is well separated from the rest

of the data with respect to its y value and/or its x values.

(page 665)
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Important Formulas and Tests

The quadratic regression model: page 635

The logistic regression model: page 649

Odds: page 651

Variance inflation factor: page 653

C statistic: page 658

Leverage value: page 666

Studentized residual: pages 667, 671

PRESS (deleted) residual: pages 667, 671

The studentized deleted residual: pages 667, 671

Cook’s distance measure: pages 668, 671

The Durbin–Watson test: page 678

Supplementary Exercises

15.32 THE FRESH DETERGENT CASE Fresh3

Recall from Exercise 14.32 (page 616) that Enterprise Industries has advertised Fresh liquid

laundry detergent by using three different advertising campaigns—advertising campaign A

(television commercials), advertising campaign B (a balanced mixture of television and radio

commercials) and advertising campaign C (a balanced mixture of television, radio, newspaper,

and magazine ads). To compare the effectiveness of these advertising campaigns, consider the

model

Here, y is demand for Fresh; x4 is the price difference; x3 is Enterprise Industries’ advertising

expenditure for Fresh; DB equals 1 if advertising campaign B is used in a sales period and 0

otherwise; and DC equals 1 if advertising campaign C is used in a sales period and 0 otherwise.

If we use this model to perform a regression analysis of the data in Tables 14.12 (page 616) and

15.2 (page 639) we obtain the following Excel and Excel add-in (MegaStat) output:

y  b0  b1x4  b2x3  b3x
2
3  b4x4x3  b5DB  b6DC  e

DS

a In the above model the parameter b5 represents the effect on mean demand of advertising

campaign B compared to advertising campaign A, and the parameter b6 represents the effect

on mean demand of advertising campaign C compared to advertising campaign A. Use the

regression output to find a point estimate of each of the above effects and to test the signifi-

cance of each of the above effects. Also, find a 95 percent confidence interval for each of the

above effects. Interpret your results.

b Consider the alternative model

y  b0  b1x4  b2x3  b3x
2
3  b4x4x3  b5DA  b6DC  e

(a) The Excel output

Regression Statistics
Multiple R 0.9853
R Square 0.9708
Adjusted R Square 0.9631
Standard Error 0.1308
Observations 30

ANOVA df SS MS F Significance F

Regression 6 13.0650 2.1775 127.2527 1.83E-16
Residual 23 0.3936 0.0171
Total 29 13.4586

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 25.612696 4.7938 5.3429 2.00E-05 15.6960 35.5294
X4 9.0587 3.0317 2.9880 0.0066 2.7871 15.3302
X3  6.5377 1.5814  4.1342 0.0004  9.8090  3.2664
X3SQ 0.5844 0.1299 4.5001 0.0002 0.3158 0.8531
X4X3  1.1565 0.4557  2.5376 0.0184  2.0992  0.2137
DB 0.2137 0.0622 3.4380 0.0022 0.0851 0.3423
DC 0.3818 0.0613 6.2328 2.33E-06 0.2551 0.5085

(b) Prediction using an Excel add-in (MegaStat)

95% Confidence Interval 95% Prediction Interval
Predicted lower upper lower upper Leverage

8.50068 8.40370 8.59765 8.21322 8.78813 0.128
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(a) The Excel output

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 28.6873 5.1285 5.5937 1.5E-05 18.0221 39.3526

X4 10.8253 3.2988 3.2816 0.0036 3.9651 17.6855

X3  7.4115 1.6617  4.4602 0.0002  10.8671  3.9558

X3SQ 0.6458 0.1346 4.7984 9.66E-05 0.3659 0.9257

X4X3  1.4156 0.4929  2.8722 0.00912  2.4406  0.3907

DB  0.4807 0.7309  0.6577 0.517904  2.0007 1.0393

DC  0.9351 0.8357  1.1189 0.2758  2.6731 0.8029

X3DB 0.10722 0.1117 0.9600 0.3480  0.1251 0.3395

X3DC 0.20349 0.1288 1.5797 0.1291  0.0644 0.4714

(b) Prediction using an Excel add-in (MegaStat)

95% Confidence Interval 95% Prediction Interval
Predicted lower upper lower upper Leverage

8.51183 8.41229 8.61136 8.22486 8.79879 0.137

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 25.8264 4.7946 5.3866 1.80E-05 15.9081 35.7447

X4 9.05868 3.0317 2.9880 0.0066 2.7871 15.3302

X3  6.5377 1.5814  4.1342 0.0004  9.8090  3.2664

X3SQ 0.58444 0.1299 4.5001 0.0002 0.3158 0.8531

X4X3  1.1565 0.4557  2.5376 0.0184  2.0992  0.2137

DA  0.2137 0.0622  3.4380 0.0022  0.3423  0.0851

DC 0.16809 0.0637 2.6385 0.0147 0.0363 0.2999

Let m[d,a,A], m[d,a,B], and m[d,a,C] denote the mean demands for Fresh when the price difference

is d, the advertising expenditure is a, and we use advertising campaigns A, B, and C, respec-

tively. The model of this part implies that

m[d,a,A]  b0  b1d  b2a  b3a
2  b4da  b5(0)  b6(0)  b7a(0)  b8a(0)

m[d,a,B]  b0  b1d  b2a  b3a
2  b4da  b5(1)  b6(0)  b7a(1)  b8a(0)

m[d,a,C]  b0  b1d  b2a  b3a
2  b4da  b5(0)  b6(1)  b7a(0)  b8a(1)

Using these equations, verify that m[d,a,C]  m[d,a,A] equals b6  b8a. Then, using the least

squares point estimates, show that a point estimate of m[d,a,C]  m[d,a,A] equals .3266 when

a  6.2 and equals .4080 when a  6.6. Also, verify that m[d,a,C]  m[d,a,B] equals

b6  b5  b8a  b7a. Using the least squares point estimates, show that a point estimate

of m[d,a,C]  m[d,a,B] equals .14266 when a  6.2 and equals .18118 when a  6.6. Discuss

why these results imply that the larger that advertising expenditure a is, then the larger is

the improvement in mean sales that is obtained by using advertising campaign C rather than

advertising campaign A or B.

d The prediction results given at the bottom of the first and third Excel outputs of this exercise

correspond to a future period when the price difference will be x4  .20, the advertising

expenditure will be x3  6.50, and campaign C will be used. Which model—the first model or

the third model of this exercise—gives the shortest 95 percent prediction interval for Fresh

demand? Using all of the results in this exercise, discuss why there might be a small amount

of interaction between advertising expenditure and advertising campaign.

Noting that b6 represents the effect on mean demand of advertising campaign C compared to

advertising campaign B, find a point estimate of and a 95 percent confidence interval for this

effect. Also, test the significance of this effect. Interpret your results.

c Consider the alternative model

The Excel and Excel add-in (MegaStat) output of the least squares point estimates of the

parameters of this model is as follows:

y  b0  b1x4  b2x3  b3x
2
3  b4x4x3  b5DB  b6DC  b7x3DB  b8x3DC  e

Here DA equals 1 if advertising campaign A is used and 0 otherwise. The Excel output of the

least squares point estimates of the parameters of this model is as follows:
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To remedy this violation, we (in the second step) divide all terms in the quadratic model by x.

This gives the transformed model

The MINITAB regression output and a residual plot versus x for this model are as follows:

y

x
 b0冢1

x冣  b1  b2x  
e

x

a Does the residual plot indicate the constant variance assumption holds for the transformed

model?

15.33 THE QHIC CASE

Consider the QHIC data in Figure 13.21 (page 556). When we performed a regression analysis of

these data by using the simple linear regression model, plots of the model’s residuals versus x

(home value) and ŷ (predicted upkeep expenditure) both fanned out and had a “dip,” or slightly

curved appearance (see Figure 13.22, page 558). In order to remedy the indicated violations of

the constant variance and correct functional form assumptions, we transformed the dependent

variable by taking the square roots of the upkeep expenditures. An alternative approach consists

of two steps. First, the slightly curved appearance of the residual plots implies that it is reason-

able to add the squared term x2 to the simple linear regression model. This gives the quadratic

regression model

y  b0   b1x   b2x2   e

The MINITAB output below shows that the plot of this model’s residuals versus x fans out, 

indicating a violation of the constant variance assumption.
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b Consider a home worth $220,000. We let m0 represent the mean yearly upkeep expenditure

for all homes worth $220,000, and we let y0 represent the yearly upkeep expenditure for

an individual home worth $220,000. The bottom of the MINITAB output tells us that 

ŷ兾220  5.635 is a point estimate of m0兾220 and a point prediction of y0兾220. Multiply this

result by 220 to obtain ŷ. Multiply the ends of the confidence interval and prediction interval

shown on the MINITAB output by 220. This will give a 95 percent confidence interval for m0

and a 95 percent prediction interval for y0. Suppose that QHIC has decided to send a special,

more expensive advertising brochure to any home whose value makes QHIC 95 percent

confident that the mean upkeep expenditure for all homes having this value is at least $1,000.

Will a home worth $220,000 be sent a special brochure?

15.34 THE DIFFERENCE IN ESTIMATE OF Bj STATISTIC

Consider the difference between the least squares point estimate bj of bj, computed using all n

observations, and the least squares point estimate of bj, computed using all n observations

except for observation i. SAS (an advanced software system) calculates this difference for each

observation and divides the difference by its standard error to form the difference in estimate of

Bj statistic. If the absolute value of this statistic is greater than 2 (a sometimes-used critical value

for this statistic), then removing observation i from the data set would substantially change the

least squares point estimate of bj. For example, consider the hospital labor needs model of

Section 15.5 that uses all 17 observations to relate y to x1, x2, and x3. Also consider the columns

labeled “Dfbetas” in Figure 15.39. Notice that there are four such columns—one for each model

parameter—which are labeled INTERCEP, X1, X2, and X3. For each observation, these four

columns show the difference in estimate of Bj statistic related to b0, b1, b2, and b3.

We see that for observation 17 “INTERCEP Dfbetas” ( .0294), “X2 Dfbetas” ( 1.2688), and

“X3 Dfbetas” ( .3155) are all less than 2 in absolute value. This says that the least squares point

estimates of b0, b2, and b3 probably would not change substantially if hospital 17 were removed

from the data set. However, for observation 17 “X1 Dfbetas” (  3.0114) is greater than 2 in

absolute value. What does this say? 

Note: If we remove hospital 14 from the data set or use a dummy variable to model the ineffi-

ciency of large hospitals (see Section 15.5), then hospital 17 becomes much less influential with

respect to the difference in estimate of bj statistic.

Note: The formula for the difference in estimate of bj statistic involves a fairly complicated

matrix algebra expression and will not be given in this book. The interested reader is referred to

Bowerman and O’Connell (1990). MINITAB and the Excel add-in (MegaStat) do not give this

statistic.

b(i)
j

F I G U R E 1 5 . 3 9 Difference in Estimate of Bj Statistics

INTERCEP           X1           X2            X3

Obs      Dfbetas      Dfbetas      Dfbetas       Dfbetas

1      -0.0477       0.0157      -0.0083        0.0309

2       0.0138      -0.0050       0.0119       -0.0183

3       0.0307      -0.0084       0.0060       -0.0216

4       0.2416      -0.0217       0.0251       -0.1821

5       0.0035       0.0014      -0.0099        0.0074

6      -0.0881      -0.0703       0.0724        0.0401

7       0.0045      -0.0008      -0.0180        0.0179

8       0.0764      -0.0319       0.0063       -0.0314

9       0.0309       0.0243       0.0304       -0.0873

10       0.1787      -0.2924       0.3163       -0.2544

11      -0.0265       0.0560      -0.0792        0.0680

12      -0.4387       0.3549      -0.3782        0.3864

13      -0.0671       0.0230      -0.0243        0.0390

14      -0.8544       1.1389      -0.9198        0.9620

15       0.9616       0.1324      -0.0133       -0.9561

16       0.9880      -1.4289       1.7339       -1.1029

17       0.0294      -3.0114       1.2688        0.3155
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F I G U R E 1 5 . 4 0 Plot of y versus x in Exercise 15.36 F I G U R E 1 5 . 4 1 Plot of y versus 1兾x in Exercise 15.36
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15.35 THE DIFFERENCE IN FITS STATISTIC

Consider the difference between the point prediction of yi computed using least squares point

estimates based on all n observations and the point prediction of yi computed using least

squares point estimates based on all n observations except for observation i. Some statistical

software packages calculate this difference for each observation and divide the difference by its

standard error to form the difference in fits statistic. If the absolute value of this statistic is

greater than 2 (a sometimes-used critical value for this statistic), then removing observation i

from the data set would substantially change the point prediction of yi. For example, consider the

hospital labor needs model of Section 15.5 that uses all 17 observations to relate y to x1, x2, and

x3. Also consider the MINITAB output of the column labeled “Dffits” on the page margin. This

column contains the difference in fits statistic for each observation. The value of this statistic for

observation 17 is  4.9623. What does this say?

Note: If we remove hospital 14 from the data set or use a dummy variable to model the ineffi-

ciency of large hospitals (see Section 15.5), then hospital 17 becomes much less influential with

respect to the difference in fits statistic.

Note: The formula for the difference in fits statistic for observation i is found by multiplying the

formula for the studentized deleted residual for observation i by [hi兾(1  hi)]
1兾2. Here hi is the

leverage value for observation i.

15.36 The State Department of Taxation wishes to investigate the effect of experience, x, on the amount

of time, y, required to fill out Form ST 1040AVG, the state income-averaging form. In order to

do this, nine people whose financial status makes income averaging advantageous are chosen at

random. Each is asked to fill out Form ST 1040AVG and to report (1) the time y (in hours)

required to complete the form and (2) the number of times x (including this one) that he or she

has filled out this form. The following data are obtained: TaxTime

Completion time,
y (in Hours) 8.0 4.7 3.7 2.8 8.9 5.8 2.0 1.9 3.3

Experience, x 1 8 4 16 1 2 12 5 3

A plot of these data is given in Figure 15.40 and indicates that the model

y   my   

might appropriately relate y to x. To understand this model, note that as x increases, 1兾x

decreases and thus my decreases. This seems to be what the data plot indicates is happening. 

To further understand this model, note that a plot of the values of y versus the values of 1兾x in

Figure 15.41 has a straight-line appearance. This indicates that a simple linear regression model

having y as the dependent variable and 1兾x as the independent variable—that is, the model we are 

e  b0  b1冢1

x冣  e

DS

y ˆ(i)

y ˆi

TaxTimeDS
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How do home prices vary with square footage, age,
and a variety of other factors? The Data and Story
Library (DASL) contains data, including the sale price,
for a random sample of 117 homes sold in Albuquerque,
New Mexico. Go to the DASL website (http://lib.stat.
cmu.edu/DASL/) and retrieve the home price data set.
To do this, select Data subjects, Economics, Home
Prices or go directly to http://lib.stat.cmu.edu/DASL/
Datafiles/homedat.html. There are a number of ways to
capture the home price data from the DASL site. One
simple way is to select just the rows containing the data
values (and not the labels), copy, paste directly into an
Excel or MINITAB worksheet, add your own variable la-
bels, and save the resulting worksheet. It is possible to
copy the variable labels from DASL as well, but the
differences in alignment and the intervening blank
line add to the difficulty (data sets: AlbHome.xlsx,
AlbHome.mtw).

a Construct plots of PRICE versus SQFT and PRICE versus
AGE. Describe the nature and apparent strength of
the relationships between PRICE and the variables
SQFT and AGE. Construct box plots of PRICE versus
each of the qualitative/dummy variables NE (north-
east location), CUST (custom built), and COR (corner
location). What do the box plots suggest about the
effect of these features on home prices?

b Using MINITAB, Excel, or other available statistical
software, develop a multiple regression model of

the dependent variable PRICE versus independent
variables SQFT, AGE, NE, CUST, and COR. Report and
interpret the key summary measures: R2, the stan-
dard error, and the F-statistic from the ANOVA table.
Report and interpret the p-values for the estimated
regression coefficients. Which of the independent
variables appear to be most important for predicting
Albuquerque home prices? Compute and interpret a
point prediction and a 95 percent prediction interval
for a five-year-old, 2,500 square foot, custom-built
home located in the northeast sector of the city (not
on a corner lot). Prepare a brief summary of your ob-
servations.

c Using MINITAB, Excel, or other available statistical
software, develop a multiple regression model of the
dependent variable PRICE versus independent vari-
ables SQFT, NE, and SQFT*NE (an interaction variable
formed as the product of SQFT and NE). Report and
interpret the estimated regression coefficients to de-
scribe how the relationship between PRICE and SQFT
varies by location (NE sector or not). You may find it
helpful to construct a scatter plot of PRICE versus
SQFT using two different plot symbols depending on
whether the home is in the northeast sector.

http://lib.stat.cmu.edu/DASL/

http://lib.stat.cmu.edu/DASL/Datafiles/homedat.html

15.37 Internet Exercise AlbHomeDS

considering—might be appropriate. Using the formulas of simple linear regression analysis, the

least squares point estimates of b0 and b1 can be calculated to be b0 ⫽ 2.0572 and b1 ⫽ 6.3545.

Furthermore, consider the completion time of an individual filling out the form for the fifth time

(that is, x ⫽ 5). Then, it can be verified that a point prediction of and a 95 percent prediction 

interval for this completion time are, respectively, 3.3281 and [.7225, 5.9337]. Show how the

point prediction has been calculated.

Appendix 15.1 ■ Model Building Using Excel
The instruction blocks in this section each begin by describing the entry of data into an Excel spreadsheet. Alterna-
tively, the data may be downloaded from this book’s website. The appropriate data file name is given at the top of
each instruction block. Please refer to Appendix 1.1 for further information about entering data, saving data, and
printing results when using Excel.
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Multiple linear regression with a quadratic term simi-
lar to Figure 15.2 on page 637 (data file: GasAdd.xlsx):

• Enter the gas mileage data from Table 15.1 
(page 637)—mileages (with label Mileage) in 
column A and units of additive (with label Units)
in column B. (Units are listed second in order to
be adjacent to the squared units predictor.)

• Enter UnitsSq into cell C1.

• Click on cell C2, and enter the formula =B2*B2.
Press “Enter” to compute the squared value of
Units for the first observation.

• Copy the cell formula of C2 through cell C16 (by
double-clicking the drag handle in the lower
right corner of cell C2) to compute the squared
units for the remaining observations.

• Select Data : Data Analysis : Regression and click
OK in Data Analysis dialog box.

• In the Regression dialog box:
Enter A1 : A16 into the “Input Y Range” window.
Enter B1 : C16 into the “Input X Range” window.

• Place a checkmark in the Labels checkbox.

• Select the “New Worksheet Ply” Output option.

• Click OK in the Regression dialog box to obtain
the regression output in a new worksheet.

Simple linear regression with a transformed response
similar to Figure 15.28 on page 673 (data file:
QHIC.xlsx): 

• Enter the QHIC upkeep expenditure data from
Figure 13.21 (page 556). Enter the label Value in
cell A1 with the home values in cells A2 to A41
and enter the label Upkeep in cell B1 with the
upkeep expenditures in cells B2 to B41.

• Enter the label SqUpkeep in cell C1.

• Click on cell C2 and then select the Insert 
Function button  on the Excel ribbon.

• Select Math & Trig from the “Or select a
category:” menu, select SQRT from the “Select a
function:” menu, and click OK in the Insert 
Function dialog box.

• In the “SQRT Function Arguments” dialog box,
enter B2 in the Number box and click OK to 
compute the square root of the value in B2.

• Copy the cell formula of C2 through cell C41 by
double-clicking the drag handle (in the lower
right corner) of cell C2 to compute the square
roots of the remaining upkeep values.

• Follow the steps for simple linear regression
(on page 576) using cells C1 : C41 as the response
(Input Y Range) and cells A1 : A41 as the predictor
(Input X Range).

fx
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Appendix 15.2 ■ Model Building Using MegaStat
The instructions in this section begin by describing the entry of data into an Excel worksheet. Alternatively, the data
may be downloaded from this book’s website. The appropriate data file name is given at the top of each instruc-
tion block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing re-
sults in Excel. Please refer to Appendix 1.2 for more information about using MegaStat.

Multiple linear regression with a quadratic term similar
to Figure 15.2 on page 637 (data file: GasAdd.xlsx):

• Enter the gasoline additive data from Table 15.1
(page 637)—mileages (with label Mileage) in 
column A and units of additive (with label Units) 
in column B. 

• Enter the label UnitsSq in cell C1.

• Click on cell C2 and type the cell formula =B2*B2.
Press enter to compute the squared value of Units
for the first observation.

• Copy the cell formula of C2 through cell C16 (by
double-clicking the drag handle in the lower right
corner of cell C2) to compute the squared units
for the remaining observations.

• Select Add-Ins : MegaStat : Correlation/
Regression : Regression Analysis.

• In the Regression Analysis dialog box, click in the
Independent Variables window and use the 
autoexpand feature to enter the range B1 : C16.

• Click in the Dependent Variable window and
enter the range A1 : A16.

To compute a prediction for mileage when Units
equals 2.44:

• Select “Type in predictor values” from the drop-
down menu above the Predictor Values window.

• Type 2.44 5.9536 in the Predictor Values window.
Note that (2.44)**2=5.9536 must first be hand 
calculated.

• Select or type the desired level of confidence
(here 95%) in the Confidence Level box.

• Click the Options and Residuals checkboxes as
desired.

• Click OK in the Regression Analysis dialog box.
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Stepwise selection similar to Figure 15.16(b) on 
page 657 (data file: SalePerf2.xlsx):

• Enter the sales performance data in Figure 14.10
(page 605) and Table 15.6 (page 653) into columns
A through I with labels as shown in the screen.

• Select Add-Ins : MegaStat : Correlation/
Regression : Regression Analysis.

• In the Regression Analysis dialog box, click in the
Independent Variables window and use the
autoexpand feature to enter the range B1 : I26.

• Click in the Dependent Variable window and
use the autoexpand feature to enter the range
A1 : A26.

• Check the “Stepwise Selection” checkbox.

• Click OK in the Regression Analysis dialog box.

Stepwise selection will give the best model of each size
(1, 2, 3 etc. independent variables). The default gives
one model of each size. For more models, use the
arrow buttons to request the desired number of mod-
els of each size.

• Check the “All Possible Regressions” checkbox to
obtain the results for all possible regressions. This
option will handle up to 12 independent variables.

Simple linear regression with a transformed response
similar to Figure 15.28 on page 673 (data file:
QHIC.xlsx):

• Enter the QHIC data from Figure 13.21 (page
556)—the home values in column A (with label
Value) and the upkeep expenditures in column B
(with label Upkeep). 

• Follow the instructions on page 689 in Appendix
15.1 to calculate the square roots of the upkeep
expenditures in column C (with label SRUpkeep). 

• Select Add-Ins : MegaStat : Correlation/
Regression : Regression Analysis.

• In the Regression Analysis dialog box, click in 
the Independent Variables window, and use the 
autoexpand feature to enter the range A1 : A41.

• Click in the Dependent Variable window and use
the autoexpand feature to enter the range
C1 : C41.

• Check the “Test Intercept” checkbox to include a
y-intercept and test its significance.

To compute a point prediction of the square root of y
(as well as a confidence interval and prediction inter-
val) for a house having a value of $220,000: 

• Select “Type in predictor values” from the 
drop-down menu above the Predictor Values 
window.

• Type 220 into the Predictor Values window.

• Select a desired level of confidence (here 95%)
from the drop-down menu in the Confidence
Level box or type in a value.

• Click OK in the Regression Analysis dialog box.



Appendix 15.3 ■ Model Building Using MINITAB
The instruction blocks in this section each begin by describing the entry of data into the MINITAB Data window.
Alternatively, the data may be downloaded from this book’s website. The appropriate data file name is given at the
top of each instruction block. Please refer to Appendix 1.3 for further information about entering data, saving data,
and printing results when using MINITAB.
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Multiple linear regression with a quadratic term in
Figure 15.2 on page 637 (data file: GasAdd.MTW):

• In the Data window, enter the gasoline mileage
data from Table 15.1 (page 637)—mileages in
column C1 with variable name Mileage and
units of additive in column C2 with variable
name Units.

To compute the quadratic predictor, Units squared:

• Select Calc : Calculator.

• In the Calculator dialog box, enter UnitsSq in
the “Store result in variable” box.

• Enter Units*Units in the Expression window.

• Click OK in the Calculator dialog box to obtain
the squared values in column C3 with variable
name UnitsSq.

To fit the quadratic regression model:

• Select Stat : Regression : Regression.

• In the Regression dialog box, select Mileage
into the Response window.

• Select Units and UnitsSq into the Predictors 
window.

• Click OK in the Regression dialog box.

To compute a prediction for mileage when 2.44 units
of additive are used:

• Click on the Options… button.

• In the Regression—Options dialog box, type
2.44 and 5.9536 into the “Prediction intervals
for new observations” window. [(2.44)2  

5.9536 must first be calculated by hand.]

• Click OK in the Regression—Options dialog box.

• Click OK in the Regression dialog box.

Logistic regression in Figure 15.13 on page 650
(data file: PerfTest.MTW):

• In the data window, enter the performance
data in Table 15.5 on page 650—Group
(either 1 or 0) in column C1 with variable name
Group, the score on test 1 in column C2 with
variable name Test1, and the score on test 2 in
column C3 with variable name Test2.

• In the “Binary Logistic Regression” dialog box,
enter Group into the Response window.

• Enter Test1 and Test2 into the Model window. 

• Click OK in the “Binary Logistic Regression” 
dialog box.
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Correlation matrix in Figure 15.14 on page 653 (data
file: SalePerf2.MTW):

• In the Data window, enter the sales territory
performance data from Figure 14.10 (page 605)
and Table 15.6 (page 653) into columns C1–C9
with variable names Sales, Time, MktPoten,
Adver, MktShare, Change, Accts, WkLoad, 
and Rating.

• Select Stat : Basic Statistics : Correlation.

• In the Correlation dialog box, enter all variable
names into the Variables window.

• If p-values are desired, make sure that the 
“Display p-values” checkbox is checked. 

• Click OK in the Correlation dialog box.

Variance inflation factors (VIF) in Figure 15.15 on
page 654 (data file: SalePerf2.MTW):

• In the Data window, enter the sales territory 
performance data from Figure 14.10 (page 605)
and Table 15.6 (page 653) into columns C1–C9
with variable names Sales, Time, MktPoten,
Adver, MktShare, Change, Accts, WkLoad, and
Rating. 

• Select Stat : Regression : Regression.

• In the Regression dialog box, enter Sales into the
Response window and the remaining variables
Time—Rating into the Predictors window.

• Click the Options… button.

• In the Regression—Options dialog box, place a
checkmark in the “Variance inflation factors”
checkbox.

• Click OK in the Regression—Options dialog box.

• Click OK in the Regression dialog box.



Best subsets regression in Figure 15.16(a) on page 657
(data file: SalePerf2.MTW):

• In the Data window, enter the sales territory 
performance data from Figure 14.10 (page 605)
and Table 15.6 (page 653) into columns C1–C9
with variable names Sales, Time, MktPoten,
Adver, MktShare, Change, Accts, WkLoad, and
Rating. 

• Select Stat : Regression : Best Subsets.

• In the Best Subsets Regression dialog box, enter
Sales into the Response window.

• Enter the remaining variable names into the
“Free predictors” window.

• Click on the Options… button. 

• In the “Best Subsets Regression—Options” dialog
box, enter 2 in the “Models of each size to print”
window.

• Click OK in the “Best Subsets Regression—
Options” dialog box.

• Click OK in the Best Subsets Regression dialog
box.

Note: To find the best single model of each size, as in
Figure 15.16(b) on page 657, repeat the steps above
except enter 1 in the “Models of each size to print”
window.
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Stepwise regression in Figure 15.17(a) on page 661
(data file: SalePerf2.MTW):

• In the Data window, enter the sales territory 
performance data from Figure 14.10 (page 605)
and Table 15.6 (page 653) into columns C1–C9
with variable names Sales, Time, MktPoten,
Adver, MktShare, Change, Accts, WkLoad, and
Rating. 

• Select Stat : Regression : Stepwise.

• In the Stepwise Regression dialog box, enter Sales
into the Response window. 

• Enter the remaining variable names into the 
Predictors window.

• Click on the Methods… button.

• In the Stepwise—Methods dialog box, select the
“Use alpha values” option.

• Select the “Stepwise (Forward and Backward)”
option.

• Enter 0.10 in the “Alpha to enter” and “Alpha to
remove” boxes.

• Click OK in the Stepwise—Methods dialog box.

• Click OK in the Stepwise Regression dialog box.

• The results of the stepwise regression are given in
the Session window.

• Note that backward elimination may be 
performed by clicking on the appropriate 
selections in the Stepwise—Methods dialog box.
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Diagnostic measures for outlying and influential
observations in Figure 15.22 on page 666 (data file:
HospLab3.MTW):

• In the Data window, enter the hospital labor
needs data from Table 15.8 on page 665 with 
variable names Hours, XRay, BedDays, and
Length.

• Select Stat : Regression : Regression.

• In the Regression dialog box, select Hours into
the Response window and select Xray, BedDays,
and Length into the Predictors window. 

• Click the Storage button.

• In the Regression—Storage dialog box, place
checkmarks in the following checkboxes: Fits (for
predicted values), Residuals, Deleted t residuals
(for studentized deleted residuals), Hi (leverages),
and Cook’s distance.

• Click OK in the Regression—Storage dialog box.

• Click OK in the Regression dialog box to view the
diagnostics in the data window. 

Simple linear regression with a transformed response
in Figure 15.28 on page 673 (data file: QHIC.MTW):

• In the Data window, enter the QHIC upkeep 
expenditure data from Figure 13.21 (page 556)—
home values in column C1 with variable name
Value and upkeep expenditures in column C2 with
variable name Upkeep.

• Select Calc : Calculator.

• In the Calculator dialog box, enter SqRtUpkeep in
the “Store result in variable” window.

• From the Functions menu list, double-click on
“Square root” giving SQRT(number) in the
Expression window.

• Replace “number” in the Expression window 
with Upkeep by double-clicking Upkeep in the
variables list.

• Click OK in the Calculator dialog box to obtain a
new column, SqRtUpkeep, containing the square
roots of the Upkeep values.

• Follow the steps for simple linear regression on
page 579 using SqRtUpkeep as the response and
Value as the predictor.
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After mastering the material in this chapter, you will be able to:



time series is a set of observations on a

variable of interest that has been collected

in time order. In this chapter we discuss

developing and using univariate time series models,

which forecast future values of a time series solely

on the basis of past values of the time series. Often 

univariate time series models forecast future time

series values by extrapolating the trend and/or

seasonal patterns exhibited by the past values of

the time series. To illustrate these ideas, we consider

several cases in this chapter, including:

The Calculator Sales Case: By extrapolating an

upward trend in past sales of the Bismark X-12

electronic calculator, Smith’s Department Stores,

Inc., forecasts future sales of this calculator. The

forecasts help the department store chain to better

implement its inventory and financial policies.

The Traveler’s Rest Case: By extrapolating an

upward trend and the seasonal behavior of its

past hotel room occupancies, Traveler’s Rest, Inc.,

forecasts future hotel room occupancies. The

forecasts help the hotel chain to more effectively

hire help and acquire supplies. 

C

16.1 Time Series Components and Models 
In order to identify patterns in time series data, it is often convenient to think of such data as con-

sisting of several components: trend, cycle, seasonal variations, and irregular fluctuations.

Trend refers to the upward or downward movement that characterizes a time series over time.

Thus trend reflects the long-run growth or decline in the time series. Trend movements can repre-

sent a variety of factors. For example, long-run movements in the sales of a particular industry

might be determined by changes in consumer tastes, increases in total population, and increases

in per capita income. Cycle refers to recurring up-and-down movements around trend levels.

These fluctuations can last from 2 to 10 years or even longer measured from peak to peak or

trough to trough. One of the common cyclical fluctuations found in time series data is the business

cycle, which is represented by fluctuations in the time series caused by recurrent periods of pros-

perity and recession. Seasonal variations are periodic patterns in a time series that complete

themselves within a calendar year or less and then are repeated on a regular basis. Often seasonal

variations occur yearly. For example, soft drink sales and hotel room occupancies are annually

higher in the summer months, while department store sales are annually higher during the winter

holiday season. Seasonal variations can also last less than one year. For example, daily restaurant

patronage might exhibit within-week seasonal variation, with daily patronage higher on Fridays

and Saturdays. Irregular fluctuations are erratic time series movements that follow no recogniz-

able or regular pattern. Such movements represent what is “left over” in a time series after trend,

cycle, and seasonal variations have been accounted for.

Time series that exhibit trend, seasonal, and cyclical components are illustrated in Figure 16.1.

In Figure 16.1(a) a time series of sales observations that has an essentially straight-line or linear

trend is plotted. Figure 16.1(b) portrays a time series of sales observations that contains a

Sales
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seasonal pattern that repeats annually. Figure 16.1(c) exhibits a time series of agricultural yields

that is cyclical, repeating a cycle about once every 10 years.

Time series models attempt to identify significant patterns in the components of a time series.

Then, assuming that these patterns will continue into the future, time series models extrapolate

these patterns to forecast future time series values. In Section 16.2 and optional Section 16.3 we

discuss forecasting by time series regression models, and in Section 16.4 we discuss forecast-

ing by using an intuitive method called multiplicative decomposition. Both of these approaches

assume that the time series components remain essentially constant over time. If the time series

components might be changing slowly over time, it is appropriate to forecast by using exponen-

tial smoothing. This approach is discussed in Sections 16.5 and 16.6. If the time series compo-

nents might be changing fairly quickly over time, it is appropriate to forecast by using the

Box–Jenkins methodology. This advanced approach is discussed in Appendix J on this book’s

website.

16.2 Time Series Regression: Basic Models 
Modeling trend components We begin this section with two examples.
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EXAMPLE 16.1 The Cod Catch Case

The Bay City Seafood Company owns a fleet of fishing trawlers and operates a fish processing

plant. In order to forecast its minimum and maximum possible revenues from cod sales and plan

the operations of its fish processing plant, the company desires to make both point forecasts and

prediction interval forecasts of its monthly cod catch (measured in tons). The company has

recorded monthly cod catch for the previous two years (years 1 and 2). The cod history is given

in Table 16.1. A runs plot (or time series plot) shows that the cod catches appear to randomly

fluctuate around a constant average level (see the plot in Figure 16.2). Since the company sub-

jectively believes that this data pattern will continue in the future, it seems reasonable to use the

“no trend” regression model

yt  b0  et

to forecast cod catch in future months. It can be shown that for the no trend regression model the

least squares point estimate b0 of b0 is , the average of the n observed time series values. Since

the average of the observed cod catches is 351.29, it follows that is

the point prediction of the cod catch (yt) in any future month. Furthermore, it can be shown that a

percent prediction interval for any future yt value described by the no trend model is

. Here s is the sample standard deviation of the n observed time series

values, and is based on degrees of freedom. For example, since s can be calculated to ben  1ta兾2

[ŷt  ta兾2 s11  (1兾n)]
100(1  a)

ŷt  b0  351.29n  24y

y
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Month Year 1 Year 2

Jan. 362 276

Feb. 381 334

Mar. 317 394

Apr. 297 334

May 399 384

June 402 314

July 375 344

Aug. 349 337

Sept. 386 345

Oct. 328 362

Nov. 389 314

Dec. 343 365
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33.82 for the n  24 cod catches, and since t.025 based on n  1  23 degrees of freedom is 2.069,

it follows that a 95 percent prediction interval for the cod catch in any future month is

, or [279.92, 422.66].[351.29  2.069(33.82)11  (1兾24)]

EXAMPLE 16.2 The Calculator Sales Case

For the last two years Smith’s Department Stores, Inc., has carried a new type of electronic cal-

culator called the Bismark X-12. Sales of this calculator have generally increased over these two

years. Smith’s inventory policy attempts to ensure that stores will have enough Bismark X-12

calculators to meet practically all demand for the Bismark X-12, while at the same time ensuring

that Smith’s does not needlessly tie up its money by ordering many more calculators than can be

sold. In order to implement this inventory policy in future months, Smith’s requires both point

predictions and prediction intervals for total monthly Bismark X-12 demand.

The monthly calculator demand data for the last two years are given in Table 16.2. A runs plot

of the demand data is shown in Figure 16.3. The demands appear to randomly fluctuate around

an average level that increases over time in a linear fashion. Furthermore, Smith’s believes that

this trend will continue for at least the next year. Thus it is reasonable to use the “linear trend”

regression model

yt  b0   b1t   et

to forecast calculator sales in future months. Notice that this model is just a simple linear

regression model where the time period t plays the role of the independent variable. The least

squares point estimates of b0 and b1 can be calculated to be b0  198.028986 and b1  

8.074348. Therefore, for example, point forecasts of Bismark X-12 demand in January and

February of year 3 (time periods 25 and 26) are, respectively

Note that the Excel output under Table 16.2 gives these point forecasts. In addition, it can be

shown using either the formulas for simple linear regression or a computer software package

that a 95 percent prediction interval for demand in time period 25 is [328.6, 471.2] and that a

95 percent prediction interval for demand in time period 26 is [336.0, 479.9]. These prediction

intervals can help Smith’s implement its inventory policy. For instance, if Smith’s stocks 471

Bismark X-12 calculators in January of year 3, we can be reasonably sure that monthly demand

will be met.

 ŷ26  198.028986  8.074348(26)  408.0

 ŷ25  198.028986  8.074348(25)  399.9    and
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Example 16.1 illustrates that the intercept b0 can be used to model a lack of trend over time,

and Example 16.2 illustrates that the expression (b0  b1t) can model a linear trend over time. In

addition, as will be illustrated in the exercises, the expression (b0  b1t  b2t
2) can model a qua-

dratic trend over time.

Modeling seasonal components We next consider how to forecast time series described

by trend and seasonal components.
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EXAMPLE 16.3 The Bike Sales Case

Table 16.3 presents quarterly sales of the TRK-50 mountain bike for the previous four years at a

bicycle shop in Switzerland. The MINITAB plot in Figure 16.4 shows that the bike sales exhibit

a linear trend and a strong seasonal pattern, with bike sales being higher in the spring and summer

quarters than in the winter and fall quarters. If we let yt denote the number of TRK-50 mountain

bikes sold in time period t at the Swiss bike shop, then a regression model describing yt is

Here the expression (b0  b1t) models the linear trend evident in Figure 16.4. Q2, Q3, and Q4 are

dummy variables defined for quarters 2, 3, and 4. Specifically, Q2 equals 1 if quarterly bike sales

were observed in quarter 2 (spring) and 0 otherwise; Q3 equals 1 if quarterly bike sales were ob-

served in quarter 3 (summer) and 0 otherwise; Q4 equals 1 if quarterly bike sales were observed

in quarter 4 (fall) and 0 otherwise. Note that we have not defined a dummy variable for quarter 1

(winter). It follows that the regression parameters bQ2, bQ3, and bQ4 compare quarters 2, 3, and 4

with quarter 1. Intuitively, for example, bQ4 is the difference, excluding trend, between the level

of the time series (yt) in quarter 4 (fall) and the level of the time series in quarter 1 (winter). A

positive bQ4 would imply that, excluding trend, bike sales in the fall can be expected to be higher

than bike sales in the winter. A negative bQ4 would imply that, excluding trend, bike sales in the

fall can be expected to be lower than bike sales in the winter.

Figure 16.5 gives the MINITAB output of a regression analysis of the quarterly bike sales by

using the dummy variable model. The MINITAB output tells us that the linear trend and the

seasonal dummy variables are significant (every t statistic has a related p-value less than .01).

Also, notice that the least squares point estimates of bQ2, bQ3, and bQ4 are, respectively, bQ2  21,

bQ3  33.5, and bQ4  4.5. It follows that, excluding trend, expected bike sales in quarter 2

(spring), quarter 3 (summer), and quarter 4 (fall) are estimated to be, respectively, 21, 33.5, and

4.5 bikes greater than expected bike sales in quarter 1 (winter). Furthermore, using all of the least

squares point estimates in Figure 16.5, we can compute point forecasts of bike sales in quarters 

yt  b0  b1t  bQ2Q2  bQ3Q3  bQ4Q4  et
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1 through 4 of next year (periods 17 through 20) as follows:

These point forecasts are given at the bottom of the MINITAB output, as are 95 percent predic-

tion intervals for y17, y18, y19, and y20. The upper limits of these prediction intervals suggest that

the bicycle shop can be reasonably sure that it will meet demand for the TRK-50 mountain bike

if the numbers of bikes it stocks in quarters 1 through 4 are, respectively, 19, 41, 54, and 25 bikes.

We next consider Table 16.4, which presents a time series of hotel room occupancies observed

by Traveler’s Rest, Inc., a corporation that operates four hotels in a midwestern city. The analysts

in the operating division of the corporation were asked to develop a model that could be used to

obtain short-term forecasts (up to one year) of the number of occupied rooms in the hotels. These

forecasts were needed by various personnel to assist in hiring additional help during the summer

months, ordering materials that have long delivery lead times, budgeting of local advertising ex-

penditures, and so on. The available historical data consisted of the number of occupied rooms

during each day for the previous 14 years. Because it was desired to obtain monthly forecasts,

these data were reduced to monthly averages by dividing each monthly total by the number of

days in the month. The monthly room averages for the previous 14 years are the time series val-

ues given in Table 16.4. A runs plot of these values in Figure 16.6 shows that the monthly room

averages follow a strong trend and have a seasonal pattern with one major and several minor

peaks during the year. Note that the major peak each year occurs during the high summer travel

months of June, July, and August.

Although the quarterly bike sales and monthly hotel room averages both exhibit seasonal

variation, they exhibit different kinds of seasonal variation. The quarterly bike sales plotted in

Figure 16.4 exhibit constant seasonal variation. In general, constant seasonal variation is sea-

sonal variation where the magnitude of the seasonal swing does not depend on the level of the

time series. On the other hand, increasing seasonal variation is seasonal variation where the

magnitude of the seasonal swing increases as the level of the time series increases. Figure 16.6

shows that the monthly hotel room averages exhibit increasing seasonal variation. We have

illustrated in the bike sales case that we can use dummy variables to model constant seasonal

variation. The number of dummy variables that we use is, in general, the number of seasons

minus 1. For example, if we model quarterly data, we use three dummy variables (as in the bike sales

case). If we model monthly data, we use 11 dummy variables (this will be illustrated in optional

 ŷ20  b0  b1(20)  bQ2(0)  bQ3(0)  bQ4(1)  8.75  .5(20)  4.5  23.250

 ŷ19  b0  b1(19)  bQ2(0)  bQ3(1)  bQ4(0)  8.75  .5(19)  33.5  51.750

 ̂y18  b0  b1(18)  bQ2(1)  bQ3(0)  bQ4(0)  8.75  .5(18)  21  38.750

 ŷ17  b0  b1(17)  bQ2(0)  bQ3(0)  bQ4(0)  8.75  .5(17)  17.250

F I G U R E 1 6 . 5 MINITAB Output of an Analysis of the Quarterly Bike Sales by Using 

Dummy Variable Regression

The regression equation is 

BikeSales = 8.75 + 0.500 Time + 21.0 Q2 + 33.5 Q3 + 4.50 Q4

Predictor     Coef  SE Coef      T      P 

Constant    8.7500   0.4281  20.44  0.000 

Time       0.50000  0.03769  13.27  0.000 

Q2         21.0000   0.4782  43.91  0.000 

Q3 33.5000 0.4827 69.41 0.000

Q4          4.5000   0.4900   9.18  0.000 

S = 0.674200   R-Sq = 99.8%   R-Sq(adj) = 99.8% 

Values of Predictors for New Obs   Predicted Values for New Observations      

New Obs  Time    Q2    Q3    Q4    New Obs    Fit  SE Fit       95% CI            95% PI

      1  17.0     0     0     0         1  17.250   0.506  (16.137, 18.363)  (15.395, 19.105) 

      2  18.0     1     0     0         2  38.750   0.506  (37.637, 39.863)  (36.895, 40.605) 

3  19.0     0     1     0         3  51.750   0.506  (50.637, 52.863)  (49.895, 53.605) 

4  20.0     0     0     1         4  23.250   0.506  (22.137, 24.363)  (21.395, 25.105) 

BI



Section 16.3). If a time series exhibits increasing seasonal variation, one approach is to first use

a fractional power transformation (see Section 15.6) that produces a transformed time series

exhibiting constant seasonal variation. Then, as will be shown in Section 16.3, we use dummy

variables to model the constant seasonal variation. A second approach to modeling increasing

seasonal variation is to use a multiplicative model and a technique called multiplicative

decomposition. This approach, which is intuitive, is discussed in Section 16.4.
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F I G U R E 1 6 . 6 Plot of the Monthly Hotel Room Averages versus Time

t yt t yt t yt t yt t yt t yt t yt t yt
1 501 22 587 43 785 64 657 85 645 106 759 127 1067 148 827

2 488 23 497 44 830 65 680 86 602 107 643 128 1038 149 788

3 504 24 558 45 645 66 759 87 601 108 728 129 812 150 937

4 578 25 555 46 643 67 878 88 709 109 691 130 790 151 1,076

5 545 26 523 47 551 68 881 89 706 110 649 131 692 152 1,125

6 632 27 532 48 606 69 705 90 817 111 656 132 782 153 840

7 728 28 623 49 585 70 684 91 930 112 735 133 758 154 864

8 725 29 598 50 553 71 577 92 983 113 748 134 709 155 717

9 585 30 683 51 576 72 656 93 745 114 837 135 715 156 813

10 542 31 774 52 665 73 645 94 735 115 995 136 788 157 811

11 480 32 780 53 656 74 593 95 620 116 1,040 137 794 158 732

12 530 33 609 54 720 75 617 96 698 117 809 138 893 159 745

13 518 34 604 55 826 76 686 97 665 118 793 139 1046 160 844

14 489 35 531 56 838 77 679 98 626 119 692 140 1075 161 833

15 528 36 592 57 652 78 773 99 649 120 763 141 812 162 935

16 599 37 578 58 661 79 906 100 740 121 723 142 822 163 1,110

17 572 38 543 59 584 80 934 101 729 122 655 143 714 164 1,124

18 659 39 565 60 644 81 713 102 824 123 658 144 802 165 868

19 739 40 648 61 623 82 710 103 937 124 761 145 748 166 860

20 758 41 615 62 553 83 600 104 994 125 768 146 731 167 762

21 602 42 697 63 599 84 676 105 781 126 885 147 748 168 877

T A B L E 1 6 . 4 Monthly Hotel Room Averages TravRestDS

Exercises for Section 16.2
CONCEPTS

16.1 Discuss how we model no trend and a linear trend.

16.2 Discuss the difference between constant seasonal variation and increasing seasonal variation.

16.3 Discuss how we use dummy variables to model constant seasonal variation.
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METHODS AND APPLICATIONS

16.4 THE LUMBER PRODUCTION CASE LumberProd

In this problem we consider annual U.S. lumber production over 30 years. The data were

obtained from the U.S. Department of Commerce Survey of Current Business and are presented

in Table 16.5

a Plot the lumber production values versus time and discuss why the plot indicates that the model 

yt ⫽ b0 ⫹ et

might appropriately describe these values.

b The mean and the standard deviation of the lumber production values can be calculated to be

and s ⫽ 2,037.3599. Find a point forecast of and a 95 percent prediction interval

for any future lumber production value.

16.5 THE WATCH SALES CASE WatchSale

The past 20 monthly sales figures for a new type of watch sold at Lambert’s Discount Stores are

given in Table 16.6. 

a Plot the watch sales values versus time and discuss why the plot indicates that the model

yt⫽ b0 ⫹ b1t ⫹ et

might appropriately describe these values.

b The least squares point estimates of b0 and b1 can be calculated to be b0 ⫽ 290.089474 and 

b1 ⫽ 8.667669. Use b0 and b1 to show that a point forecast of watch sales in period 21 is 

ŷ21 ⫽ 472.1 (see the Excel output in Table 16.6). Use the formulas of simple linear regression

analysis or a computer software package to show that a 95 percent prediction interval for watch

sales in period 21 is [421.5, 522.7].

16.6 THE AIR CONDITIONER SALES CASE ACSales

Bargain Department Stores, Inc., is a chain of department stores in the Midwest. Quarterly sales

of the “Bargain 8000-Btu Air Conditioner” over the past three years are as given in the lefthand

portion of Table 16.7 on the next page.

a Plot sales versus time and discuss why the plot indicates that the model

yt⫽ b0 ⫹ b1t ⫹ b2t
2
⫹ bQ2Q2 ⫹ bQ3Q3 ⫹ bQ4Q4 ⫹ et

might appropriately describe the sales values. In this model Q2, Q3, and Q4 are appropriately

defined dummy variables for quarters 2, 3, and 4.

The righthand portion of Table 16.7 is the MINITAB output of a regression analysis of the

air conditioner sales data using this model.

b Define the dummy variables Q2, Q3, and Q4. Then use the MINITAB output to find, report, and

interpret the least squares point estimates of bQ2, bQ3, and bQ4.

c At the bottom of the MINITAB output are point and prediction interval forecasts of air

conditioner sales in the four quarters of year 4. Find and report these forecasts and show how

the point forecasts have been calculated.

DS

DS

y ⫽ 35,651.9

DS

Month Sales Month Sales

1 298 11 356

2 302 12 371

3 301 13 399

4 351 14 392

5 336 15 425

6 361 16 411

7 407 17 455

8 351 18 457

9 357 19 465

10 346 20 481

A         B        C        D

465       19

481       20

472.1105       21 USING TREND

35,404 36,762 32,901 38,902 37,515

37,462 36,742 36,356 37,858 38,629

32,901 33,385 37,166 32,926 32,019

33,178 34,171 35,733 35,697 35,710

34,449 36,124 35,791 34,548 36,693

38,044 38,658 34,592 32,087 37,153

*Table reads from left to right.

T A B L E 1 6 . 5 Annual Total U.S. Lumber Production

(Millions of Board Feet)* LumberProdDS

T A B L E 1 6 . 6 Watch Sales Values WatchSaleDS
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T A B L E 1 6 . 7 Air Conditioner Sales ACSalesDS

Year Quarter Sales

1 1 2,915

2 8,032

3 10,411

4 2,427

2 1 4,381

2 9,138

3 11,386

4 3,382

3 1 5,105

2 9,894

3 12,300

4 4,013

The regression equation is 

Sales = 2625 + 383 T - 11.4 TSq + 4630 Q2 + 6739 Q3 - 1565 Q4

Predictor      Coef  SE Coef       T      P 

Constant     2624.5    100.4   26.15  0.000    S = 92.4244 

T            382.82    34.03   11.25  0.000    R-Sq = 100.0% 

TSq         -11.354    2.541   -4.47  0.004    R-Sq(adj)= 99.9% 

Q2          4629.74    76.08   60.86  0.000 

Q3          6738.85    77.38   87.09  0.000 

Q4         -1565.32    79.34  -19.73  0.000 

Time      Fit  SE Fit        95% CI              95% PI 

13   5682.4   112.6  ( 5406.9,  5957.9)  ( 5325.9,  6038.8) 

14 10388.4 142.8 (10039.0, 10737.8) ( 9972.2, 10804.6)

15  12551.0   177.2  (12117.4, 12984.7)  (12061.9, 13040.2) 

16   4277.7   213.9  ( 3754.4,  4801.1)  ( 3707.6,  4847.8)

5.7

5.8

0 10 20

t

30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

5.0

4.8

4.6

5.2

5.1

4.9

4.7

5.3

5.4

5.5

5.6

yt
.25

F I G U R E 1 6 . 7 Plot of the Quartic Roots of the Monthly Hotel Room Averages versus Time

EXAMPLE 16.4 The Traveler’s Rest Case

Consider taking the square roots, quartic roots, and natural logarithms of the monthly hotel

room averages in Table 16.4. If we do this and plot the resulting three sets of transformed values

versus time, we find that the quartic root transformation best equalizes the seasonal variation.

Figure 16.7 presents a plot of the quartic roots of the monthly hotel room averages versus time.

Letting yt denote the hotel room average observed in time period t, it follows that a regression

model describing the quartic root of yt is

b0  b1t  bM1M1  bM2M2  
. . .  bM11M11  et

The expression (b0  b1t) models the linear trend evident in Figure 16.7. Furthermore, M1,

M2, . . . , M11 are dummy variables defined for months January (month 1) through November

(month 11). For example, M1 equals 1 if a monthly room average was observed in January, and

0 otherwise; M2 equals 1 if a monthly room average was observed in February, and 0 otherwise.

Note that we have not defined a dummy variable for December (month 12). It follows that the

regression parameters bM1, bM2, . . . , bM11 compare January through November with December.

Intuitively, for example, bM1 is the difference, excluding trend, between the level of the time

series (yt
.25) in January and the level of the time series in December. A positive bM1 would imply

that, excluding trend, the value of the time series in January can be expected to be greater than

the value in December. A negative bM1 would imply that, excluding trend, the value of the time

series in January can be expected to be smaller than the value in December.

yt
.25  

C

Use data
transforma-

tions to forecast
time series having
increasing seasonal
variation (Optional).

LO3
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Figure 16.8 gives relevant portions of the Excel output of a regression analysis of the hotel

room data using the quartic root dummy variable model. The Excel output tells us that the linear

trend and the seasonal dummy variables are significant (every t statistic has a related p-value less

than .05). In addition, although not shown on the output, R2  .988. Now consider time period

169, which is January of next year and which therefore implies that M1  1 and that all the other

dummy variables equal 0. Using the least squares point estimates in Figure 16.8, we compute a

point forecast of to be

b0  b1(169)  bM1(1)  4.8073  0.0035(169)  ( .0525)(1)

 5.3489

Note that this point forecast is given in Figure 16.8 (see time period 169). It follows that a point

forecast of y169 is

(5.3489)4  818.57

Furthermore, the Excel add-in (MegaStat) output shows that a 95 percent prediction interval for

is [5.2913, 5.4065]. It follows that a 95 percent prediction interval for y169 is

[(5.2913)4, (5.4065)4]  [783.88, 854.41]

This interval says that Traveler’s Rest, Inc., can be 95 percent confident that the monthly hotel

room average in period 169 will be no less than 783.88 rooms per day and no more than 854.41

rooms per day. Lastly, note that the Excel add-in (MegaStat) output also gives point forecasts of

and 95 percent prediction intervals for the quartic roots of the hotel room averages in February

through December of next year (time periods 170 through 180).

y .25
169

y .25
169

(a) The Excel output

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 4.8073 0.0085 568.0695 4.06E-259 4.7906 4.8240

t 0.0035 0.0000 79.0087 3.95E-127 0.0034 0.0036

M1 -0.0525 0.0106 -4.9709 1.75E-06 -0.0733 -0.0316

M2 -0.1408 0.0106 -13.3415 1.59E-27 -0.1616 -0.1199

M3 -0.1071 0.0106 -10.1509 7.016E-19 -0.1279 -0.0863

M4 0.0499 0.0105 4.7284 5.05E-06 0.0290 0.0707

M5 0.0254 0.0105 2.4096 0.0171 0.0046 0.0463

M6 0.1902 0.0105 18.0311 6.85E-40 0.1693 0.2110

M7 0.3825 0.0105 36.2663 1.28E-77 0.3616 0.4033

M8 0.4134 0.0105 39.2009 2.41E-82 0.3925 0.4342

M9 0.0714 0.0105 6.7731 2.47E-10 0.0506 0.0922

M10 0.0506 0.0105 4.8029 3.66E-06 0.0298 0.0715

M11 -0.1419 0.0105 -13.4626 7.47E-28 -0.1628 -0.1211

(b) Prediction using an Excel add-in (MegaStat)

Predicted values for: TFY2
95% Confidence Intervals 95% Prediction Intervals

t Predicted lower upper lower upper Leverage

169 5.3489 5.3322 5.3656 5.2913 5.4065 0.092

170 5.2641 5.2474 5.2808 5.2065 5.3217 0.092

171 5.3013 5.2846 5.3180 5.2437 5.3589 0.092

172 5.4618 5.4451 5.4785 5.4042 5.5194 0.092

173 5.4409 5.4241 5.4576 5.3833 5.4984 0.092

174 5.6091 5.5924 5.6258 5.5515 5.6667 0.092

175 5.8049 5.7882 5.8216 5.7473 5.8625 0.092

176 5.8394 5.8226 5.8561 5.7818 5.8969 0.092

177 5.5009 5.4842 5.5176 5.4433 5.5585 0.092

178 5.4837 5.4669 5.5004 5.4261 5.5412 0.092

179 5.2946 5.2779 5.3113 5.2370 5.3522 0.092

180 5.4400 5.4233 5.4568 5.3825 5.4976 0.092

F I G U R E 1 6 . 8 Excel Output of an Analysis of the Quartic Roots of the Room 

Averages Using Dummy Variable Regression (TFY2  y .25
t )



The validity of the regression methods just illustrated requires that the independence assump-

tion be satisfied. However, when time series data are analyzed, this assumption is often violated.

It is quite common for the time-ordered error terms to exhibit positive or negative autocorrela-

tion. In Section 13.9 we discussed positive and negative autocorrelation, and we saw that we can

use residual plots to check for these kinds of autocorrelation.

One type of positive or negative autocorrelation is called first-order autocorrelation. It says

that et, the error term in time period t, is related to et 1, the error term in time period t  1, by the

equation

et  fet 1  at

Here we assume that  ( pronounced “phi”) is the correlation coefficient that measures the re-

lationship between error terms separated by one time period, and at is an error term (often called

a random shock) that satisfies the usual regression assumptions. To check for positive or neg-

ative first-order autocorrelation, we can use the Durbin–Watson statistic d, which was dis-

cussed in Chapter 15. For example, it can be verified that this statistic shows no evidence of

positive or negative first-order autocorrelation in the error terms of the calculator sales model

or in the error terms of the bike sales model. However, the Durbin–Watson statistic for the

dummy variable regression model describing the quartic roots of the hotel room averages can

be calculated to be d  1.26. Since the dummy variable regression model uses k  12 inde-

pendent variables, and since Tables A.10, A.11, and A.12 (pages 871–872) do not give the

Durbin–Watson critical points corresponding to k  12, we cannot test for autocorrelation

using these tables. However, it can be shown that d  1.26 is quite small and indicates positive

autocorrelation in the error terms. One approach to dealing with first-order autocorrelation in

the error terms is to predict future values of the error terms by using the model et  fet 1  at.

Of course, the error term et could be related to more than just the previous error term et 1. It

could be related to any number of previous error terms. The autoregressive error term model

of order q

et  f1et 1  f2et 2  
. . .  fqet q  at

relates et, the error term in time period t, to the previous error terms et 1, et 2, . . . , et q. Here f1,

f2, . . . , fq are unknown parameters, and at is an error term (random shock) with mean 0 that sat-

isfies the regression assumptions. The Box–Jenkins methodology can be used to systematically

identify an autoregressive error term model that relates et to an appropriate number of past error

terms. More generally, the Box–Jenkins methodology can be employed to predict future time

series values (yt) by using a procedure that combines the autoregressive error term model of order

q with the model

yt  b0  b1yt 1  b2yt 2  
. . .  bpyt p  et

This latter model, which is called the autoregressive observation model of order p, expresses

the observation yt in terms of the previous observations yt 1, yt 2, . . . , yt p and an error term et.

The Box–Jenkins methodology, which is discussed in Appendix J on this book’s website, identi-

fies which previous observations and which previous error terms describe yt.

Although sophisticated techniques such as the Box–Jenkins methodology can be quite useful,

studies show that the regression techniques discussed in Section 16.2 and in this section often

provide accurate forecasts, even if we ignore the autocorrelation in the error terms. In fact, when-

ever we observe time series data we should determine whether trend and/or seasonal effects exist.

For example, recall that the Fresh demand data in Table 15.2 (page 639) are time series data

observed over 30 consecutive four-week sales periods. Although we predicted demand for Fresh

detergent on the basis of price difference and advertising expenditure, it is also possible that this

demand is affected by a linear or quadratic trend over time and/or by seasonal effects (for exam-

ple, more laundry detergent might be sold in summer sales periods when children are home from

school). If we try using trend equations and dummy variables to search for trend and seasonal

effects, we find that these effects do not exist in the Fresh demand data. However, in the

supplemental exercises (see Exercise 16.41) we present a situation where we use trend equations

and seasonal dummy variables, as well as causal variables such as price difference and adver-

tising expenditure, to predict demand for a fishing lure.

706 Chapter 16 Time Series Forecasting
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Exercises for Section 16.3
CONCEPTS

16.7 What transformations can be used to transform a time series exhibiting increasing seasonal 

variation into a time series exhibiting constant seasonal variation?

16.8 What is the purpose of an autoregressive error term model?

METHODS AND APPLICATIONS

16.9 Table 16.8 gives the monthly international passenger totals over the last 11 years for an airline

company. A plot of these passenger totals reveals an upward trend with increasing seasonal

variation, and the natural logarithmic transformation is found to best equalize the seasonal

variation [see Figure 16.9(a) and (b)]. Figure 16.9(c) gives the MINITAB output of a regression

analysis of the monthly international passenger totals by using the model

ln yt  b0  b1t  bM1M1  bM2M2  
. . .  bM11M11  et

Here M1, M2, . . . , M11 are appropriately defined dummy variables for January (month 1) through

November (month 11). Let y133 denote the international passenger totals in month 133 (January of

next year). The MINITAB output tells us that a point forecast of and a 95 percent prediction

interval for ln y133 are, respectively, 6.08610 and [5.96593, 6.20627]. Using the least squares

point estimates on the MINITAB output, show how the point forecast has been calculated. Then,

by calculating e6.08610 and [e5.96593, e6.20627], find a point forecast of and a 95 percent prediction

interval for y133. AirPass

16.10 Use the Durbin–Watson statistic given at the bottom of the MINITAB output in Figure 16.9(c) to

test for positive autocorrelation. See Section 15.7 (pages 678–681).

DS

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

1 112 118 132 129 121 135 148 148 136 119 104 118

2 115 126 141 135 125 149 170 170 158 133 114 140

3 145 150 178 163 172 178 199 199 184 162 146 166

4 171 180 193 181 183 218 230 242 209 191 172 194

5 196 196 236 235 229 243 264 272 237 211 180 201

6 204 188 235 227 234 264 302 293 259 229 203 229

7 242 233 267 269 270 315 364 347 312 274 237 278

8 284 277 317 313 318 374 413 405 355 306 271 306

9 315 301 356 348 355 422 465 467 404 347 305 336

10 340 318 362 348 363 435 491 505 404 359 310 337

11 360 342 406 396 420 472 548 559 463 407 362 405

Source: FAA Statistical Handbook of Civil Aviation (several annual issues). These data were originally presented by Box and Jenkins (1976). We have updated
the situation in this exercise to be more modern.

T A B L E 1 6 . 8 Monthly International Passenger Totals (Thousands of Passengers) AirPassDS
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F I G U R E 1 6 . 9 Analysis of the Monthly International Passenger Totals

(a) Plot of the passenger totals (b) Plot of the natural logarithms of the passenger totals



16.4 Multiplicative Decomposition 
When a time series exhibits increasing (or decreasing) seasonal variation, we can use the multi-

plicative decomposition method to decompose the time series into its trend, seasonal, cyclical,

and irregular components. This is illustrated in the following example.
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F I G U R E 1 6 . 1 0 Monthly Sales of Tasty Cola 

(in Hundreds of Cases)

Sales, Sales,
Year Month t yt Year Month t yt
1 1 (Jan.) 1 189 2 7 19 831

2 (Feb.) 2 229 8 20 960

3 (Mar.) 3 249 9 21 1,152

4 (Apr.) 4 289 10 22 759

5 (May) 5 260 11 23 607

6 (June) 6 431 12 24 371

7 (July) 7 660 3 1 25 298

8 (Aug.) 8 777 2 26 378

9 (Sept.) 9 915 3 27 373

10 (Oct.) 10 613 4 28 443

11 (Nov.) 11 485 5 29 374

12 (Dec.) 12 277 6 30 660

2 1 13 244 7 31 1,004

2 14 296 8 32 1,153

3 15 319 9 33 1,388

4 16 370 10 34 904

5 17 313 11 35 715

6 18 556 12 36 441

F I G U R E 1 6 . 9 Analysis of the Monthly International Passenger Totals (continued )

T A B L E 1 6 . 9 Monthly Sales of Tasty Cola (in Hundreds 

of Cases) TastyColaDS

Predictor       Coef    SE Coef       T      P    Predicted Values for New Observations 

Constant     4.69618    0.01973  238.02  0.000    Time      Fit   SE Fit        95% PI

Time       0.0103075  0.0001316   78.30  0.000     133  6.08610  0.01973  (5.96593, 6.20627) 

Jan          0.01903    0.02451    0.78  0.439     134  6.07888  0.01973  (5.95871, 6.19905) 

Feb          0.00150    0.02451    0.06  0.951     135  6.22564  0.01973  (6.10547, 6.34581) 

March        0.13795    0.02450    5.63  0.000     136  6.19383  0.01973  (6.07366, 6.31400) 

April        0.09583    0.02449    3.91  0.000     137  6.20008  0.01973  (6.07991, 6.32025) 

May          0.09178    0.02449    3.75  0.000     138  6.33292  0.01973  (6.21276, 6.45309) 

June         0.21432    0.02448    8.75  0.000     139  6.44360  0.01973  (6.32343, 6.56377) 

July         0.31469    0.02448   12.85  0.000     140  6.44682  0.01973  (6.32665, 6.56699) 

Aug          0.30759    0.02448   12.57  0.000     141  6.31605  0.01973  (6.19588, 6.43622) 

Sept         0.16652    0.02448    6.80  0.000     142  6.18515  0.01973  (6.06498, 6.30531) 

Oct          0.02531    0.02447    1.03  0.303     143  6.05455  0.01973  (5.93438, 6.17472) 

Nov         -0.11559    0.02447   -4.72  0.000     144  6.18045  0.01973  (6.06028, 6.30062) 

S = 0.0573917   R-Sq = 98.3%   R-Sq(adj) = 98.1%    Durbin-Watson statistic = 0.420944 

(c) MINITAB Output of a Regression Analysis of the Monthly International Passenger Totals 
Using the Dummy Variable Model

EXAMPLE 16.5 The Tasty Cola Case

The Discount Soda Shop, Inc., owns and operates 10 drive-in soft drink stores. Discount Soda has

been selling Tasty Cola, a soft drink introduced just three years ago and gaining in popularity. Peri-

odically, Discount Soda orders Tasty Cola from the regional distributor. To better implement its in-

ventory policy, Discount Soda needs to forecast monthly Tasty Cola sales (in hundreds of cases).

Discount Soda has recorded monthly Tasty Cola sales for the previous three years. This time

series is given in Table 16.9 and plotted in Figure 16.10. Notice that, in addition to having a lin-

ear trend, the Tasty Cola sales time series possesses seasonal variation, with sales of the soft drink

C

Use multi-
plicative 

decomposition and
moving averages to
forecast time series
having increasing
seasonal variation.

LO4
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greatest in the summer and early fall months and lowest in the winter months. Since, furthermore,

the seasonal variation seems to be increasing, we will see as we progress through this example

that it might be reasonable to conclude that yt, the sales of Tasty Cola in period t, is described

by the multiplicative model

yt  TRt  SNt  CLt  IRt

Here TRt, SNt, CLt, and IRt represent the trend, seasonal, cyclical, and irregular components of the

time series in time period t.

Table 16.10 summarizes the calculations needed to find estimates—denoted trt, snt, clt, and

irt—of TRt, SNt, CLt, and IRt. As shown in the table, we begin by calculating moving averages

and centered moving averages. The purpose behind computing these averages is to eliminate

seasonal variations and irregular fluctuations from the data. The first moving average of the first

12 Tasty Cola sales values is 

 447.833

189  229  249  289  260  431  660  777  915  613  485  277

12

yt First Step: trt  clt: clt:
t Tasty 12-Period Centered snt  irt: snt: dt: trt: trt  snt: clt  irt: 3-Period irt:

Time Cola Moving Moving yt Table yt 380.163 Multiply yt Moving clt  irt
Period Sales Average Average trt  clt 13.11 snt  9.489t trt by snt trt  snt Average clt
1 (Jan) 189 .493 383.37 389.652 192.10 .9839

2 229 .596 384.23 399.141 237.89 .9626 .9902 .9721

3 249 .595 418.49 408.630 243.13 1.0241 1.0010 1.0231

4 289 .680 425 418.119 284.32 1.0165 1.0396 .9778

5 260 .564 460.99 427.608 241.17 1.0781 1.0315 1.0452

6 431
447.833

.986 437.12 437.097 430.98 1.0000 1.0285 .9723

7 660
452.417

450.125 1.466 1.467 449.9 446.586 655.14 1.0074 1.0046 1.0028

8 777
458

455.2085 1.707 1.693 458.95 456.075 772.13 1.0063 1.0004 1.0059

9 915
563.833

460.9165 1.985 1.990 459.79 465.564 926.47 .9876 .9937 .9939

10 613
470.583

467.208 1.312 1.307 469.01 475.053 620.89 .9873 .9825 1.0049

11 485
475

472.7915 1.026 1.029 471.33 489.542 498.59 .9727 .9648 1.0082

12 277
485.417

480.2085 .577 .600 461.67 494.031 296.42 .9345 .9634 .9700

13 (Jan) 244
499.667

492.542 .495 .493 494.97 503.520 248.24 .9829 .9618 1.0219

14 296
514.917

507.292 .583 .596 496.64 513.009 305.75 .9681 .9924 .9755

15 319
534.667

524.792 .608 .595 536.13 522.498 310.89 1.0261 1.0057 1.0203

16 370
546.833

540.75 .684 .680 544.12 531.987 361.75 1.0228 1.0246 .9982

17 313
557

551.9165 .567 .564 554.97 541.476 305.39 1.0249 1.0237 1.0012

18 556
564.833

560.9165 .991 .986 563.89 550.965 543.25 1.0235 1.0197 1.0037

19 831
569.333

567.083 1.465 1.467 566.46 560.454 822.19 1.0107 1.0097 1.0010

20 960
576.167

572.75 1.676 1.693 567.04 569.943 964.91 .9949 1.0016 .9933

21 1,152
580.667

578.417 1.992 1.990 578.89 579.432 1,153.07 .9991 .9934 1.0057

22 759
586.75

583.7085 1.300 1.307 580.72 588.921 769.72 .9861 .9903 .9958

23 607
591.833

589.2915 1.030 1.029 589.89 598.410 615.76 .9858 .9964 .9894

24 371
600.5

596.1665 .622 .600 618.33 607.899 364.74 1.0172 .9940 1.0233

25 (Jan) 298
614.917

607.7085 .490 .493 604.46 617.388 304.37 .9791 1.0027 .9765

26 378
631

622.9585 .607 .596 634.23 626.877 373.62 1.0117 .9920 1.0199

27 373
650.667

640.8335 .582 .595 626.89 636.366 378.64 .9851 1.0018 .9833

28 443
662.75

656.7085 .675 .680 651.47 645.855 439.18 1.0087 1.0030 1.0057

29 374
671.75

667.25 .561 .564 663.12 655.344 369.61 1.0119 1.0091 1.0028

30 660
677.583

674.6665 .978 .986 669.37 664.833 655.53 1.0068 1.0112 .9956

31 1,004 1.467 684.39 674.322 989.23 1.0149 1.0059 1.0089

32 1,153 1.693 681.04 683.811 1,157.69 .9959 1.0053 .9906

33 1,388 1.990 697.49 693.300 1,379.67 1.0060 .9954 1.0106

34 904 1.307 691.66 702.789 918.55 .9842 .9886 .9955

35 715 1.029 694.85 712.278 732.93 .9755 .9927 .9827

36 441 .600 735 721.707 433.06 1.0183
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Here we use a “12-period moving average” because the Tasty Cola time series data are monthly

(12 time periods or “seasons” per year). If the data were quarterly, we would compute a “4-period

moving average.” The second moving average is obtained by dropping the first sales value ( y1)

from the average and by including the next sales value ( y13) in the average. Thus we obtain

The third moving average is obtained by dropping y2 from the average and by including y14 in the

average. We obtain

Successive moving averages are computed similarly until we include y36 in the last moving aver-

age. Note that we use the term “moving average” here because, as we calculate these averages,

we move along by dropping the most remote observation in the previous average and by includ-

ing the “next” observation in the new average.

The first moving average corresponds to a time that is midway between periods 6 and 7, the

second moving average corresponds to a time that is midway between periods 7 and 8, and so

forth. In order to obtain averages corresponding to time periods in the original Tasty Cola time

series, we calculate centered moving averages. The centered moving averages are two-period

moving averages of the previously computed 12-period moving averages. Thus the first centered

moving average is

The second centered moving average is

Successive centered moving averages are calculated similarly. The 12-period moving averages

and centered moving averages for the Tasty Cola sales time series are given in Table 16.10.

If the original moving averages had been computed using an odd number of time series values,

the centering procedure would not have been necessary. For example, if we had three seasons per

year, we would compute three-period moving averages. Then, the first moving average would

correspond to period 2, the second moving average would correspond to period 3, and so on.

However, most seasonal time series are quarterly, monthly, or weekly, so the centering procedure

is necessary.

The centered moving average in time period t is considered to equal trt  clt, the estimate of 

TRt  CLt, because the averaging procedure is assumed to have removed seasonal variations

(note that each moving average is computed using exactly one observation from each season) and

(short-term) irregular fluctuations. The (longer-term) trend effects and cyclical effects—that is, 

trt  clt—remain.

Since the model

yt  TRt  SNt  CLt  IRt

implies that

it follows that the estimate snt  irt of SNt  IRt is

snt  irt  
yt

trt  clt

SNt  IRt  
yt

TRt  CLt

452.417  458

2
 455.2085

447.833  452.417

2
 450.125

 458

249  289  260  431  660  777  915  613  485  277  244  296

12

 452.417

229  249  289  260  431  660  777  915  613  485  277  244

12
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Noting that the values of snt  irt are calculated in Table 16.10, we can find snt by grouping the

values of snt  irt by months and calculating an average, , for each month. These monthly av-

erages are given for the Tasty Cola data in Table 16.11. The monthly averages are then normalized

so that they sum to the number of time periods in a year. Denoting the number of time periods in

a year by L (for instance, L  4 for quarterly data, L  12 for monthly data), we accomplish the

normalization by multiplying each value of by the quantity

This normalization process results in the estimate snt  1.0008758( ), which is the estimate of

SNt. These calculations are summarized in Table 16.11.

Having calculated the values of snt and placed them in Table 16.10, we next define the desea-

sonalized observation in time period t to be

Deseasonalized observations are computed to better estimate the trend component TRt. Dividing yt

by the estimated seasonal factor removes the seasonality from the data and allows us to better un-

derstand the nature of the trend. The deseasonalized observations are calculated in Table 16.10 and

are plotted in Figure 16.11. Since the deseasonalized observations have a straight-line appearance,

it seems reasonable to assume a linear trend

TRt  b0  b1t

We estimate TRt by fitting a straight line to the deseasonalized observations. That is, we compute

the least squares point estimates of the parameters in the simple linear regression model relating

the dependent variable dt to the independent variable t:

dt  b0  b1t  et

We obtain b0  380.163 and b1  9.489. It follows that the estimate of TRt is

trt  b0  b1t  380.163  9.489t

The values of trt are calculated in Table 16.10. Note that, for example, although y22  759, Tasty

Cola sales in period 22 (October of year 2), are larger than tr22  588.921 (the estimated trend in

dt  
yt

snt

snt

   
12

11.9895
 1.0008758

 
L

a snt

 
12

.4925  .595        .5995

snt

snt

snt  irt  yt兾(trt  clt) snt  

Year 1 Year 2 1.0008758( )

1 Jan. .495 .490 .4925 .493

2 Feb. .583 .607 .595 .596

3 Mar. .608 .582 .595 .595

4 Apr. .684 .675 .6795 .680

5 May .567 .561 .564 .564

6 June .991 .978 .9845 .986

7 July 1.466 1.465 1.4655 1.467

8 Aug. 1.707 1.676 1.6915 1.693

9 Sep. 1.985 1.992 1.9885 1.990

10 Oct. 1.312 1.300 1.306 1.307

11 Nov. 1.026 1.030 1.028 1.029

12 Dec. .577 .622 .5995 .600

sntsnt

6

Sales

400

36302418

Deseasonalized observations
Original observations

12

t

200

600

800

1,000

1,200

1,400

1,600

F I G U R E 1 6 . 1 1 Plot of Tasty Cola Sales and 

Deseasonalized Sales

T A B L E 1 6 . 1 1 Estimation of the Seasonal Factors



period 22), d22  580.72 is smaller than tr22  588.921. This implies that, on a deseasonalized

basis, Tasty Cola sales were slightly down in October of year 2. This might have been caused by

a slightly colder October than usual.

Thus far, we have found estimates snt and trt of SNt and TRt. Since the model

yt   TRt   SNt   CLt  IRt

implies that

it follows that the estimate of CLt  IRt is

Moreover, experience has shown that, when considering either monthly or quarterly data, we can

average out irt and thus calculate the estimate clt of CLt by computing a three-period moving

average of the clt  irt values.

Finally, we calculate the estimate irt of IRt by using the equation

The calculations of the values clt and irt for the Tasty Cola data are summarized in Table 16.10.

Since there are only three years of data, and since most of the values of clt are near 1, we cannot

discern a well-defined cycle. Furthermore, examining the values of irt, we cannot detect a pattern

in the estimates of the irregular factors.

Traditionally, the estimates trt, snt, clt, and irt obtained by using the multiplicative decomposi-

tion method are used to describe the time series. However, we can also use these estimates to

forecast future values of the time series. If there is no pattern in the irregular component, we

predict IRt to equal 1. Therefore, the point forecast of yt is

  trt   snt   clt

if a well-defined cycle exists and can be predicted. The point forecast is

  trt   snt

if a well-defined cycle does not exist or if CLt cannot be predicted, as in the Tasty Cola example.

Since values of trt  snt have been calculated in column 9 of Table 16.10, these values are the

point forecasts of the n 36 historical Tasty Cola sales values. Furthermore, we present in

Table 16.12 point forecasts of future Tasty Cola sales in the 12 months of year 4. Recalling that

ŷt

ŷt

irt  
clt  irt

clt

clt  irt  
yt

trt  snt

CLt  IRt  
yt

TRt  SNt
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T A B L E 1 6 . 1 2 Forecasts of Future Values of Tasty Cola Sales Calculated Using the Multiplicative 

Decomposition Method

Point Prediction, Approximate 95%
t snt trt  380.163  9.489t ŷt  trt  snt Prediction Interval yt
37 .493 731.273 360.52 [333.72, 387.32] 352

38 .596 740.762 441.48 [414.56, 468.40] 445

39 .595 750.252 446.40 [419.36, 473.44] 453

40 .680 759.741 516.62 [489.45, 543.79] 541

41 .564 769.231 433.85 [406.55, 461.15] 457

42 .986 778.720 767.82 [740.38, 795.26] 762

43 1.467 788.209 1,156.30 [1,128.71, 1,183.89] 1,194

44 1.693 797.699 1,350.50 [1,322.76, 1,378.24] 1,361

45 1.990 807.188 1,606.30 [1,578.41, 1,634.19] 1,615

46 1.307 816.678 1,067.40 [1,039.35, 1,095.45] 1,059

47 1.029 826.167 850.12 [821.90, 878.34] 824

48 .600 835.657 501.39 [473, 529.78] 495
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the estimated trend equation is trt  380.163  9.489t and that the estimated seasonal factor for

August is 1.693 (see Table 16.11), it follows, for example, that the point forecast of Tasty Cola

sales in period 44 (August of year 4) is

  tr44   sn44

  (380.163   9.489(44))(1.693)

  797.699(1.693)

  1,350.50

Although there is no theoretically correct prediction interval for yt, a fairly accurate approxi-

mate 100(1  A) percent prediction interval for yt is obtained by computing an interval that is

centered at and that has a length equal to the length of the 100(1  a) percent prediction

interval for the deseasonalized observation dt. Here the interval for dt is obtained by using the

model

dt   TRt   et

  b0   b1t   et

For instance, using MINITAB to predict dt on the basis of this model, we find that a 95 percent pre-

diction interval for d44 is [769.959, 825.439]. Since this interval has a length equal to 825.439 

769.959 55.48, it follows that an approximate 95 percent prediction interval for y44 is

 [1,322.76, 1,378.24]

In Table 16.12 we give the approximate 95 percent prediction intervals (calculated by the above

method) for Tasty Cola sales in the 12 months of year 4.

Next, suppose we actually observe Tasty Cola sales in year 4, and these sales are as given in

Table 16.12. In Figure 16.12 we plot the observed and forecast sales for all 48 sales periods. In

practice, the comparison of the observed and forecast sales in years 1 through 3 would be used by

the analyst to determine whether the forecasting equation adequately fits the historical data. An

adequate fit (as indicated by Figure 16.12, for example) might prompt an analyst to use this equa-

tion to calculate forecasts for future time periods. One reason that the Tasty Cola forecasting

equation

  trt   snt

  (380.163   9.489t)snt

ŷt

B ŷ44  
55.48

2
R  [1,350.50  27.74]

ŷt

ŷ44

6
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provides reasonable forecasts is that this equation multiplies trt by snt. Therefore, as the average

level of the time series (determined by the trend) increases, the seasonal swing of the time series

increases, which is consistent with the data plots in Figures 16.10 and 16.12. For example, note

from Table 16.11 that the estimated seasonal factor for August is 1.693. The forecasting equation

yields a prediction of Tasty Cola sales in August of year 1 equal to

 [380.163  9.489(8)]1.693

 (456.075)(1.693)

 772.13

This implies a seasonal swing of 772.13 456.075 316.055 (hundreds of cases) above

456.075, the estimated trend level. The forecasting equation yields a prediction of Tasty Cola

sales in August of year 2 equal to

  [380.163 9.489(20)]1.693

 (569.943)(1.693)

 964.91

which implies an increased seasonal swing of 964.91 569.943 394.967 (hundreds of cases)

above 569.943, the estimated trend level. In general, then, the forecasting equation is appropriate

for forecasting a time series with a seasonal swing that is proportional to the average level of the

time series as determined by the trend—that is, a time series exhibiting increasing seasonal

variation.

We next note that the U.S. Bureau of the Census has developed the Census II method, which

is a sophisticated version of the multiplicative decomposition method discussed in this section.

The initial version of Census II was primarily developed by Julius Shiskin in the late 1950s when

a computer program was written to perform the rather complex calculations. Several modifica-

tions have been made to the first version of the method over the years. Census II continues to be

widely used by a variety of businesses and government agencies.

Census II first adjusts the original data for “trading day variations.” That is, the data are

adjusted to account for the fact that, for example, different months or quarters will consist of dif-

ferent numbers of business days or “trading days.” The method then uses an iterative procedure

to obtain estimates of the seasonal component (SNt), the trading day component, the so-called

trend-cycle component (TRt  CLt), and the irregular component (IRt). The iterative procedure

makes extensive use of moving averages and a method for identifying and replacing extreme val-

ues in order to eliminate randomness. For a good explanation of the details involved here and in

the Census II method as a whole, see Makridakis, Wheelwright, and McGee (1983). After carry-

ing out a number of tests to check the correctness of the estimates, the method estimates the

trend-cycle, seasonal, and irregular components.

MINITAB carries out a modified version of the multiplicative decomposition method discussed

in this section. We believe that MINITAB’s modified version (at the time of the writing of this book)

makes some conceptual errors that can result in biased estimates of the time series components.

Therefore, we will not present MINITAB output of multiplicative decomposition. The Excel add-

in (MegaStat) estimates the seasonal factors and the trend line exactly as described in this

section. MegaStat does not estimate the cyclical and irregular components. However, since it is

often reasonable to make forecasts by using estimates of the seasonal factors and trend line,

MegaStat can be used to do this. In Appendix 16.2, we show a MegaStat output that estimates the

seasonal factors and trend line for the Tasty Cola data.

ŷ20

ŷ8
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Exercises for Section 16.4
CONCEPTS

16.11 Explain how the multiplicative decomposition model estimates seasonal factors.

16.12 Explain how the multiplicative decomposition method estimates the trend effect.

16.13 Discuss how the multiplicative decomposition method makes point forecasts of future time series

values.
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16.14 Find and identify the four seasonal factors for quarters 1, 2, 3, and 4.

16.15 What type of trend is indicated by the plot of the deseasonalized data?

16.16 What is the equation of the estimated trend that has been calculated using the deseasonalized data?

16.17 Compute a point forecast of tractor sales (based on trend and seasonal factors) for each of the

quarters next year.

16.18 Compute an approximate 95 percent prediction interval forecast of tractor sales for each of the

quarters next year. Use the fact that the half-lengths of 95 percent prediction intervals for the de-

seasonalized sales values in the four quarters of next year are, respectively, 14, 14.4, 14.6, and 15.

16.19 If we use the multiplicative decomposition method to analyze the quarterly bicycle sales data

given in Table 16.3 (page 700), we find that the quarterly seasonal factors are .46, 1.22, 1.68, 

and .64. Furthermore, if we use a statistical software package to fit a straight line to the 

deseasonalized sales values, we find that the estimate of the trend is BikeSales

trt  22.61  .59t

In addition, we find that the half-lengths of 95 percent prediction intervals for the deseasonalized

sales values in the four quarters of the next year are, respectively, 2.80, 2.85, 2.92, and 2.98.

a Calculate point predictions of bicycle sales in the four quarters of the next year.

b Calculate approximate 95 percent prediction intervals for bicycle sales in the four quarters of

the next year.

16.5 Simple Exponential Smoothing 
In ongoing forecasting systems, forecasts of future time series values are made each period for

succeeding periods. At the end of each period the estimates of the time series parameters and the

forecasting equation need to be updated to account for the most recent observation. This updat-

ing accounts for possible changes in the parameters that may occur over time. In addition, such

changes may imply that unequal weights should be applied to the time series observations when

the estimates of the parameters are updated.

DS

Centered
Moving Ratio to Seasonal Sales, y

t Year Quarter Sales, y Average CMA Indexes Deseasonalized

1 1 1 293 1.191 245.9

2 1 2 392 1.521 257.7

3 1 3 221 275.125 0.803 0.804 275.0

4 1 4 147 302.000 0.487 0.484 303.9

5 2 1 388 325.250 1.193 1.191 325.7

6 2 2 512 338.125 1.514 1.521 336.6

7 2 3 287 354.125 0.810 0.804 357.1

8 2 4 184 381.500 0.482 0.484 380.4

9 3 1 479 405.000 1.183 1.191 402.0

10 3 2 640 417.375 1.533 1.521 420.7

11 3 3 347 435.000 0.798 0.804 431.8

12 3 4 223 462.125 0.483 0.484 461.0

13 4 1 581 484.375 1.199 1.191 487.7

14 4 2 755 497.625 1.517 1.521 496.3

15 4 3 410 0.804 510.2

16 4 4 266 0.484 549.9

800
y   19.95x   220.54

R2   0.9965

0

0 16128

Quarter

Sales, y

Deseasonalized

Linear (Deseasonalized)

4

100

200

300

400

S
a
le

s,
 y 500
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700

Calculation of Seasonal Indexes

1 2 3 4

1 0.803 0.487

2 1.193 1.514 0.810 0.482

3 1.183 1.533 0.798 0.483

4 1.199 1.517

mean: 1.192 1.522 0.804 0.484 4.001

adjusted: 1.191 1.521 0.804 0.484 4.000

METHODS AND APPLICATIONS

Exercises 16.14 through 16.18 are based on the following situation: International Machinery, Inc., produces

a tractor and wishes to use quarterly tractor sales data observed in the last four years to predict quarterly

tractor sales next year. The following MegaStat output gives the tractor sales data and the estimates of the

seasonal factors and trend line for the data: IntMachDS

Use simple
exponential

smoothing to fore-
cast a time series
that exhibits a
slowly changing
level.
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In this section we assume that a time series is appropriately described by the no trend equation

yt  b0  et

When the parameter b0 remains constant over time, we have seen that it is reasonable to forecast

future values of yt by using regression analysis (see Example 16.1 on page 698). In such a case

the least squares point estimate of b0 is

b0     the average of the observed time series values

When we compute the point estimate b0 we are equally weighting each of the previously observed

time series values y1, y2, . . . , yn.

When the value of the parameter b0 is slowly changing over time, the equal weighting scheme

may not be appropriate. Instead, it may be desirable to weight recent observations more heavily

than remote observations. Simple exponential smoothing is a forecasting method that applies

unequal weights to the time series observations. This unequal weighting is accomplished by

using a smoothing constant that determines how much weight is attached to each observation.

The most recent observation is given the most weight. More distantly past observations are given

successively smaller weights. The procedure allows the forecaster to update the estimate of b0 so

that changes in the value of this parameter can be detected and incorporated into the forecasting

equation. We illustrate simple exponential smoothing in the following example.

y
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EXAMPLE 16.6 The Cod Catch Case

Consider the cod catch data of Example 16.1, which are given in Table 16.1 (page 698). The plot

of these data (in Figure 16.2 on page 698) suggests that the no trend model

yt   b0   et

may appropriately describe the cod catch series. It is also possible that the parameter b0 could be

slowly changing over time.

We begin the simple exponential smoothing procedure by calculating an initial estimate of the

average level b0 of the series. This estimate is denoted S0 and is computed by averaging the first

six time series values. We obtain

Note that, since simple exponential smoothing attempts to track changes over time in the average

level b0 by using newly observed values to update the estimates of b0, we use only six of the

n 24 time series observations to calculate the initial estimate of b0. If we do this, then 18 ob-

servations remain to tell us how b0 may be changing over time. Experience has shown that, in

general, it is reasonable to calculate initial estimates in exponential smoothing procedures by

using half of the historical data. However, it can be shown that, in simple exponential smoothing,

using six observations is reasonable (it would not, however, be reasonable to use a very small

number of observations because doing so might make the initial estimate so different from the

true value of b0 that the exponential smoothing procedure would be adversely affected).

Next, assume that at the end of time period T 1 we have an estimate ST 1 of b0. Then,

assuming that in time period T we obtain a new observation yT, we can update ST 1 to ST, which

is an estimate made in period T of b0. We compute the updated estimate by using the so-called

smoothing equation

ST   ayT   (1   a)ST 1

Here a is a smoothing constant between 0 and 1 (a will be discussed in more detail later). The

updating equation says that ST, the estimate made in time period T of b0, equals a fraction a (for

example, .1) of the newly observed time series observation yT plus a fraction (1  a) (for exam-

ple, .9) of ST 1, the estimate made in time period T 1 of b0. The more the average level of the

process is changing, the more a newly observed time series value should influence our estimate,

and thus the larger the smoothing constant a should be set. We will soon see how to use histori-

cal data to determine an appropriate value of a.

S0  

a
6

t 1

yt

6
 

362  381        402

6
 359.67

C
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We will now begin with the initial estimate S0  359.67 and update this initial estimate by

applying the smoothing equation to the 24 observed cod catches. To do this, we arbitrarily set a

equal to .02, and to judge the appropriateness of this choice of a we calculate “one-period-ahead”

forecasts of the historical cod catches as we carry out the smoothing procedure. Since the initial

estimate of b0 is S0  359.67, it follows that 360 is the rounded forecast made at time 0 for y1, the

value of the time series in period 1. Since we see from Table 16.13 that y1  362, we have a

forecast error of 362 360  2. Using y1  362, we can update S0 to S1, an estimate made in

period 1 of the average level of the time series, by using the equation

S1  ay1  (1 a)S0

 .02(362) .98(359.67)  359.72

Since this implies that 360 is the rounded forecast made in period 1 for y2, and since we see from

Table 16.13 that y2  381, we have a forecast error of 381 360 21. Using y2  381, we can

update S1 to S2, an estimate made in period 2 of b0, by using the equation

S2  ay2  (1 a)S1

 .02(381) .98(359.72)  360.14

Since this implies that 360 is the rounded forecast made in period 2 for y3, and since we see from

Table 16.13 that y3  317, we have a forecast error of 317 360  43. This procedure is con-

tinued through the entire 24 periods of historical data. The results are summarized in Table 16.13.

Using the results in this table, we find that, for a .02, the sum of squared forecast errors is

27,744. To find a “good” value of a, we evaluate the sum of squared forecast errors for values of

a ranging from .02 to .30 in increments of .02 (in most exponential smoothing applications, the

value of the smoothing constant used is between .01 and .30). When we do this, we find that

a  .02 minimizes the sum of squared forecast errors. Since this minimizing value of a is small,

it appears to be best to apply small weights to new observations, which tells us that the level of

the time series is not changing very much.

T A B L E 1 6 . 1 3 One-Period-Ahead Forecasting of the Historical Cod Catch Time Series Using 

Simple Exponential Smoothing with A  .02

Actual Cod Smoothed Forecast Made Forecast Squared
Year Month Catch, yT Estimate, ST Last Period Error Forecast Error

(S0  359.67)

1 Jan. 362 359.72 360 2 4

Feb. 381 360.14 360 21 441

Mar. 317 359.28 360  43 1,849

Apr. 297 358.03 359  62 3,844

May 399 358.85 358 41 1,681

June 402 359.71 359 43 1,849

July 375 360.02 360 15 225

Aug. 349 359.80 360  11 121

Sept. 386 360.32 360 26 676

Oct. 328 359.68 360  32 1,024

Nov. 389 360.26 360 29 841

Dec. 343 359.92 360  17 289

2 Jan. 276 358.24 360  84 7,056

Feb. 334 357.75 358  24 576

Mar. 394 358.48 358 36 1,296

Apr. 334 357.99 358  24 576

May 384 358.51 358 26 676

June 314 357.62 359  45 2,025

July 344 357.35 358  14 196

Aug. 337 356.94 357  20 400

Sept. 345 356.70 357  12 144

Oct. 362 356.81 357 5 25

Nov. 314 355.95 357  43 1,849

Dec. 365 356.13 356 9 81



In general, simple exponential smoothing is carried out as follows:
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Simple Exponential Smoothing

1 and ST 1 is the estimate of b0 made in time

period T 1.

2 A point forecast made in time period T for any

future value of the time series is ST.

3 If we observe yT 1 in time period T 1, we can

update ST to ST 1 by using the equation

and a point forecast made in time period T 1

for any future value of the time series is ST 1.

ST 1  ayT 1  (1  a)ST

1 Suppose that the time series y1, . . . , yn is

described by the equation

where the average level b0 of the process may be

slowly changing over time. Then the estimate ST

of b0 made in time period T is given by the

smoothing equation

where a is a smoothing constant between 0 and

ST  ayT  (1  a)ST 1

yt  b0  et

EXAMPLE 16.7 The Cod Catch Case

In Example 16.6 we saw that a .02 is a “good” value of the smoothing constant when fore-

casting the 24 observed cod catches in Table 16.13. Therefore, we will use simple exponential

smoothing with a .02 to forecast future monthly cod catches. From Table 16.13 we see that

S24  356.13 is the estimate made in month 24 of the average level b0 of the monthly cod catches.

It follows that the point forecast made in month 24 of any future monthly cod catch is 356.13 tons

of cod. Now, assuming that we observe a cod catch in January of year 3 of y25  384, we can

update S24 to S25 by using the equation

S25  ay25  (1 a)S24

 .02(384) .98(356.13)

 356.69

This implies that the point forecast made in month 25 of any future monthly cod catch is

356.69 tons of cod.

By using the smoothing equation

ST   ayT   (1   a)ST 1

it can be shown that ST, the estimate made in time period T of the average level b0 of the time

series, can be expressed as

ST   ayT   a(1   a)yT 1   a(1   a)2yT 2

      a(1   a)T 1y1   (1   a)TS0

The coefficients measuring the contributions of the observations yT, yT 1, yT 2, . . . , y1—that is,

a, a(1 a), a(1 a)2, . . . , a(1 a)T 1—decrease exponentially with age. For this reason we

refer to this procedure as simple exponential smoothing.

Since the coefficients measuring the contributions of yT, yT 1, yT 2, . . . , y1 are decreasing

exponentially, the most recent observation yT makes the largest contribution to the current

estimate of b0. Older observations make smaller and smaller contributions to this estimate. Thus

remote observations are “dampened out” of the current estimate of b0 as time advances. The rate

at which remote observations are dampened out depends on the smoothing constant a. For val-

ues of a near 1, remote observations are dampened out quickly. For example, if a .9 we obtain

coefficients .9, .09, .009, .0009, . . . . For values of a near 0, remote observations are dampened

out more slowly (if a .1, we obtain coefficients .1, .09, .081, .0729, . . .). The choice of a

smoothing constant a is usually made by simulated forecasting of a historical data set as illus-

trated in Example 16.6.

Computer software packages can be used to implement exponential smoothing. These packages

choose the smoothing constant (or constants) in different ways and also compute approximate

C



16.5 Simple Exponential Smoothing 719

prediction intervals in different ways. Optimally, the user should carefully investigate how the

computer software package implements exponential smoothing. At a minimum, the user should

not trust the forecasts given by the software package if they seem illogical.

Figure 16.13 gives the MINITAB output of using simple exponential smoothing to forecast in

month 24 the cod catches in future months. Note that MINITAB has selected the smoothing con-

stant a .0703909 and tells us that the point forecast and the 95 percent prediction interval fore-

cast of the cod catch in any future month are, respectively, 348.168 and [276.976, 419.360].

Looking at Figure 16.13(a), these forecasts seem intuitively reasonable. A MegaStat output of

simple exponential smoothing for the cod catch data is given in Appendix 16.3.

F I G U R E 1 6 . 1 3 MINITAB Output of Using Simple Exponential Smoothing to Forecast 

the Cod Catches

Time

C
o
d
 C

a
tc

h

3632282420161284

420

400

380

360

340

320

300

280

260

Smoothing Constant

Alpha 0.0703909

Accuracy Measures

MAPE 8.45

MAD 29.06

MSD 1177.39

Variable

Forecasts

95.0% PI

Actual

Fits

Single Exponential Smoothing Plot for CodCatch

(a) The graphical forecasts

(b) The numerical forecasts of the cod catch in month 25 (and any other future month)

Forecasts 

Period  Forecast    Lower    Upper

25       348.168  276.976  419.360 

Exercises for Section 16.5
CONCEPTS

16.20 In general, when it is appropriate to use exponential smoothing?

16.21 What is the purpose of a smoothing constant in exponential smoothing?

METHODS AND APPLICATIONS

16.22 THE COD CATCH CASE CodCatch

Consider Table 16.13 (page 717). Verify that S3, an estimate made in period 3 of b0, is 359.28.

Also verify that the one-period-ahead forecast error for period 4 is  62, as shown in Table 16.13.

Recall that we rounded forecasts to the nearest whole number in Table 16.13.

DS



16.23 THE COD CATCH CASE CodCatch

Consider Example 16.7 (page 718). Suppose that we observe a cod catch in February of year 3 of

y26  328. Update S25  356.69 to S26, a point forecast made in month 26 of any future monthly

cod catch. Use a  .02 as in Example 16.7.

16.24 THE LUMBER PRODUCTION CASE LumberProd

Figure 16.14 gives the MINITAB output of using simple exponential smoothing to forecast

yearly U.S. lumber production. Here MINITAB has estimated the smoothing constant alpha 

to be .0361553. Use the MINITAB output to find and report the point prediction of and the 

95 percent prediction interval for the total U.S. lumber production in a future year.

16.6 Holt–Winters’ Models 
Holt–Winters’ double exponential smoothing Various extensions of simple exponential

smoothing can be used to forecast time series that are described by models that are different from

the model

For example, Holt–Winters’ double exponential smoothing can be used to forecast time series

that are described by the linear trend model

Here we assume that b0 and b1 (and thus the linear trend) may be changing slowly over time. To

implement Holt–Winters’ double exponential smoothing, we let ᐉT 1 denote the estimate of the

level b0  b1(T   1) of the time series in time period T   1, and we let bT 1 denote the estimate

of the slope b1 of the time series in time period T   1. Then, if we observe a new time series

value yT in time period T, the estimate of the level b0  b1T of the time series in time period T

uses the smoothing constant A and is

This equation says that ᐉT equals a fraction a of the newly observed time series value yT plus a

fraction (1 a) of [ᐉT 1   bT 1], which is the estimate of the level of the time series in time

ᐉT  a yT  (1  a) [ᐉT 1  bT 1]

yt  b0  b1t  et

yt  b0  et

DS

DS
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Period   Forecast    Lower    Upper 

Time

L
u
m

b
e
r 

P
ro

d
u
c
ti

o
n

3330272421181512963

40000

39000

38000

37000

36000

35000

34000

33000

32000

31000

Smoothing Constant

Alpha 0.0361553

Accuracy Measures

MAPE 5

MAD 1712

MSD 4201951

Variable

Forecasts

95.0% PI

Actual

Fits

Single Exponential Smoothing for Lumber Production

31    35782.6  31588.9  39976.3 

F I G U R E 1 6 . 1 4 MINITAB Output of Using Simple Exponential Smoothing to Forecast Lumber Production

Use double
exponential

smoothing to fore-
cast a time series.

LO6



16.6 Holt–Winters’ Models 721

period T, as calculated using the estimates ᐉT 1 and bT 1 computed in time period T   1. Fur-

thermore, the estimate of the slope b1 of the time series in time period T uses the smoothing

constant G and is

bT  g[ᐉT  ᐉT 1]  (1  g)bT 1

This equation says that bT equals a fraction g of [ᐉT  ᐉT 1], which is an estimate of the differ-

ence between the levels of the time series in periods T and T  1, plus a fraction (1  g) of bT 1,

the estimate of the slope made in time period T  1.

To use the updating equations, we first obtain initial estimates ᐉ0 and b0 of the level and the

slope of the time series in time period 0. One way to do this is to fit a least squares trend line to

part (say, one-half) of the historical data and let the y-intercept and slope of the trend line be ᐉ0

and b0. For example, consider the 24 observed calculator sales values in Table 16.2 (page 699).

If we fit a least squares trend line to the first 12 of those values, we obtain

This would imply that ᐉ0  204.803 and b0   6.9406. MINITAB uses a more complicated

method to find initial estimates and obtains ᐉ0  198.0290 and b0  8.0743. Starting with the

MINITAB initial estimates ᐉ0 and b0, we calculate a point forecast of y1 from time origin 0 to be

This point forecast is shown on the MINITAB output of Figure 16.15(a) [it is the first number

under the column headed ]. Also shown on the output are the actual calculator sales

value and the forecast error, which is

y1  ŷ1(0)  197  206.103   9.103

y1  197

ŷT (T  1)

ŷ1(0)  ᐉ0  b0  198.0290  8.0743  206.103

ŷt  204.803  6.9406t

ᐍ0 = 198.0290 b0 = 8.0743

Time Sales Level Slope Forecast Error

T yT ᐍT bT (T   1) (T   1)

1 197 204.283 7.7102 206.103 -9.1033

2 211 211.794 7.6705 211.993 -0.9929

3 203 216.172 7.0119 219.465 -16.4648

4 247 227.947 7.9646 223.184 23.8162

5 239 236.529 8.0881 235.912 3.0884

6 269 249.494 9.0634 244.617 24.3827

7 308 268.446 11.0411 258.557 49.4427

8 262 275.990 10.3416 279.487 -17.4869

9 258 280.665 9.2084 286.331 -28.3312

10 256 283.099 7.8535 289.873 -33.8733

11 261 284.962 6.6554 290.952 -29.9521

12 288 290.894 6.5107 291.617 -3.6171

13 296 297.123 6.4545 297.404 -1.4043

14 276 298.062 5.3514 303.578 -27.5780

15 305 303.731 5.4148 303.414 1.5862

16 308 308.917 5.3690 309.146 -1.1459

17 356 322.629 7.0376 314.286 41.7143

18 393 342.333 9.5709 329.666 63.3339

19 363 354.123 10.0148 351.904 11.0962

20 386 368.510 10.8893 364.138 21.8621

21 443 392.120 13.4333 379.400 63.6004

22 308 386.042 9.5312 405.553 -97.5529

23 358 388.059 8.0282 395.574 -37.5735

24 384 393.670 7.5447 396.087 -12.0870

yT  ŷT ŷT 
(a) The updated level and slope estimates when A  .2 and 

G  .2

Period Forecast       Lower       Upper

25      401.214     337.812     464.617

26      408.759     344.036     473.483

27      416.304     350.158     482.450

28      423.849     356.185     491.513

29      431.393     362.122     500.665

30      438.938     367.977     509.899

31      446.483     373.755     519.211

32      454.028     379.461     528.594

33      461.572     385.101     538.044

34      469.117     390.679     547.555

35      476.662     396.200     557.124

36      484.207     401.668     566.746

(b) Point and 95 percent prediction interval forecasts
when A  .2 and G  .2 

(c) Point and 95 percent prediction interval forecasts
when A  .496 and G  .142

Period     Forecast       Lower       Upper

25      383.677     319.133     448.221

26      389.121     316.065     462.178

27      394.565     312.107     477.024

28      400.010     307.532     492.487

29      405.454     302.519     508.388

30      410.898     297.189     524.606

31      416.342     291.624     541.059

32      421.786     285.882     557.690

33      427.230     280.002     574.458

34      432.674     274.015     591.333

35      438.118     267.941     608.295

36      443.562     261.798     625.327

F I G U R E 1 6 . 1 5 The MINITAB Output of Double Exponential Smoothing for the Calculator Sales Data



We next choose values of the smoothing constants a and g. A reasonable choice (and the default

option of MINITAB) is to let each of a and g be .2. Then, using y1 197 and the equation for ᐉT,

it follows that the estimate of the level of the time series in time period 1 is

Furthermore, using the equation for bT, the estimate of the slope of the time series in time

period 1 is

It follows that a point forecast made in time period 1 of y2 is

Since the actual calculator sales value in period 2 is y2 211, the forecast error is

The MINITAB output in Figure 16.15(a) on the previous page shows the entire process of using

the double exponential smoothing updating equations to find new period-by-period estimates of the

level and slope of the time series. The output also shows the one-period-ahead forecasts and fore-

cast errors, which are utilized to evaluate the effectiveness of the double exponential smoothing

procedure. At the end of the updating process, MINITAB uses ᐉ24 393.670 and b24 7.5447 to

calculate point forecasts of future calculator sales values. For example, point forecasts of y25

and y26 made from time origin 24 are

and

These point forecasts, as well as point forecasts of y27 through y36, are shown on the MINITAB out-

put in Figure 16.15(b). Also shown are 95 percent prediction interval forecasts of y25 through y36.

Figure 16.16 shows a MINITAB output that graphically illustrates the forecasts when a  .2

and g  .2. Generally speaking, choosing a  .2 and g  .2 gives reasonable results, but

MINITAB will choose its own values of a and g. If we have MINITAB do this, it chooses

a  .496 and g .142. The forecasts given by this choice of a and g are given in Figure 16.15(c)

and graphically illustrated in Figure 16.17. To evaluate the choice of a particular set of values for

a and g, MINITAB gives the mean of the absolute forecast errors (the MAD) and the mean of

the squared forecast errors (the MSD) for the 24 historical calculator sales values. Comparing

Figures 16.16 and 16.17, we see that a .2 and g .2 give a smaller MAD and MSD than

do a .496 and g .142. Therefore, we might conclude that we should use the forecasts of

y25 through y36 based on a .2 and g .2. On the other hand, we might believe that the lower

sales values at the end of the observed data signal that the sales values will not continue to

increase as fast as they have. In this case, we might use the lower forecasts given by a .496

and g .142 (see Figure 16.17).

Multiplicative Winters’ method Multiplicative Winters’ method can be used to forecast

time series that are described by the model

yt  (b0   b1t)  SNt  et

Here we assume that b0 and b1 (and thus the linear trend) and SNt (which represents the seasonal

pattern) may be changing slowly over time. To implement multiplicative Winters’ method, we let

ᐉT 1 denote the estimate of the deseasonalized levelb0 b1(T 1) of the time series in time period

T 1, and we let bT 1 denote the estimate of the slope b1 of the time series in time period T 1.

Then, suppose that we observe a new time series value yT in time period T, and let snT L denote the

“most recent” estimate of the seasonal factor for the season corresponding to time period T. Here

L denotes the number of seasons in a year (L 12 for monthly data, and L 4 for quarterly data),

ŷ26(24)  ᐉ24  2b24  393.670  2(7.5447)  408.759

ŷ25(24)  ᐉ24  b24  393.670  7.5447  401.214

y2  ŷ2(1)  211  211.933   .993

ŷ2(1)  ᐉ1  b1  204.283  7.7102  211.993

  7.7102

  .2[204.283  198.0290]  .8(8.0743)

 b1  g[ᐉ1  ᐉ0]  (1  g)b0

  204.283

  .2(197)  .8[198.0290  8.0743]

ᐉ1  ay1  (1  a)[ᐉ0  b0]
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Use multi-
plicative

Winters’ method to
forecast a time
series.
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Time

S
a
le

s

3632282420161284

600

500

400

300

200

Smoothing Constants

Alpha (level) 0.2

Gamma (trend) 0.2

Accuracy Measures

MAPE 8.35

MAD 25.88

MSD 1223.96

Variable

Forecasts

95.0% PI

Actual

Fits

Double Exponential Smoothing Plot for Sales

Period    Forecast    Lower    Upper 

25     401.214  337.813  464.616 

26     408.759  344.037  473.482 

27     416.304  350.159  482.449 

28     423.849  356.186  491.512 

29     431.393  362.124  500.663 

30     438.938  367.979  509.898 

31     446.483  373.756  519.209 

32     454.028  379.463  528.593 

33     461.572  385.102  538.042 

34 469.117 390.680 547.554

35     476.662  396.201  557.122 

36     484.207  401.669  566.744

F I G U R E 1 6 . 1 6 MINITAB Output of Using Double Exponential Smoothing to Forecast 

Calculator Sales
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Double Exponential Smoothing for Sales

Alpha (level) 0.496286

Gamma (trend)     0.141985
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S
a
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MAPE 8.79

MAD 26.34

MSD 1318.52

Accuracy Measures

4

F I G U R E 1 6 . 1 7 The MINITAB Graphical Forecasts When A  .496 and G  .142



and thus T L denotes the time period occurring one year prior to time period T. Furthermore, the

subscript T L of snT L denotes the fact that the time series value observed in time period T L

was the most recent time series value observed in the season being analyzed and thus was the most

recent time series value used to help find snT L. Then, the estimate of the deseasonalized level

b0  b1T of the time series in time period T uses the smoothing constant a and is

where yT兾snT L is the deseasonalized observation in time period T. The estimate of the slope b1

of the time series in time period T uses the smoothing constant g and is

bT  g[ᐉT  ᐉT 1]  (1  g)bT 1

The new estimate of the seasonal factor SNT in time period T uses the smoothing constant d and is

where yT兾ᐉT is an estimate of the newly observed seasonal variation.

To use the updating equations, we first obtain initial estimates ᐉ0, b0, and sn0 of the deseason-

alized level, slope, and seasonal factors of the time series in time period 0. One way to do this is

to use the multiplicative decomposition method (see Section 16.4 on page 708) to analyze part

(say, one-half) of the historical data. Here, if there are less than five years of historical data, it is

probably best to  base the initial estimates on all of the historical data. Then, we regard the y-

intercept and slope of the trend line fit to the deseasonalized data as the initial estimates ᐉ0 and

b0. Furthermore, we regard the multiplicative decomposition method’s seasonal factors as the ini-

tial estimates of the seasonal factors in time period 0. For example, consider the 36 Tasty Cola

sales values in Table 16.9 (page 708). Using the multiplicative decomposition method results

summarized in Tables 16.10 and 16.11, we obtain the initial estimates ᐉ0  380.163 and b0  

9.489 and the following seasonal factor estimates:

Starting with these initial estimates, we calculate a point forecast of y1 from time origin 0 to be

Here we have used the initial January seasonal factor estimate sn0  .493 because y1 is Tasty Cola

sales in January of year 1. The actual value of y1 is 189, so the forecast error is

We next choose values of the smoothing constants a, g, and d. A reasonable choice (and the default

option of MINITAB) is to let each of a, g, and d be .2. Then, using y1  189 and the equation for

ᐉT, it follows that the estimate of the deseasonalized level of the time series in time period 1 is

  388.395

  .2B 189

.493
R  .8[380.163  9.489]

 ᐉ1  a 
y1

sn0

 (1  a)[ᐉ0  b0]

y1  ŷ1(0)  189  192.098   3.098

  192.098

  (380.163  9.489)(.493)

 ŷ1(0)  (ᐉ0  b0)sn0

Month sn0 Month sn0

Jan. .493 July 1.467

Feb. .596 Aug. 1.693

Mar. .595 Sept. 1.990

Apr. .680 Oct. 1.307

May .564 Nov. 1.029

June .986 Dec. .600

snT  d 
yT

ᐉT
 (1  d)snT L

ᐉT  a 
yT

sn T L

 (1  a)[ᐉT 1  bT 1]
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Here we have used the initial January seasonal factor estimate sn0  .493 as the most recent

Winters’ method estimate of the January seasonal factor. Using the equation for bT, the estimate

of the slope of the time series in time period 1 is

Using the equation for snT, the new estimate of the January seasonal factor in time period 1 is

It follows that a point forecast made in period 1 of y2 is

Here we have used the initial February seasonal factor estimate sn0  .596 because y2 is the Tasty

Cola sales in February of year 1. The actual value of y2 is 229, so the forecast error is

The MINITAB output in Figure 16.18(a) on the next page shows the entire process of using

the Winters’ method updating equations to find new period-by-period estimates of the level,

slope, and seasonal factors of the time series. The output also shows the one-period-ahead fore-

casts and forecast errors, which are utilized to evaluate the effectiveness of the Winters’ method

procedure. MINITAB does not find initial estimates by using the multiplicative decomposition

method. We will not discuss how MINITAB obtains initial estimates, but note from Figure 16.18(a)

that the values of ᐉ1 and b1 obtained by MINITAB (ᐉ1   278.768 and b1   44.9736) are very

different from the values that we obtained by hand calculation (ᐉ1  388.395 and b1  9.238).

In addition, the one-period-ahead forecast errors obtained by MINITAB are generally quite large

in periods 1 through 12 but then become reasonably small for periods 13 through 36. To further

illustrate the Winters’ method updating equations, note from Figure 16.18(a) that ᐉ35  725.603

and b35  8.9026. Since the most recent estimate of the December seasonal factor is sn24  .60767,

the point forecast made in period 35 of y36 (sales in December of year 3) is

The actual sales value in period 36 is y36  441, so the forecast error is

The updated estimates ᐉ36, b36, and sn36 are calculated as follows:

  8.5514

  .2[732.75  725.603]  .8(8.9026)

 b36  g[ᐉ36  ᐉ35]  (1  g)b35

  732.75

  .2B 441

.60767
R  .8[725.603  8.9026]

 ᐉ36  a 
y36

sn24

 (1  a)[ᐉ35  b35]

y36  ŷ36(35)  441  446.34   5.34

  446.34

  (725.603  8.9026)(.60767)

 ŷ36(35)  (ᐉ35  b35)sn24

y2  ŷ2(1)  229  236.989   7.989

  236.989

  (388.395  9.238)(.596)

 ŷ2(1)  (ᐉ1  b1)sn0

  .492

  .2B 189

388.395
R  .8(.493)

 sn1  d 
y1

ᐉ1

 (1  d)sn0

  9.238

  .2[388.395  380.163]  .8(9.489)

 b1  g[ᐉ1  ᐉ0]  (1  g)b0



and

We are now at the end of the historical data, so we can forecast future Tasty Cola sales values.

Figure 16.18(b) gives the point and 95 percent prediction interval forecasts of future sales values

in periods 37 through 48, and Figure 16.19 graphically portrays the forecasts. To see how the

point forecasts are calculated, note that, for example, the most recent estimates of the January and

July seasonal factors are sn25  .48019 and sn31  1.42891. Therefore, point forecasts made in

period 36 of Tasty Cola sales in periods 37 and 43 (January and July of year 4) are

  355.96

  (732.75  8.5514) (.48019)

 ŷ37(36)  (ᐉ36  b36)sn25

  .6065

  .2B 441

732.75
R  .8(.60767)

 sn36  d 
y36

ᐉ36

 (1  d)sn24
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(a) The updated level, slope, and seasonal factor estimates

Time Sales Level Slope Seasonal Forecast Error

T yT ᐍT bT snT (T   1) (T   1)

1 189 278.768 44.9736 0.48896 106.67 82.334

2 229 343.270 48.8794 0.56818 175.93 53.065

3 249 401.836 50.8167 0.57606 221.63 27.371

4 289 449.774 50.2409 0.65605 298.49 -9.492

5 260 492.009 48.6398 0.55787 282.62 -22.624

6 431 520.567 44.6235 0.94880 529.30 -98.301

7 660 541.448 39.8750 1.42638 835.48 -175.485

8 777 556.089 34.8280 1.64516 992.39 -215.395

9 915 562.722 29.1891 1.95207 1201.68 -286.680

10 613 565.315 23.8699 1.28544 790.62 -177.623

11 485 563.116 18.6561 1.01787 622.78 -137.777

12 277 552.752 12.8521 0.60770 369.04 -92.044

13 244 552.287 10.1887 0.47953 276.56 -32.557

14 296 554.174 8.5282 0.56137 319.59 -23.586

15 319 560.914 8.1706 0.57459 324.15 -5.151

16 370 568.063 7.9664 0.65511 373.35 -3.349

17 313 573.035 7.3675 0.55554 321.35 -8.352

18 556 581.523 7.5916 0.95026 550.68 5.315

19 831 587.811 7.3308 1.42385 840.30 -9.301

20 960 592.820 6.8664 1.64000 979.10 -19.101

21 1152 597.777 6.4846 1.94709 1170.63 -18.631

22 759 601.501 5.9325 1.28072 776.74 -17.742

23 607 605.216 5.4890 1.01488 618.29 -11.287

24 371 610.664 5.4807 0.60767 371.13 -0.126

25 298 617.205 5.6927 0.48019 295.46 2.542

26 378 632.989 7.7111 0.56853 349.67 28.326

27 373 642.391 8.0493 0.57580 368.14 4.859

28 443 655.597 9.0806 0.65923 426.11 16.891

29 374 666.385 9.4222 0.55668 369.26 4.743

30 660 679.556 10.1717 0.95445 642.19 17.807

31 1004 692.808 10.7879 1.42891 982.07 21.934

32 1153 703.487 10.7660 1.63980 1153.90 -0.898

33 1388 713.974 10.7103 1.94648 1390.71 -2.712

34 904 720.918 9.9571 1.27537 928.12 -24.118

35 715 725.603 8.9026 1.00898 741.75 -26.753

36 441 732.750 8.5514 0.60650 446.34 -5.336

yT  ŷT ŷT (b) Point and 95 percent prediction interval
forecasts

Period   Forecast     Lower     Upper

37     355.96    240.98    470.95

38     426.31    308.93    543.69

39     436.69    316.73    556.65

40     505.60    382.88    628.32

41     431.71    306.08    557.34

42     748.35    619.65    877.04

43    1132.57   1000.67   1264.47

44    1313.74   1178.51   1448.98

45    1576.09   1437.40   1714.78

46    1043.59    901.33   1185.84

47     834.24    688.32    980.17

48     506.65    356.96    656.35

F I G U R E 1 6 . 1 8 The MINITAB Output of Winters’ Method for the Tasty Cola Sales Data,

When A  .2,G  .2, and D  .2
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and

The reason that the 95 percent prediction intervals are so wide is that they can be shown to be

functions of the historical forecast errors, which are very large in periods 1 through 12. The mean

absolute forecast error in periods 13 through 36 can be calculated to be 12.98 and is more

representative of Winters’ method’s accuracy than is the mean absolute forecast error in all 

36 periods, which is 46.93 (see Figure 16.19). Therefore, to obtain more reasonable prediction

intervals, we might multiply the lengths of the prediction intervals by 12.98兾46.93 ⬇ .28. For

example, Figure 16.18(b) tells us that the 95 percent prediction interval for y37 is [240.98,

470.95], which has length 470.95   240.98  229.97. Multiplying this length by .28, we obtain

(229.97)(.28)  64.39. Surrounding the point forecast 355.96 by a new half-length of 64.39兾2  

32.2, we obtain a new 95 percent prediction interval of [355.96   32.2]  [323.76, 388.16]. The

other 95 percent prediction intervals can be modified similarly.

The wide prediction intervals in Figure 16.18(b) result from a combination of a short histori-

cal series (36 sales values) and MINITAB obtaining inaccurate initial estimates of the level,

slope, and seasonal factors. When the historical series is long (for example, see Exercise 16.30, 

page 728), MINITAB usually obtains reasonable prediction intervals. Finally, note that

MINITAB will not choose its own values of  ,  , and  . However, the user can simply experi-

ment with different combinations of values of these smoothing constants until a combination is

found that produces the “best” results.

  1,132.57

  [732.75  7(8.5514)](1.42891)

 ŷ43(36)  (ᐉ36  7b36)sn31
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Winters’ Method Plot for Sales

Multiplicative Method

             Period   Forecast    Lower    Upper 

37     355.96   240.98   470.95 

38     426.31   309.52   543.10 

39     436.69   317.90   555.49 

40     505.60   384.60   626.60 

41     431.71   308.32   555.10 

42     748.35   622.39   874.31 

43    1132.57  1003.88  1261.26 

44    1313.74  1182.16  1445.32 

45    1576.09  1441.48  1710.70 

46    1043.59   905.81  1181.37 

47     834.24   693.17   975.32 

48     506.65   362.17   651.14 

F I G U R E 1 6 . 1 9 MINITAB Output of Using Winters’ Method to Forecast Tasty Cola Sales



CONCEPTS

16.25 When do we use double exponential smoothing?

16.26 When do we use multiplicative Winters’ method?

METHODS AND APPLICATIONS

16.27 Consider Figure 16.15(a) on page 721. Show how ᐉ2 and b2 have been calculated from ᐉ1, b1, 

and y2. Also, show how (24) in Figure 16.15(b) has been calculated from ᐉ24 and b24.

16.28 Consider Figure 16.18(a) on page 726. Show how ᐉ35, b35, and sn35 have been calculated from

ᐉ34, b34, y35, and sn23. Also, show how (36) in Figure 16.18(b) has been calculated from ᐉ36, b36,

and sn26.

16.29 THE WATCH SALES CASE WatchSale

Figure 16.20 gives the MINITAB output of using double exponential smoothing in month 20 

to forecast watch sales in months 21 through 26. Here we have used MINITAB’s default option

that sets each of the smoothing constants alpha and gamma equal to .2. Find and report the point

prediction of and a 95 percent prediction interval for watch sales in month 21.

16.30 THE TRAVELER’S REST CASE TravRest

Figure 16.21 gives the MINITAB output of using multiplicative Winters’ method in month 168

to forecast the monthly hotel room averages in months 169 through 180. Here we have used

MINITAB’s default option that sets each of the smoothing constants alpha, gamma, and delta

equal to .2. Use the MINITAB output to find and report the point prediction of and a 95 percent

prediction interval for the monthly hotel room average in period 169.

DS

DS

ŷ38

ŷ27
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Exercises for Section 16.6

Time
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Smoothing Constants

Alpha (level) 0.2

Gamma (trend) 0.2

Accuracy Measures

MAPE 5.171

MAD 19.811

MSD 571.970
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Forecasts

95.0% PI

Actual

Fits

Double Exponential Smoothing Plot for Watch Sales

W
a
tc

h
 S

a
le

s

Period    Forecast     Lower     Upper 

21     475.916   427.380   524.453 

22     486.313   436.766   535.861 

23     496.711   446.074   547.348 

24     507.108   455.309   558.907 

25     517.506   464.477   570.535 

26     527.903   473.580   582.225 

F I G U R E 1 6 . 2 0 MINITAB Output of Using Double Exponential Smoothing to Forecast Watch Sales
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16.7 Forecast Error Comparisons 
Table 16.14 on the next page gives the actual values of Tasty Cola sales (yt) in periods 37 through

48 and the multiplicative decomposition method point forecasts (ŷt) of these actual values. Con-

sider the differences between the actual values and the point forecasts, which are called forecast

errors and are also given in Table 16.14. We can use these forecast errors to compare the point

forecasts given by the multiplicative decomposition method with the point forecasts given by other

techniques, such as multiplicative Winters’ method. Two criteria by which to compare forecasting

methods are the mean absolute deviation (MAD) and the mean squared deviation (MSD).

To calculate the MAD, we find the absolute value of each forecast error and then average the

resulting absolute values. For example, if we find the absolute value of each of the 12 forecast

errors given by the multiplicative decomposition method in Table 16.14, sum the 12 absolute

values, and divide the sum by 12, we find that the MAD is 14.15. By contrast, if we calculate the

MAD of the multiplicative Winters’ method forecast errors in Table 16.15 (also on the next page),

we find that the MAD is 25.6.

To calculate the MSD, we find the squared value of each forecast error and then average the re-

sulting squared values. For example, if we find the squared value of each of the 12 forecast errors

given by the multiplicative decomposition method in Table 16.14, sum the 12 squared values, and
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Winters’ Method Plot for Room Averages

Multiplicative Method

Period   Forecast     Lower     Upper 

169     810.04    774.95    845.13 

170     754.55    718.91    790.20 

171     772.31    736.06    808.57 

172     874.62    837.69    911.55 

173     867.63    829.97    905.28 

174     992.02    953.58   1030.47 

175    1158.99   1119.72   1198.27 

176    1189.52   1149.37   1229.68 

177     917.33    876.25    958.41 

178     912.83    870.78    954.88 

179     787.09    744.04    830.15 

180     887.66    843.56    931.75

F I G U R E 1 6 . 2 1 MINITAB Output of Using Winters’ Method to Forecast the Monthly 

Hotel Room Averages

Compare
time series

models by using
forecast errors.

LO8



divide the sum by 12, we find that the MSD is 307.80. By contrast, if we calculate the MSD of the

multiplicative Winters’ method forecast errors in Table 16.15, we find that the MSD is 892.44.

In the Tasty Cola example, the multiplicative decomposition method is better than multiplica-

tive Winters’ method with respect to both the MAD and the MSD. This probably indicates that the

time series components describing Tasty Cola sales are not changing, which is what the multi-

plicative decomposition method (and time series regression methods) assume. If the components

of a time series are slowly changing, exponential smoothing methods may give better forecasts.

In general, we want a forecasting method that gives small values of the MAD and the MSD.

Note, however, that the MSD is the average of the squared forecast errors. It follows that the

MSD, unlike the MAD, penalizes a forecasting method much more for large forecast errors than

for small forecast errors. Therefore, the forecasting method that gives the smallest MSD may

not be the forecasting method that gives the smallest MAD. Furthermore, the forecaster who

uses the MSD to choose a forecasting method would prefer several smaller forecast errors to one

large error.

730 Chapter 16 Time Series Forecasting

T A B L E 1 6 . 1 4 Forecast Errors Given by the

Multiplicative Decomposition Method

in the Tasty Cola Case

T A B L E 1 6 . 1 5 Forecast Errors Given by Multiplicative

Winters’ Method in the Tasty 

Cola Case

t yt ŷt yt  ŷt
37 352 360.52  8.52

38 445 441.48 3.52

39 453 446.40 6.6

40 541 516.62 24.38

41 457 433.85 23.15

42 762 767.82  5.82

43 1,194 1,156.30 37.7

44 1,361 1,350.50 10.5

45 1,615 1,606.30 8.7

46 1,059 1,067.40  8.4

47 824 850.12  26.12

48 495 501.39  6.39

t yt ŷt yt  ŷt
37 352 355.96  3.96

38 445 426.31 18.69

39 453 436.69 16.31

40 541 505.60 35.4

41 457 431.71 25.29

42 762 748.35 13.65

43 1,194 1,132.57 61.43

44 1,361 1,313.74 47.26

45 1,615 1,576.09 38.91

46 1,059 1,043.59 15.41

47 824 834.24  10.24

48 495 506.65  11.65

Exercises for Section 16.7
CONCEPTS

16.31 What is the MAD? What is the MSD? How do we use these quantities?

16.32 Why does the MSD penalize a forecasting method much more for large forecast errors than for

small forecast errors?

METHODS AND APPLICATIONS

Exercises 16.33 and 16.34 compare two forecasting methods—method A and method B. Suppose that method

A gives the point forecasts 57, 61, and 70 of three future time series values. Method B gives the point fore-

casts 59, 65, and 73 of these three future values. The three future values turn out to be 60, 64, and 67.

16.33 Calculate the MAD and MSD for method A. Calculate the MAD and MSD for method B.

16.34 Which method—method A or method B—gives the smallest MAD? The smallest MSD?

16.8 Index Numbers 
We often wish to compare a value of a time series relative to another value of the time series. For

instance, according to the U.S. Bureau of Labor Statistics, energy prices increased by 4.7 percent

from 1995 to 1996, while apparel prices decreased by .2 percent from 1995 to 1996. In order to

make such comparisons, we must describe the time series. We have seen (in Section 16.4 on

page 708) that time series decomposition can be employed to describe a time series. Another way

to describe time-related data is to use index numbers.

Use index
numbers to

compare economic
data over time.

LO9



16.8 Index Numbers 731

When we compare time series values to the same previous value, we say that the previous

value is in the base time period, and successive comparisons of time series values to the value

in the base period form a sequence of index numbers. More formally, a simple index number

(or simple index) is defined as follows:

A simple index is obtained by dividing the current value of a time series by the value of the time

series in the base time period and by multiplying this ratio by 100. That is, if yt denotes the cur-

rent value and if y0 denotes the value in the base time period, then the simple index number is 

The time series values used to construct an index are often quantities or prices. For instance, in

Table 16.16 we give the total amount of consumer installment credit outstanding in the United

States (in billions of dollars) for the years 1990 through 1996. If we consider 1990 the base year,

we compute an index for each succeeding year by dividing the installment credit outstanding for

each year by 796.4 (the installment credit outstanding for the base year 1990) and by multiplying

by 100. For example, for 1991 the simple index is

(781.1兾796.4)   100   98.08

while the simple index for 1996 is

(1,194.6兾796.4)   100   150.0

Table 16.16 gives the remaining index values for 1990 through 1996. Notice that (by definition)

the index for the base year will always equal 100.0 (as it does here).

Although the simple index is not written with a percentage sign, comparisons of the index with

the base year are percentage comparisons. For instance, the index of 150.0 for 1996 tells us that

installment credit outstanding in 1996 was up 50 percent compared to the 1990 base year. The

index of 98.08 for 1991 tells us that installment credit outstanding in 1991 was down 1.92 percent

compared to 1990. In general, if we are comparing the index to the base year, the difference be-

tween the index and 100 gives the percentage change from the base year. It is important to point

out that other period-to-period percentage comparisons cannot be made by subtracting indexes.

For instance, the percentage difference between installment credit outstanding in 1996 and 1995

is not 150.0 138.54 11.46 percent. Rather, the percentage difference is

This says that installment credit outstanding in 1996 was up 8.27 percent relative to 1995.

Since the installment credit values are quantities, the time series of index values that we obtain

is called a quantity index. As mentioned previously, often the original time series values are prices,

in which case the index is referred to as a price index. Our next example will be a price index.

A simple index is computed by using the values of one time series. Often, however, we com-

pute an index based on the accumulated values of more than one time series. Such an index is

called an aggregate index. As an example, food prices are often compared with an aggregate

index based on a “market basket” of commonly bought grocery items. For instance, consider a

market basket consisting of six items—a five-pound bag of apples, a one-pound loaf of bread, a

six-ounce can of tuna fish, one gallon of 2% milk, an 18-ounce jar of peanut butter, and a 16-ounce

can of green beans. Table 16.17 on the next page gives 1992 and 1997 prices for each item in this

market basket. 

150.0  138.54

138.54
 100  8.27

yt

y0

  100

T A B L E 1 6 . 1 6 Installment Credit Outstanding (in Billions of Dollars): 1990 to 1996

InstCredDS

1990 1991 1992 1993 1994 1995 1996

Installment Credit Outstanding 796.4 781.1 784.9 844.1 966.5 1,103.3 1,194.6

Index (Base Year  1990) 100.0 98.08 98.56 105.99 121.36 138.54 150.0

Source: U.S. Bureau of the Census, Statistical Abstract of the United States, 1997, p. 520.



One way to compare prices would be to compute a simple index for each individual item in

the market basket. However, we can create an aggregate price index by totaling the prices for

each year and by then computing a simple index of the yearly price totals. Using the data in

Table 16.17 we obtain

(10.74兾8.54)   100   125.76

This index tells us that prices of the market basket grocery items in 1997 have increased by

25.76 percent over the prices of these items in the base year 1992. Notice that this percentage

increase does not necessarily apply to each individual grocery item, nor does this index neces-

sarily apply to any of the individual grocery items. It applies only to the aggregate of grocery

items in the market basket.

In general, we compute an aggregate price index as follows:

An aggregate price index is

where 兺pt is the sum of the prices in the current time period and 兺p0 is the sum of the prices in

the base year.

A disadvantage of this aggregate price index is that it does not take into account the fact that

some items in the market basket are purchased more frequently than others. To remedy this defi-

ciency, we can weight each price by the quantity of that item purchased in a given period (say

yearly). Then we can total the weighted prices for each year and compute a simple index of the

weighted price totals. To illustrate, Table 16.18 gives the 1992 and 1997 prices of the market

basket items and also gives estimates of the quantity of each item purchased in a year by a typi-

cal family. The table also gives the price multiplied by the quantity for each item, which is sim-

ply the total yearly cost of purchasing the item. These costs are totaled for each year. Looking at

Table 16.18, we see that a typical family in 1992 spent $458.77 purchasing the market basket

items during the year, while the family spent $578.37 purchasing the market basket items during

1997. We now compute a simple index of the total costs, which is

(578.37兾458.77)   100   126.07

This type of index is called a weighted aggregate price index. Two versions of this kind of

index are commonly used. The first version is called a Laspeyres index. Here the quantities that

¢ a pt

a p0

≤   100
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T A B L E 1 6 . 1 7 1992 and 1997 Prices for a Market Basket of Grocery Items MkBsktDS

T A B L E 1 6 . 1 8 1992 and 1997 Prices and Quantities for a Market Basket of Grocery Items MkBsktDS

Grocery Item 1992 Price 1997 Price

5 lb. bag of apples $2.99 $3.69

1 lb. loaf of bread $.99 $1.29

6 oz. can of tuna fish $.69 $.79

1 gal. of 2% milk $1.29 $1.59

18 oz. jar of peanut butter $1.99 $2.59

16 oz. can of green beans $.59 $.79

Totals $8.54 $10.74

1992 (Base Year) 1997
Grocery Item Price, p0 Quantity, q p0  q  cost Price, pt Quantity, q pt  q  cost

5 lb. bag of apples $2.99 26 $77.74 $3.69 26 $95.94

1 lb. loaf of bread $.99 156 $154.44 $1.29 156 $201.24

6 oz. can of tuna fish $.69 52 $35.88 $.79 52 $41.08

1 gal. of 2% milk $1.29 104 $134.16 $1.59 104 $165.36

18 oz. jar of peanut butter $1.99 13 $25.87 $2.59 13 $33.67

16 oz. can of green beans $.59 52 $30.68 $.79 52 $41.08

Totals $8.54 $458.77 $10.74 $578.37
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are specified for the base year are also employed for all succeeding time periods. This is the

assumption we have made in Table 16.18. Notice that the quantities for 1997 are the same as

those specified for 1992. In general,

A Laspeyres index is

where p0 represents a base period price, q0 represents a base period quantity, and pt represents a

current period price.

Because the Laspeyres index employs the base period quantities in all succeeding time peri-

ods, this index allows for ready comparison of prices for identical quantities of goods purchased.

Such an index is useful as long as the base quantities provide a reasonable representation of con-

sumption patterns in succeeding time periods. However, sometimes purchasing patterns can

change drastically as consumer preferences change or as dramatic price changes occur. If con-

sumption patterns in the current period are very different from the quantities specified in the base

period, then a Laspeyres index can be misleading because it relates to quantities of goods that few

people would purchase.

A second version of the weighted aggregate price index is called a Paasche index. Here we

update the quantities so that they reflect consumption patterns in the current time period.

A Paasche index is

where p0 represents a base period price, pt represents a current period price, and qt represents a

current period quantity.

As an example, Table 16.19 presents revised quantities for the grocery items in our previously

discussed market basket. These quantities reflect increased consumption of apples, green beans,

and tuna fish and somewhat decreased consumption of milk and peanut butter in 1997. We

calculate a 1992 cost of $590.26 for the items in the market basket and a 1997 cost of $743.26 for

the items in the market basket. Therefore, we obtain a Paasche index equal to

($743.26兾$590.26)  100  125.92

Because the Paasche index uses quantities from the current period, it reflects current buying

habits. However, the Paasche index requires quantity data for each year, which can be difficult to

obtain. Furthermore, although each period is compared to the base period, it is difficult to com-

pare the index at other points in time. This is because different quantities are used in different

periods, and thus changes in the index are affected by changes in both prices and quantities.

Economic indexes Several commonly quoted economic indexes are compiled monthly by

the U.S. Bureau of Labor Statistics. Two important indexes are the Consumer Price Index (the

CPI) and the Producer Price Index (the PPI). These are both Laspeyres indexes. The CPI mon-

itors the price of a market basket of goods and services that would be purchased by typical

a pt qt

a p0 
qt

 100

a pt q0

a p0 
q0

 100

T A B L E 1 6 . 1 9 1992 and 1997 Prices and 1997 Quantities for a Market Basket of Grocery Items MkBsktRDS

1992 1997 1997 1997
Grocery Item Price, p0 Quantity, qt p0  qt  cost Price, pt Quantity, qt pt  qt  cost

5 lb. bag of apples $2.99 52 $155.48 $3.69 52 $191.88

1 lb. loaf of bread $.99 156 $154.44 $1.29 156 $201.24

6 oz. can of tuna fish $.69 104 $71.76 $.79 104 $82.16

1 gal. of 2% milk $1.29 78 $100.62 $1.59 78 $124.02

18 oz. jar of peanut butter $1.99 8 $15.92 $2.59 8 $20.72

16 oz. can of green beans $.59 156 $92.04 $.79 156 $123.24

Totals $8.54 Total $590.26 $10.74 Total $743.26



nonfarm consumers. Actually, there are two Consumer Price Indexes. The CPI-U, the Consumer

Price Index for all Urban Workers, is often reported by the press as an indicator of price changes.

Figure 16.22, which gives an Excel plot of the annual average CPI-U from 1980 to 1996, shows

the general increasing trend in prices over this period. The CPI-W, the Consumer Price Index for

Urban Wage Earners and Clerical Workers, is often used to determine wage increases that are

written into labor contracts. The PPI tracks the prices of goods sold by wholesalers. An increase

in the PPI is often regarded as an indication that retail prices will soon rise.
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Source: U.S. Bureau of the Census, Statistical Abstract of the United States, 1997, p. 487.

Exercises for Section 16.8
CONCEPTS

16.35 Explain the difference between a simple index and an aggregate index.

16.36 Explain the difference between a Laspeyres index and a Paasche index.

METHODS AND APPLICATIONS

16.37 Below we present new retail passenger car sales in the United States for each of the years 1990 to

1996: PassCar

Year 1990 1991 1992 1993 1994 1995 1996

Sales (1,000s) 9,300 8,175 8,213 8,518 8,991 8,635 8,527

Source: American Automobile Manufacturers Association, Motor Vehicle Facts and Figures (Detroit, MI: annual), 
as presented in Statistical Abstract of the United States, 1997, p. 770.

a By using the year 1990 as the base year, construct a simple index for the passenger car sales

data.

b Interpret the meaning of the index in each of the years 1993 and 1996.

16.38 In the following table we present the average prices of three precious metals—gold, silver, and

platinum—for the years 1988 through 1996: Metals

Year 1988 1989 1990 1991 1992 1993 1994 1995 1996

Gold Price ($/Fine Oz.) 438 383 385 363 345 361 385 368 390

Silver Price ($/Fine Oz.) 6.53 5.50 4.82 4.04 3.94 4.30 5.29 5.15 5.30

Platinum Price ($/Troy Oz.) 523 507 467 371 360 374 411 425 410

Source: Through 1994, U.S. Bureau of Mines; thereafter, U.S. Geological Survey, Minerals Yearbook and Mineral

Commodities Summaries, as presented in Statistical Abstract of the United States, 1997, p. 701.

a By using the year 1988 as the base year, construct a simple index for each of gold, silver, and

platinum.

DS
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Chapter Summary

In this chapter we have discussed using univariate time series

models to forecast future time series values. We began by seeing

that it can be useful to think of a time series as consisting of

trend, seasonal, cyclical, and irregular components. If these

components remain constant over time, then it is appropriate to

describe and forecast the time series by using a time series

regression model. We discussed using such models to describe

no trend, a linear trend, and constant seasonal variation (by

utilizing dummy variables). We also considered various transfor-

mations that transform increasing seasonal variation into

constant seasonal variation, and we saw that we can use the

Durbin–Watson test to check for first-order autocorrelations.

As an alternative to using a transformation and dummy variables

to model increasing seasonal variation, we can use the multi-

plicative decomposition method. We discussed this intuitive

method and saw how to calculate approximate prediction

intervals when using it. We then turned to a consideration of

exponential smoothing, which is appropriate to use if the com-

ponents of a time series may be changing slowly over time.

Specifically, we discussed simple exponential smoothing,

Holt–Winters’ double exponential smoothing, and multi-

plicative Winters’ method. We next considered how to compare

forecasting methods by using the mean absolute deviation

(MAD) and the mean squared deviation (MSD). We concluded

this chapter by showing how to use index numbers to describe

time-related data.
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b Using the three indexes you constructed in part a, describe price trends for gold, silver, and

platinum from 1988 to 1996.

c By using the year 1988 as the base year, construct an aggregate price index for these precious

metals. Using the aggregate price index, describe trends for precious metals prices from 1988

to 1996.

d By using the year 1990 as the base year, construct an aggregate price index for these precious

metals.

16.39 In the following table we present prices for three commonly used sources of energy—motor

gasoline, natural gas, and electricity—for the years 1990 through 1996: Energy

Year 1990 1991 1992 1993 1994 1995 1996

Motor Gasoline Price ($ per Gal.) $1.22 $1.20 $1.19 $1.17 $1.17 $1.21 $1.29

Natural Gas Price ($ per mcf) $1.71 $1.64 $1.74 $2.04 $1.85 $1.55 $2.25

Electricity ($ per Kilowatt-Hr.) $.066 $.067 $.068 $.069 $.069 $.069 $.069

Source: U.S. Energy Information Administration, Annual Energy Review, as presented in Statistical Abstract of the

United States, 1997, pp. 588, 701.

a Consider a family that consumes 1,850 gallons of gasoline, 150 mcf of natural gas, and

17,000 kilowatt-hours of electricity every year. Construct the Laspeyres index for these

energy products using 1990 as the base year. Then describe how energy prices have changed

for this family over this period.

b Consider a family having the following energy consumption pattern from 1990 to 1996:

Year 1990 1991 1992 1993 1994 1995 1996

Motor Gasoline (Gallons) 2,200 2,100 2,000 1,950 1,950 1,900 1,750

Natural Gas (mcf) 150 150 150 150 150 150 150

Electricity (Kilowatt-Hr.) 15,000 16,000 17,000 18,000 20,000 21,000 22,500

Construct the Paasche index for these energy products using 1990 as the base year. How does

the Paasche index compare to the Laspeyres index you constructed in part a?

DS
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cyclical variation: Recurring up-and-down movements of a

time series around trend levels that last more than one calendar

year (often 2 to 10 years) from peak to peak or trough to trough.

(page 697)

deseasonalized time series: A time series that has had the effect

of seasonal variation removed. (page 711)

exponential smoothing: A forecasting method that weights recent

observations more heavily than remote observations. (page 716)

index number: A number that compares a value of a time series

relative to another value of the time series. (pages 730–734)

irregular component: What is “left over” in a time series after

trend, cycle, and seasonal variations have been accounted for.

(page 697)

moving averages: Averages of successive groups of time series

observations. (page 709)

seasonal variation: Periodic patterns in a time series that repeat

themselves within a calendar year and are then repeated yearly.

(page 697)
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smoothing constant: A number that determines how much

weight is attached to each observation when using exponential

smoothing. (page 716)

time series: A set of observations that has been collected in time

order. (page 697)

trend: The long-run upward or downward movement that char-

acterizes a time series over a period of time. (page 697)

univariate time series model: A model that predicts future val-

ues of a time series solely on the basis of past values of the time

series. (page 697)

Important Formulas and Tests

No trend: page 698

Linear trend: page 699

Modeling constant seasonal variation by using dummy

variables: pages 700–702

The multiplicative decomposition model: pages 708–714

Simple exponential smoothing: page 718

Double exponential smoothing: pages 720–722

Multiplicative Winters’ method: pages 722–727

Mean absolute deviation (MAD): pages 722, 729

Mean squared deviation (MSD): pages 722, 729

Simple index: page 731

Aggregate price index: page 732

Laspeyres index: page 733

Paasche index: page 733

Supplementary Exercises

16.40 The State University Credit Union, a savings institution open to the faculty and staff of State

University, handles savings accounts and makes loans to members. In order to plan its investment

strategies, the credit union requires both point and prediction interval forecasts of monthly loan

requests (in thousands of dollars) to be made by the faculty and staff in future months. The credit

union has recorded monthly loan requests for its past two years of operation. These loan requests

are given in the page margin. If we use MINITAB to fit the model

yt   b0   b1t   b2t
2
 et

to these data, we obtain the following partial MINITAB output. Loans

a Does the quadratic term t2 seem important in the model? Justify your answer.

b At the bottom of the MINITAB output are point and prediction interval forecasts of loan

requests in months 25 and 26. Find and report these forecasts. Then show how the point

forecasts have been calculated. 

16.41 Alluring Tackle, Inc., a manufacturer of fishing equipment, makes the Bass Grabber, a type of

fishing lure. The company would like to develop a prediction model that can be used to obtain

point forecasts and prediction interval forecasts of the sales of the Bass Grabber. The sales

(in tens of thousands of lures) of the Bass Grabber in sales period t, where each sales period

is defined to last four weeks, are denoted by the symbol yt and are believed to be partially

determined by one or more of the independent variables x1  the price in period t of the Bass

Grabber as offered by Alluring Tackle (in dollars); x2  the average industry price in period t

of competitors’ similar lures (in dollars); and x3  the advertising expenditure in period t of

Alluring Tackle to promote the Bass Grabber (in tens of thousands of dollars). The data in

Table 16.20 have been observed over the past 30 sales periods, and a plot of these data indicates

The regression equation is 

Y = 200 + 50.9 Time - 0.568 TimeSQ 

Predictor        Coef       SE Coef          T          P 

Constant       199.62         20.85       9.58      0.000 

Time           50.937         3.842      13.26      0.000 

TimeSQ        -0.5677        0.1492      -3.80      0.001 

S = 31.2469   R-Sq = 98.7%   R-Sq(adj) = 98.6% 

Predicted Values for New Observations 

New Obs Time TimeSQ      Fit SE Fit        95% CI             95% PI 

   1    25.0    625  1118.21  20.85  (1074.85, 1161.56) (1040.09, 1196.32) 

2    26.0    676  1140.19  24.44  (1089.37, 1191.01) (1057.70, 1222.68) 

DS

Loan Requests 

(in $1000s)

LoansDS

Year 1 Year 2

297 808

249 809

340 867

406 855

464 965

481 921

549 956

553 990

556 1019

642 1021

670 1033

712 1127
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that sales of the Bass Grabber have been increasing in a linear fashion over time and have been

seasonal, with sales of the lure being largest in the spring and summer, when most recreational

fishing takes place. Alluring Tackle believes that this pattern will continue in the future. Hence,

remembering that each year consists of 13, four-week seasons, a possible regression model for

predicting yt would relate yt to x1, x2, x3, t, and the seasonal dummy variables S2, S3, . . . , S13.

Here, for example, S2 equals 1 if sales period t is the second four-week season, and 0 otherwise.

As another example, S13 equals 1 if sales period t is the 13th four-week season, and 0 otherwise.

If we calculate the least squares point estimates of the parameters of the model, we obtain the

following prediction equation (the t statistic for the importance of each independent variable is

given in parentheses under the independent variable): BassGrab

ŷt  .1776 .4071x1  .7837x2  .9934x3  .0435t

(0.05) (0.42) ( 1.51) (4.89) (6.49)

  .7800S2  2.373S3  3.488S4  3.805S5

(3.16) (9.28) (12.88) (13.01)

  5.673S6  6.738S7  6.097S8  4.301S9

(19.41) (23.23) (21.47) (14.80)

  3.856S10  2.621S11  .9969S12  1.467S13

(13.89) (9.24) (3.50) ( 4.70)

a For sales period 31, which is the fifth season of the year, x1 will be 3.80, x2 will be 3.90, and

x3 will be 6.80. Using these values, it can be shown that a point prediction and a 95 percent

DS

T A B L E 1 6 . 2 0 Sales of the Bass Grabber (in Tens of Thousands of Lures) BassGrabDS

Average Industry Advertising
Period, t Sales, yt Price, x1 Price, x2 Expenditure, x3

1 4.797 3.85 3.80 5.50

2 6.297 3.75 4.00 6.75

3 8.010 3.70 4.30 7.25

4 7.800 3.70 3.70 5.50

5 9.690 3.60 3.85 7.00

6 10.871 3.60 3.80 6.50

7 12.425 3.60 3.75 6.75

8 10.310 3.80 3.85 5.25

9 8.307 3.80 3.65 5.25

10 8.960 3.85 4.00 6.00

11 7.969 3.90 4.10 6.50

12 6.276 3.90 4.00 6.25

13 4.580 3.70 4.10 7.00

14 5.759 3.75 4.20 6.90

15 6.586 3.75 4.10 6.80

16 8.199 3.80 4.10 6.80

17 9.630 3.70 4.20 7.10

18 9.810 3.80 4.30 7.00

19 11.913 3.70 4.10 6.80

20 12.879 3.80 3.75 6.50

21 12.065 3.80 3.75 6.25

22 10.530 3.75 3.65 6.00

23 9.845 3.70 3.90 6.50

24 9.524 3.55 3.65 7.00

25 7.354 3.60 4.10 6.80

26 4.697 3.65 4.25 6.80

27 6.052 3.70 3.65 6.50

28 6.416 3.75 3.75 5.75

29 8.253 3.80 3.85 5.80

30 10.057 3.70 4.25 6.80



prediction interval for sales of the Bass Grabber are, respectively, 10.578 and [9.683, 11.473].

Using the given prediction equation, verify that the point prediction is 10.578.

b Some t statistics indicate that some of the independent variables might not be important.

Using the regression techniques of Chapters 14 and 15, try to find a better model for

predicting sales of the Bass Grabber.

16.42 The following table gives information concerning finance rates (in percent) for consumer

installment loans from 1990 to 1996: InstLoan

Finance Rates (Percent)
1990 1991 1992 1993 1994 1995 1996

Commercial Banks:

New Automobiles 11.78 11.13 9.28 8.08 8.13 9.57 9.05

Other Consumer Loans 15.46 15.17 14.04 13.46 13.20 13.94 13.53

Credit Card Plans 18.17 18.23 17.77 16.81 15.69 16.02 15.63

Finance Companies:

New Automobiles 12.54 12.41 9.93 9.47 9.80 11.19 9.89

Used Automobiles 15.99 15.59 13.80 12.78 13.51 14.47 13.54

Source: Board of Governors of the Federal Reserve System, Federal Reserve Bulletin, monthly; and Annual

Statistical Digest as presented in Statistical Abstract of the United States, 1997, p. 520.

a Using 1990 as the base year, construct an aggregate index of finance rates charged by

commercial banks.

b Using 1993 as the base year, construct an aggregate index of finance rates charged by finance

companies for automobile loans.

c Suppose that in 1990 commercial banks extended $50 billion worth of new automobile loans,

$125 billion worth of other consumer loans, and $225 billion worth of credit card loans.

Construct a Laspeyres index of finance rates charged by commercial banks.

d Suppose that the amounts of credit extended for automobile loans by finance companies from

1990 to 1996 are as follows:

1990 1991 1992 1993 1994 1995 1996

New Automobiles ($ Billion) 75 85 97 103 117 121 135

Used Automobiles ($ Billion) 75 79 81 85 86 90 93

Construct a Paasche index of finance rates charged by finance companies for auto loans.

DS
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ISO 9000 is a series of international standards for quality
assurance management systems. Companies meeting
the standards are considered to be “ISO 9000 regis-
tered.” The periodical Business Standards maintains
information about ISO 9000 registrations on its web-
site (www.businessstandards.com). In an article that
appeared on the website, Stewart Anderson discussed
the growth of ISO 9000 registrations in North America
from 1990 to 1999. Figure 16.23 reproduces a time

series plot of registrations from the article. Use a qua-
dratic trend model y ⴝ b0 ⴙ b1t ⴙ b2t

2
ⴙ e to forecast

ISO 9000 registrations for future years. Also try using
simple exponential smoothing (with a smoothing con-
stant equal to .10) to forecast future ISO 9000 registra-
tions. How do the forecasts obtained using the two
methods compare? Try using a smoothing constant
equal to .30. How do the resulting forecasts compare
to the others?

16.43 Internet Exercise ISORegDS
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F I G U R E 1 6 . 2 3 North American ISO 9000 Registrations ISORegDS
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Source: © British Standards Institution 2009. This extract is taken from Business Standards, BSI Group’s quarterly corporate magazine, in the American Edition,
Volume 2, Issue 2, March/April 2000, page 23. It can also be found on BusinessStandards.com. Reproduced here with permission from BSI.

Appendix 16.1 ■ Time Series Analysis Using Excel
The instruction block in this section begins by describing the entry of data into an Excel spreadsheet. Alternatively,
the data may be downloaded from this book’s website. The appropriate data file name is given at the top of the in-
struction block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing
results when using Excel.

Point forecasts from a linear trend line for the
calculator sales data in Table 16.2 on page 699 (data
file: CalcSale.xlsx):

• Enter the calculator sales data from Table 16.2
with the label Sales in cell A1 and the values of
sales in cells A2 through A25.

• Enter the label Month in cell B1 and the 
values 1 to 28 in cells B2 through B29.

• Click on cell A26.

• Click the Insert Function button  on the Excel
ribbon.

• In the Insert Function dialog box, select Statistical
from the “Or select a category:” menu and select
TREND from the “Select a function:” menu. Then
click OK in the Insert Function dialog box.

• In the “TREND Function Arguments” dialog box,
enter $A$2 : $A$25 into the “Known_y’s” 
window. Don’t forget the dollar signs—this
must be an absolute cell reference.

• Enter $B$2 : $B$25 into the “Known_x’s” 
window. Again, don’t forget the dollar signs.

• Enter B26 into the “New_x’s” window.

• Enter the value 1 into the Const window.

• Click OK in the “TREND Function Arguments”
dialog box to produce the point forecast for
time period 25.

• Double-click on the drag handle in cell A26 to
extend the forecasts through time period 28.

fx
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Calculation of seasonal factors and deseasonal-
ization similar to Table 16.10, Table 16.11, and
Figure 16.11 on pages 709 and 711 (data file:
TastyCola.xlsx):

• Enter the Tasty Cola data in Table 16.9 
(page 708) into column A with label Sales.
Only the sales values in Table 16.9 need to be 
entered—the year, month, and time period
need not be entered.

• Select Add-Ins : MegaStat : Time Series/
Forecasting : Deseasonalization.

• In the Deseasonalization dialog box, enter
the range A1 : A37 into the “Input Range of 
Seasonal Data” window. This range can be
entered by dragging with the mouse—the
autoexpand feature cannot be used in this
dialog box.

• Select the type of seasonal data—“quarterly”
or “monthly”—by clicking. Here we have
selected “monthly” because the Tasty Cola
data consists of monthly sales values.

• In the “First data period” box, specify the
month (in this case, January) in which the first
time series value was observed by using the up
or down arrow buttons.

• In the “First data period” box, enter the year in
which the first time series value was observed
(here equal to 1) into the Year box.

• Check the Plot Values checkbox to obtain 
plots of the seasonal observations, the 
deseasonalized data, and a trend line fit to 
the deseasonalized data.

• Click OK in the Deseasonalization dialog box.

• The seasonal factors are displayed in the
“Seasonal Indexes” column of the “Centered
Moving Average and Deseasonalization” table
in the output worksheet. They are also given in
the “adjusted” row at the bottom of the 
“Calculation of Seasonal Indexes” table in the
output worksheet.

Appendix 16.2 ■ Time Series Analysis Using MegaStat
The instructions in this section begin by describing the entry of data into an Excel worksheet. Alternatively, the data
may be downloaded from this book’s website. The appropriate data file name is given at the top of each instruc-
tion block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing
results in Excel. Please refer to Appendix 1.2 for more information about using MegaStat.
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Simple exponential smoothing similar to Table 16.13
on page 717 (data file: CodCatch.xlsx):

• Enter the cod catch data in Table 16.1 (page 698)
into column A with label CodCatch.

• Select Add-Ins : MegaStat : Time Series/
Forecasting : Exponential Smoothing : 
Simple Exponential Smoothing.

• In the Simple Exponential Smoothing dialog box,
enter the range A1 : A25 into the “Input Range
for Data” window. Enter this range by dragging
with the mouse—the autoexpand feature cannot
be used in this dialog box.

• Type the value of the smoothing constant (here
equal to .02) into the Alpha window.

• Leave the Initial Value window blank if you wish
to use an initial value equal to the average of the
first six time series observations. If another initial
value is desired, type it into the Initial Value 
window.

• Click OK in the Simple Exponential Smoothing 
dialog box.

• The forecast for a future value of the time series
is found at the bottom of the “Forecast” column
in the output worksheet. 

Double exponential smoothing similar to Figure 16.16
on page 723 (data file: CalcSale.xlsx):

• Enter the calculator sales data in Table 16.2 on
page 699 into column A with label Sales.

• Select Add-Ins : MegaStat : Time Series/
Forecasting : Exponential Smoothing :
Two-factor Exponential Smoothing.

• In the Two-Factor Exponential Smoothing dialog
box, enter the range A1 : A25 into the “Input
Range for Data” window. Enter this range by
dragging with the mouse—the autoexpand 
feature cannot be used in this dialog box.

• Type the desired values of the smoothing 
constants (here both are set equal to .20) into 
the Alpha and Beta boxes.

• Leave the “Initial Value” and “Initial Trend”
boxes blank if you wish to use initial values that
are estimated by the computer using the first six
time series observations. If you wish to supply 
initial values, type an initial value of the intercept
into the “Initial Value” box and type an initial
value of the slope into the “Initial Trend” box.
Here we have supplied the values 198.0 and 8.1.

• Click OK in the Two-Factor Exponential Smoothing
dialog box.

• The forecast for the next time series value is
found at the bottom of the Forecast column in
the output worksheet.
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Simple exponential smoothing in Figure 16.13 on
page 719 (data file: CodCatch.MTW):

• In the Data window, enter the cod catch data
from Table 16.1 on page 698 into column C1
with variable name CodCatch.

• Select Stat : Time Series : Single Exp Smoothing.

• In the Single Exponential Smoothing dialog box,
enter CodCatch in the Variable window.

• To request that MINITAB select the smoothing
constant, select the “Optimal ARIMA” option
under “Weight to Use in Smoothing.” To choose
your own smoothing constant, select the “Use”
option and enter the desired smoothing 
constant in the window.

• Place a checkmark in the “Generate forecasts”
checkbox.

• Enter 12 in the “Number of forecasts” window
and enter 24 in the “Starting from origin” 
window.

• Click OK in the Single Exponential Smoothing 
dialog box to see the forecast results in the 
Session window and a graphical summary in a
high-resolution graphics window.

Double exponential smoothing can be performed
by choosing Double Exp Smoothing from the Time
Series menu and by following the remainder of the
preceding steps.

Appendix 16.3 ■ Time Series Analysis Using MINITAB
The instruction blocks in this section each begin by describing the entry of data into the MINITAB data window.
Alternatively, the data may be downloaded from this book’s website. The appropriate data file name is given at the
top of each instruction block. Please refer to Appendix 1.3 for further information about entering data, saving data,
and printing results when using MINITAB.
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Multiplicative Winters’ method in Figure 16.19 on
page 727 (data file: TastyCola.MTW):

• In the Data window, enter the Tasty Cola data
from Table 16.9 (page 708) into column C1 with
variable name Sales.

• Select Stat : Time Series : Winters’ Method.

• In the Winters’ Method dialog box, enter Sales
into the Variable window.

• Enter 12 in the “Seasonal length” window.

• Click the Multiplicative option under Method
Type.

• Use the default values for “Weights to Use in
Smoothing” (0.2 in each of the Level, Trend,
and Seasonal windows).

• Click the “Generate forecasts” checkbox.

• Enter 12 in the “Number of forecasts” window
and enter 36 in the “Starting from origin” 
window.

• Click OK in the Winters’ Method dialog box
to obtain the forecast results in the Session 
window and a graphical summary in a 
high-resolution graphics window.
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quality improvement.
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his chapter explains how to use control charts

to improve business processes. Basically, a

control chart is a graphical device that helps

us determine when a process is not operating

consistently and thus is “out of control.” The

information provided by a control chart helps us

discover the causes of unusual process variations.

When such causes have been identified, we attempt to

remove them in order to reduce the amount of process

variation. By doing so, we improve the process.

We begin this chapter by tracing the history of

the U.S. quality movement. Then we study control

charts for monitoring the level and variability 

of a process and for monitoring the fraction of

nonconforming (or defective) units produced. We

also discuss how to evaluate the process capability.

That is, we show how to assess a process’s ability to

produce individual items that meet customer

requirements (specifications). In particular, we

explain the concept of six sigma capability, which

was introduced by Motorola Inc. In an optional

section we discuss cause-and-effect diagrams.

In order to demonstrate the ideas of this chapter,

we employ three case studies:

T

The Hole Location Case: A manufacturer of

automobile air conditioner compressors uses

control charts to reduce variation in the locations

of a hose connection hole that is punched in the

outer housing (or shell) of the compressor.

The Hot Chocolate Temperature Case: The food

service staff at a university dining hall wishes to

avoid possible litigation by making sure that it

does not serve excessively hot beverages. The staff

uses control charts to find and eliminate causes of

unusual variations in hot chocolate temperatures.

The Camshaft Case: An automobile manufacturer

wishes to improve the process it uses to harden a

part in a camshaft assembly. The manufacturer

uses control charts and process capability studies 

to reduce the sources of process variation that are

responsible for a 12 percent rework rate and a 

9 percent scrap rate. After the process variation is

reduced, virtually all of the hardened parts meet

specifications (note: this case is included in the

supplementary exercises).

C

17.1 Quality: Its Meaning and a Historical Perspective 
What is quality? It is not easy to define quality, and a number of different definitions have
been proposed. One definition that makes sense is fitness for use. Here the user of a product or
service can be an individual, a manufacturer, a retailer, or the like. For instance, an individual
who purchases a High Definition television set or a DVD recorder expects the unit to be defect
free and to provide years of reliable, high-performance service. If the TV or DVD recorder per-
forms as desired, it is fit for use. Another definition of quality that makes sense says that quality

is the extent to which customers feel that a product or service exceeds their needs and ex-

pectations. For instance, if the DVD recorder’s purchaser believes the unit exceeds all the needs
and expectations he or she had for the recorder when it was purchased, then the customer is sat-
isfied with the unit’s quality.

Three types of quality can be considered: quality of design, quality of conformance, and
quality of performance. Quality of design has to do with intentional differences between goods
and services with the same basic purpose. For instance, all DVD recorders are built to perform the
same function—record and play back DVDs. However, DVD recorders differ with respect to
various design characteristics—picture sharpness, sound quality, digital effects, ease of use, and so
forth. A given level of design quality may satisfy some consumers and may not satisfy others. The
product design will specify a set of tolerances (specifications) that must be met. For example, the
design of a DVD recorder sets forth many specifications regarding electronic and physical char-
acteristics that must be met if the unit is to operate acceptably. Quality of conformance is the abil-
ity of a process to meet the specifications set forth by the design. Quality of performance is how
well the product or service actually performs in the marketplace. Companies must find out how
well customers’ needs are met and how reliable products are by conducting after-sales research.

The marketing research arm of a company must determine what the customer seeks in each of
these dimensions. Consumer research is used to develop a product or service concept—a combi-
nation of design characteristics that exceeds the expectations of a large number of consumers.
This concept is translated into a design. The design includes specifications that, if met, will
satisfy consumer wants and needs. A production process is then developed to meet the design

Discuss the
principles

and importance
of quality
improvement.

LO1



specifications. In order to do this, variables that can control the process must be identified, and
the relationships between input variables and final quality characteristics must be understood.
The manufacturer expresses quality characteristics as measurable variables that can be tracked
and used to monitor and improve the performance of the process. Service call analysis often leads
to product or service redesigns in order to improve the product or service concept. It is extremely
important that the initial design be a good one so that excessive redesigns and customer dissatis-
faction can be avoided.

History of the quality movement In the 1700s and 1800s, master craftsmen and their
apprentices were responsible for designing and building products. Quantities of goods produced
were small, and product quality was controlled by expert workmanship. Master craftsmen had a
great deal of pride in their work, and quality was not a problem. However, the introduction of
mass production in the late 1800s and early 1900s changed things. Production processes became
very complex, with many workers (rather than one skilled craftsman) responsible for the final
product. Inevitably, product quality characteristics displayed variation. In particular, Henry Ford
developed the moving assembly line at Ford Motor Company. As assembly line manufacturing
spread, quality became a problem. Production managers were rewarded for meeting production
quotas, and quality suffered. To make mass-produced products more consistent, inspectors were
hired to check product quality. However, 100 percent inspection proved to be costly, and people
started to look for alternatives.

Much of the early work in quality control was done at Bell Telephone (now known as
American Telephone and Telegraph or AT&T). The Bell System and Western Electric, the
manufacturing arm of Bell Telephone, formed the Inspection Engineering Department to deal
with quality problems. In 1924 Walter Shewhart of Bell Telephone Laboratories introduced
the concept of statistical quality control—controlling quality of mass-produced goods.
Shewhart believed that variation always exists in manufactured products, and that the varia-
tion can be studied, monitored, and controlled using statistics. In particular, Shewhart devel-
oped a statistical tool called the control chart. Such a chart is a graph that can tell a company
when a process needs to be adjusted and when the process should be left alone. In the late
1920s Harold F. Dodge and Harold G. Romig, also of Bell Telephone Laboratories, intro-
duced statistical acceptance sampling, a statistical sampling technique that enables a com-
pany to accept or reject a quantity of goods (called a lot) without inspecting the entire lot. By
the mid-1930s, Western Electric was heavily using statistical quality control (SQC) to
improve quality, increase productivity, and reduce inspection costs. However, these statistical
methods were not widely adopted outside Bell Telephone.

During World War II statistical quality control became widespread. Faced with the task of pro-
ducing large quantities of high-quality war matériel, industry turned to statistical methods, fail-
ure analysis, vendor certification, and early product design. The U.S. War Department required
that suppliers of war matériel employ acceptance sampling, and its use became commonplace.
Statistical control charts were also used, although not as widely as acceptance sampling.

In 1946 the American Society for Quality Control (ASQC) was established to encourage the
use of quality improvement methods. The organization sponsors training programs, seminars, and
publications dealing with quality issues. In spite of the efforts of the ASQC, however, interest in
quality in American industry diminished after the war. American business had little competition in
the world market—Europe and Japan were rebuilding their shattered economies. Tremendous
emphasis was placed on increased production because firms were often unable to meet the
demand for their products. Profits were high, and the concern for quality waned. As a result, post-
war American managers did not understand the importance of quality and process improvement,
and they were not informed about quality improvement techniques.

However, events in Japan took a different turn. After the war, Japanese industrial capacity was
crippled. Productivity was very low, and products were of notoriously bad quality. In those days,
products stamped “Made in Japan” were generally considered to be “cheap junk.” The man
credited with turning this situation around is W. Edwards Deming. Deming, born in 1900, earned
a Ph.D. in mathematical physics from Yale University in 1927. He then went to work in a
Department of Agriculture–affiliated laboratory. Deming, who had learned statistics while study-
ing physics, applied statistics to experiments conducted at the laboratory. Through this work,
Deming was introduced to Walter Shewhart, who explained his theories about using statistical
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control charts to improve quality and productivity. During World War II, Deming was largely re-
sponsible for teaching 35,000 American engineers and technical people how to use statistics to
improve the quality of war matériel. After the war, the Allied command sent a group of these en-
gineers to Japan. Their mission was to improve the Japanese communication system. In doing so,
the engineers employed the statistical methods they had learned, and Deming’s work was brought
to the attention of the Union of Japanese Scientists and Engineers (JUSE). Deming, who had
started his own consulting firm in 1946, was asked by the JUSE to help increase Japanese pro-
ductivity. In July 1950 Deming traveled to Japan and gave a series of lectures titled “Elementary
Principles of the Statistical Control of Quality” to a group of 230 Japanese managers. Deming
taught the Japanese how to use statistics to determine how well a system can perform, and taught
them how to design process improvements to make the system operate better and more effi-
ciently. He also taught the Japanese that the more quality a producer builds into a product, the less
it costs. Realizing the serious nature of their economic crisis, the Japanese adopted Deming’s
ideas as a philosophy of doing business. Through Deming, the Japanese found that by listening
to the wants and needs of consumers and by using statistical methods for process improvement
in production, they could export high-quality products to the world market.

Although American business was making only feeble attempts to improve product quality in
the 1950s and 1960s, it was able to maintain a dominant competitive position. Many U.S. com-
panies focused more on marketing and financial strategies than on product and production. But
the Japanese and other foreign competitors were making inroads. By the 1970s, the quality of
many Japanese and European products (for instance, automobiles, television sets, and electronic
equipment) became far superior to their American-made counterparts. Also, rising prices made
consumers more quality conscious—people expected high quality if they were going to pay high
prices. As a result, the market shares of U.S. firms rapidly decreased. Many U.S. firms were
severely injured or went out of business.

Meanwhile, Deming continued teaching and preaching quality improvement. While Deming
was famous in Japan, he was relatively unknown in the United States until 1980. In June 1980
Deming was featured in an NBC television documentary titled “If Japan Can, Why Can’t We?”
This program, written and narrated by then–NBC correspondent Lloyd Dobyns, compared
Japanese and American industrial productivity and credited Deming for Japan’s success. Within
days, demand for Deming’s consulting services skyrocketed. Deming consulted with many major
U.S. firms. Among these firms are The Ford Motor Company, General Motors Corporation, and
The Procter & Gamble Company. Ford, for instance, began consulting with Deming in 1981.
Donald Petersen, who was Ford’s chairman and chief executive officer at the time, became a
Deming disciple. By following the Deming philosophy, Ford, which was losing 2 billion dollars
yearly in 1980, attempted to create a quality culture. Quality of Ford products was greatly
improved, and the company again became profitable. The 1980s saw many U.S. companies adopt
a philosophy of continuous improvement of quality and productivity in all areas of their
businesses—manufacturing, accounting, sales, finance, personnel, marketing, customer service,
maintenance, and so forth. This overall approach of applying quality principles to all company
activities is called total quality management (TQM) or total quality control (TQC). It is
becoming an important management strategy in American business. Dr. Deming taught seminars
on quality improvement for managers and statisticians until his death on December 20, 1993.
Deming’s work resulted in widespread changes in both the structure of the world economy and
the ways in which American businesses are managed.

The fundamental ideas behind Deming’s approach to quality and productivity improvement
are contained in his “14 points.” These are a set of managerial principles that, if followed,
Deming believed would enable a company to improve quality and productivity, reduce costs, and
compete effectively in the world market. We briefly summarize the 14 points in Table 17.1 on the
next page. For more complete discussions of these points, see Bowerman and O’Connell (1996),
Deming (1986), Walton (1986), Scherkenbach (1987), or Gitlow, Gitlow, Oppenheim, and
Oppenheim (1989). Deming stressed that implementation of the 14 points requires both changes
in management philosophy and the use of statistical methods. In addition, Deming believed that
it is necessary to follow all of the points, not just some of them.

In 1988 the first Malcolm Baldrige National Quality Awards were presented. These awards,
presented by the U.S. Commerce Department, are named for the late Malcolm Baldrige, who was
Commerce Secretary during the Reagan administration. The awards were established to promote



quality awareness, to recognize quality achievements by U.S. companies, and to publicize suc-
cessful quality strategies. The Malcolm Baldrige National Quality Award Consortium, formed by
the ASQC (now known as the ASQ) and the American Productivity and Quality Center, admin-
isters the award. The Baldrige award has become one of the most prestigious honors in American
business. Annual awards are given in three categories—manufacturing, service, and small busi-
ness. Winners include companies such as Motorola Inc., Xerox Corporation Business Products
and Systems, the Commercial Nuclear Fuel Division of Westinghouse Electric Corporation,
Milliken and Company, Cadillac Division, General Motors Corporation, Ritz Carlton Hotels, and
AT&T Consumer Communications.

Finally, the 1990s saw the adoption of an international quality standards system called
ISO 9000. More than 90 countries around the globe have adopted the ISO 9000 series of stan-
dards for their companies, as have many multinational corporations (including AT&T, 3M, IBM,
Motorola, and DuPont). As a brief introduction to ISO 9000, we quote “Is ISO 9000 for You?”
published by CEEM Information Systems:

What Is ISO 9000?

ISO 9000 is a series of international standards for quality assurance management systems. It estab-
lishes the organizational structure and processes for assuring that the production of goods or services
meets a consistent and agreed-upon level of quality for a company’s customers.

The ISO 9000 series is unique in that it applies to a very wide range of organizations and indus-
tries encompassing both the manufacturing and service sectors.
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1 Create constancy of purpose toward improvement of product and service with a plan to become competitive, stay in business, 
and provide jobs.
Devise a plan for the long-term success of the company based on quality improvement.

2 Adopt a new philosophy.
Do not tolerate commonly accepted mistakes, delays, defective materials, and defective workmanship.

3 Cease dependence on mass inspection.
Quality cannot be inspected into a product. It must be built into the product through process improvement.

4 End the practice of awarding business on the basis of price tag.
Do not buy from the lowest bidder without taking the quality of goods purchased into account. Purchasing should be based on
lowest total cost (including the cost of bad quality).

5 Improve constantly and forever the system of production and service to improve quality and productivity, and thus constantly 
decrease costs.
Constantly seek to improve every aspect of the business.

6 Institute training.
Workers should know how to do their jobs and should know how their jobs affect quality and the success of the company.

7 Institute leadership.
The job of management is leadership, not mere supervision. Leadership involves understanding the work that needs to be done
and fostering process improvement.

8 Drive out fear, so that everyone may work more effectively for the company.
Workers should not be afraid to express ideas, to ask questions, or to take appropriate action.

9 Break down organizational barriers.
Barriers that damage the company performance (such as competition between staff areas, poor communication, disputes between
labor and management, and so on) must be removed so that everyone can work for the good of the company.

10 Eliminate slogans, exhortations, and arbitrary numerical goals and targets for the workforce that urge the workers to achieve
new levels of productivity and quality without providing methods.
Slogans and numerical goals (such as production quotas) are counterproductive unless management provides methods for 
achieving them.

11 Eliminate work standards and numerical quotas.
Work standards and numerical quotas that specify the quantity of goods to be produced while quality is ignored are 
counterproductive and should be eliminated.

12 Remove barriers that rob employees of their pride of workmanship.
While workers want to do a good job and have pride in their work, bad management practices often rob workers of their pride.
Barriers that rob workers of pride (such as inadequate instructions, cheap materials, poor maintenance, and so on) must be 
removed.

13 Institute a vigorous program of education and self-improvement.
Education and training are necessary for everyone if continuous improvement is to be achieved.

14 Take action to accomplish the transformation.
A management structure that is committed to continuous improvement must be put in place.

Source: W. Edwards Deming, “Deming’s 14 Points, condensed version” from Out of Crisis. Copyright © MIT Press. Used with

permission.
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Why Is ISO 9000 Important?

ISO 9000 is important for two reasons. First . . . the discipline imposed by the standard for processes
influencing your quality management systems can enhance your company’s quality consistency.
Whether or not you decide to register your company to ISO 9000 standards, your implementing such
discipline can achieve greater efficiency in your quality control systems.

Second . . . more and more companies, both here at home and internationally, are requiring their
suppliers to be ISO 9000 registered. To achieve your full market potential in such industries, regis-
tration is becoming essential. Those companies who become registered have a distinct competitive
advantage, and sales growth in today’s demanding market climate requires every advantage you can
muster.1

Clearly, quality has finally become a crucially important issue in American business. The
quality revolution now affects every area in business. But the Japanese continue to mount new
challenges. For years, the Japanese have used designed statistical experiments to develop new
processes, find and remedy process problems, improve product performance, and improve
process efficiency. Much of this work is based on the insights of Genichi Taguchi, a Japanese
engineer. His methods of experimental design, the so-called Taguchi methods, have been heav-
ily used in Japan since the 1960s. Although Taguchi’s methodology is controversial in statistical
circles, the use of experimental design gives the Japanese a considerable advantage over U.S.
competitors because it enables them to design a high level of quality into a product before pro-
duction begins. Some U.S. manufacturers have begun to use experimental design techniques to
design quality into their products. It will be necessary for many more U.S. companies to do so in
order to remain competitive in the future—a challenge for the 21st century.

17.2 Statistical Process Control and Causes
of Process Variation 

Statistical process control Statistical process control (SPC) is a systematic method for an-
alyzing process data (quality characteristics) in which we monitor and study the process varia-

tion. The goal is to stabilize the process and to reduce the amount of process variation. The ulti-
mate goal is continuous process improvement. We often use SPC to monitor and improve
manufacturing processes. However, SPC is also commonly used to improve service quality. For
instance, we might use SPC to reduce the time it takes to process a loan application, or to improve
the accuracy of an order entry system.

Before the widespread use of SPC, quality control was based on an inspection approach. Here
the product is first made, and then the final product is inspected to eliminate defective items. This
is called action on the output of the process. The emphasis here is on detecting defective
product that has already been produced. This is costly and wasteful because, if defective product
is produced, the bad items must be (1) scrapped, (2) reworked or reprocessed (that is, fixed),
or (3) downgraded (sold off at a lower price). In fact, the cost of bad quality (scrap, rework, and
so on) can be tremendously high. It is not unusual for this cost to be as high as 10 to 30 percent
or more of a company’s dollar sales.

In contrast to the inspection approach, SPC emphasizes integrating quality improvement into
the process. Here the goal is preventing bad quality by taking appropriate action on the

process. In order to accomplish this goal, we must decide when actions on the process are
needed. The focus of much of this chapter is to show how such decisions can be made.

Causes of process variation In order to understand SPC methodology, we must realize that
the variations we observe in quality characteristics are caused by different sources. These sources
include factors such as equipment (machines or the like), materials, people, methods and proce-
dures, the environment, and so forth. Here we must distinguish between usual process variation

and unusual process variation. Usual process variation results from what we call common

causes of process variation.

Common causes are sources of variation that have the potential to influence all process obser-
vations. That is, these sources of variation are inherent to the current process design.

Distinguish
between

common causes
and assignable
causes of process
variation.

LO2

1CEEM Information Services, “Is ISO 9000 for You?” 1993.



Common cause variation can be substantial. For instance, obsolete or poorly maintained
equipment, a poorly designed process, and inadequate instructions for workers are examples of
common causes that might significantly influence all process output. As an example, suppose that
we are filling 16-ounce jars with grape jelly. A 25-year-old, obsolete filler machine might be a
common cause of process variation that influences all the jar fills. While (in theory) it might be
possible to replace the filler machine with a new model, we might have chosen not to do so, and
the obsolete filler causes all the jar fills to exhibit substantial variation.

Common causes also include small influences that would cause slight variation even if all con-
ditions are held as constant as humanly possible. For example, in the jar fill situation, small vari-
ations in the speed at which jars move under the filler valves, slight floor vibrations, and small
differences between filler valve settings would always influence the jar fills even when condi-
tions are held as constant as possible. Sometimes these small variations are described as being
due to “chance.”

Together, the important and unimportant common causes of variation determine the usual

process variability. That is, these causes determine the amount of variation that exists when the
process is operating routinely. We can reduce the amount of common cause variation by remov-
ing some of the important common causes. Reducing common cause variation is usually a

management responsibility. For instance, replacing obsolete equipment, redesigning a plant or
process, or improving plant maintenance would require management action.

In addition to common cause variation, processes are affected by a different kind of vari-
ation called assignable cause variation (sometimes also called special cause or specific cause

variation).

Assignable causes are sources of unusual process variation. These are intermittent or perma-
nent changes in the process that are not common to all process observations and that may cause
important process variation. Assignable causes are usually of short duration, but they can be per-
sistent or recurring conditions.

For example, in the jar filling situation, one of the filler valves may become clogged so that some
jars are being substantially underfilled (or perhaps are not filled at all). Or a relief operator might
incorrectly set the filler so that all jars are being substantially overfilled for a short period of time.
As another example, suppose that a bank wishes to study the length of time customers must wait
before being served by a teller. If a customer fills out a banking form incorrectly, this might cause
a temporary delay that increases the waiting time for other customers. Notice that assignable

causes such as these can often be remedied by local supervision—for instance, by a production
line foreman, a machine operator, a head bank teller, or the like. One objective of SPC is to

detect and eliminate assignable causes of process variation. By doing this, we reduce the
amount of process variation. This results in improved quality.

It is important to point out that an assignable cause could be beneficial—that is, it could be an
unusual process variation resulting in unusually good process performance. In such a situation,
we wish to discover the root cause of the variation, and then we wish to incorporate this condi-
tion into the process if possible. For instance, suppose we find that a process performs unusually
well when a raw material purchased from a particular supplier is used. It might be desirable to
purchase as much of the raw material as possible from this supplier.

When a process exhibits only common cause variation, it will operate in a stable, or consis-
tent, fashion. That is, in the absence of any unusual process variations, the process will display

a constant amount of variation around a constant mean. On the other hand, if assignable
causes are affecting the process, then the process will not be stable—unusual variations will
cause the process mean or variability to change over time. It follows that

1 When a process is influenced only by common cause variation, the process will be in

statistical control.

2 When a process is influenced by one or more assignable causes, the process will not be in

statistical control.

In general, in order to bring a process into statistical control, we must find and eliminate
undesirable assignable causes of process variation, and we should (if feasible) build desirable
assignable causes into the process. When we have done these things, the process is what we call
a stable, common cause system. This means that the process operates in a consistent fashion
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and is predictable. Since there are no unusual process variations, the process (as currently
configured) is doing all it can be expected to do.

When a process is in statistical control, management can evaluate the process capability. That
is, it can assess whether the process can produce output meeting customer or producer require-
ments. If it does not, action by local supervision will not remedy the situation—remember, the as-
signable causes (the sources of process variation that can be dealt with by local supervision) have
already been removed. Rather, some fundamental change will be needed in order to reduce com-
mon cause variation. For instance, perhaps a new, more modern filler machine must be purchased
and installed. This will require action by management.

Finally, the SPC approach is really a philosophy of doing business. It is an entire firm or
organization that is focused on a single goal: continuous quality and productivity improvement.
The impetus for this philosophy must come from management. Unless management is support-
ive and directly involved in the ongoing quality improvement process, the SPC approach will not
be successful.

Exercises for Sections 17.1 and 17.2
CONCEPTS

17.1 Write an essay comparing the management philosophy that Dr. Deming advocated in his 14 points
to the management styles you have been exposed to in your personal work experiences. Do you
think Dr. Deming’s philosophy is preferable to the management styles you have seen in practice?
Which of the 14 points do you agree with? Which do you disagree with?

17.2 Write a paragraph explaining how common causes of process variation differ from assignable
causes of process variation.

METHODS AND APPLICATIONS

17.3 In this exercise we consider several familiar processes. In each case, describe several common
causes and several assignable causes that might result in variation in the given quality
characteristic.
a Process: getting ready for school or work in the morning.

Quality characteristic: the time it takes to get ready.
b Process: driving, walking, or otherwise commuting from your home or apartment to school or

work.
Quality characteristic: the time it takes to commute.

c Process: studying for and taking a statistics exam.
Quality characteristic: the score received on the exam.

d Process: starting your car in the morning.
Quality characteristic: the time it takes to start your car.

17.4 Form a group of three or four students in your class. As a group project, select a familiar process
and determine a variable that measures the quality of some aspect of the output of this process.
Then list some common causes and assignable causes that might result in variation of the variable
you have selected for the process. Discuss your lists in class.

17.3 Sampling a Process, Rational Subgrouping, 
and Control Charts 

In order to find and eliminate assignable causes of process variation, we sample output from
the process. To do this, we first decide which process variables—that is, which process
characteristics—will be studied. Several graphical techniques (sometimes called prestatistical

tools) are used here. Pareto charts (see Section 2.1 on page 38) help identify problem areas and
opportunities for improvement. Cause-and-effect diagrams (see optional Section 17.8 on page 791)
help uncover sources of process variation and potentially important process variables. The goal
is to identify process variables that can be studied in order to decrease the gap between customer
expectations and process performance.

Whenever possible and economical, it is best to study a quantitative, rather than a categorical,

process variable. For example, suppose we are filling 16-ounce jars with grape jelly, and suppose
specifications state that each jar should contain between 15.95 and 16.05 ounces of jelly. If we
record the fill of each sampled jar by simply noting that the jar either “meets specifications”

Sample a
process by

using rational
subgrouping.
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(the fill is between 15.95 and 16.05 ounces) or “does not meet the specifications,” then we are
studying a categorical process variable. However, if we measure and record the amount of grape
jelly contained in the jar (say, to the nearest one-hundredth of an ounce), then we are studying a
quantitative process variable. Actually measuring the fill is best because this tells us how close

we are to the specification limits and thus provides more information. As we will soon see, this
additional information often allows us to decide whether to take action on a process by using a
relatively small number of measurements.

When we study a quantitative process variable, we say that we are employing measurement

data. To analyze such data, we take a series of samples (usually called subgroups) over time.
Each subgroup consists of a set of several measurements; subgroup sizes between 2 and 6 are
often used. Summary statistics (for example, means and ranges) for each subgroup are calculated
and are plotted versus time. By comparing plot points, we hope to discover when unusual process
variations are taking place.

Each subgroup is typically observed over a short period of time—a period of time in which the
process operating characteristics do not change much. That is, we employ rational subgroups.
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Rational Subgroups

Rational subgroups are selected so that, if process

changes of practical importance exist, the chance

that these changes will occur between subgroups is

maximized and the chance that these changes will

occur within subgroups is minimized.

In order to obtain rational subgroups, we must determine the frequency with which subgroups
will be selected. For example, we might select a subgroup once every 15 minutes, once an hour,
or once a day. In general, we should observe subgroups often enough to detect important process
changes. For instance, suppose we wish to study a process, and suppose we feel that workers’
shift changes (that take place every eight hours) may be an important source of process variation.
In this case, rational subgroups can be obtained by selecting a subgroup during each eight-hour
shift. Here shift changes will occur between subgroups. Therefore, if shift changes are an impor-
tant source of variation, the rational subgroups will enable us to observe the effects of these
changes by comparing plot points for different subgroups (shifts). However, in addition, suppose
hourly machine resets are made, and we feel that these resets may also be an important source of
process variation. In this case, rational subgroups can be obtained by selecting a subgroup during
each hour. Here machine resets will occur between subgroups, and we will be able to observe
their effects by comparing plot points for different subgroups (hours). If in this situation we
selected one subgroup each eight-hour shift, we would not obtain rational subgroups. This is
because hourly machine resets would occur within subgroups, and we would not be able to
observe the effects of these resets by comparing plot points for different shifts. In general, it is
very important to try to identify important sources of variation (potential assignable causes such
as shift changes, resets, and so on) before deciding how subgroups will be selected. As previously
stated, constructing a cause-and-effect diagram helps uncover these sources of variation (see
optional Section 17.8 on page 791).

Once we determine the sampling frequency, we need to determine the subgroup size—that is,
the number of measurements that will be included in each subgroup—and how we will actually
select the measurements in each subgroup. It is recommended that the subgroup size be held

constant. Denoting this constant subgroup size as n, we typically choose n to be from 2 to 6, with
n 4 or 5 being a frequent choice. To illustrate how we can actually select the subgroup measure-
ments, suppose we select a subgroup of 5 units every hour from the output of a machine that pro-
duces 100 units per hour. We can select these units by using a consecutive, periodic, or random

sampling process. If we employ consecutive sampling, we would select 5 consecutive units pro-
duced by the machine at the beginning of (or at some time during) each hour. Here production

conditions—machine operator, machine setting, raw material batch, and so forth—will be as

constant as possible within the subgroup. Such a subgroup provides a “freeze-frame picture”
of the process at a particular point in time. Thus the chance of variations occurring within the

subgroups is minimized. If we use periodic sampling, we would select 5 units periodically
through each hour. For example, since the machine produces 100 units per hour, we could select
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the 1st, 21st, 41st, 61st, and 81st units produced. If we use random sampling, we would use a ran-
dom number table to randomly select 5 of the 100 units produced during each hour. If production
conditions are really held fairly constant during each hour, then consecutive, periodic, and ran-
dom sampling will each provide a similar representation of the process. If production conditions
vary considerably during each hour, and if we are able to recognize this variation by using a pe-
riodic or random sampling procedure, this would tell us that we should be sampling the process
more often than once an hour. Of course, if we are using periodic or random sampling every hour,
we might not realize that the process operates with considerably less variation during shorter pe-
riods (perhaps because we have not used a consecutive sampling procedure). We therefore might
not recognize the extent of the hourly variation.

Lastly, it is important to point out that we must also take subgroups for a period of time that

is long enough to give potential sources of variation a chance to show up. If, for instance, dif-
ferent batches of raw materials are suspected to be a significant source of process variation, and
if we receive new batches every few days, we may need to collect subgroups for several weeks
in order to assess the effects of the batch-to-batch variation. A statistical rule of thumb says

that we require at least 20 subgroups of size 4 or 5 in order to judge statistical control and

in order to obtain reasonable estimates of the process mean and variability. However,
practical considerations may require the collection of much more data.

We now look at two more concrete examples of subgrouped data.

EXAMPLE 17.1 The Hole Location Case2

A manufacturer produces automobile air conditioner compressor shells. The compressor shell is
basically the outer metal housing of the compressor. Several holes of various sizes must be
punched into the shell to accommodate hose connections that must be made to the compressor. If
any one of these holes is punched in the wrong location, the compressor shell becomes a piece of
scrap metal (at considerable cost to the manufacturer). Figure 17.1(a) illustrates a compressor
shell (note the holes that have been punched in the housing). Experience with the hole-punching
process suggests that substantial changes (machine resets, equipment lubrication, and so forth)

C

Hole

Trim 

edge

Measured

dimension

(b) Twenty subgroups of 5 hole location measurements (measurement from
trim edge to the bottom of hole; target value is 3.00 inches)

Measurement

Time Subgroup 1 2 3 4 5 Mean Range

8:00 AM 1 3.05 3.02 3.04 3.09 3.05 3.05 0.07

8:20 AM 2 3.00 3.04 2.98 2.99 2.99 3.00 0.06

8:40 AM 3 3.07 3.06 2.94 2.97 3.01 3.01 0.13

9:00 AM 4 3.02 2.96 3.01 2.98 3.02 2.998 0.06

9:20 AM 5 3.01 2.98 3.04 3.01 3.01 3.01 0.06

9:40 AM 6 3.01 3.02 2.99 2.97 2.96 2.99 0.06

10:00 AM 7 3.03 2.98 2.92 3.17 2.96 3.012 0.25

10:20 AM 8 3.05 3.03 2.96 3.01 2.97 3.004 0.09

10:40 AM 9 2.99 2.96 3.01 3.00 2.95 2.982 0.06

11:00 AM 10 3.02 3.02 2.98 3.03 3.02 3.014 0.05

11:20 AM 11 2.97 2.96 2.96 3.00 3.04 2.986 0.08

11:40 AM 12 3.06 3.04 3.02 3.10 3.05 3.054 0.08

12:00 PM 13 2.99 3.00 3.04 2.96 3.02 3.002 0.08

12:20 PM 14 3.00 3.01 2.99 3.00 3.01 3.002 0.02

12:40 PM 15 3.02 2.96 3.04 2.95 2.97 2.988 0.09

1:00 PM 16 3.02 3.02 3.04 2.98 3.03 3.018 0.06

1:20 PM 17 3.01 2.87 3.09 3.02 3.00 2.998 0.22

1:40 PM 18 3.05 2.96 3.01 2.97 2.98 2.994 0.09

2:00 PM 19 3.02 2.99 3.00 2.98 3.00 2.998 0.04

2:20 PM 20 3.00 3.00 3.01 3.05 3.01 3.014 0.05

(a) Holes punched in a compressor
shell for hose connections

F I G U R E 1 7 . 1 The Compressor Shell and the Hole Location Data HoleLocDS

2The data for this case were obtained from a metal fabrication plant located in the Cincinnati, Ohio, area. For confidentiality, 

we have agreed to withhold the company’s name.



can occur quite frequently—as often as two or three times an hour. Because we wish to observe
the impact of these changes if and when they occur, rational subgroups are obtained by selecting
a subgroup every 20 minutes or so. Specifically, about every 20 minutes five compressor shells are
consecutively selected from the process output. For each shell selected, a measurement that helps
to specify the location of a particular hole in the compressor shell is made. The measurement is
taken by measuring from one of the edges of the compressor shell (called the trim edge) to the bot-
tom of the hole [see Figure 17.1(a)]. Obviously, it is not possible to measure to the center of the
hole because you cannot tell where it is! The target value for the measured dimension is
3.00 inches. Of course, the manufacturer would like as little variation around the target as possi-
ble. Figure 17.1(b) gives the measurements obtained for 20 subgroups that were selected between
8 A.M. and 2:20 P.M. on a particular day. Here a subgroup consists of the five measurements labeled
1 through 5 in a single row in the table. Notice that Figure 17.1(b) also gives the mean, , and the
range, R, of the measurements in each subgroup. In the next section we will see how to use the
subgroup means and ranges to detect when unusual process variations have taken place.

x
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EXAMPLE 17.2 The Hot Chocolate Temperature Case3

Since 1994 a number of consumers have filed and won large claims against national fast-food
chains as a result of being scalded by excessively hot beverages such as coffee, tea, and hot
chocolate. Because of such litigation, the food service staff at a university dining hall wishes to
study the temperature of the hot chocolate dispensed by its hot chocolate machine. The dining
hall staff believes that there might be substantial variations in hot chocolate temperatures from
meal to meal. Therefore, it is decided that at least one subgroup of hot chocolate temperatures
will be observed during each meal—breakfast (6:30 A.M. to 10 A.M.), lunch (11 A.M. to 1:30 P.M.),
and dinner (5 P.M. to 7:30 P.M.). In addition, since the hot chocolate machine is heavily used
during most meals, the dining hall staff also believes that hot chocolate temperatures might vary

C

Temperature Subgroup Subgroup
Day Meal Subgroup 1 2 3 Mean, Range, R

Monday Breakfast 1 142º 140º 139º 140.33º 3º

2 141 138 140 139.67 3

Lunch 3 143 146 147 145.33 4

4 146 149 147 147.33 3

Dinner 5 133 142 140 138.33 9

6 138 139 141 139.33 3

Tuesday Breakfast 7 145 143 140 142.67 5

8 139 144 145 142.67 6

Lunch 9 139 141 147 142.33 8

10 150 144 147 147.00 6

Dinner 11 138 135 137 136.67 3

12 145 141 144 143.33 4

Wednesday Breakfast 13 138 145 139 140.67 7

14 145 136 141 140.67 9

Lunch 15 140 139 140 139.67 1

16 142 143 145 143.33 3

Dinner 17 144 142 141 142.33 3

18 137 140 146 141.00 9

Thursday Breakfast 19 125 129 135 129.67 10

20 134 139 136 136.33 5

Lunch 21 145 141 146 144.00 5

22 147 146 148 147.00 2

Dinner 23 140 143 139 140.67 4

24 139 139 143 140.33 4

x

T A B L E 1 7 . 2 24 Subgroups of Three Hot Chocolate Temperatures (Measurements to the Nearest 

Degree Fahrenheit) HotChocDS

3The data for this case were collected for a student’s term project with the cooperation of the Food Service at Miami 

University, Oxford, Ohio.
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substantially from the beginning to the end of a single meal. It follows that the staff will obtain
rational subgroups by selecting a subgroup a half hour after the beginning of each meal and by
selecting another subgroup a half hour prior to the end of each meal. Specifically, each subgroup
will be selected by pouring three cups of hot chocolate over a 10-minute time span using periodic
sampling (the second cup will be poured 5 minutes after the first, and the third cup will be poured
5 minutes after the second). The temperature of the hot chocolate will be measured by a candy
thermometer (to the nearest degree Fahrenheit) immediately after each cup is poured.

Table 17.2 gives the results for 24 subgroups of three hot chocolate temperatures taken at each
meal served at the dining hall over a four-day period. Here a subgroup consists of the three tem-
peratures labeled 1 through 3 in a single row in the table. The table also gives the mean, , and
the range, R, of the temperatures in each subgroup. In the next section we will use the subgroup
means and ranges to detect unusual process variations (that is, to detect assignable causes).

Subgrouped data are used to determine when assignable causes of process variation exist.
Typically, we analyze subgrouped data by plotting summary statistics for the subgroups versus
time. The resulting plots are often called graphs of process performance. For example, the sub-
group means and the subgroup ranges of the hole location measurements in Figure 17.1(b) are
plotted in time order on graphs of process performance in the Excel output of Figure 17.2. The
subgroup means ( values) and ranges (R values) are plotted on the vertical axis, while the time
sequence (in this case, the subgroup number) is plotted on the horizontal axis. The values and
R values for corresponding subgroups are lined up vertically. The plot points on each graph are
connected by line segments as a visual aid. However, the lines between the plot points do not re-
ally say anything about the process performance between the observed subgroups. Notice that the
subgroup means and ranges vary over time.

If we consider the plot of subgroup means, very high and very low points are undesirable—
they represent large deviations from the target hole location dimension (3 inches). If we consider
the plot of subgroup ranges, very high points are undesirable (high variation in the hole location
dimensions), while very low points are desirable (little variation in the hole location dimensions).

x

x

x

3.06

3.04

3.02

M
E
A

N

SUBGROUP NUMBER

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2.98

2.96

2.94

0.3

0.25

0.2

R
A

N
G

E

SUBGROUP NUMBER

0.15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.1

0.05

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

A B C D E F G H I

F I G U R E 1 7 . 2 Excel Output of Graphs of Performance (Subgroup Means and Ranges) 

for the Hole Location Data in Figure 17.1(b)



We now wish to answer a very basic question. Is the variation that we see on the graphs of

performance due to the usual process variation (that is, due to common causes), or is the

variation due to one or more assignable causes (unusual variations)? It is possible that
unusual variations have occurred and that action should be taken to reduce the variation in pro-
duction conditions. It is also possible that the variation in the plot points is caused by common
causes and that (given the current configuration of the process) production conditions have been
held as constant as possible. For example, do the high points on the plot in Figure 17.2 suggest
that one or more assignable causes have increased the hole location dimensions enough to war-
rant corrective action? As another example, do the high points on the R plot suggest that excess
variability in the hole location dimensions exists and that corrective action is needed? Or does the
lowest point on the R plot indicate that an improvement in process performance (reduction in
variation) has occurred due to an assignable cause?

We can answer these questions by converting the graphs of performance shown in Figure 17.2
on the previous page into control charts. In general, by converting graphs of performance into
control charts, we can (with only a small chance of being wrong) determine whether observed
process variations are unusual (due to assignable causes). That is, the purpose of a control chart
is to monitor a process so we can take corrective action in response to assignable causes when it
is needed. This is called statistical process monitoring. The use of “seat of the pants intuition”
has not been found to be a particularly effective way to decide whether observed process per-
formance is unusual. By using a control chart, we can reduce our chances of making two possible
errors—(1) taking action when none is needed and (2) not taking action when action is needed.

A control chart employs a center line (denoted CNL) and two control limits—an upper con-

trol limit (denoted UCL) and a lower control limit (denoted LCL). The center line represents
the average performance of the process when it is in a state of statistical control—that is, when
only common cause variation exists. The upper and lower control limits are horizontal lines sit-
uated above and below the center line. These control limits are established so that, when the
process is in control, almost all plot points will be between the upper and lower limits. In prac-
tice, the control limits are used as follows:

1 If all observed plot points are between the LCL and UCL (and if no unusual patterns of
points exist—this will be explained later), we have no evidence that assignable causes exist
and we assume that the process is in statistical control. In this case, only common causes

of process variation exist, and no action to remove assignable causes is taken on the

process. If we were to take such action, we would be unnecessarily tampering with the
process.

2 If we observe one or more plot points outside the control limits, then we have evidence
that the process is out of control due to one or more assignable causes. Here we must

take action on the process to remove these assignable causes.

In the next section we begin to discuss how to construct control charts. Before doing this,
however, we must emphasize the importance of documenting a process while the subgroups of
data are being collected. The time at which each subgroup is taken is recorded, and the person
who collected the data is also recorded. Any process changes (machine resets, adjustments, shift
changes, operator changes, and so on) must be documented. Any potential sources of variation
that may significantly affect the process output should be noted. If the process is not well docu-
mented, it will be very difficult to identify the root causes of unusual variations that may be
detected when we analyze the subgroups of data.

17.4 and R Charts 
andR charts are the most commonly used control charts for measurement data (such charts are

often called variables control charts). Subgroup means are plotted versus time on the chart,
while subgroup ranges are plotted on the R chart. The chart monitors the process mean or level

(we wish to run near a desired target level). The R chart is used to monitor the amount of variabil-

ity around the process level (we desire as little variability as possible around the target). Note here
that we employ two control charts, and that it is important to use the two charts together. If we
do not use both charts, we will not get all the information needed to improve the process.

x

x

x

x

x
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Before seeing how to construct and R charts, we should mention that it is also possible to
monitor the process variability by using a chart for subgroup standard deviations. Such a chart
is called an s chart. However, the overwhelming majority of practitioners use R charts rather than
s charts. This is partly due to historical reasons. When control charts were developed, electronic
calculators and computers did not exist. It was, therefore, much easier to compute a subgroup
range than it was to compute a subgroup standard deviation. For this reason, the use of R charts
has persisted. Some people also feel that it is easier for factory personnel (some of whom may
have little mathematical background) to understand and relate to the subgroup range. In addition,
while the standard deviation (which is computed using all the measurements in a subgroup) is a
better measure of variability than the range (which is computed using only two measurements),
the R chart usually suffices. This is because and R charts usually employ small subgroups—as
mentioned previously, subgroup sizes are often between 2 and 6. For such subgroup sizes, it can
be shown that using subgroup ranges is almost as effective as using subgroup standard deviations.

To construct and R charts, suppose we have observed rational subgroups of n measurements
over successive time periods (hours, shifts, days, or the like). We first calculate the mean and
range R for each subgroup, and we construct graphs of performance for the values and for the
R values (as in Figure 17.2). In order to calculate center lines and control limits, let denote the
mean of the subgroup of n measurements that is selected in a particular time period. Furthermore,
assume that the population of all process measurements that could be observed in any time pe-
riod is normally distributed with mean m and standard deviation s, and also assume successive
process measurements are statistically independent.4 Then, if m and s stay constant over time, the
sampling distribution of subgroup means in any time period is normally distributed with mean m
and standard deviation . It follows that (in any time period) 99.73 percent of all possible
values of the subgroup mean are in the interval

This fact is illustrated in Figure 17.3 on the next page. It follows that we can set a center line and
control limits for the chart as

If an observed subgroup mean is inside these control limits, we have no evidence to suggest that
the process is out of control. However, if the subgroup mean is outside these limits, we conclude
that m and/or s have changed, and that the process is out of control. The chart limits are
illustrated in Figure 17.3.

If the process is in control, and thus m and s stay constant over time, it follows that m and s
are the mean and standard deviation of all possible process measurements. For this reason, we
call m the process mean and s the process standard deviation. Since in most real situations we
do not know the true values of m and s, we must estimate these values. If the process is in con-
trol, an appropriate estimate of the process mean m is

( is pronounced “x double bar”). It follows that the center line for the chart is

To obtain control limits for the chart, we compute

It can be shown that an appropriate estimate of the process standard deviation s is , where
d2 is a constant that depends on the subgroup size n. Although we do not present a development
of d2 here, it intuitively makes sense that, for a given subgroup size, our best estimate of the
process standard deviation should be related to the average of the subgroup ranges . The(R)

(R兾d2)

R  the mean of all observed subgroup ranges

x

Center linex  x

xx

x  the mean of all observed subgroup means

x

 Lower control limit  LCLx  m  3(s兾1n)

 Upper control limit  UCLx  m  3(s兾1n)

 Center line  m

x

[m  3(s兾1n),  m  3(s兾1n)]

x

s兾1n

x

x

x

x

x

x

4Basically, statistical independence here means that successive process measurements do not display any kind of pattern 

over time.



number d2 relates these quantities. Values of d2 are given in Table 17.3 for subgroup sizes n 2
through n 25. At the end of this section we further discuss why we use to estimate the
process standard deviation.

Substituting the estimate of m and the estimate of s into the limits

we obtain

Finally, we define

and rewrite the control limits as

Here we call A2 a control chart constant. As the formula for A2 implies, this control chart
constant depends on the subgroup size n. Values of A2 are given in Table 17.3 for subgroup sizes
n 2 through n 25.

The center line for the R chart is

Center lineR 

Furthermore, assuming normality, it can be shown that there are control chart constants D4 and
D3 so that

UCLR  D4R    and    LCLR  D3R

R

UCLx  x  A2R    and    LCLx  x  A2R

A2  
3

d21n

LCLx  x  3冢R兾d2

1n 冣  x  冢 3

d21n冣  R UCLx  x  3冢R兾d2

1n 冣  x  冢 3

d21n冣  R
m  3(s兾1n)    and    m  3(s兾1n)

R兾d2x

R兾d2
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Here the control chart constants D4 and D3 also depend on the subgroup size n. Values of D4

and D3 are given in Table 17.3 for subgroup sizes n 2 through n 25. We summarize the cen-
ter lines and control limits for and R charts in the following box:x

Chart for
Averages ( ) Chart for Ranges (R)

Divisor for
Factor for Estimate of Factors for

Subgroup Control Standard Control
Size, Limits, Deviation, Limits
n A2 d2 D3 D4

2 1.880 1.128 — 3.267

3 1.023 1.693 — 2.574

4 0.729 2.059 — 2.282

5 0.577 2.326 — 2.114

6 0.483 2.534 — 2.004

7 0.419 2.704 0.076 1.924

8 0.373 2.847 0.136 1.864

9 0.337 2.970 0.184 1.816

10 0.308 3.078 0.223 1.777

11 0.285 3.173 0.256 1.744

12 0.266 3.258 0.283 1.717

13 0.249 3.336 0.307 1.693

14 0.235 3.407 0.328 1.672

15 0.223 3.472 0.347 1.653

16 0.212 3.532 0.363 1.637

17 0.203 3.588 0.378 1.622

18 0.194 3.640 0.391 1.608

19 0.187 3.689 0.403 1.597

20 0.180 3.735 0.415 1.585

21 0.173 3.778 0.425 1.575

22 0.167 3.819 0.434 1.566

23 0.162 3.858 0.443 1.557

24 0.157 3.895 0.451 1.548

25 0.153 3.931 0.459 1.541

x

T A B L E 1 7 . 3 Control Chart Constants for and R Chartsx

and R Chart Center Lines and Control Limitsx

where the mean of all subgroup means

the mean of all subgroup ranges

and A2, D4, and D3 are control chart constants that

depend on the subgroup size (see Table 17.3). When

D3 is not listed, the R chart does not have a lower

control limit.5

R  

x  

LCLx  x  A2R         LCLR  D3R

UCLx  x  A2R        UCLR  D4R

Center linex  x         Center lineR  R

EXAMPLE 17.3 The Hole Location Case

Consider the hole location data for air conditioner compressor shells that is given in Figure 17.1
(page 753). In order to calculate and R chart control limits for this data, we compute

  
3.05  3.00           3.014

20
 3.0062

 x  the average of the 20 subgroup means

x

C

5When D3 is not listed, the theoretical lower control limit for the R chart is negative. In this case, some practitioners prefer to

say that the LCLR equals 0. Others prefer to say that the LCLR does not exist because a range R equal to 0 does not indicate that

an assignable cause exists and because it is impossible to observe a negative range below LCLR. We prefer the second

alternative. In practice, it makes no difference.



Looking at Table 17.3 on the previous page, we see that when the subgroup size is n 5, the con-
trol chart constants needed for and R charts are A2 .577 and D4 2.114. It follows that cen-
ter lines and control limits are

Since D3 is not listed in Table 17.3 for a subgroup size of n 5, the R chart does not have a lower
control limit. Figure 17.4 presents the MINITAB output of the and R charts for the hole loca-
tion data. Note that the center lines and control limits that we have just calculated are shown on
the and R charts.

Control limits such as those computed in Example 17.3 are called trial control limits. Theo-
retically, control limits are supposed to be computed using subgroups collected while the process
is in statistical control. However, it is impossible to know whether the process is in control until
we have constructed the control charts. If, after we have set up the and R charts, we find that the
process is in control, we can use the charts to monitor the process.

If the charts show that the process is not in statistical control (for example, there are plot
points outside the control limits), we must find and eliminate the assignable causes before we
can calculate control limits for monitoring the process. In order to understand how to find and
eliminate assignable causes, we must understand how changes in the process mean and the
process variation show up on and R charts. To do this, consider Figures 17.5 and 17.6. These
figures illustrate that, whereas a change in the process mean shows up only on the chart, a
change in the process variation shows up on both the and R charts. Specifically, Figure 17.5
shows that, when the process mean increases, the sample means plotted on the chart
increase and go out of control. Figure 17.6 shows that, when the process variation (standard

x

x

x

x

x

x

x

 UCLR  D4 R  2.114(.085)  0.1797

 Center  lineR  R  .085

 LCLx  x  A2R  3.0062  .577(0.085)  2.9572

 UCLx  x  A2R  3.0062  .577(0.085)  3.0552

 Center linex  x  3.0062

x

  
.07  .06      .05

20
 0.085

 R  the average of the 20 subgroup ranges
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deviation, s) increases,

1 The sample ranges plotted on the R chart increase and go out of control.

2 The sample means plotted on the chart become more variable (because, since s increases,
increases) and go out of control.

Since changes in the process mean and in the process variation show up on the chart, we do
not begin by analyzing the chart. This is because, if there were out-of-control sample means on
the chart, we would not know whether the process mean or the process variation had changed.
Therefore, it might be more difficult to identify the assignable causes of the out-of-control sam-
ple means because the assignable causes that would cause the process mean to shift could be
very different from the assignable causes that would cause the process variation to increase. For
instance, unwarranted frequent resetting of a machine might cause the process level to shift up
and down, while improper lubrication of the machine might increase the process variation.

In order to simplify and better organize our analysis procedure, we begin by analyzing the R
chart, which reflects only changes in the process variation. Specifically, we first identify and
eliminate the assignable causes of the out-of-control sample ranges on the R chart, and then we
analyze the chart. The exact procedure is illustrated in the following example.x

x

x

x
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x
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EXAMPLE 17.4 The Hole Location Case

Consider the and R charts for the hole location data that are given in Figure 17.4 on page 760.
To develop control limits that can be used for ongoing control, we first examine the R chart. We
find two points above the UCL on the R chart. This indicates that excess within-subgroup vari-
ability exists at these points. We see that the out-of-control points correspond to subgroups 7 and
17. Investigation reveals that, when these subgroups were selected, an inexperienced, newly
hired operator ran the operation while the regular operator was on break. We find that the inex-
perienced operator is not fully closing the clamps that fasten down the compressor shells during
the hole punching operation. This is causing excess variability in the hole locations. This assign-
able cause can be eliminated by thoroughly retraining the newly hired operator.

Since we have identified and corrected the assignable cause associated with the points that are
out of control on the R chart, we can drop subgroups 7 and 17 from the data set. We recalculate
center lines and control limits by using the remaining 18 subgroups. We first recompute (omitting

and R values for subgroups 7 and 17)

Notice here that has not changed much (see Figure 17.4), but has been reduced from .085 
to .0683. Using the new and values, revised control limits for the chart are

The revised UCL for the R chart is

Since D3 is not listed for subgroups of size 5, the R chart does not have a LCL. Here the reduction
in has reduced the UCL on the R chart from .1797 to .1444 and has also narrowed the control
limits for the chart. For instance, the UCL for the chart has been reduced from 3.0552 to
3.0457. The MINITAB output of the and R charts employing these revised center lines and
control limits is shown in Figure 17.7.

We must now check the revised R chart for statistical control. We find that the chart shows
good control: there are no other points outside the control limits or long runs of points on either
side of the center line. Since the R chart is in good control, we can analyze the revised chart. We
see that two plot points are above the UCL on the chart. Notice that these points were not
outside our original trial control limits in Figure 17.4 on page 760. However, the elimination of
the assignable cause and the resulting reduction in has narrowed the chart control limits so
that these points are now out of control. Since the R chart is in control, the points on the chartx
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that are out of control suggest that the process level has shifted when subgroups 1 and 12 were
taken. Investigation reveals that these subgroups were observed immediately after start-up at the
beginning of the day and immediately after start-up following the lunch break. We find that, if we
allow a five-minute machine warm-up period, we can eliminate the process level problem.

Since we have again found and eliminated an assignable cause, we must compute newly revised
center lines and control limits. Dropping subgroups 1 and 12 from the data set, we recompute

Using the newest and values, we compute newly revised control limits as follows:

Again, the R chart does not have a LCL. We obtain the newly revised and R charts that are
shown in the MINITAB output of Figure 17.8. We see that all the points on each chart are inside their

x
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7, 12, and 17 Omitted. The Charts Show Good Control.
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BI respective control limits. This says that the actions taken to remove assignable causes have
brought the process into statistical control. However, it is important to point out that, although the
process is in statistical control, this does not necessarily mean that the process is capable of

producing products that meet the customer’s needs. That is, while the control charts tell us that
no assignable causes of process variation remain, the charts do not (directly) tell us anything about
how much common cause variation exists. If there is too much common cause variability, the
process will not meet customer or manufacturer specifications. We talk more about this later.

When both the and R charts are in statistical control, we can use the control limits for

ongoing process monitoring. New and R values for subsequent subgroups are plotted with
respect to these limits. Plot points outside the control limits indicate the existence of assignable
causes and the need for action on the process. The appropriate corrective action can often be
taken by local supervision. Sometimes management intervention may be needed. For example, if
the assignable cause is out-of-specification raw materials, management may have to work with a
supplier to improve the situation. The ongoing control limits occasionally need to be updated to
include newly observed data. However, since employees often seem to be uncomfortable work-
ing with limits that are frequently changing, it is probably a good idea to update center lines and
control limits only when the new data would substantially change the limits. Of course, if an
important process change is implemented, new data must be collected, and we may need to
develop new center lines and control limits from scratch.

Sometimes it is not possible to find an assignable cause, or it is not possible to eliminate the
assignable cause even when it can be identified. In such a case, it is possible that the original
(or partially revised) trial control limits are good enough to use; this will be a subjective decision.
Occasionally, it is reasonable to drop one or more subgroups that have been affected by an
assignable cause that cannot be eliminated. For example, the assignable cause might be an event
that very rarely occurs and is unpreventable. If the subgroup(s) affected by the assignable cause
have a detrimental effect on the control limits, we might drop the subgroups and calculate revised
limits. Another alternative is to collect new data and use them to calculate control limits.

In the following box we summarize the most important points we have made regarding the
analysis of and R charts:x

x

x
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Analyzing and R Charts to Establish Process Controlx

1 Remember that it is important to use both the 

chart and the R chart to study the process.

2 Begin by analyzing the R chart for statistical

control.

a Find and eliminate assignable causes that are

indicated by the R chart.

b Revise both the and R chart control limits,

dropping data for subgroups corresponding

to assignable causes that have been found

and eliminated in 2a.

c Check the revised R chart for control.

d Repeat 2a, b, and c as necessary until the R

chart shows statistical control.

3 When the R chart is in statistical control, the 

chart can be properly analyzed.

a Find and eliminate assignable causes that are

indicated by the chart.

b Revise both the and R chart control limits,

dropping data for subgroups corresponding

to assignable causes that have been found and

eliminated in 3a.

c Check the revised chart (and the revised R

chart) for control.

d Repeat 3a, b, and c (or, if necessary, 2a, b, and

c and 3a, b, and c) as needed until both the 

and R charts show statistical control.

4 When both the and R charts are in control, use

the control limits for process monitoring.

a Plot and R points for newly observed sub-

groups with respect to the established limits.

b If either the chart or the R chart indicates a

lack of control, take corrective action on the

process.

5 Periodically update the and R control limits

using all relevant data (data that describe the

process as it now operates).

6 When a major process change is made, develop

new control limits if necessary.

x

x

x

x

x

x

x

x

x

x

x



17.4 x– and R Charts 765

EXAMPLE 17.5 The Hole Location Case

We consider the hole location problem and the revised and R charts shown in Figure 17.8 on
page 763. Since the process has been brought into statistical control, we may use the control
limits in Figure 17.8 to monitor the process. This would assume that we have used an appropriate
subgrouping scheme and have observed enough subgroups to give potential assignable causes a
chance to show up. In reality, we probably want to collect considerably more than 20 subgroups
before setting control limits for ongoing control of the process.

We assume for this example that the control limits in Figure 17.8 are reasonable. Table 17.4
gives four subsequently observed subgroups of five hole location dimensions. The subgroup
means and ranges for these data are plotted with respect to the ongoing control limits in the
MINITAB output of Figure 17.9. We see that the R chart remains in control, while the mean for
subgroup 24 is above the UCL on the chart. This tells us that an assignable cause has increased
the process mean. Therefore, action is needed to reduce the process mean.
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Xbar-R Charts for Hole Locations: Ongoing Control

F I G U R E 1 7 . 9 MINITAB Output of and R Charts for the Hole Location Data:

Ongoing Control

x

Measurement (Inches) Mean, Range,
Subgroup 1 2 3 4 5 R

21 2.98 3.00 2.97 2.99 2.98 2.984 .03

22 3.02 3.06 3.01 2.97 3.03 3.018 .09

23 3.03 3.08 3.01 2.99 3.02 3.026 .09

24 3.05 3.00 3.11 3.07 3.06 3.058 .11

x

T A B L E 1 7 . 4 Four Subgroups of Five Hole Location Dimensions Observed after 

Developing Control Limits for Ongoing Process Monitoring

EXAMPLE 17.6 The Hot Chocolate Temperature Case

Consider the hot chocolate data given in Table 17.2 (page 754). In order to set up and R charts
for these data, we compute

  141.28

  
140.33  139.67        140.33

24

 x  the average of the 24 subgroup means

x

C



and

Looking at Table 17.3 (page 759), we see that the and R control chart constants for the subgroup
size n 3 are A2 1.023 and D4 2.574. It follows that we calculate center lines and control
limits as follows:

Since D3 is not given in Table 17.3 for the subgroup size n 3, the R chart does not have a lower
control limit.

The and R charts for the hot chocolate data are given in the Excel add-in (MegaStat) output
of Figure 17.10. We see that the R chart is in good statistical control, while the chart is out of
control with three subgroup means above the UCL and with one subgroup mean below the LCL.
Looking at the chart, we see that the subgroup means that are above the UCL were observed
during lunch (note subgroups 4, 10, and 22). Investigation and process documentation reveal that
on these days the hot chocolate machine was not turned off between breakfast and lunch. Discus-
sion among members of the dining hall staff further reveals that, because there is less time be-
tween breakfast and lunch than there is between lunch and dinner or dinner and breakfast, the
staff often fails to turn off the hot chocolate machine between breakfast and lunch. Apparently,
this is the reason behind the higher hot chocolate temperatures observed during lunch. Investiga-
tion also shows that the dining hall staff failed to turn on the hot chocolate machine before break-
fast on Thursday (see subgroup 19)—in fact, a student had to ask that the machine be turned on.
This caused the subgroup mean for subgroup 19 to be far below the chart LCL. The dining hall
staff concludes that the hot chocolate machine needs to be turned off after breakfast and then
turned back on 15 minutes before lunch (prior experience suggests that it takes the machine
15 minutes to warm up). The staff also concludes that the machine should be turned on 15 min-
utes before each meal. In order to ensure that these actions are taken, an automatic timer is

x

x

x

x

 UCLR  D4 R  2.574 (4.96)  12.76

 Center lineR  R  4.96

 LCLx  x  A2 R  141.28  1.023(4.96)  136.20

 UCLx  x  A2 R  141.28  1.023(4.96)  146.35

 Center linex  x  141.28

x

  
3  3        4

24
 4.96

 R  the average of the 24 subgroup ranges
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purchased to turn on the hot chocolate machine at the appropriate times. This brings the process
into statistical control. Figure 17.11 shows and R charts with revised control limits calculated
using the subgroups that remain after the subgroups for the out-of-control lunches (subgroups 3,
4, 9, 10, 21, and 22) and the out-of-control breakfast (subgroups 19 and 20) are eliminated from
the data set. We see that these revised control charts are in statistical control.

Having seen how to interpret and R charts, we are now better prepared to understand why we
estimate the process standard deviation s by . Recall that when m and s are known, the 
chart control limits are . The standard deviation s in these limits is the process
standard deviation when the process is in control. When this standard deviation is unknown, we

estimate S as if the process is in control, even though the process might not be in control.

The quantity is an appropriate estimate of s because is the average of individual ranges

computed from rational subgroups—subgroups selected so that the chances that important

process changes occur within a subgroup are minimized. Thus each subgroup range, and
therefore , estimates the process variation as if the process were in control. Of course, we
could also compute the standard deviation of the measurements in each subgroup, and employ
the average of the subgroup standard deviations to estimate s. The key is not whether we use
ranges or standard deviations to measure the variation within the subgroups. Rather, the key is
that we must calculate a measure of variation for each subgroup and then must average the sepa-
rate measures of subgroup variation in order to estimate the process variation as if the process is
in control.
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Chocolate Temperature Data. The Process Is Now in Control.
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Exercises for Sections 17.3 and 17.4
CONCEPTS

17.5 Explain (1) the purpose of an chart, (2) the purpose of an R chart, (3) why both charts are
needed.

17.6 Explain why the initial control limits calculated for a set of subgrouped data are called “trial
control limits.”

17.7 Explain why a change in process variability shows up on both the and R charts.

17.8 In each of the following situations, what conclusions (if any) can be made about whether the
process mean is changing? Explain your logic.
a R chart out of control.
b R chart in control, chart out of control.
c Both and R charts in control.x

x

x

x



METHODS AND APPLICATIONS

17.9 Table 17.5 gives five subgroups of measurement data. Use these data to
a Find and R for each subgroup. Measure1
b Find and .
c Find A2 and D4.
d Compute and R chart center lines and control limits.

17.10 In the book Tools and Methods for the Improvement of Quality, Gitlow, Gitlow, Oppenheim, and
Oppenheim discuss a resort hotel’s efforts to improve service by reducing variation in the time it
takes to clean and prepare rooms. In order to study the situation, five rooms are selected each day
for 25 consecutive days, and the time required to clean and prepare each room is recorded. The
data obtained are given in Table 17.6. RoomPrep
a Calculate the subgroup mean and range R for each of the first two subgroups.
b Show that   15.9416 minutes and that   2.696 minutes.
c Find the control chart constants A2 and D4 for the cleaning and preparation time data. Does D3

exist? What does this say?
d Find the center line and control limits for the chart for these data.
e Find the center line and control limit for the R chart for these data.
f Set up (plot) the and R charts for the cleaning time data.
g Are the and R charts in control? Explain.

17.11 A pizza restaurant monitors the size (measured by the diameter) of the 10-inch pizzas that it
prepares. Pizza crusts are made from doughs that are prepared and prepackaged in boxes of 15 by
a supplier. Doughs are thawed and pressed in a pressing machine. The toppings are added, and
the pizzas are baked. The wetness of the doughs varies from box to box, and if the dough is too
wet or greasy, it is difficult to press, resulting in a crust that is too small. The first shift of workers
begins work at 4 P.M., and a new shift takes over at 9 P.M. and works until closing. The pressing
machine is readjusted at the beginning of each shift. The restaurant takes five consecutive pizzas
prepared at the beginning of each hour from opening to closing on a particular day. The diameter

x
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x
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x

Rx

DSx
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Measurement
Subgroup 1 2 3

1 4 5 6

2 9 7 5

3 4 8 6

4 2 4 3

5 5 6 10

Sample Cleaning and Preparation Time (Minutes) Mean, Range,
(Day) 1 2 3 4 5 R

1 15.6 14.3 17.7 14.3 15.0 — —

2 15.0 14.8 16.8 16.9 17.4 — —

3 16.4 15.1 15.7 17.3 16.6 16.22 2.2

4 14.2 14.8 17.3 15.0 16.4 15.54 3.1

5 16.4 16.3 17.6 17.9 14.9 16.62 3.0

6 14.9 17.2 17.2 15.3 14.1 15.74 3.1

7 17.9 17.9 14.7 17.0 14.5 16.40 3.4

8 14.0 17.7 16.9 14.0 14.9 15.50 3.7

9 17.6 16.5 15.3 14.5 15.1 15.80 3.1

10 14.6 14.0 14.7 16.9 14.2 14.88 2.9

11 14.6 15.5 15.9 14.8 14.2 15.00 1.7

12 15.3 15.3 15.9 15.0 17.8 15.86 2.8

13 17.4 14.9 17.7 16.6 14.7 16.26 3.0

14 15.3 16.9 17.9 17.2 17.5 16.96 2.6

15 14.8 15.1 16.6 16.3 14.5 15.46 2.1

16 16.1 14.6 17.5 16.9 17.7 16.56 3.1

17 14.2 14.7 15.3 15.7 14.3 14.84 1.5

18 14.6 17.2 16.0 16.7 16.3 16.16 2.6

19 15.9 16.5 16.1 15.0 17.8 16.26 2.8

20 16.2 14.8 14.8 15.0 15.3 15.22 1.4

21 16.3 15.3 14.0 17.4 14.5 15.50 3.4

22 15.0 17.6 14.5 17.5 17.8 16.48 3.3

23 16.4 15.9 16.7 15.7 16.9 16.32 1.2

24 16.6 15.1 14.1 17.4 17.8 16.20 3.7

25 17.0 17.5 17.4 16.2 17.9 17.20 1.7

Source: H. Gitlow, S. Gitlow, A. Oppenheim, and R. Oppenheim, Tools and Methods for the 

Improvement of Quality, pp. 333–334. Copyright © 1989. Reprinted by permission of McGraw-Hill

Companies, Inc.

x

T A B L E 1 7 . 5 Five Subgroups of

Measurement Data

Measure1DS

T A B L E 1 7 . 6 25 Daily Samples of Five Room Cleaning and 

Preparation Times RoomPrepDS
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of each baked pizza in the subgroups is measured, and the pizza crust diameters obtained are
given in Table 17.7. Use the pizza crust diameter data to do the following: PizzaDiam
a Show that  10.032 and  .84.
b Find the center lines and control limits for the and R charts for the pizza crust data.
c Set up the and R charts for the pizza crust data.
d Is the R chart for the pizza crust data in statistical control? Explain.
e Is the chart for the pizza crust data in statistical control? If not, use the chart and the

information given with the data to try to identify any assignable causes that might exist.
f Suppose that, based on the chart, the manager of the restaurant decides that the employees

do not know how to properly adjust the dough pressing machine. Because of this, the manager
thoroughly trains the employees in the use of this equipment. Because an assignable cause
(incorrect adjustment of the pressing machine) has been found and eliminated, we can remove
the subgroups affected by this unusual process variation from the data set. We therefore drop
subgroups 1 and 6 from the data. Use the remaining eight subgroups to show that we obtain
revised center lines of   10.2225 and   .825.

g Use the revised values of and to compute revised and R chart control limits for the pizza
crust diameter data. Set up and R charts using these revised limits. Be sure to omit subgroup
means and ranges for subgroups 1 and 6 when setting up these charts.

h Has removing the assignable cause brought the process into statistical control? Explain.

17.12 A chemical company has collected 15 daily subgroups of measurements of an important chemical
property called “acid value” for one of its products. Each subgroup consists of six acid value
readings: a single reading was taken every four hours during the day, and the readings for a day
are taken as a subgroup. The 15 daily subgroups are given in Table 17.8. AcidValDS
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Pizza Crust Diameter (Inches) Mean, Range,
Subgroup Time 1 2 3 4 5 R

1 4 P.M. 9.8 9.0 9.0 9.2 9.2 9.24 0.8

2 5 P.M. 9.5 10.3 10.2 10.0 10.0 10.00 0.8

3 6 P.M. 10.5 10.3 9.8 10.0 10.3 10.18 0.7

4 7 P.M. 10.7 9.5 9.8 10.0 10.0 10.00 1.2

5 8 P.M. 10.0 10.5 10.0 10.5 10.5 10.30 0.5

6 9 P.M. 10.0 9.0 9.0 9.2 9.3 9.30 1.0

7 10 P.M. 11.0 10.0 10.3 10.3 10.0 10.32 1.0

8 11 P.M. 10.0 10.2 10.1 10.3 11.0 10.32 1.0

9 12 A.M. 10.0 10.4 10.4 10.5 10.0 10.26 0.5

10 1 A.M. 11.0 10.5 10.1 10.2 10.2 10.40 0.9

New shift at 9 P.M., pressing machine adjusted at the start of each shift (4 P.M. and 9 P.M.).

x

T A B L E 1 7 . 7 10 Samples of Pizza Crust Diameters PizzaDiamDS

Subgroup Acid Value Measurements Mean, Range,

(Day) 1 2 3 4 5 6 R

1 202.1 201.2 196.2 201.6 201.6 201.6 200.717 5.9

2 201.6 201.2 201.2 200.8 201.2 201.2 201.2 .8

3 200.4 200.0 200.8 200.1 198.7 200.4 200.067 2.1

4 200.4 200.4 200.4 200.8 200.4 201.2 200.6 .8

5 200.0 201.6 202.9 201.6 201.2 201.2 201.417 2.9

6 200.0 200.4 200.8 200.8 199.5 200.4 200.317 1.3

7 200.4 200.0 200.4 200.4 200.4 200.4 200.333 .4

8 200.0 200.8 200.0 200.4 200.0 200.0 200.2 .8

9 199.1 200.4 200.4 200.4 200.4 200.0 200.117 1.3

10 201.2 195.3 197.4 201.2 200.0 201.6 199.45 6.3

11 201.6 200.8 200.4 201.2 200.4 199.5 200.65 2.1

12 200.0 199.5 200.4 200.8 200.4 200.8 200.317 1.3

13 201.6 201.6 200.8 201.2 200.8 200.8 201.133 .8

14 200.4 200.0 202.5 200.4 201.2 201.2 200.95 2.5

15 200.0 200.0 201.6 200.8 200.4 200.0 200.467 1.6

x

T A B L E 1 7 . 8 15 Subgroups of Acid Value Measurements for a Chemical Process AcidValDS



a Show that for these data  200.529 and  2.06.
b Set up and R charts for the acid value data. Are these charts in statistical control?
c On the basis of these charts, is it possible to draw proper conclusions about whether the mean

acid value is changing? Explain why or why not.
d Suppose that investigation reveals that the out-of-control points on the R chart (the ranges

for subgroups 1 and 10) were caused by an equipment malfunction that can be remedied by
redesigning a mechanical part. Since the assignable cause that is responsible for the large
ranges for subgroups 1 and 10 has been found and eliminated, we can remove subgroups 1
and 10 from the data set. Show that using the remaining 13 subgroups gives revised center
lines of  200.5975 and  1.4385.

e Use the revised values of and to compute revised and R chart control limits for the acid
value data. Set up the revised and R charts, making sure to omit subgroup means and ranges
for subgroups 1 and 10.

f Are the revised and R charts for the remaining 13 subgroups in statistical control? Explain.
What does this result tell us to do?

17.13 The data in Table 17.9 consist of 30 subgroups of measurements that specify the location of a “tube
hole” in an air conditioner compressor shell. Each subgroup contains the tube hole dimension
measurement for five consecutive compressor shells selected from the production line. The first
15 subgroups were observed on March 21, and the second 15 subgroups were observed on
March 22. As indicated in Table 17.9, the die press used in the hole punching operation was
changed after subgroup 5 was observed, and a die repair was made after subgroup 25 was
observed. TubeHole
a Show that for the first 15 subgroups (observed on March 21) we have  15.8 and 

 6.1333.
b Set up and R charts for the 15 subgroups that were observed on March 21 (do not use any of

the March 22 data). Do these and R charts show statistical control?x

x

R

x

DS

x

x

xRx

Rx

x

Rx
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Tube Hole Location Measurements
Subgroup 1 2 3 4 5 Mean, Range, R

March 21 1 15 15 16 15 13 14.8 3

2 15 20 15 17 19 17.2 5

3 19 16 15 18 17 17.0 4

4 17 20 18 18 15 17.6 5

5 20 16 15 9 16 15.2 11Changed to —➛
6 13 16 20 17 22 17.6 9Die Press
7 15 13 9 17 13 13.4 8#628 Here
8 13 14 18 17 14 15.2 5

9 19 12 16 13 15 15.0 7

10 19 14 12 13 13 14.2 7

11 17 22 15 14 16 16.8 8

12 19 17 17 15 9 15.4 10

13 17 13 14 17 15 15.2 4

14 15 17 17 17 16 16.4 2

15 14 16 18 16 16 16.0 4

March 22 16 18 10 14 16 18 15.2 8

17 12 16 15 18 17 15.6 6

18 15 19 19 17 17 17.4 4

19 21 16 17 19 17 18.0 5

20 20 22 25 18 19 20.8 7

21 18 18 17 17 19 17.8 2

22 19 20 19 18 18 18.8 2

23 13 16 15 17 16 15.4 4

24 16 15 16 17 17 16.2 2

25 17 20 13 16 16 16.4 7Die Repair —➛
26 25 23 21 24 21 22.8 4Made Here
27 22 25 21 22 25 23.0 4

28 26 29 25 26 23 25.8 6

29 24 25 22 22 27 24.0 5

30 26 21 27 25 26 25.0 6

x

T A B L E 1 7 . 9 30 Subgroups of Tube Hole Location Dimensions for Air Conditioner Compressor Shells
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c Using the control limits you computed by using the 15 subgroups observed on March 21,
set up and R charts for all 30 subgroups. That is, add the subgroup means and ranges
for March 22 to your and R charts, but use the limits you computed from the March 21 
data.

d Do the and R charts obtained in part c show statistical control? Explain.
e Does it appear that changing to die press #628 is an assignable cause? Explain. (Note that the

die press is the machine that is used to punch the tube hole.)
f Does it appear that making a die repair is an assignable cause? Explain.

17.14 A company packages a bulk product in bags with a 50-pound label weight. During a typical day’s
operation of the fill process, 22 subgroups of five bag fills are observed. Using the observed data,

and are calculated to be 52.9364 pounds and 1.6818 pounds, respectively. When the 22 ’s
and 22 R’s are plotted with respect to the appropriate control limits, the first 6 subgroups are
found to be out of control. This is traced to a mechanical start-up problem, which is remedied.
Using the remaining 16 subgroups, and are calculated to be 52.5875 pounds and 
1.2937 pounds, respectively.
a Calculate appropriate revised and R chart control limits.
b When the remaining 16 ’s and 16 R’s are plotted with respect to the appropriate revised

control limits, they are found to be within these limits. What does this imply?

17.15 In the book Tools and Methods for the Improvement of Quality, Gitlow, Gitlow, Oppenheim, and
Oppenheim discuss an example of using and R charts to study tuning knob diameters. In their
problem description the authors say this:

A manufacturer of high-end audio components buys metal tuning knobs to be used in the
assembly of its products. The knobs are produced automatically by a subcontractor using a
single machine that is supposed to produce them with a constant diameter. Nevertheless,
because of persistent final assembly problems with the knobs, management has decided to
examine this process output by requesting that the subcontractor keep an x-bar and R chart
for knob diameter.

On a particular day the subcontractor selects four knobs every half hour and carefully measures
their diameters. Twenty-five subgroups are obtained, and these subgroups (along with their
subgroup means and ranges) are given in Table 17.10 on the next page. KnobDiam

a For these data show that  841.45 and  5.16. Then use these values to calculate control
limits and to set up and R charts for the 25 subgroups of tuning knob diameters. Do these 
and R charts indicate the existence of any assignable causes? Explain.

b An investigation is carried out to find out what caused the large range for subgroup 23. The
investigation reveals that a water pipe burst at 7:25 P.M. and that the mishap resulted in water
leaking under the machinery used in the tuning knob production process. The resulting
disruption is the apparent cause for the out-of-control range for subgroup 23. The water pipe
is mended, and since this fix is reasonably permanent, we are justified in removing subgroup
23 from the data set. Using the remaining 24 subgroups, show that revised center lines are 

841.40 and 4.88.

c Use the revised values of and to set up revised and R charts for the remaining 
24 subgroups of diameters. Be sure to omit the mean and range for subgroup 23.

d Looking at the revised R chart, is this chart now in statistical control? What does your answer
say about whether we can use the chart to decide if the process mean is changing?

e Looking at the revised chart, is this chart in statistical control? What does your answer tell
us about the process mean?

f An investigation is now undertaken to find the cause of the very high values for subgroups
10, 11, 12, and 13. We again quote Gitlow, Gitlow, Oppenheim, and Oppenheim:

The investigation leads to the discovery that . . . a keyway wedge had cracked and
needed to be replaced on the machine. The mechanic who normally makes this repair
was out to lunch, so the machine operator made the repair. This individual had not
been properly trained for the repair; for this reason, the wedge was not properly aligned
in the keyway, and the subsequent points were out of control. Both the operator and
the mechanic agree that the need for this repair was not unusual. To correct this problem
it is decided to train the machine operator and provide the appropriate tools for making
this repair in the mechanic’s absence. Furthermore, the maintenance and engineering
staffs agree to search for a replacement part for the wedge that will not be so prone to
cracking. 

Since the assignable causes responsible for the very high values for subgroups 10, 11, 12, 
and 13 have been found and eliminated, we remove these subgroups from the data set. Show 
that removing subgroups 10, 11, 12, and 13 (in addition to the previously removed 
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subgroup 23) results in the revised center lines   840.46 and   5.25. Then use these
revised values to set up revised and R charts for the remaining 20 subgroups.

g Are all of the subgroup means and ranges for these newly revised and R charts inside their
respective control limits?

17.5 Pattern Analysis 
When we observe a plot point outside the control limits on a control chart, we have strong evi-
dence that an assignable cause exists. In addition, several other data patterns indicate the presence
of assignable causes. Precise description of these patterns is often made easier by dividing the

control band into zones—designated A, B, and C. Zone boundaries are set at points that are one
and two standard deviations (of the plotted statistic) on either side of the center line. We obtain six
zones—each zone being one standard deviation wide—with three zones on each side of the cen-
ter line. The zones that stretch one standard deviation above and below the center line are desig-
nated as C zones. The zones that extend from one to two standard deviations away from the cen-
ter line are designated as B zones. The zones that extend from two to three standard deviations
away from the center line are designated as A zones. Figure 17.12(a) illustrates a control chart
with the six zones, and Figure 17.12(b) shows how the zone boundaries for an chart and an R

chart are calculated. Part (b) of this figure also shows the values of the zone boundaries for the hole
location and R charts shown in Figure 17.9 (page 765). In calculating these boundaries, we use
 3.0006 and  .0675, which we computed from subgroups 1 through 20 with subgroups 1, 7,

12, and 17 removed from the data set; that is, we are using and when the process is in control.
For example, the upper A–B boundary for the chart has been calculated as follows:

x  
2

3
 (A2R)  3.0006  

2

3
 (.577(.0675))  3.0266

x

Rx
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x
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Subgroup Diameter Measurement Average, Range,
Time Number 1 2 3 4 R

8:30 A.M. 1 836 846 840 839 840.25 10

9:00 2 842 836 839 837 838.50 6

9:30 3 839 841 839 844 840.75 5

10:00 4 840 836 837 839 838.00 4

10:30 5 838 844 838 842 840.50 6

11:00 6 838 842 837 843 840.00 6

11:30 7 842 839 840 842 840.75 3

12:00 8 840 842 844 836 840.50 8

12:30 P.M. 9 842 841 837 837 839.25 5

1:00 10 846 846 846 845 845.75 1

1:30 11 849 846 848 844 846.75 5

2:00 12 845 844 848 846 845.75 4

2:30 13 847 845 846 846 846.00 2

3:00 14 839 840 841 838 839.50 3

3:30 15 840 839 839 840 839.50 1

4:00 16 842 839 841 837 839.75 5

4:30 17 841 845 839 839 841.00 6

5:00 18 841 841 836 843 840.25 7

5:30 19 845 842 837 840 841.00 8

6:00 20 839 841 842 840 840.50 3

6:30 21 840 840 842 836 839.50 6

7:00 22 844 845 841 843 843.25 4

7:30 23 848 843 844 836 842.75 12

8:00 24 840 844 841 845 842.50 5

8:30 25 843 845 846 842 844.00 4

Source: H. Gitlow, S. Gitlow, A. Oppenheim, and R. Oppenheim, Tools and Methods for the Improvement of Quality, p. 301.

Copyright © 1989. Reprinted by permission of McGraw-Hill Companies, Inc.
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Finally, Figure 17.12(b) shows (based on a normal distribution of plot points) the percentages of
points that we would expect to observe in each zone when the process is in statistical control. For
instance, we would expect to observe 34.13 percent of the plot points in the upper portion of
zone C.

For an chart, if the distribution of process measurements is reasonably normal, then the
distribution of subgroup means will be approximately normal, and the percentages shown in
Figure 17.12 apply. That is, the plotted subgroup means for an “in control” chart should look
as if they have been randomly selected from a normal distribution. Any distribution of plot
points that looks very different from the expected percentages will suggest the existence of an
assignable cause.

Various companies (for example, Western Electric [AT&T] and Ford Motor Company) have
established sets of rules for identifying assignable causes; use of such rules is called pattern

analysis. We now summarize some commonly accepted rules. Note that many of these rules are
illustrated in Figures 17.13, 17.14, 17.15, and 17.16, which show several common out-of-control
patterns.

x

x

*When the R chart does not have a lower control limit (n   7), the lower B–C and A–B boundaries should still be computed as

long as they are 0 or positive.

A

A

B

B

C
C

UCL

LCL

x

(a) A control chart with A, B, and C zones 

(.135%)

(2.145%)

(13.59%)

(34.13%)

(34.13%)

(13.59%)

(2.145%)

(.135%)

Zone A 

Zone A

Zone B

Zone B

Zone C

Zone C

Zone Boundaries

Upper A–B Boundary:

Upper B–C Boundary:

Center Line:

Lower B–C Boundary:*

Lower A–B Boundary:*

Lower Control Limit:*

Upper Control Limit:

x Chart

x       (A2R)   3.0266
2

3

x       (A2R)   2.9746
2

3

x       (A2R)   3.0136
1

3

x       (A2R)   2.9876
1

3

x   3.0006

x   A2R   3.0396

x   A2R   2.9617

(b) Calculating zone boundaries for x and R charts in the hole location case 

R Chart

R       (D4R   R)   .1176
2

3

R       (D4R   R)   .0174
2

3

R       (D4R   R)   .0926
1

3

R       (D4R   R)   .0424
1

3

R   .0675

D4R   .1427

D3R   does not
           exist
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Observation

UCL
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A Plot Point outside

the Control Limits



It is tempting to use many rules to decide when an assignable cause exists. However, if we use
too many rules we can end up with an unacceptably high chance of a false out-of-control signal

(that is, an out-of-control signal when there is no assignable cause present). For most control
charts, the use of the rules just described will yield an overall probability of a false signal in the
range of 1 to 2 percent.
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Zone A

Zone A

Zone B

Zone B

Zone C

Zone C

1 5 10 15 20

Observation

UCL

CNL

LCL

Zone A

Zone A

Zone B

Zone B

Zone C

Zone C

1 5 10 15 2520

Observation

UCL

CNL

LCL

Source: H. Gitlow, S. Gitlow, A. Oppenheim, and R. Oppenheim, Tools and Methods for the Improvement of Quality, 

pp. 191–93, 209–211. Copyright © 1989. Reprinted by permission of McGraw-Hill Companies, Inc.

F I G U R E 1 7 . 1 4 Two Out of Three

Consecutive Plot Points

in Zone A (or beyond)

F I G U R E 1 7 . 1 5 Four Out of Five 

Consecutive Plot Points

in Zone B (or beyond)

Pattern Analysis for and R Chartsx

If one or more of the following conditions exist, it is

reasonable to conclude that one or more assign-

able causes are present:

1 One plot point beyond zone A (that is, outside

the three standard deviation control limits)—see

Figure 17.13 on the previous page.

2 Two out of three consecutive plot points in

zone A (or beyond) on one side of the center line

of the control chart. Sometimes a zone boundary

that separates zones A and B is called a two stan-

dard deviation warning limit. It can be shown

that, if the process is in control, then the likeli-

hood of observing two out of three plot points

beyond this warning limit (even when no points

are outside the control limits) is very small.

Therefore, such a pattern signals an assignable

cause. Figure 17.14 illustrates this pattern.

Specifically, note that plot points 5 and 6 are two

consecutive plot points in zone A and that plot

points 19 and 21 are two out of three consecu-

tive plot points in zone A.

3 Four out of five consecutive plot points in zone B

(or beyond) on one side of the center line of the

control chart. Figure 17.15 illustrates this pattern.

Specifically, note that plot points 2, 3, 4, and 5 are

four consecutive plot points in zone B and that

plot points 12, 13, 15, and 16 are four out of five

consecutive plot points in zone B (or beyond).

4 A run of at least eight plot points. Here we de-

fine a run to be a sequence of plot points of the

same type. For example, we can have a run of

points on one side of (above or below) the cen-

ter line. Such a run is illustrated in part (a) of Fig-

ure 17.16, which shows a run above the center

line. We might also observe a run of steadily

increasing plot points (a run up) or a run of

steadily decreasing plot points (a run down).

These patterns are illustrated in parts (b) and (c)

of Figure 17.16. Any of the above types of runs

consisting of at least eight points is an out-of-

control signal.

5 A nonrandom pattern of plot points. Such a pat-

tern might be an increasing or decreasing trend,

a fanning-out or funneling-in pattern, a cycle,

an alternating pattern, or any other pattern

that is very inconsistent with the percentages

given in Figure 17.12 on the previous page (see

parts (d) through (h) of Figure 17.16).

If none of the patterns or conditions in 1 through

5 exists, then the process shows good statistical

control—or is said to be “in control.” A process that

is in control should not be tampered with. On the

other hand, if one or more of the patterns in

1 through 5 exist, action must be taken to find the

cause of the out-of-control pattern(s) (which should

be eliminated if the assignable cause is undesirable).
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EXAMPLE 17.7 The Hole Location Case

(c) A run down(a) A run on one side of the
center line

(b) A run up (d) A trend (here, increasing)

(e) Fanning out (f) Funneling in (g) A cycle (h) An alternating pattern

F I G U R E 1 7 . 1 6 Other Out-of-Control Patterns

Figure 17.17 shows ongoing and R charts for the hole location problem. Here the chart in-
cludes zone boundaries with zones A, B, and C labeled. Notice that the first out-of-control condi-
tion (one plot point beyond zone A) exists. Looking at the last five plot points on the chart, we
see that the third out-of-control condition (four out of five consecutive plot points in zone B or
beyond) also exists.
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Exercises for Section 17.5
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CONCEPTS

17.16 When a process is in statistical control:
a What percentage of the plot points on an chart will be found in the C zones (that is, in the

middle 1兾3 of the chart’s “control band”)?
b What percentage of the plot points on an chart will be found in either the C zones or the

B zones (that is, in the middle 2兾3 of the chart’s “control band”)?
c What percentage of the plot points on an chart will be found in the C zones, the B zones, or

the A zones (that is, in the chart’s “control band”)?

17.17 Discuss how a sudden increase in the process mean shows up on the chart.

17.18 Discuss how a sudden decrease in the process mean shows up on the chart.

17.19 Discuss how a steady increase in the process mean shows up on the chart. Also, discuss how a
steady decrease in the process mean shows up on the chart.

17.20 Explain what we mean by a “false out-of-control signal.”

METHODS AND APPLICATIONS

17.21 In the June 1991 issue of Quality Progress, Gunter presents several control charts. Four of these
charts are reproduced in Figure 17.18. For each chart, find any evidence of a lack of statistical
control (that is, for each chart identify any evidence of the existence of one or more assignable
causes). In each case, if such evidence exists, clearly explain why the plot points indicate that the
process is not in control.

17.22 In the book Tools and Methods for the Improvement of Quality, Gitlow, Gitlow, Oppenheim, and
Oppenheim present several control charts in a discussion and exercises dealing with pattern analysis.
These control charts, which include appropriate A, B, and C zones, are reproduced in Figure 17.19.
For each chart, identify any evidence of a lack of statistical control (that is, for each chart identify
any evidence suggesting the existence of one or more assignable causes). In each case, if such
evidence exists, clearly explain why the plot points indicate that the process is not in control.
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Source: B. Gunter, “Process Capability Studies Part 3: The Tale of the Charts,” Quality Progress (June 1991), pp. 77–82. Copyright © 1991. American Society for 

Quality. Used with permission.

(a) (b)

(c) (d)
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17.23 Consider the tuning knob diameter data given in Table 17.10 (page 772). Recalling that the
subgroup size is n   4 and that   841.45 and   5.16 for these data, KnobDiam
a Calculate all of the zone boundaries for the chart.
b Calculate all of the R chart zone boundaries that are either 0 or positive.

17.24 Given what you now know about pattern analysis, examine each of the following and R charts
for evidence of lack of statistical control. In each case, explain any evidence indicating the 
existence of one or more assignable causes.
a The pizza crust diameter and R charts of Exercise 17.11 (page 768). PizzaDiam
b The acid value and R charts of Exercise 17.12 (page 769). AcidVal
c The tube hole location and R charts of Exercise 17.13 (page 770). TubeHole

17.6 Comparison of a Process with Specifications:
Capability Studies 

If we have a process in statistical control, we have found and eliminated the assignable causes

of process variation. Therefore, the individual process measurements fluctuate over time with a
constant standard deviation S around a constant mean M. It follows that we can use the indi-
vidual process measurements to estimate m and s. Doing this lets us determine if the process is
capable of producing output that meets specifications. Specifications are based on fitness for use
criteria—that is, the specifications are established by design engineers or customers. Even if a
process is in statistical control, it may exhibit too much common cause variation (represented
by s) to meet specifications.

As will be shown in Example 17.9 on the next page, one way to study the capability of a process
that is in statistical control is to construct a histogram from a set of individual process measurements.
The histogram can then be compared with the product specification limits. In addition, we know that
if all possible individual process measurements are normally distributed with mean m and standard
deviation s, then 99.73 percent of these measurements will be in the interval [m  3s, m  3s].
Estimatingm ands by and , we obtain the natural tolerance limits6 for the process.R兾d2x
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Source: H. Gitlow, S. Gitlow, A. Oppenheim, and R. Oppenheim, Tools and Methods for the Improvement of Quality, 

pp. 191–93, 209–11. Copyright © 1989. Reprinted by permission of McGraw-Hill Companies, Inc.

(a) (b)

51 10

Observation

Zone A

Zone B

Zone C

Zone C

Zone B

Zone A

15

UCL

CNL

LCL

F I G U R E 1 7 . 1 9 Charts for Exercise 17.22

Decide
whether a

process is capable
of meeting
specifications.

LO6

6There are a number of alternative formulas for the natural tolerance limits. Here we give the version that is the most clearly

related to using and R charts. At the end of this section we present an alternative formula.x

Natural Tolerance Limits

The natural tolerance limits for a normally distributed process that is in statistical control are

where d2 is a constant that depends on the subgroup size n. Values of d2 are given in Table 17.3 (page 759) for

subgroup sizes n  2 to n  25. These limits contain approximately 99.73 percent of the individual process

measurements.
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BI

If the natural tolerance limits are inside the specification limits, then almost all (99.73 percent)
of the individual process measurements are produced within the specification limits. In this case
we say that the process is capable of meeting specifications. Furthermore, if we use and R charts
to monitor the process, then as long as the process remains in statistical control, the process will
continue to meet the specifications. If the natural tolerance limits are wider than the specification
limits, we say that the process is not capable. Here some individual process measurements are
outside the specification limits.

x
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EXAMPLE 17.8 The Hot Chocolate Temperature Case

Consider the and R chart analysis of the hot chocolate temperature data. Suppose the dining hall
staff has determined that all of the hot chocolate it serves should have a temperature between 130°F
and 150°F. Recalling that the and R charts of Figure 17.11 (page 767) show that the process has
been brought into control with and with we find that is an
estimate of the mean hot chocolate temperature, and that is an esti-
mate of the standard deviation of all the hot chocolate temperatures. Here is obtained
from Table 17.3 (page 759) corresponding to the subgroup size Assuming that the temper-
atures are approximately normally distributed, the natural tolerance limits

tell us that approximately 99.73 percent of the individual hot chocolate temperatures will be be-
tween 132.31°F and 149.15°F. Since these natural tolerance limits are inside the specification lim-
its (130°F to 150°F), almost all the temperatures are within the specifications. Therefore, the hot
chocolate–making process is capable of meeting the required temperature specifications. Further-
more, if the process remains in control on its and R charts, it will continue to meet specifications.x

  [140.73  8.42]  [132.31, 149.15]

 [x  3(R兾d2)]  [140.73  3(4.75兾1.693)]

n  3.
d2  1.693

R兾d2  4.75兾1.693  2.81
x  140.73R  4.75,x  140.73

x

x

C

Again consider the hole punching process for air conditioner compressor shells. Recall that we
were able to get this process into a state of statistical control with  3.0006 and  .0675 by
removing several assignable causes of process variation.

Figure 17.20 gives a relative frequency histogram of the 80 individual hole location mea-
surements used to construct the and R charts of Figure 17.8 (page 763). This histogramx

Rx
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suggests that the population of all individual hole location dimensions is approximately nor-
mally distributed.

Since the process is in statistical control, is an estimate of the process mean,
and is an estimate of the process standard deviation. Here

is obtained from Table 17.3 (page 759) corresponding to the subgroup size 
Furthermore, the natural tolerance limits

tell us that almost all (approximately 99.73 percent) of the individual hole location dimensions
produced by the hole punching process are between 2.9135 inches and 3.0877 inches.

Suppose a major customer requires that the hole location dimension must meet specifications
of 3.00  .05 inches. That is, the customer requires that every individual hole location dimension
must be between 2.95 inches and 3.05 inches. The natural tolerance limits, [2.9135, 3.0877],
which contain almost all individual hole location dimensions, are wider than the specification
limits [2.95, 3.05]. This says that some of the hole location dimensions are outside the specifica-
tion limits. Therefore, the process is not capable of meeting the specifications. Note that the
histogram in Figure 17.20 also shows that some of the hole location dimensions are outside the
specification limits.

Figure 17.21 illustrates the situation, assuming that the individual hole location dimensions
are normally distributed. The figure shows that the natural tolerance limits are wider than the
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specification limits. The shaded areas under the normal curve make up the fraction of product that
is outside the specification limits. Figure 17.21 also shows the calculation of the estimated
fraction of hole location dimensions that are out of specification. We estimate that 8.55 percent
of the dimensions do not meet the specifications.

Since the process is not capable of meeting specifications, it must be improved by removing
common cause variation. This is management’s responsibility. Suppose engineering and man-
agement conclude that the excessive variation in the hole locations can be reduced by redesign-
ing the machine that punches the holes in the compressor shells. Also suppose that after a
research and development program is carried out to do this, the process is run using the new
machine and 20 new subgroups of n  5 hole location measurements are obtained. The resulting

and R charts (not given here) indicate that the process is in control with  3.0002 and  
.0348. Furthermore, a histogram of the 100 hole location dimensions used to construct the and
R charts indicates that all possible hole location measurements are approximately normally
distributed. It follows that we estimate that almost all individual hole location dimensions are
contained within the new natural tolerance limits

As illustrated in Figure 17.22, these tolerance limits are within the specification limits 
Therefore, the new process is now capable of producing almost all hole location dimensions

inside the specifications. The new process is capable because the estimated process standard
deviation has been substantially reduced (from for the old process
to for the redesigned process).

Next, note that (for the improved process) the z value corresponding to the lower specification
limit (2.95) is

This says that the lower specification limit is 3.36 estimated process standard deviations below 
Since the lower natural tolerance limit is 3 estimated process standard deviations below , there
is a leeway of .36 estimated process standard deviations between the lower natural tolerance limit
and the lower specification limit (see Figure 17.22). Also, note that the z value corresponding to

x
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the upper specification limit (3.05) is

This says that the upper specification limit is 3.33 estimated process standard deviations above 
Since the upper natural tolerance limit is 3 estimated process standard deviations above , there
is a leeway of .33 estimated process standard deviations between the upper natural tolerance limit
and the upper specification limit (see Figure 17.22). Because some leeway exists between the nat-
ural tolerance limits and the specification limits, the distribution of process measurements (that
is, the curve in Figure 17.22) can shift slightly to the right or left (or can become slightly more
spread out) without violating the specifications. Obviously, the more leeway, the better.

To understand why process leeway is important, recall that a process must be in statistical con-
trol before we can assess the capability of the process. In fact:

x

x.

z3.05  
3.05  3.0002

.0149613
 3.33

In order to demonstrate that a company’s product meets customer requirements, the company must present

1 and R charts that are in statistical control.

2 Natural tolerance limits that are within the specification limits.

x

However, even if a capable process shows good statistical control, the process mean and/or the
process variation will occasionally change (due to new assignable causes or unexpected recurring
problems). If the process mean shifts and/or the process variation increases, a process will need
some leeway between the natural tolerance limits and the specification limits in order to avoid
producing out-of-specification product. We can determine the amount of process leeway (if any
exists) by defining what we call the sigma level capability of the process.

Sigma Level Capability

The sigma level capability of a process is the number of estimated process standard deviations between the

estimated process mean, , and the specification limit that is closest to .xx

For instance, in the previous example the lower specification limit (2.95) is 3.36 estimated
standard deviations below the estimated process mean, , and the upper specification limit
(3.05) is 3.33 estimated process standard deviations above . It follows that the upper specifi-
cation limit is closest to the estimated process mean , and because this specification limit is
3.33 estimated process standard deviations from , we say that the hole punching process has
3.33 sigma capability.

If a process has a sigma level capability of three or more, then there are at least three esti-
mated process standard deviations between and the specification limit that is closest to . It
follows that, if the distribution of process measurements is normally distributed, then the
process is capable of meeting the specifications. For instance, Figure 17.23(a) on the next page
illustrates a process with three sigma capability. This process is just barely capable—that is,
there is no process leeway. Figure 17.23(b) on the next page illustrates a process with six sigma
capability. This process has three standard deviations of leeway. In general, we see that if a
process is capable, the sigma level capability expresses the amount of process leeway. The
higher the sigma level capability, the more process leeway. More specifically, for a capable
process, the sigma level capability minus three gives the number of estimated standard devia-
tions of process leeway. For example, since the hole punching process has 3.33 sigma capabil-
ity, this process has 3.33  3  .33 estimated standard deviations of leeway.

The difference between three sigma and six sigma capability is dramatic. To illustrate this,
look at Figure 17.23(a), which shows that a normally distributed process with three sigma
capability produces 99.73 percent good quality (the area under the distribution curve between

xx

x

x

x

x



the specification limits is .9973). On the other hand, Figure 17.23(b) shows that a normally
distributed process with six sigma capability produces 99.9999998 percent good quality. Said
another way, if the process mean is centered between the specifications, and if we produce
large quantities of product, then a normally distributed process with three sigma capability
will produce an average of 2,700 defective products per million, while a normally distributed
process with six sigma capability will produce an average of only .002 defective products per
million.

In the long run, however, process shifts due to assignable causes are likely to occur. It can be
shown that, if we monitor the process by using an chart that employs a typical subgroup size of
4 to 6, the largest sustained shift of the process mean that might remain undetected by the chart
is a shift of 1.5 process standard deviations. In this worst case, it can be shown that a normally
distributed three sigma capable process will produce an average of 66,800 defective products per
million (clearly unacceptable), while a normally distributed six sigma capable process will pro-
duce an average of only 3.4 defective products per million. Therefore, if a six sigma capable
process is monitored by and R charts, then, when a process shift occurs, we can detect the shift
(by using the control charts), and we can take immediate corrective action before a substantial
number of defective products are produced.

x

x

x
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This is, in fact, how control charts are supposed to be used to prevent the production of
defective product. That is, our strategy is

Prevention Using Control Charts

3 When the control charts give out-of-control

signals, take immediate action on the process to

reestablish control before out-of-specification

product is produced.

1 Reduce common cause variation in order to cre-

ate leeway between the natural tolerance limits

and the specification limits.

2 Use control charts to establish statistical control

and to monitor the process.

Since 1987, a number of U.S. companies have adopted a six sigma philosophy. In fact, these
companies refer to themselves as six sigma companies. It is the goal of these companies to
achieve six sigma capability for all processes in the entire organization. For instance, Motorola,
Inc., the first company to adopt a six sigma philosophy, began a five-year quality improvement
program in 1987. The goal of Motorola’s companywide defect reduction program is to achieve
six sigma capability for all processes—for instance, manufacturing processes, delivery, informa-
tion systems, order completeness, accuracy of transactions records, and so forth. As a result of its
six sigma plan, Motorola claims to have saved more than $1.5 billion. The corporation won the
Malcolm Baldrige National Quality Award in 1988, and Motorola’s six sigma plan has become a
model for firms that are committed to quality improvement. Other companies that have adopted
the six sigma philosophy include IBM, Digital Equipment Corporation, and General Electric.

To conclude this section, we make two comments. First, it has been traditional to measure
process capability by using what is called the index. This index is calculated by dividing the
sigma level capability by three. For example, since the hole punching process illustrated in
Figure 17.22 (page 780) has a sigma level capability of 3.33, the for this process is 1.11. In
general, if is at least 1, then the sigma level capability of the process is at least 3 and thus the
process is capable. Historically, has been used because its value relative to the number 1
describes the process capability. We prefer using sigma level capability to characterize process
capability because we believe that it is more intuitive.

Second, when a process is in control, then the estimates and s of the process standard
deviation will be very similar. This implies that we can compute the natural tolerance limits
by using the alternative formula For example, since the mean and standard deviation
of the 80 observations used to construct the and R charts in Figure 17.8 (page 763) are

and .028875, we obtain the natural tolerance limits

These limits are very close to those obtained in Example 17.9 on page 778, [2.9135, 3.0877], which
were computed by using the estimate of the process standard deviation. Use of
the alternative formula [ is particularly appropriate when there are long-run process varia-
tions that are not measured by the subgroup ranges (in which case underestimates the process
standard deviation). Since statistical control in any real application of SPC will not be perfect, some
people believe that this version of the natural tolerance limits is the most appropriate.
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Exercises for Section 17.6
CONCEPTS

17.25 Write a short paragraph explaining why a process that is in statistical control is not necessarily
capable of meeting customer requirements (specifications).

17.26 Explain the interpretation of the natural tolerance limits for a process. What assumptions must be
made in order to properly make this interpretation? How do we check these assumptions?

17.27 Explain how the natural tolerance limits compare to the specification limits when
a A process is capable of meeting specifications.
b A process is not capable of meeting specifications.



17.28 For each of the following, explain
a Why it is important to have leeway between the natural tolerance limits and the specification

limits.
b What is meant by the sigma level capability for a process.
c Two reasons why it is important to achieve six sigma capability.

METHODS AND APPLICATIONS

17.29 Consider the room cleaning and preparation time situation in Exercise 17.10 (page 768). We
found that and R charts based on subgroups of size 5 for this data are in statistical control with

minutes and minutes. RoomPrep
a Assuming that the cleaning and preparation times are approximately normally distributed,

calculate a range of values that contains almost all (approximately 99.73 percent) of the
individual cleaning and preparation times.

b Find reasonable estimates of the maximum and minimum times needed to clean and prepare
an individual room.

c Suppose the resort hotel wishes to specify that every individual room should be cleaned and
prepared in 20 minutes or less. Is this upper specification being met? Explain. Note here that
there is no lower specification, since we would like cleaning times to be as short as possible
(as long as the job is done properly).

d If the upper specification for room cleaning and preparation times is 20 minutes, find the
sigma level capability of the process. If the upper specification is 30 minutes, find the sigma
level capability.

17.30 Suppose that and R charts based on subgroups of size 3 are used to monitor the moisture
content of a type of paper. The and R charts are found to be in statistical control with  6.0
percent and  .4 percent. Further, a histogram of the individual moisture content readings
suggests that these measurements are approximately normally distributed.
a Compute the natural tolerance limits (limits that contain almost all the individual moisture

content readings) for this process.
b If moisture content specifications are 6.0 percent  .5 percent, is this process capable of

meeting the specifications? Why or why not?
c Estimate the fraction of paper that is out of specification.
d Find the sigma level capability of the process.

17.31 A grocer has a contract with a produce wholesaler that specifies that the wholesaler will supply
the grocer with grapefruit that weigh at least .75 pounds each. In order to monitor the grapefruit
weights, the grocer randomly selects three grapefruit from each of 25 different crates of
grapefruit received from the wholesaler. Each grapefruit’s weight is determined and, therefore, 
25 subgroups of three grapefruit weights are obtained. When and R charts based on these
subgroups are constructed, we find that these charts are in statistical control with  .8467 and
 .11. Further, a histogram of the individual grapefruit weights indicates that these 

measurements are approximately normally distributed.
a Calculate a range of values that contains almost all (approximately 99.73 percent) of the

individual grapefruit weights.
b Find a reasonable estimate of the maximum weight of a grapefruit that the grocer is likely to sell.
c Suppose that the grocer’s contract with its produce supplier specifies that grapefruits are to

weigh a minimum of .75 lb. Is this lower specification being met? Explain. Note here that
there is no upper specification, since we would like grapefruits to be as large as possible.

d If the lower specification of .75 lb. is not being met, estimate the fraction of grapefruits that
weigh less than .75 lb. Hint: Find an estimate of the standard deviation of the individual
grapefruit weights.

17.32 Consider the pizza crust diameters for 10-inch pizzas given Exercise 17.11 (pages 768–769).
We found that, by removing an assignable cause, we were able to bring the process into statistical
control with  10.2225 and  .825. PizzaDiam
a Recalling that the subgroup size for the pizza crust and R charts is 5, and assuming that the

pizza crust diameters are approximately normally distributed, calculate the natural tolerance
limits for the diameters.

b Using the natural tolerance limits, estimate the largest diameter likely to be sold by the
restaurant as a 10-inch pizza.

c Using the natural tolerance limits, estimate the smallest diameter likely to be sold by the
restaurant as a 10-inch pizza.

d Are all 10-inch pizzas sold by this restaurant really at least 10 inches in diameter? If not,
estimate the fraction of pizzas that are not at least 10 inches in diameter.
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17.33 Consider the bag fill situation in Exercise 17.14 (page 771). We found that the elimination
of a start-up problem brought the filling process into statistical control with  52.5875 and
  1.2937.

a Recalling that the fill weight and R charts are based on subgroups of size 5, and assuming
that the fill weights are approximately normally distributed, calculate the natural tolerance
limits for the process.

b Suppose that management wishes to reduce the mean fill weight in order to save money by
“giving away” less product. However, since customers expect each bag to contain at least
50 pounds of product, management wishes to leave some process leeway. Therefore, after the
mean fill weight is reduced, the lower natural tolerance limit is to be no less than 50.5 lb.
Based on the natural tolerance limits, how much can the mean fill weight be reduced? If the
product costs $2 per pound, and if 1 million bags are sold per year, what is the yearly cost
reduction achieved by lowering the mean fill weight?

17.34 Suppose that a normally distributed process (centered at target) has three sigma capability. If the
process shifts 1.5 sigmas to the right, show that the process will produce defective products at a
rate of 66,800 per million.

17.35 Suppose that a product is assembled using 10 different components, each of which must meet
specifications for five different quality characteristics. Therefore, we have 50 different specifi-
cations that potentially could be violated. Further suppose that each component possesses three
sigma capability (process centered at target) for each quality characteristic. Then, if we assume
normality and independence, find the probability that all 50 specifications will be met.

17.7 Charts for Fraction Nonconforming 
Sometimes, rather than collecting measurement data, we inspect items and simply decide
whether each item conforms to some desired criterion (or set of criteria). For example, a fuel tank
does or does not leak, an order is correctly or incorrectly processed, a batch of chemical product
is acceptable or must be reprocessed, or plastic wrap appears clear or too hazy. When an
inspected unit does not meet the desired criteria, it is said to be nonconforming (or defective).
When an inspected unit meets the desired criteria, it is said to be conforming (or nondefective).
Traditionally, the terms defective and nondefective have been employed. Lately, the terms non-

conforming and conforming have become popular.
The control chart that we set up for this type of data is called a p chart. To construct this chart,

we observe subgroups of n units over time. We inspect or test the n units in each subgroup and
determine the number d of these units that are nonconforming. We then calculate for each subgroup

 d兾n the fraction of nonconforming units in the subgroup

and we plot the values versus time on the p chart. If the process being studied is in statistical con-
trol and producing a fraction p of nonconforming units, and if the units inspected are independent,
then the number of nonconforming units d in a subgroup of n units inspected can be described by a
binomial distribution. If, in addition, n is large enough so that np is greater than 2,7 then both d and
the fraction of nonconforming units are approximately described by normal distributions. Fur-
thermore, the population of all possible values has mean and standard deviation

Therefore, if p is known we can compute three standard deviation control limits for values of 
by setting

However, since it is unlikely that p will be known, we usually must estimate p from process data.
The estimate of p is

UCL  p  3 Ap(1  p)

n
    and    LCL  p  3 Ap(1  p)

n
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7Some statisticians believe that this condition should be np  5. However, for p charts many think np 2 is sufficient.

Use p charts
to monitor

process quality.
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Substituting for p, we obtain the following:p
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Center Line and Control Limits for a p Chart

Note that if the LCL calculates negative, there is no

lower control limit for the p chart.
 LCL  p  3A

p(1  p)

n

 UCL  p  3A
p(1  p)

n

 Center line  p

The control limits calculated using these formulas are considered to be trial control limits.

Plot points above the upper control limit suggest that one or more assignable causes have
increased the process fraction nonconforming. Plot points below the lower control limit may sug-
gest that an improvement in the process performance has been observed. However, plot points
below the lower control limit may also tell us that an inspection problem exists. Perhaps defective
items are still being produced, but for some reason the inspection procedure is not finding them. If
the chart shows a lack of control, assignable causes must be found and eliminated and the trial con-
trol limits must be revised. Here data for subgroups associated with assignable causes that have
been eliminated will be dropped, and data for newly observed subgroups will be added when cal-
culating the revised limits. This procedure is carried out until the process is in statistical control.
When control is achieved, the limits can be used to monitor process performance. The process

capability for a process that is in statistical control is expressed using , the estimated process

fraction nonconforming. When the process is in control and is too high to meet internal or cus-
tomer requirements, common causes of process variation must be removed in order to reduce .
This is a management responsibility.

p

p

p

EXAMPLE 17.10

To improve customer service, a corporation wishes to study the fraction of incorrect sales
invoices that are sent to its customers. Every week a random sample of 100 sales invoices sent
during the week is selected, and the number of sales invoices containing at least one error is
determined. The data for the last 30 weeks are given in Table 17.11. To construct a p chart for
these data, we plot the fraction of incorrect invoices versus time. Since the true overall fraction
p of incorrect invoices is unknown, we estimate p by (see Table 17.11)

Since  100(.023) 2.3 is greater than 2, the population of all possible values has an
approximate normal distribution if the process is in statistical control. Therefore, we calculate the
center line and control limits for the p chart as follows:

Since the LCL calculates negative, there is no lower control limit for this p chart. The Excel add-in
(MegaStat) output of the p chart for these data is shown in Figure 17.24. We note that none of the
plot points is outside the control limits, and we fail to see any nonrandom patterns of points. 
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We conclude that the process is in statistical control with a relatively constant process fraction
nonconforming of  .023. That is, the process is stable with an average of approximately
2.3 incorrect invoices per each 100 invoices processed. Since no assignable causes are present,
there is no reason to believe that any of the plot points have been affected by unusual process
variations. That is, it will not be worthwhile to look for unusual circumstances that have changed
the average number of incorrect invoices per 100 invoices processed. If an average of 2.3 incor-
rect invoices per each 100 invoices is not acceptable, then management must act to remove com-
mon causes of process variation. For example, perhaps sales personnel need additional training
or perhaps the invoice itself needs to be redesigned.

In the previous example, subgroups of 100 invoices were randomly selected each week for
30 weeks. In general, subgroups must be taken often enough to detect possible sources of varia-
tion in the process fraction nonconforming. For example, if we believe that shift changes may
significantly influence the process performance, then we must observe at least one subgroup per
shift in order to study the shift-to-shift variation. Subgroups must also be taken long enough to
allow the major sources of process variation to show up. As a general rule, at least 25 subgroups
will be needed to estimate the process performance and to test for process control.

We have said that the size n of each subgroup should be large enough so that np (which is usu-
ally estimated by ) is greater than 2 (some practitioners prefer np to be greater than 5). Since
we often monitor a p that is quite small (.05 or .01 or less), n must often be quite large. Subgroup
sizes of 50 to 200 or more are common. Another suggestion is to choose a subgroup size that is
large enough to give a positive lower control limit (often, when employing a p chart, smaller
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subgroup sizes give a calculated lower control limit that is negative). A positive LCL is desirable
because it allows us to detect opportunities for process improvement. Such an opportunity exists
when we observe a plot point below the LCL. If there is no LCL, it would obviously be impossi-
ble to obtain a plot point below the LCL. It can be shown that
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A condition that guarantees that the subgroup size is large enough to yield a positive lower control limit for

a p chart is

where p0 is an initial estimate of the fraction nonconforming produced by the process. This condition is

appropriate when three standard deviation control limits are employed.

n  
9(1  p0)

p0

For instance, suppose experience suggests that a process produces 2 percent nonconforming
items. Then, in order to construct a p chart with a positive lower control limit, the subgroup size
employed must be greater than

As can be seen from this example, for small values of p0 the above condition may require very
large subgroup sizes. For this reason, it is not crucial that the lower control limit be positive.

We have thus far discussed how often—that is, over what specified periods of time (each
hour, shift, day, week, or the like)—we should select subgroups. We have also discussed how
large each subgroup should be. We next consider how we actually choose the items in a sub-
group. One common procedure—which often yields large subgroup sizes—is to include in a
subgroup all (that is, 100 percent) of the units produced in a specified period of time. For
instance, a subgroup might consist of all the units produced during a particular hour. When
employing this kind of scheme, we must carefully consider the independence assumption. The
binomial distribution assumes that successive units are produced independently. It follows that
a p chart would not be appropriate if the likelihood of a unit being defective depends on
whether other units produced in close proximity are defective. Another procedure is to ran-

domly select the units in a subgroup from all the units produced in a specified period of

time. This was the procedure used in Example 17.10 to obtain the subgroups of sales invoices.
As long as the subgroup size is small relative to the total number of units produced in the spec-
ified period, the units in the randomly selected subgroup should probably be independent.

However, if the rate of production is low, it could be difficult to obtain a large enough subgroup
when using this method. In fact, even if we inspect 100 percent of the process output over a
specified period, and even if the production rate is quite high, it might still be difficult to obtain
a large enough subgroup. This is because (as previously discussed) we must select subgroups
often enough to detect possible assignable causes of variation. If we must select subgroups fairly
often, the production rate may not be high enough to yield the needed subgroup size in the time
in which the subgroup must be selected.

In general, the large subgroup sizes that are required can make it difficult to set up useful
p charts. For this reason, we sometimes (especially when we are monitoring a very small p) relax
the requirement that np be greater than 2. Practice shows that even if np is somewhat smaller than
2, we can still use the three standard deviation p chart control limits. In such a case, we detect
assignable causes by looking for points outside the control limits and by looking for runs of
points on the same side of the center line. In order for the distribution of all possible values to
be sufficiently normal to use the pattern analysis rules we presented for charts, must be
greater than 2. In this case we carry out pattern analysis for a p chart as we do for an chart (see
Section 17.5 on page 772), and we use the following zone boundaries:

Upper A–B boundary:  Lower B–C boundary:  

Upper B–C boundary:  Lower A–B boundary:  

Here, when the LCL calculates negative, it should not be placed on the control chart. Zone
boundaries, however, can still be placed on the control chart as long as they are not negative.
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Exercises for Section 17.7
CONCEPTS

17.36 In your own words, define a nonconforming unit.

17.37 Describe two situations in your personal life in which you might wish to plot a control chart for
fraction nonconforming.

17.38 Explain why it can sometimes be difficult to obtain rational subgroups when using a control chart
for fraction nonconforming.

METHODS AND APPLICATIONS

17.39 Suppose that  .1 and n  100. Calculate the upper and lower control limits, UCL and LCL, of
the corresponding p chart.

17.40 Suppose that  .04 and n  400. Calculate the upper and lower control limits, UCL and LCL,
of the corresponding p chart.

17.41 In the July 1989 issue of Quality Progress, William J. McCabe discusses using a p chart to study
a company’s order entry system. The company was experiencing problems meeting the promised
60-day delivery schedule. An investigation found that the order entry system frequently lacked all
the information needed to correctly process orders. Figure 17.25 gives a p chart analysis of the
percentage of orders having missing information.
a From Figure 17.25 we see that  .527. If the subgroup size for this p chart is n 250,

calculate the upper and lower control limits, UCL and LCL.
b Is the p chart of Figure 17.25 in statistical control? That is, are there any assignable causes

affecting the fraction of orders having missing information?
c On the basis of the p chart in Figure 17.25, McCabe says,

The process was stable and one could conclude that the cause of the problem was built
into the system. The major cause of missing information was salespeople not paying
attention to detail, combined with management not paying attention to this problem.
Having sold the product, entering the order into the system was generally left to clerical
people while the salespeople continued selling.

Can you suggest possible improvements to the order entry system?

17.42 In the book Tools and Methods for the Improvement of Quality, Gitlow, Gitlow, Oppenheim, and
Oppenheim discuss a data entry operation that makes a large number of entries every day. Over a
24-day period, daily samples of 200 data entries are inspected. Table 17.12 gives the number of
erroneous entries per 200 that were inspected each day. DataErr
a Use the data in Table 17.12 to compute . Then use this value of to calculate the control

limits for a p chart of the data entry operation, and set up the p chart. Include zone boundaries
on the chart.
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Week number

p  Chart

2624222018161412108
LCL

p   .527

UCL

Number of Number of
Day Erroneous Entries Day Erroneous Entries

1 6 13 2

2 6 14 4

3 6 15 7

4 5 16 1

5 0 17 3

6 0 18 1

7 6 19 4

8 14 20 0

9 4 21 4

10 0 22 15

11 1 23 4

12 8 24 1

Source: H. Gitlow, S. Gitlow, A. Oppenheim, and R. Oppenheim, Tools and

Methods for the Improvement of Quality, pp. 168–172. Copyright © 1989.

Reprinted by permission of McGraw-Hill Companies, Inc.

Source: W. J. McCabe, “Examining Processes Improves Operations,” Quality

Progress (July 1989), pp. 26–32. Copyright © 1989 American Society for

Quality. Used with permission.
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b Is the data entry process in statistical control, or are assignable causes affecting the process?
Explain.

c Investigation of the data entry process is described by Gitlow, Gitlow, Oppenheim, and
Oppenheim as follows:

In our example, to bring the process under control, management investigated the observa-
tions which were out of control (days 8 and 22) in an effort to discover and remove the
special causes of variation in the process. In this case, management found that on day 8 a
new operator had been added to the workforce without any training. The logical conclusion
was that the new environment probably caused the unusually high number of errors. To
ensure that this special cause would not recur, the company added a one-day training
program in which data entry operators would be acclimated to the work environment.

A team of managers and workers conducted an investigation of the circumstances
occurring on day 22. Their work revealed that on the previous night one of the data entry
consoles malfunctioned and was replaced with a standby unit. The standby unit was
older and slightly different from the ones currently used in the department. The repairs
on the regular console were not expected to be completed until the morning of day 23. To
correct this special source of variation, the team recommended purchasing a spare
console that would match the existing equipment and disposing of the outdated model
presently being used as the backup. Management then implemented the suggestion.

Since the assignable causes on days 8 and 22 have been found and eliminated, we can remove
the data for these days from the data set. Remove the data and calculate the new value of .
Then set up a revised p chart for the remaining 22 subgroups.

d Did the actions taken bring the process into statistical control? Explain.

17.43 In the July 1989 issue of Quality Progress, William J. McCabe discusses using a p chart to study
the percentage of errors made by 21 buyers processing purchase requisitions. The p chart
presented by McCabe is shown in Figure 17.26. In his explanation of this chart, McCabe says,

The causes of the errors . . . could include out-of-date procedures, unreliable office equip-
ment, or the perceived level of management concern with errors. These causes are all
associated with the system and are all under management control.

Focusing on the 21 buyers, weekly error rates were calculated for a 30-week period (the
data existed, but weren’t being used). A p-chart was set up for the weekly department error
rate. It showed a 5.2 percent average rate for the department. In week 31, the manager called
the buyers together and made two statements: “I care about errors because they affect our
costs and delivery schedules,” and “I am going to start to count errors by individual buyers
so I can understand the causes.” The p-chart . . . shows an almost immediate drop from 
5.2 percent to 3.1 percent.

The explanation is that the common cause system (supervision, in this case) had
changed; the improvement resulted from eliminating buyer sloppiness in the execution of
orders. The p-chart indicates that buyer errors are now stable at 3.1 percent. The error rate
will stay there until the common cause system is changed again.

p
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Week number

p Chart Based on 400 requisitions per week

40302010

LCL

.031

p   .052

0.090

0.080

0.070

0.060

0.050

0.040

0.030

0.020

0.010

UCL

Source: W. J. McCabe, “Examining Processes Improves Operations,” Quality Progress (July 1989), pp. 26–32. Copyright © 1989

American Society for Quality. Used with permission.
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17.8 Cause-and-Effect and Defect Concentration Diagrams (Optional) 791

a The p chart in Figure 17.26 shows that for weeks 1 through 30. Noting that the
subgroup size for this chart is calculate the control limits UCL and LCL for the
p chart during weeks 1 through 30.

b The p chart in Figure 17.26 shows that after week 30 the value of is reduced to .031.
Assuming that the process has been permanently changed after week 30, calculate new
control limits based on  .031. If we use these new control limits after week 30, is the
improved process in statistical control? Explain.

17.44 The customer service manager of a discount store monitors customer complaints. Each day a
random sample of 100 customer transactions is selected. These transactions are monitored, and
the number of complaints received concerning these transactions during the next 30 days is
recorded. The numbers of complaints received for 20 consecutive daily samples of 100
transactions are, respectively, 2, 5, 10, 1, 5, 6, 9, 4, 1, 7, 1, 5, 7, 4, 5, 4, 6, 3, 10, and 5.

Complaints
a Use the data to compute . Then use this value of to calculate the control limits for a p chart

of the complaints data. Set up the p chart.
b Are the customer complaints for this 20-day period in statistical control? That is, have any

unusual problems caused an excessive number of complaints during this period? Explain why
or why not.

c Suppose the discount store receives 13 complaints in the next 30 days for the 100 transactions
that have been randomly selected on day 21. Should the situation be investigated? Explain
why or why not.

17.8 Cause-and-Effect and Defect Concentration 
Diagrams (Optional) 

We saw in Chapter 2 that Pareto charts are often used to identify quality problems that require
attention. When an opportunity for improvement has been identified, it is necessary to exam-
ine potential causes of the problem or defect (the undesirable effect). Because many processes
are complex, there are often a very large number of possible causes, and it may be difficult to
focus on the important ones. In this section we discuss two diagrams that can be employed to
help uncover potential causes of process variation that are resulting in the undesirable effect.

The cause-and-effect diagram was initially developed by Japanese quality expert Professor

Kaoru Ishikawa. In fact, these diagrams are often called Ishikawa diagrams; they are also
called fishbone charts for reasons that will become obvious when we look at an example. Cause-
and-effect diagrams are usually constructed by a quality team. For example, the team might
consist of product designers and engineers, production workers, inspectors, supervisors and fore-
men, quality engineers, managers, sales representatives, and maintenance personnel. The team
will set up the cause-and-effect diagram during a brainstorming session. After the problem
(effect) is clearly stated, the team attempts to identify as many potential causes (sources of
process variation) as possible. None of the potential causes suggested by team members should
be criticized or rejected. The goal is to identify as many potential causes as possible. No attempt
is made to actually develop solutions to the problem at this point. After beginning to brainstorm
potential causes, it may be useful to observe the process in operation for a period of time before
finishing the diagram. It is helpful to focus on finding sources of process variation rather than
discussing reasons why these causes cannot be eliminated.

The causes identified by the team are organized into a cause-and-effect diagram as follows:

1 After clearly stating the problem, write it in an effect box at the far right of the diagram.
Draw a horizontal (center) line connected to the effect box.

2 Identify major potential cause categories. Write them in boxes that are connected to the 
center line. Various approaches can be employed in setting up these categories. For 
example, Figure 17.27 on the next page is a cause-and-effect diagram for “why tables are
not cleared quickly” in a restaurant. This diagram employs the categories:

Policy Procedures People Physical Environment

3 Identify subcauses and classify these according to the major potential cause categories iden-
tified in step 2. Identify new major categories if necessary. Place subcauses on the diagram
as branches. See Figure 17.27.
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792 Chapter 17 Process Improvement Using Control Charts

4 Try to decide which causes are most likely causing the problem or defect. Circle the most

likely causes. See Figure 17.27.

After the cause-and-effect diagram has been constructed, the most likely causes of the prob-

lem or defect need to be studied. It is usually necessary to collect and analyze data in order to find

out if there is a relationship between likely causes and the effect. We have studied various statis-

tical methods (for instance, control charts, scatter plots, ANOVA, and regression) that help in this

determination.

A defect concentration diagram is a picture of the product. It depicts all views—for exam-

ple, front, back, sides, bottom, top, and so on. The various kinds of defects are then illustrated on

the diagram. Often, by examining the locations of the defects, we can discern information con-

cerning the causes of the defects. For example, in the October 1990 issue of Quality Progress,

The Juran Institute presents a defect concentration diagram that plots the locations of chips in the

enamel finish of a kitchen range. This diagram is shown in Figure 17.28. If the manufacturer of

this range plans to use protective packaging to prevent chipping, it appears that the protective

packaging should be placed on the corners, edges, and burners of the range.

Can’t start clearing

soon enough

Not allowed to clear until

entire party has left

Takes too long to pay check
Waitress must bring

check to desk

Not enough staff

at busy times

High

turnover

Can’t clear promptly

Customers drink coffee

 endlessly 

Waitresses don’t care

Poor morale

Poor pay

Credit card machine jams

Takes long time to

get to kitchen

Kitchen is far from tables

Empty tables

are not cleared 

quickly

Waitresses not available

Waitresses spend too much time 

sorting dishes in kitchen—less 

time to clear

Bottlenecks in kitchen

No standard training

Physical Environment
People

Policy Procedures

Source: M. Gaudard, R. Coates, and L. Freeman,“Accelerating Improvement,” Quality Progress (October 1991), pp. 81–88.

Copyright © 1991. American Society for Quality. Used with permission.
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Source: “The Tools of Quality Part V: Check Sheets,” from QI Tools: Data Collection Workbook, p. 11. Copyright © 1989. Juran

Institute, Inc. Reprinted with permission from Juran Institute, Inc.
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Exercises for Section 17.8
CONCEPTS

17.45 Explain the purpose behind constructing (a) a cause-and-effect diagram and (b) a defect
concentration diagram.

17.46 Explain how to construct (a) a cause-and-effect diagram and (b) a defect concentration diagram.

METHODS AND APPLICATIONS

17.47 In the January 1994 issue of Quality Progress, Hoexter and Julien discuss the quality of the
services delivered by law firms. One aspect of such service is the quality of attorney–client
communication. Hoexter and Julien present a cause-and-effect diagram for “poor client–attorney
telephone communications.” This diagram is shown in Figure 17.29.
a Using this diagram, what (in your opinion) are the most important causes of poor client–attorney

telephone communications?
b Try to improve the diagram. That is, try to add causes to the diagram.

17.48 In the October 1990 issue of Quality Progress, The Juran Institute presents an example that deals
with the production of integrated circuits. The article describes the situation as follows:

The manufacture of integrated circuits begins with silicon slices that, after a sequence of
complex operations, will contain hundreds or thousands of chips on their surfaces. Each
chip must be tested to establish whether it functions properly. During slice testing, some
chips are found to be defective and are rejected. To reduce the number of rejects, it is
necessary to know not only the percentage but also the locations and the types of defects.
There are normally two major types of defects: functional and parametric. A functional re-
ject occurs when a chip does not perform one of its functions. A parametric reject occurs
when the circuit functions properly, but a parameter of the chip, such as speed or power con-
sumption, is not correct.

Figure 17.30 gives a defect concentration diagram showing the locations of rejected chips within
the integrated circuit. Only those chips that had five or more defects during the testing of 1,000
integrated circuits are shaded. Describe where parametric rejects tend to be, and describe where
functional rejects tend to be.

4. Did not greet
    caller courteously

Did not take
message

Did not identify
firm name

3. Transfer call to
    wrong extension

1. Attorney does not
    return client’s call

Too many
interruptions

5. Client dis-
    connected
    for no obvious
    reason

Four or more
rings before call
is answered

2. Insufficient
    space on
    message 
    form

No means to
verify that
attorney got
message

Employee
directory not 
up to date

Poor client
telephone

communications

Operators

Environment Methods

Equipment

Causes Effect

Parametric rejects
Functional rejects

Source: “The Tools of Quality Part V: Check Sheets,” from 

QI Tools: Data Collection Workbook, p. 12. Copyright © 1989

Juran Institute, Inc. Used with permission.

Source: R. Hoexter and M. Julien, “Legal Eagles Become Quality Hawks,” Quality

Progress (January 1994), pp. 31–33. Copyright © 1994 American Society for Quality.

Used with permission.
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17.49 In the September 1994 issue of Quality Progress, Franklin P. Schargel presents a cause-and-effect
diagram for the “lack of quality in schools.” We present this diagram in Figure 17.31.
a Identify and circle the causes that you feel contribute the most to the “lack of quality in schools.”
b Try to improve the diagram. That is, see if you can add causes to the diagram.
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Source: F. P. Schargel,“Teaching TQM in an Inner City High School,” Quality Progress (September 1994), pp. 87–90. 

Copyright © 1994 American Society for Quality. Used with permission.
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Chapter Summary

In this chapter we studied how to improve business processes by
using control charts. We began by considering several meanings
of quality, and we discussed the history of the quality movement in
the United States. We saw that Walter Shewhart introduced statis-
tical quality control while working at Bell Telephone Laboratories
during the 1920s and 30s, and we also saw that W. Edwards
Deming taught the Japanese how to use statistical methods to
improve product quality following World War II. When the quality
of Japanese products surpassed that of American-made goods, and
when, as a result, U.S. manufacturers lost substantial shares of
their markets, Dr. Deming consulted and lectured extensively in
the United States. This sparked an American reemphasis on qual-
ity that continues to this day. We also briefly presented Deming’s

14 Points, a set of management principles that, if followed,
Deming believed would enable a company to improve quality and
productivity, reduce costs, and gain competitive advantage.

We next learned that processes are influenced by common

cause variation (inherent variation) and by assignable cause

variation (unusual variation), and we saw that a control chart sig-
nals when assignable causes exist. Then we discussed how to
sample a process. In particular, we explained that effective con-
trol charting requires rational subgrouping. Such subgroups
minimize the chances that important process variations will occur
within subgroups, and they maximize the chances that such vari-
ations will occur between subgroups.

Next we studied x– and R charts in detail. We saw that charts
are used to monitor and stabilize the process mean (level), and that
R charts are used to monitor and stabilize the process variability. In
particular, we studied how to construct and R charts by using con-

trol chart constants, how to recognize out-of-control conditions
x

x

by employing zone boundaries and pattern analysis, and how to
use and R charts to get a process into statistical control.

While it is important to bring a process into statistical control,
we learned that it is also necessary to meet the customer’s or
manufacturer’s requirements (or specifications). Since statisti-
cal control does not guarantee that the process output meets speci-
fications, we must carry out a capability study after the process has
been brought into control. We studied how this is done by comput-
ing natural tolerance limits, which are limits that contain almost
all the individual process measurements. We saw that, if the natural
tolerance limits are inside the specification limits, then the process
is capable of meeting the specifications. We also saw that we can
measure how capable a process is by using sigma level capability,

and we learned that a number of major businesses now orient their
management philosophy around the concept of six sigma capabil-

ity. In particular, we learned that, if a process is in statistical con-
trol and if the process has six sigma or better capability, then the
defective rate will be very low (3.4 per million or less).

We continued by studying p charts, which are charts for
fraction nonconforming. Such charts are useful when it is not
possible (or when it is very expensive) to measure the quality
characteristic of interest.

We concluded this chapter with an optional section on how to
construct cause-and-effect diagrams and defect concentration

diagrams. These diagrams are used to identify opportunities for
process improvement and to discover sources of process variation.

It should be noted that two useful types of control charts not
discussed in this chapter are individuals charts and c charts.

These charts are discussed in Appendix L in the Online Learning
Center www.mhhe.com/bowerman6e.

x
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Glossary of Terms

acceptance sampling: A statistical sampling technique that
enables us to accept or reject a quantity of goods (the lot) without
inspecting the entire lot. (page 746)
assignable causes (of process variation): Unusual sources of
process variation. Also called special causes or specific causes of
process variation. (page 750)
capable process: A process that has the ability to produce prod-
ucts or services that meet customer or manufacturer requirements
(specifications). (page 778)
cause-and-effect diagram: A diagram that enumerates (lists)
the potential causes of an undesirable effect. (page 791)
common causes (of process variation): Sources of process
variation that are inherent to the process design—that is, sources
of usual process variation. (page 749)
conforming unit (nondefective): An inspected unit that meets a
set of desired criteria. (page 785)
control chart: A graph of process performance that includes a
center line and two control limits—an upper control limit, UCL,
and a lower control limit, LCL. Its purpose is to detect assignable
causes. (page 756)

index: A process’s sigma level capability divided by 3.
(page 786)
defect concentration diagram: An illustration of a product
that depicts the locations of defects that have been observed.
(page 792)
ISO 9000: A series of international standards for quality assur-
ance management systems. (page 748)
natural tolerance limits: Assuming a process is in statistical
control and assuming process measurements are normally distrib-
uted, limits that contain almost all (approximately 99.73 percent)
of the individual process measurements. (page 777)
nonconforming unit (defective): An inspected unit that does
not meet a set of desired criteria. (page 785)
pattern analysis: Looking for patterns of plot points on a control
chart in order to find evidence of assignable causes. (page 772)

Cpk

p chart: A control chart on which the proportion nonconforming
(in subgroups of size n) is plotted versus time. (page 785)
quality of conformance: How well a process is able to meet the
requirements (specifications) set forth by the process design.
(page 745)
quality of design: How well the design of a product or service
meets and exceeds the needs and expectations of the customer.
(page 745)
quality of performance: How well a product or service per-
forms in the marketplace. (page 745)
rational subgroups: Subgroups of process observations that are
selected so that the chances that process changes will occur
between subgroups is maximized. (page 752)
R chart: A control chart on which subgroup ranges are plotted
versus time. It is used to monitor the process variability (or
spread). (page 756)
run: A sequence of plot points on a control chart that are of the
same type—for instance, a sequence of plot points above the cen-
ter line. (page 774)
sigma level capability: The number of estimated process stan-
dard deviations between the estimated process mean, , and the
specification limit that is closest to . (page 781)
statistical process control (SPC): A systematic method for
analyzing process data in which we monitor and study the pro-
cess variation. The goal is continuous process improvement.
(page 749)
subgroup: A set of process observations that are grouped
together for purposes of control charting. (page 752)
total quality management (TQM): Applying quality principles
to all company activities. (page 747)
variables control charts: Control charts constructed by using
measurement data. (page 756)

chart (x-bar chart): A control chart on which subgroup means
are plotted versus time. It is used to monitor the process mean (or
level). (page 756)

x

x

x

Important Formulas

Center line and control limits for an chart: page 759

Center line and control limits for an R chart: page 759

Zone boundaries for an chart: page 773

Zone boundaries for an R chart: page 773

Natural tolerance limits for normally distributed process 
measurements: page 777

x

x Sigma level capability: page 781

index: page 783

Center line and control limits for a p chart: page 786

Zone boundaries for a p chart: page 788

Cpk

Supplementary Exercises

Exercises 17.50 through 17.53 are based on a case study adapted from an example presented in the paper
“Managing with Statistical Models” by James C. Seigel (1982). Seigel’s example concerned a problem
encountered by Ford Motor Company.

The Camshaft Case Camshaft

An automobile manufacturer produces the parts for its vehicles in many different locations and transports
them to assembly plants. In order to keep the assembly operations running efficiently, it is vital that all
parts be within specification limits. One important part used in the assembly of V6 engines is the engine
camshaft, and one important quality characteristic of this camshaft is the case hardness depth of its
eccentrics. A camshaft eccentric is a metal disk positioned on the camshaft so that as the camshaft turns,
the eccentric drives a lifter that opens and closes an engine valve. The V6 engine camshaft and its

DS



eccentrics are illustrated in Figure 17.32. These eccentrics are hardened by a process that passes the
camshaft through an electrical coil that “cooks” or “bakes” the camshaft. Studies indicate that the hard-
ness depth of the eccentric labeled in Figure 17.32 is representative of the hardness depth of all the
eccentrics on the camshaft. Therefore, the hardness depth of this representative eccentric is measured at
a specific location and is regarded to be the hardness depth of the camshaft. The optimal or target
hardness depth for a camshaft is 4.5 mm. In addition, specifications state that, in order for the camshaft
to wear properly, the hardness depth of a camshaft must be between 3.0 mm and 6.0 mm.

The automobile manufacturer was having serious problems with the process used to harden the
camshaft. This problem was resulting in 12 percent rework and 9 percent scrap, or a total of 21 percent
out-of-specification camshafts. The hardening process was automated. However, adjustments could be
made to the electrical coil employed in the process. To begin study of the process, a problem-solving team
selected 30 daily subgroups of n 5 hardened camshafts and measured the hardness depth of each
camshaft. For each subgroup, the team calculated the mean and range R of the n 5 hardness depth
readings. The 30 subgroups are given in Table 17.13. The subgroup means and ranges are plotted in
Figure 17.33. These means and ranges seem to exhibit substantial variability, which suggests that the
hardening process was not in statistical control; we will compute control limits shortly.

x
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Screw
Thrust plate

Camshaft gear

Camshaft PlugEccentric

Key

Spacer

Front bearing Intermediate bearings Rear bearing

Date 6兾7 8 9 10 11 14 15 16 17 18 21 22 23 24 25

1 3.7 5.5 4.0 4.5 4.7 4.3 5.1 4.3 4.0 3.7 4.4 5.0 7.2 4.9 4.7

2 4.3 4.0 3.8 4.1 4.7 4.5 4.4 4.1 4.5 4.2 4.6 5.9 6.9 5.1 4.0

3 5.5 4.3 3.0 3.5 5.0 3.6 4.0 3.7 4.1 4.9 5.4 6.5 6.0 4.5 3.9

4 4.6 3.5 1.7 4.2 4.3 3.8 3.6 3.9 3.5 5.5 5.5 9.4 5.4 4.0 4.2

5 4.9 3.6 0 3.9 4.4 4.1 3.7 4.0 3.0 5.9 6.3 10.1 5.5 4.2 3.7

Subgroup Mean 4.6 4.2 2.5 4.0 4.6 4.1 4.2 4 3.8 4.8 5.2 7.4 6.2 4.5 4.1

Subgroup Range R 1.8 2.0 4.0 1.0 0.7 0.9 1.5 0.6 1.5 2.2 1.9 5.1 1.8 1.1 1.0

Date 28 29 30 7兾1 2 5 6 7 8 9 12 13 14 15 16

1 3.7 3.5 4.7 4.0 5.0 5.8 3.6 4.0 3.5 4.1 6.2 5.5 4.4 4.0 3.9

2 3.9 3.8 5.0 3.7 4.1 6.3 3.9 3.6 5.5 4.8 5.1 5.0 4.0 3.6 3.5

3 3.4 3.6 4.1 3.9 4.2 3.8 4.1 3.5 5.0 3.8 5.4 3.9 3.7 3.7 3.3

4 3.0 4.1 3.9 4.4 5.2 5.2 3.0 5.5 4.0 3.9 3.9 4.2 3.9 3.5 1.7

5 0 4.4 4.3 4.2 5.5 3.9 1.7 3.5 3.5 4.4 4.7 4.4 3.6 3.7 0

Subgroup Mean 2.8 3.9 4.4 4 4.8 5 3.3 4 4.3 4.2 5.1 4.6 3.9 3.7 2.5

Subgroup Range R 3.9 0.9 1.1 0.7 1.4 2.5 2.4 2.0 2.0 1.0 2.3 1.6 0.8 0.5 3.9

x

x
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Although control limits had not yet been established, the problem-solving team took several actions to
try to stabilize the process while the 30 subgroups were being collected:

1 At point A, which corresponds to a low average and a high range, the power on the coil was increased
from 8.2 to 9.2.

2 At point B the problem-solving team found a bent coil. The coil was straightened, although at point B
the subgroup mean and range do not suggest that any problem exists.

3 At point C, which corresponds to a high average and a high range, the power on the coil was 
decreased to 8.8.

4 At point D, which corresponds to a low average and a high range, the coil shorted out. The coil was
straightened, and the team designed a gauge that could be used to check the coil spacing to the
camshaft.

5 At point E, which corresponds to a low average, the spacing between the coil and the camshaft was
decreased.

6 At point F, which corresponds to a low average and a high range, the first coil (Coil #1) was replaced.
Its replacement (Coil #2) was a coil of the same type.

17.50 Using the data in Table 17.13: Camshaft
a Calculate and and then find the center lines and control limits for and R charts for the

camshaft hardness depths.
b Set up the and R charts for the camshaft hardness depth data.
c Are the and R charts in statistical control? Explain.

Examining the actions taken at points A through E (in Figure 17.33), the problem-solving team learned
that the power on the coil should be roughly 8.8 and that it is important to monitor the spacing between
the camshaft and the coil. It also learned that it may be important to check for bent coils. The problem-
solving team then (after replacing Coil #1 with Coil #2) attempted to control the hardening process by
using this knowledge. Thirty new daily subgroups of n 5 hardness depths were collected. The and R
charts for these subgroups are given in Figure 17.34 on the next page.

17.51 Using the values of and in Figure 17.34: Camshaft
a Calculate the control limits for the chart in Figure 17.34.
b Calculate the upper control limit for the R chart in Figure 17.34.
c Are the and R charts for the 30 new subgroups using Coil #2 (which we recall was of the

same type as Coil #1) in statistical control? Explain.

17.52 Consider the and R charts in Figure 17.34. Camshaft
a Calculate the natural tolerance limits for the improved process.
b Recalling that specifications state that the hardness depth of each camshaft must be between

3.0 mm. and 6.0 mm., is the improved process capable of meeting these specifications? Explain.
c Use and to estimate the fraction of hardness depths that are out of specification for the

improved process.
Rx
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Since the hardening process shown in Figure 17.34 was not capable, the problem-solving team
redesigned the coil to reduce the common cause variability of the process. Thirty new daily subgroups
of n 5 hardness depths were collected using the redesigned coil, and the resulting and R charts are
given in Figure 17.35.

17.53 Using the values of and given in Figure 17.35: Camshaft
a Calculate the control limits for the and R charts in Figure 17.35.
b Is the process (using the redesigned coil) in statistical control? Explain.
c Calculate the natural tolerance limits for the process (using the redesigned coil).
d Is the process (using the redesigned coil) capable of meeting specifications of 3.0 mm. to

6.0 mm.? Explain. Also find and interpret the sigma level capability.

17.54 A bank officer wishes to study how many credit cardholders attempt to exceed their established
credit limits. To accomplish this, the officer randomly selects a weekly sample of 100 of the
cardholders who have been issued credit cards by the bank, and the number of cardholders who
have attempted to exceed their credit limit during the week is recorded. The numbers of 
cardholders who exceeded their credit limit in 20 consecutive weekly samples of 100 cardholders
are, respectively, 1, 4, 9, 0, 4, 6, 0, 3, 8, 5, 3, 5, 2, 9, 4, 4, 3, 6, 4, and 0. Construct a control chart
for the data and determine if the data are in statistical control. If 12 cardholders in next week’s
sample of 100 cardholders attempt to exceed their credit limit, should the bank regard this as
unusual variation in the process? CredLimDS

x

DSRx

x
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Appendix 17.1 Control Charts Using MegaStat 799

Appendix 17.1 ■ Control Charts Using MegaStat
The instructions in this section begin by describing the entry of data into an Excel worksheet. Alternatively, the data
may be downloaded from this book’s website. The appropriate data file name is given at the top of each instruc-
tion block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing re-
sults in Excel. Please refer to Appendix 1.2 for more information about using MegaStat.

X-bar and R charts in Figure 17.10 on page 766 (data
file: HotChoc.xlsx):

• In cells A1, A2, and A3, enter the column labels
Temp1, Temp2, and Temp3.

• In columns A, B, and C, enter the hot chocolate
temperature data as 24 rows of 3 measurements,
as laid out in the columns headed 1, 2, and 3 in
Table 17.2 on page 754. When entered in this
way, each row is a subgroup (sample) of three
temperatures. Calculated means and ranges (as
in Table 17.2) need not be entered—only the
raw data are needed.

• Select Add-Ins : MegaStat : Quality Control
Process Charts.

• In the “Quality Control Process Charts” dialog
box, click on “Variables (Xbar and R).”

• Use the autoexpand feature to select the range
A1: C25 into the Input Range window. Here each
row in the selected range is a subgroup (sample)
of measurements.

• Click OK in the “Quality Control Process Charts”
dialog box.

• The requested control charts are placed in an
output file and may be edited using standard
Excel editing features. See Appendix 1.1 
(page 18) for additional information about
editing Excel graphics.

p control chart in Figure 17.24 on page 787 (data file:
Invoice.xlsx):

• Enter the 30 weekly error counts from Table 17.11
(page 787) into Column A with the label Invoice
in cell A1.

• Select Add-Ins : MegaStat : Quality Control
Process Charts.

• In the “Quality Control Process Charts” dialog
box, select “Proportion nonconforming (p).”

• Use the autoexpand feature to enter the range
A1 : A31 into the Input Range window.

• Enter the subgroup (sample) size (here equal to
100) into the Sample size box.

• Click OK in the “Quality Control Process Charts”
dialog box.

A c chart for nonconformities (discussed in Appen-
dix L of this book’s website) can be obtained by en-
tering data as for the p chart and by selecting
“Number of defects (c).”



Appendix 17.2 ■ Control Charts Using MINITAB
The instruction blocks in this section each begin by describing the entry of data into the Minitab Data window.
Alternatively, the data may be downloaded from this book’s website. The appropriate data file name is given at the
top of each instruction block. Please refer to Appendix 1.3 for further information about entering data, saving data,
and printing results when using MINITAB.

800 Chapter 17 Process Improvement Using Control Charts

Combined X-bar and R control charts for the hole
locations in Figure 17.4 on page 760 (data file: 
HoleLoc.MTW):

• In the Data window, enter the hole location 
measurements from Figure 17.1 (page 753) into
columns C1 through C5 as shown in the screen
with the measurements for each subgroup in a
single row of columns C1 through C5—columns
C1 through C5 have variable names Meas1,
Meas2, Meas3, Meas4, and Meas5, which 
correspond to the five measurements in a single
subgroup.

• Select Stat : Control Charts : Variables 
Charts for Subgroups : Xbar-R.

• In the Xbar-R Chart dialog box, select the 
“Observations for a subgroup are in one row of
columns” option from the pull-down menu.

• Select Meas1–Meas5 into the variables window
below the pull-down menu.

• Click on the “Xbar-R Chart—Options…” button.

• In the “Xbar-R Chart—Options” dialog box, click
on the Estimate tab and select the Rbar option
for “Method for estimating standard deviation.”

• Click OK in the “Xbar-R Chart—Options” dialog
box.

• Click OK in the Xbar-R Chart dialog box.

• The combined X-bar and R charts are displayed in
a graphics window and can be edited using the
usual MINITAB editing features.

To delete subgroups of data from the control chart (as
in Figure 17.7 on page 763):

• In the Xbar-R Chart dialog box, click on the Data
Options… button.

• Select the “Specify which rows to exclude” option
under “Include or Exclude.”

• Under “Specify Which Rows To Exclude,” select
the “Row numbers” option.

• In the Row numbers window, enter the subgroups
that are to be deleted—subgroups 7 and 17 in the
case of Figure 17.7.

• Follow the previously given steps to construct the
X-bar and R charts.



Appendix 17.2 Control Charts Using MINITAB 801

p control chart similar to Figure 17.24 on page 787
(data file: Invoice.MTW):

• In the Data window, enter the 30 weekly error
counts from Table 17.11 (page 787) into column
C1 with variable name Invoice.

• Select Stat : Control Charts : Attributes 
Charts : p.

• In the P Chart dialog box, enter Invoice into the
Variables window.

• Enter 100 in the “Subgroup sizes” window to 
indicate that each error count is based on a 
sample of 100 invoices.

• Click OK in the P Chart dialog box.

• The p control chart will be displayed in a 
graphics window.
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ecall from Chapter 3 that the manufacturer

of a DVD recorder has randomly selected a

sample of 20 purchasers who have owned

the recorder for one year. Each purchaser in the

sample is asked to rank his or her satisfaction with

the recorder along the following 10-point scale:

The stem-and-leaf display below gives the 20 ratings

obtained.

Let m denote the mean rating that would be given

by all purchasers who have owned the DVD recorder

for one year, and suppose we wish to show that m

exceeds 7. To do this, we will test H0: m 7 versus 

Ha: m 7. The mean and the standard deviation of

the sample of 20 ratings are and s  2.4301,

and the test statistic t is

Since t  1.2882 is less than t.10  1.328 (based on

19 degrees of freedom), we cannot reject H0: m 7

by setting a equal to .10. That is, the t test does not

provide even mildly strong evidence that m exceeds 7.

But how appropriate is the t test in this situation?

The t test is, in fact, not appropriate for two reasons:

1 The t test assumes that, when the sample size n is

small (less than 30), the sampled population is

normally distributed (or, at least, mound-shaped

and not highly skewed to the right or left). The

stem-and-leaf display of the ratings indicates

the population of all DVD recorder ratings might

be highly skewed to the left.

2 The rating of 1 in the stem-and-leaf display is an

extreme outlier (see Figure 3.17 on page 124). This

outlier, along with the other small ratings of 3, 5,

and 5 in the tail of the stem-and-leaf display,

affects both the sample mean and the sample

standard deviation. First, the sample mean of 7.7

is “pulled down” by the low ratings and thus is

smaller than the sample median, which is 8.

Although there is not much difference here

between the mean and the median, the outlier

and overall skewness indicate that the median

might be a better measure of central tendency.

More important, however, is the fact that the low

t  
x  7

s兾1n
 

7.7  7

2.4301兾120
 1.2882

x  7.7

ratings inflate the sample standard deviation s.

As a result, although the sample mean of 7.7 is

greater than 7, the inflated s of 2.4301 makes the

denominator of the t statistic large enough to

cause us to not reject H0: m  7. Intuitively, 

therefore, even if the population mean DVD

recorder rating really does exceed 7, the t test is

not powerful enough to tell us that this is true.

In addition, some statisticians would consider the

t test to be inappropriate for a third reason. The

variable DVD recorder rating is an ordinal variable.

Recall from Section 1.3 that an ordinal variable is a

qualitative variable with a meaningful ordering, or

ranking, of the categories. In general, when the

measurements of an ordinal variable are numerical,

statisticians debate whether the ordinal variable is

“somewhat quantitative.” Statisticians who argue

that DVD recorder rating is not somewhat

quantitative would reason, for instance, that the

difference between 10 (“extremely satisfied”) and

6 (“fairly satisfied”) may not be the same as the

difference between 5 (“fairly satisfied”) and 1 (“not

satisfied”). In other words, although each difference

is four rating points, the two differences may not be

the same qualitatively. Other statisticians would

argue that as soon as respondents see equally spaced

numbers (even though the numbers are described by

words), their responses are influenced enough to

make the ordinal variable somewhat quantitative.

In general, the choice of words associated with the

numbers probably substantially affects whether an

ordinal variable may be considered somewhat

quantitative. However, in practice numerical ordinal

ratings are often analyzed as though they are

quantitative. For example, although a teacher’s

effectiveness rating given by a student and a student’s

course grade are both ordinal variables with the

possible measurements 4 (“excellent”), 3 (“good”),

2 (“average”), 1 (“poor”), and 0 (“unsatisfactory”), a

teacher’s effectiveness average and a student’s grade

point average are calculated. Furthermore, some

statisticians would argue that when there are “fairly

many” numerical ordinal ratings (for example, the

10 ratings in the DVD recorder example), it is even

more reasonable to consider the ratings somewhat

quantitative and thus to analyze means and variances.

However, for statisticians who feel that numerical

ordinal ratings should never be considered

quantitative, analyzing the means and standard

deviations of these ratings—and thus performing

t tests—would always be considered inappropriate.

In general, consider the one-sample t test (see

Section 9.4 on page 373), the two independent

sample t tests (see Section 10.2 on page 403), the

paired difference t test (see Section 10.3 on page

411), and the one-way analysis of variance F test (see

Section 11.2 on page 446). All of these procedures

1
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2 3 4 5 6
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satisfied

7 8 9 10

Extremely

satisfied

1 0
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8 000000
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assume that the sampled populations are normally

distributed (or mound-shaped and not highly skewed

to the right or left). When this assumption is not

satisfied, we can use techniques that do not require

assumptions about the shapes of the probability

distributions of the sampled populations. These

techniques are often called nonparametric methods,

and we discuss several of these methods in this

chapter. Specifically, we consider four nonparametric

tests that can be used in place of the previously

mentioned t and F tests. These four nonparametric

tests are the sign test, the Wilcoxon rank sum test,

the Wilcoxon signed rank test, and the Kruskal–Wallis

H test. These tests require no assumptions about the

probability distributions of the sampled populations.

In addition, these nonparametric tests are usually

better than the t and F tests at correctly finding

statistically significant differences in the presence of

outliers and extreme skewness. Therefore, we say

that the nonparametric tests can be more powerful

than the t and F tests. For example, we will find in

Section 18.1 that, although the t test does not allow

us to conclude that the population mean DVD

recorder rating exceeds 7, the nonparametric sign test

does allow us to conclude that the population median

DVD recorder rating exceeds 7.

Each nonparametric test discussed in this chapter

assumes that each sampled population under

consideration is described by a continuous

probability distribution. However, in most situations,

each nonparametric technique is slightly statistically

conservative if the sampled population is described

by a discrete probability distribution. This means, for

example, that a nonparametric hypothesis test has a

slightly smaller chance of falsely rejecting the null

hypothesis than the specified a value would seem to

indicate, if the sampled population is described by a

discrete probability distribution. Furthermore, since

each nonparametric technique is based essentially

on ranking the observed sample values, and not

on the exact sizes of the sample values, each

nonparametric technique can be used to analyze

any type of data that can be ranked. This includes

ordinal data (for example, teaching effectiveness

ratings and DVD recorder ratings) in addition to

quantitative data.

To conclude this introduction, we note that

t and F tests are more powerful (better at correctly

finding statistically significant differences) than

nonparametric tests when the sampled populations

are normally distributed (or mound-shaped and not

highly skewed to the right or left). In addition,

nonparametric tests are largely limited to simple

settings. For example, there is a nonparametric

measure of correlation between two variables—

Spearman’s rank correlation coefficient—which

is discussed at the end of this chapter. However,

nonparametric tests do not extend easily to multiple

regression and complex experimental designs. This is

one reason why we have stressed t and F procedures

in this book. These procedures can be extended to

more advanced statistical methods.

18.1 The Sign Test: A Hypothesis Test 
about the Median 

If a population is highly skewed to the right or left, then the population median might be a better

measure of central tendency than the population mean. Furthermore, if the sample size is small

and the population is highly skewed or clearly non–mound-shaped, then the t test for the popula-

tion mean that we have presented in Section 9.4 (page 373) might not be valid. For these reasons,

when we have taken a small sample and when we believe that the sampled population might be

far from being normally distributed, it is sometimes useful to use a hypothesis test about the

population median. This test, called the sign test, is valid for any sample size and population

shape. To illustrate the sign test, we consider the following example.

EXAMPLE 18.1

The leading compact disc player is advertised to have a median lifetime (or time to failure) of

6,000 hours of continuous play. The developer of a new compact disc player wishes to show that

the median lifetime of the new player exceeds 6,000 hours of continuous play. To this end, the

developer randomly selects 20 new players and tests them in continuous play until each fails.

Figure 18.1(a) presents the 20 lifetimes obtained (expressed in hours and arranged in increasing

order), and Figure 18.1(b) shows a stem-and-leaf display of these lifetimes. The stem-and-leaf

display and the three low lifetimes of 5, 947, and 2,142 suggest that the population of all lifetimes

might be highly skewed to the left. In addition, the sample size is small. Therefore, it might be

reasonable to use the sign test.

Use the sign
test to test

a hypothesis about
a population
median.

LO1
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In order to show that the population median lifetime, Md, of the new compact disc player

exceeds 6,000 (hours), recall that this median divides the population of ordered lifetimes into two

equal parts. It follows that, if more than half of the individual population lifetimes exceed 6,000,

then the population median, Md, exceeds 6,000. Let p denote the proportion of the individual

population lifetimes that exceed 6,000. Then, we can reject H0: Md 6,000 in favor of Ha: Md 

6,000 if we can reject H0: p .5 in favor of Ha: p .5. Let x denote the total number of lifetimes

that exceed 6,000 in a random sample of 20 lifetimes. If H0: p  .5 is true, then x is a binomial

random variable where n 20 and p .5. This says that if H0: p .5 is true, then we would

expect mx  np  20(.5)  10 of the 20 lifetimes to exceed 6,000. Considering the 20 lifetimes

we have actually observed, we note that 15 of these 20 lifetimes exceed 6,000. The p-value for

testing H0: p  .5 versus Ha: p  .5 is the probability, computed assuming that H0: p  .5 is true,

of observing a sample result that is at least as contradictory to H0 as the sample result we have

actually observed. Since any number of lifetimes out of 20 lifetimes that is greater than or equal

to 15 is at least this contradictory, we have

Using the binomial distribution table in Table A.1 (page 853), we find that

p-value  P(x 15)

 P(x  15)  P(x  16)  P(x  17)  P(x  18)

  P(x  19)  P(x  20)

  .0148  .0046  .0011  .0002  .0000  .0000

 .0207

This says that if H0: p  .5 is true, then the probability that at least 15 out of 20 lifetimes would

exceed 6,000 is only .0207. Since it is difficult to believe that such a small chance would occur, we

have strong evidence against H0: p  .5 and in favor of Ha: p  .5. That is, we have strong

evidence that H0: Md 6,000 is false and Ha: Md 6,000 is true. This implies that it is reasonable

to conclude that the median lifetime of the new compact disc player exceeds the advertised median

lifetime of the market’s leading compact disc player. Figure 18.1(c) and (d) present the MINITAB

and Excel add-in (MegaStat) outputs of the sign test of H0: Md 6,000 versus Ha: Md 6,000. In

addition, the outputs tell us that a point estimate of the population median lifetime is the sample

median of 6,757 hours.

p-value  P(x  15)  a
20

x 15

 
20!

x! (20  x)!
 (.5)x(.5)20 x

F I G U R E 1 8 . 1 The Compact Disc Player Lifetime Data and Associated 

Statistical Analyses

(a) The compact disc player lifetime data CompDisc

5 947 2,142 4,867 5,840 6,085 6,238 6,411 6,507 6,687

6,827 6,985 7,082 7,176 7,285 7,410 7,563 7,668 7,724 7,846

(c) MINITAB output of the sign test of H0: Md  6,000 versus Ha: Md  6,000

(d) Excel add-in (MegaStat) output of the sign test of H0: Md  6,000 versus
Ha: Md  6,000 

Sign Test

6000 hypothesized value 5 below binomial

6757 median Life Time 0 equal .0207 p-value (one-tailed, upper)

20 n 15 above
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We next point out that, when we take a large sample, we can use the normal approximation to

the binomial distribution to implement the sign test. Here, when the null hypothesis H0: Md  M0

(or H0: p   .5) is true, the binomial variable x is approximately normally distributed with mean

np   n(.5)   .5n and standard deviation . The test is

based on the test statistic

where S is as defined in the previous box and where we subtract .5 from S as a correction for

continuity. This motivates the following test:

z  
(S  .5)  .5n

.51n

1np(1  p)  1n(.5)(1  .5)  .51n

The Sign Test for a Population Median

Suppose we have randomly selected a sample of size n from a population, and suppose we wish to test

the null hypothesis H0: Md M0 versus one of Ha: Md M0, Ha: Md M0, or Ha: Md M0 where Md denotes

the population median. Define the test statistic S as follows:

If the alternative is Ha: Md M0, then S the number of sample measurements less than M0.

If the alternative is Ha: Md M0, then S the number of sample measurements greater than M0.

If the alternative is Ha: Md M0, then S the larger of S1 and S2

where S1  the number of sample measurements less than M0, and

S2  the number of sample measurements greater than M0.

Furthermore, define x to be a binomial variable with parameters n and p .5. Then, we can test H0: Md M0

versus a particular alternative hypothesis at level of significance a by using the appropriate p-value.

Alternative Hypothesis p-Value (reject H0 if p-value  A) 

Ha: Md M0 The probability that x is greater than or equal to S

Ha: Md M0 The probability that x is greater than or equal to S

Ha: Md M0 Twice the probability that x is greater than or equal to S

Here we can use Table A.1 (pages 853–857) to find the p-value.

The Large Sample Sign Test for a Population Median

Suppose we have taken a large sample (for this test, n  10 will suffice). Define S as in the previous box,

and define the test statistic

We can test H0: Md   M0 versus a particular alternative hypothesis at level of significance a by using the

appropriate critical value rule, or, equivalently, the corresponding p-value.

Alternative Critical Value Rule: 
Hypothesis Reject H0 if p-Value (reject H0 if p-value  A)

Ha: Md  M0 z  z
a

The area under the standard normal curve to the right of z

Ha: Md  M0 z  z
a

The area under the standard normal curve to the right of z

Ha: Md  M0 z  z
a兾2 Twice the area under the standard normal curve to the right of z

z  
(S  .5)  .5n

.51n

EXAMPLE 18.2

Consider Example 18.1. Since the sample size n   20 is greater than 10, we can use the large

sample sign test to test H0: Md   6,000 versus Ha: Md  6,000. Since S   15 is the number of

compact disc player lifetimes that exceed M0   6,000, the test statistic z is

z  
(S  .5)  .5n

.51n
 

(15  .5)  .5(20)

.5120
 2.01

We summarize how to carry out the sign test in the following box:
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The p-value for the test is the area under the standard normal curve to the right of z  2.01, which

is 1 .9778  .0222. Since this p-value is less than .05, we have strong evidence that

Ha: Md 6,000 is true. Also, note that the large sample, approximate p-value of .0222 given by

the normal distribution is fairly close to the exact p-value of .0207 given by the binomial distri-

bution [see Figure 18.1(c) on page 805].

To conclude this section, we consider the DVD recorder rating example discussed in the chapter

introduction, and we let Md denote the median rating that would be given by all purchasers who

have owned the DVD recorder for one year. Below we present the MINITAB output of the sign test

of H0: Md 7.5 versus Ha: Md 7.5:

Since the p-value of .0207 is less than .05, we have strong evidence that the population median

rating exceeds 7.5. Furthermore, note that the sign test has reached this conclusion by showing

that more than 50 percent of all DVD recorder ratings exceed 7.5. It follows, since a rating

exceeding 7.5 is the same as a rating being at least 8 (because of the discrete nature of the

ratings), that we have strong evidence that the population median rating is at least 8.

Sign test of median = 7.500 versus > 7.500 

N   Below   Equal    Above         P    Median 

DVD Rating   20       5       0       15    0.0207     8.000 

Exercises for Section 18.1
CONCEPTS

18.1 What is a nonparametric test? Why would such a test be particularly useful when we must take a

small sample?

18.2 When we perform the sign test, we use the sample data to compute a p-value. What probability

distribution is used to compute the p-value? Explain why.

METHODS AND APPLICATIONS

18.3 Consider the following sample of five chemical yields: ChemYield

801 814 784 836 820

a Use this sample to test H0: Md  800 versus Ha: Md  800 by setting a  .01.

b Use this sample to test H0: Md  750 versus Ha: Md  750 by setting a  .05.

18.4 Consider the following sample of seven bad debt ratios: BadDebt

7% 4% 6% 7% 5% 4% 9%

Use this sample and the following MINITAB output to test the null hypothesis that the median

bad debt ratio equals 3.5 percent versus the alternative hypothesis that the median bad debt ratio

exceeds 3.5 percent by setting a equal to .05.

18.5 A local newspaper randomly selects 20 patrons of the Springwood Restaurant on a given Saturday

night and has each patron rate the quality of his or her meal as 5 (excellent), 4 (good), 3 (average),

2 (poor), or 1 (unsatisfactory). When the results are summarized, it is found that there are 16 ratings

of 5, 3 ratings of 4, and 1 rating of 3. Let Md denote the population median rating that would be

given by all possible patrons of the restaurant on the Saturday night.

a Test H0: Md   4.5 versus Ha: Md  4.5 by setting a   .05.

b Reason that your conclusion in part a implies that we have very strong evidence that the

median rating that would be given by all possible patrons is 5.

18.6 Suppose that a particular type of plant has a median growing height of 20 inches in a specified 

time period when the best plant food currently on the market is used as directed. A developer of a

new plant food wishes to show that the new plant food increases the median growing height. If a 

stem-and-leaf display indicates that the population of all growing heights using the new plant food

is markedly nonnormal, it would be appropriate to use the sign test to test H0: Md  20 versus 

Ha: Md  20. Here Md denotes the population median growing height when the new plant food is

Sign test of median = 3.500 versus > 3.500 

N   Below   Equal   Above         P    Median 

Ratio   7       0       0       7    0.0078     6.000 
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used. Suppose that 13 out of 15 sample plants grown using the new plant food reach a height of

more than 20 inches. Test H0: Md  20 versus Ha: Md  20 by using the large sample sign test.

18.7 A common application of the sign test deals with analyzing consumer preferences. For instance,

suppose that a blind taste test is administered to nine randomly selected convenience store

customers. Each participant is asked to express a preference for either Coke or Pepsi after tasting

unidentified samples of each soft drink. The sample results are expressed by recording a  1 for

each consumer who prefers Coke and a  1 for each consumer who prefers Pepsi. Note that

sometimes, rather than recording either a  1 or a 1, we simply record the sign  or  , hence 

the name “sign test.” A 0 is recorded if a consumer is unable to rank the two brands, and these

observations are eliminated from the analysis.

The null hypothesis in this application says that there is no difference in preferences for Coke

and Pepsi. If this null hypothesis is true, then the number of 1 values in the population of all

preferences should equal the number of 1 values, which implies that the median preference Md  0

(and that the proportion p of 1 values equals .5). The alternative hypothesis says that there is a sig-

nificant difference in preferences (or that there is a significant difference in the number of 1 values

and 1 values in the population of all preferences). This implies that the median preference does not

equal 0 (and that the proportion p of 1 values does not equal .5). CokePep

a Table 18.1 gives the results of the taste test administered to the nine randomly selected

consumers. If we consider testing H0: Md  0 versus Ha: Md  0 where Md is the median of the

( 1 and  1) preference rankings, determine the values of S1, S2, and S for the sign test needed

to test H0 versus Ha. Identify the value of S on the Excel add-in (MegaStat) output.

b Use the value of S to find the p-value for testing H0: Md   0 versus Ha: Md  0. Then use the 

p-value to test H0 versus Ha by setting a equal to .10, .05, .01, and .001. How much evidence is

there of a difference in the preferences for Coke and Pepsi? What do you conclude?

18.2 The Wilcoxon Rank Sum Test 
Recall that in Section 10.2 (page 403) we presented t tests for comparing two population means

in an independent samples experiment. If the sampled populations are far from normally distrib-

uted and the sample sizes are small, these tests are not valid. In such a case, a nonparametric

method should be used to compare the populations.

We have seen that the mean of a population measures the central tendency, or location, of the

probability distribution describing the population. Thus, for instance, if a t test provides strong

evidence that m1 is greater than m2, we might conclude that the probability distribution of popu-

lation 1 is shifted to the right of the probability distribution of population 2. The nonparametric

test for comparing the locations of two populations is not (necessarily) a test about the difference

between population means. Rather, it is a more general test to detect whether the probability

distribution of population 1 is shifted to the right (or left) of the probability distribution of popu-

lation 2.1 Furthermore, the nonparametric test is valid for any shapes that might describe the

sampled populations.

DS
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T A B L E 1 8 . 1 Results of a Taste Test of Coke versus Pepsi CokePepDS

Customer Preference (Coke or Pepsi) Value (Sign)

1 Coke  1

2 Pepsi  1

3 Pepsi  1

4 Coke  1

5 Coke  1

6 Pepsi  1

7 Coke  1

8 Coke  1

9 Pepsi  1

Sign Test 0 hypothesized value 4 below binomial

9 n 1 median Value (sign) 0 equal 1.0000 p-value (two-tailed)

5 above

1To be precise, we say that the probability distribution of population 1 is shifted to the right (left) of the probability
distribution of population 2 if there is more than a 50 percent chance that a randomly selected observation from population 1
will be greater than (less than) a randomly selected observation from population 2.

Compare
the loca-

tions of two distrib-
utions using a rank
sum test for inde-
pendent samples.

LO2
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In this section we present the Wilcoxon rank sum test (also called the Mann–Whitney test),

which is used to compare the locations of two populations when independent samples are

selected. To perform this test, we first combine all of the observations in both samples into a sin-

gle set, and we rank these observations from smallest to largest, with the smallest observation

receiving rank 1, the next smallest observation receiving rank 2, and so forth. The sum of the

ranks of the observations in each sample is then calculated. If the probability distributions of the

two populations are identical, we would expect the sum of the ranks for sample 1 to roughly

equal the sum of the ranks for sample 2. However, if, for example, the sum of the ranks for sam-

ple 1 is substantially larger than the sum of the ranks for sample 2, this would suggest that the

probability distribution of population 1 is shifted to the right of the probability distribution of

population 2. We explain how to carry out the Wilcoxon rank sum test in the following box:

Table 18.2 repeats a portion of Table A.15. This table gives the critical value (TU or TL) for

testing a one-sided alternative hypothesis at level of significance a  .05 and also gives the

critical values (TU and TL) for testing a two-sided alternative hypothesis at level of significance

a  .10. The critical values are tabulated according to n1 and n2, the sizes of the samples taken

from populations 1 and 2, respectively. For instance, as shown in Table 18.2, if we have taken a

sample of size n1  10 from population 1, and if we have taken a sample of size n2  7 from

The Wilcoxon Rank Sum Test

Let D1 and D2 denote the probability distributions of populations 1 and 2, and assume that we randomly

select independent samples of sizes n1 and n2 from populations 1 and 2. Rank the n1  n2 observations in

the two samples from the smallest (rank 1) to the largest (rank n1  n2). Here, if two or more observations

are equal, we assign to each “tied” observation a rank equal to the average of the consecutive ranks that

would otherwise be assigned to the tied observations. Let T1 denote the sum of the ranks of the observations

in sample 1, and let T2 denote the sum of the ranks of the observations in sample 2. Furthermore, define the

test statistic T to be T1 if n1  n2 and to be T2 if n1  n2. Then, we can test

H0: D1 and D2 are identical probability distributions

versus a particular alternative hypothesis at level of significance a by using the appropriate critical value

rule.

The first two alternative hypotheses above are one-sided, while the third alternative hypothesis is two-sided.

The critical values TU and TL are given in Table A.15 (page 873) for values of n1 and n2 from 3 to 10.

Critical Value Rule:
Alternative Hypothesis Reject H0 if

Ha: D1 is shifted to the right of D2 T  TU if n1  n2

T  TL if n1  n2

Ha: D1 is shifted to the left of D2 T  TL if n1  n2

T  TU if n1  n2

Ha: D1 is shifted to the right or left of D2 T  TL or T  TU

n2

n1 3 4 5 6 7 8 9 10
TL TU TL TU TL TU TL TU TL TU TL TU TL TU TL TU

3 6 15 7 17 7 20 8 22 9 24 9 27 10 29 11 31

4 7 17 12 24 13 27 14 30 15 33 16 36 17 39 18 42

5 7 20 13 27 19 36 20 40 22 43 24 46 25 50 26 54

6 8 22 14 30 20 40 28 50 30 54 32 58 33 63 35 67

7 9 24 15 33 22 43 30 54 39 66 41 71 43 76 46 80

8 9 27 16 36 24 46 32 58 41 71 52 84 54 90 57 95

9 10 29 17 39 25 50 33 63 43 76 54 90 66 105 69 111

10 11 31 18 42 26 54 35 67 46 80 57 95 69 111 83 127

a .05 one-sided; a .10 two-sided

T A B L E 1 8 . 2 A Portion of the Wilcoxon Rank Sum Table Critical Values 

for A  .05 (One-Sided); A  .10 (Two-Sided)



population 2, then for a one-sided test with a  .05, we use TU  80 or TL  46. Similarly, if 

n1  10 and n2  7, we use TU  80 and TL  46 for a two-sided test with a  .10.
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EXAMPLE 18.3

The State Court Administrator for the State of Oregon commissioned a study of two circuit court

jurisdictions within the state to examine the effect of administrative rule differences on litigation

processing time. The two jurisdictions of interest are Coos County and Lane County. Samples of

10 cases were selected at random from each jurisdiction. However, records for three of the cases

selected from Lane County were incomplete, and the cases had to be discarded from the analy-

sis, leaving n1 10 cases for Coos County and n2 7 cases for Lane County. Each selected case

was examined to determine the total elapsed time (in days) required for processing the case, from

filing to completion. The processing times are given in Figure 18.2(a). Since the corresponding

box plots indicate that the population of all possible processing times for each county might

be skewed to the right, we will perform the Wilcoxon rank sum test. It was theorized before the

samples were taken that the administrative rules in Lane County were somewhat inefficient.

Therefore, we will test 

H0: the probability distributions of all possible processing times for Coos

County and Lane County are identical 

versus

Ha: the probability distribution of all possible processing times for Coos

County is shifted to the left of the probability distribution of all possi-

ble processing times for Lane County (note that this alternative hypoth-

esis intuitively implies that the Coos County processing times are

“systematically less than” the Lane County processing times)

To perform the test, we rank the n1   n2   10   7   17 processing times in the two samples as

shown in Figure 18.2(a). Note that, since there are two processing times of 145 that are tied as the

sixth and seventh smallest processing times, we assign each of these an average rank of 6.5. The

sum of the ranks of the processing times in sample 1 (Coos County) is T1 72.5, and the sum of

the ranks of the processing times in sample 2 (Lane County) is T2  80.5. Since n1  10 is greater

F I G U R E 1 8 . 2 Analysis of the Coos County and Lane County Litigation Processing Times

(b) MINITAB output of the Wilcoxon rank sum test for the litigation processing times

Coos County

Time Rank

48 1

97 2

103 3

117 5

145 6.5

151 8

179 9

220 11

257 12

294 15

T1 72.5

Lane County

Time Rank

109 4

145 6.5

196 10

273 13

289 14

417 16

505 17

T2 80.5

500

400

300

200

100

0

Coos Lane

Box Plots of Coos and Lane

(a) The Coos County and Lane County litigation processing times CourtDS

Coos N = 10   Median = 148.0 

Lane N =  7   Median = 273.0 

Point estimate for ETA1-ETA2 is –98.0 

95.5 Percent CI for ETA1-ETA2 is (–248.0,7.9) 

W = 72.5 

Test of ETA1 = ETA2 vs ETA1 < ETA2 is significant at 0.0486 

The test is significant at 0.0485 (adjusted for ties) 
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than n2 7, the summary box tells us that the test statistic T is T2  80.5. Since we are testing a

“shifted left” alternative hypothesis, and since n1 is greater than n2, the summary box also tells us

that we can reject H0 in favor of Ha at the .05 level of significance if T is greater than or equal to

TU. Since T 80.5 is greater than TU 80 (see Table 18.2), we conclude at the .05 level of sig-

nificance that the Coos County processing times are shifted to the left of, and thus are “system-

atically less than,” the Lane County processing times. This supports the theory that the Lane

County administrative rules are somewhat inefficient.

Figure 18.2(b) presents the MINITAB output of the Wilcoxon rank sum test for the litigation

processing times. In general, MINITAB gives T1, the sum of the ranks of the observations in

sample 1, as the test statistic, which MINITAB denotes as W. If, as in the present example, n1

is greater than n2 and thus the correct test statistic is T2, we can obtain T2 by subtracting T1

from (n1 n2)(n1   n2   1)/2. This last quantity can be proven to equal the sum of the ranks

of the (n1 n2) observations in both samples. In the present example, this quantity equals 

(10 7)(10 7 1)兾2 (17)(18)兾2, or 153. Therefore, since the MINITAB output tells us that

T1 72.5, the correct test statistic T2 is (153 72.5)  80.5. In addition to giving T1, MINITAB

gives two p-values related to the hypothesis test. The first p-value—.0486—is calculated assum-

ing that there are no ties. Since there is a tie, the second p-value—.0485—is adjusted accordingly

and is more correct (although there is little difference in this situation).

In general, the Wilcoxon rank sum test tests the equality of the population medians if the

distributions of the sampled populations have the same shapes and equal variances. MINITAB

tells us that under these assumptions a point estimate of the difference in the population medians

is  98.0 (days), and a 95.5 percent confidence interval for the difference in the population

medians is [ 248.0, 7.9]. Note that the point estimate of the difference in the population

medians, which is  98.0, is not equal to the difference in the sample medians, which is

148.0 273.0  125.0. In the present example, the box plots in Figure 18.2 indicate that the

variances of the two populations are not equal. In fact, in most situations it is a bit too much to

ask that the sampled populations have exactly the same shapes and equal variances (although we

will see in Exercise 18.12 that this might be approximately true in some situations).

As another example, suppose that on a given Saturday night a local newspaper randomly

selects 20 patrons from each of two restaurants and has each patron rate the quality of his or her

meal as 5 (excellent), 4 (good), 3 (average), 2 (poor), or 1 (unsatisfactory). The following results

are obtained:

Restaurant 1 Restaurant 2 Total Ranks Average Restaurant 1 Restaurant 2
Rating Patrons Patrons Patrons Involved Rank Rank Sum Rank Sum

5 15 5 20 21–40 30.5 (15)(30.5)   457.5 (5)(30.5)   152.5

4 4 11 15 6–20 13 (4)(13)   52 (11)(13)   143

3 1 2 3 3, 4, 5 4 (1)(4)   4 (2)(4)   8

2 0 1 1 2 2 (0)(2)   0 (1)(2)   2

1 0 1 1 1 1 (0)(1)   0 (1)(1)   1

T1  513.5 T2  306.5

Suppose that we wish to test

H0: The probability distributions of all possible Saturday night meal ratings

for restaurants 1 and 2 are identical

versus

Ha: The probability distribution of all possible Saturday night meal ratings for

restaurant 1 is shifted to the right or left of the probability distribution of

all possible Saturday night meal ratings for restaurant 2.

Since there are only five numerical ordinal ratings, there are many ties. The above table shows

how we determine the sum of the ranks for each sample. Since n1 20 and n2 20, we cannot

obtain critical values by using Table A.15 (which gives critical values for sample sizes up to

n1 10 and n2 10). However, we can use a large sample, normal approximation, which is valid

if both n1 and n2 are at least 10. The normal approximation involves making two modifications.

First, we replace the test statistic T in the previously given summary box by a standardized value

of the test statistic. This standardized value, denoted z, is calculated by subtracting the mean

BI



mT ni(n1 n2 1)兾2 from the test statistic T and by then dividing the resulting difference by the

standard deviation . Here ni in the expression for mT equals n1 if

the test statistic T is T1 and equals n2 if T is T2. Second, when testing a one-sided alternative

hypothesis, we replace the critical values TU and TL by the normal points z
a

and z
a
. When testing

a two-sided alternative hypothesis, we replace TU and TL by z
a兾2 and z

a兾2. For the current exam-

ple, n1 n2, and thus the test statistic T is T1 513.5. Furthermore,

and

Since we are testing a “shifted right or left” (that is, a two-sided) alternative hypothesis, the sum-

mary box tells us that we reject the null hypothesis if T   TL or T   TU. Stated in terms of stan-

dardized values, we reject the null hypothesis if z  z
a兾2 or z   z

a兾2 (here we use strict

inequalities to be consistent with other normal distribution critical value conditions). If we set

a .01, we use the critical values  z.005  2.575 and z.005 2.575. Since z 2.7997 is greater

than z.005 2.575, we reject the null hypothesis at the .01 level of significance. Therefore, we

have very strong evidence that there is a systematic difference between the Saturday night meal

ratings at restaurants 1 and 2. Looking at the original data, we would estimate that Saturday night

meal ratings are higher at restaurant 1.

To conclude this section, we make two comments. First, when there are ties, there is an

adjusted formula for sT that takes into account the ties.2 If (as in the restaurant example) we

ignore the formula, the results we obtain are statistically conservative. Therefore, if we reject the

null hypothesis by using the unadjusted formula, we would reject the null hypothesis by using

the adjusted formula. Second, the Excel add-in (MegaStat) calculates p-values by using the large

sample, normal approximation (and a continuity correction), even if the sample sizes n1 and n2

are small (less than 10). This will be illustrated in Exercise 18.12.

z  
T  mT

sT

 
513.5  410

36.968455
 2.7997

 sT  B
n1n2(n1  n2  1)

12
 B

20(20)(41)

12
 36.968455

 mT  
n1(n1  n2  1)

2
 

20(20  20  1)

2
 410

sT  1n1n2(n1  n2  1)兾12
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Exercises for Section 18.2
CONCEPTS

18.8 Explain the circumstances in which we use the Wilcoxon rank sum test.

18.9 Identify the parametric test corresponding to the Wilcoxon rank sum test. What assumption is

needed for the validity of this parametric test (and not needed for the Wilcoxon rank sum test)?

METHODS AND APPLICATIONS

18.10 A loan officer at a bank wishes to compare the mortgage rates charged at banks in Texas with the

mortgage rates of Texas savings and loans. Two independent random samples of bank mortgage

rates and savings and loan mortgage rates in Texas are obtained with the following results:

Bank Rates: 9.25 8.50 9.50 9.00 8.00 7.75 9.50 8.25

S&L Rates: 7.25 8.25 6.75 9.00 7.50 7.00 7.10 6.50

Because both samples are small, the bank officer is uncertain about the shape of the distributions

of bank and savings and loan mortgage rates. Therefore, the Wilcoxon rank sum test will be used

to compare the two types of mortgage rates. TexMort

a Let D1 be the distribution of bank mortgage rates and let D2 be the distribution of savings and

loan mortgage rates. Carry out the Wilcoxon rank sum test to determine whether D1 and D2

are identical versus the alternative that D1 is shifted to the right or left of D2. Use a .05.

b Carry out the Wilcoxon rank sum test to determine whether D1 is shifted to the right of D2.

Use a .025. What do you conclude?

DS

2The adjusted formula is quite complicated.
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18.11 A company collected employee absenteeism data (in hours per year) at two of its manufacturing

plants. The data were obtained by randomly selecting a sample from all of the employees at the

first plant, and by randomly selecting another independent sample from all of the employees at

the second plant. For each randomly selected employee, absenteeism records were used to

determine the exact number of hours the employee has been absent during the past year. The

following results were obtained: Absent

Use a Wilcoxon rank sum test and the following MINITAB output to determine whether

absenteeism is different at the two plants. Use a .05.

18.12 THE CATALYST COMPARISON CASE

The following table presents samples of hourly yields for catalysts XA-100 and ZB-200. We

analyzed these data using a two independent sample t test in Example 10.4 (page 405).

CatalystDS

          N  Median 

Plant 1  10   38.00 

Plant 2  10   33.00 

Point estimate for ETA1-ETA2 is 7.00

95.5 Percent CI for ETA1-ETA2 is (–6.99,24.01) 

W = 120.5 

Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.2568 

The test is significant at 0.2565 (adjusted for ties) 

Plant 1: 10 131 53 37 59 29 45 26 39 36

Plant 2: 21 46 33 31 49 33 39 19 12 35
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Wilcoxon-Mann/Whitney Test
n sum of ranks

5 40 XA-100 27.50 expected value 2.51 z

5 15 ZB-200 4.79 standard deviation .0122 p-value (two-tailed)

10 55 total

720

770

820

XA-100 ZB-200

Catalyst

Y
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ld

Box Plots of Yield by Catalyst

Catalyst XA-100 Catalyst ZB-200

801 752

814 718

784 776

836 742

820 763

a Use a Wilcoxon rank sum test and the Excel add-in (MegaStat) output to test for systematic

differences in the yields of the two catalysts. Use a .05.

b The p-value on the MegaStat output has been calculated by finding twice the area under the

standard normal curve to the right of

Here we have used a continuity correction and changed T1 40 to 39.5. Verify the

calculations of mT, sT, and the p-value.

c Assume that the second yield for catalyst ZB-200 in the above table is invalid. Use the

remaining data to determine if we can conclude that the XA-100 yields are systematically

higher than the ZB-200 yields. Set a .05.

18.13 Moore (2000) reports on a study by Boo (1997), who asked 303 randomly selected people at

fairs:

How often do you think people become sick because of food they consume prepared at

outdoor fairs and festivals?

z  
39.5  mT

sT

 
39.5  27.5

4.79
 2.51



The possible responses were 5 (always), 4 (often), 3 (more often than not), 2 (once in a while),

and 1 (very rarely). The following data were obtained:
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Source: H. C. Boo, “Consumers’ Perceptions and Concerns about Safety and Healthfulness of Food Served at

Fairs and Festivals,” M. S. thesis, Purdue University, 1997.

Response Females Males Total

5 2 1 3

4 23 5 28

3 50 22 72

2 108 57 165

1 13 22 35

Gender  N   Sum of  Scores

Female 196  31996.5 

Male   107  14059.5 

T = 14059.5 z = –3.33353 

Test significant at 0.0009

The computer output at the right of the data presents the results of a Wilcoxon rank sum test that

attempts to determine if men and women systematically differ in their responses. Here the normal

approximation has been used to calculate the p-value of .0009. What do you conclude?

18.3 The Wilcoxon Signed Ranks Test 
In Section 10.3 (page 411) we presented a t test for comparing two population means in a paired

difference experiment. If the sample size is small and the population of paired differences is far

from normally distributed, this test is not valid and we should use a nonparametric test. In this

section we present the Wilcoxon signed ranks test, which is a nonparametric test for comparing

two populations when a paired difference experiment has been carried out.

The Wilcoxon Signed Ranks Test

Let D1 and D2 denote the probability distributions of populations 1 and 2, and assume that we have

randomly selected n matched pairs of observations from populations 1 and 2. Calculate the paired

differences of the n matched pairs by subtracting each paired population 2 observation from the corre-

sponding population 1 observation, and rank the absolute values of the n paired differences from the small-

est (rank 1) to the largest (rank n). Here paired differences equal to 0 are eliminated, and the number n of

paired differences is reduced accordingly. Furthermore, if two or more absolute paired differences are equal,

we assign to each “tied” absolute paired difference a rank equal to the average of the consecutive ranks

that would otherwise be assigned to the tied absolute paired differences. Let

T   the sum of the ranks associated with the negative paired differences

and

T   the sum of the ranks associated with the positive paired differences

We can test

H0: D1 and D2 are identical probability distributions

versus a particular alternative hypothesis at level of significance a by using the appropriate test statistic and

the corresponding critical value rule.

Critical Value Rule:
Alternative Hypothesis Test Statistic Reject H0 if

Ha: D1 is shifted to the right of D2 T T   T0

Ha: D1 is shifted to the left of D2 T T   T0

Ha: D1 is shifted to the right or left of D2 T  the smaller of T and T T   T0

The first two alternative hypotheses above are one-sided, while the third alternative hypothesis is two-

sided. Values of T0 are given in Table A.16 (page 874) for values of n from 5 to 50.

Table 18.3 repeats a portion of Table A.16. This table gives the critical value T0 for testing one-

sided and two-sided alternative hypotheses at several different values of a. The critical values are

tabulated according to n, the number of paired differences. For instance, Table 18.3 shows that,

if we are analyzing 10 paired differences, then the critical value for testing a one-sided alternative

Compare
the loca-

tions of two distri-
butions using a
signed ranks test
for paired samples.
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18.3 The Wilcoxon Signed Ranks Test 815

hypothesis at the .01 level of significance is equal to T0 5. This table also shows that we would

use the critical value T0 5 for testing a two-sided alternative hypothesis at level of significance

a .02.

One-Sided Two-Sided n 5 n 6 n 7 n 8 n 9 n 10

a .05 a .10 1 2 4 6 8 11

a .025 a .05 1 2 4 6 8

a .01 a .02 0 2 3 5

a .005 a .01 0 2 3

n 11 n 12 n 13 n 14 n 15 n 16

a .05 a .10 14 17 21 26 30 36

a .025 a .05 11 14 17 21 25 30

a .01 a .02 7 10 13 16 20 24

a .005 a .01 5 7 10 13 16 19

T A B L E 1 8 . 3 A Portion of the Wilcoxon Signed Ranks Table

EXAMPLE 18.4 The Repair Cost Comparison Case C

Again consider the automobile repair cost data, which are given in Figure 18.3(a). We analyzed

these data using a paired sample t test in Example 10.7 (page 414). If we fear that the population

of all possible paired differences of repair cost estimates at garages 1 and 2 may be far from nor-

mally distributed, we can perform the Wilcoxon signed ranks test. Here we test

H0: the probability distributions of the populations of all possible repair cost

estimates at garages 1 and 2 are identical

versus 

Ha: the probability distribution of repair cost estimates at garage 1 is shifted to

the left of the probability distribution of repair cost estimates at garage 2

To perform this test, we find the absolute value of each paired difference, and we assign ranks to

the absolute differences [see Figure 18.3(a)]. Because of the form of the alternative hypothesis

(see the preceding summary box), we use the test statistic

T  the sum of the ranks associated with the positive paired differences

F I G U R E 1 8 . 3 Analysis of the Repair Cost Estimates at Two Garages

Repair Cost Repair Cost Sample of Absolute
Sample of n   7 Estimates at Estimates at n   7 Paired Paired
Damaged Cars Garage 1 Garage 2 Differences Differences Ranks

Car 1 $ 7.1 $ 7.9 d1   .8 .8 4

Car 2 9.0 10.1 d2  1.1 1.1 5

Car 3 11.0 12.2 d3  1.2 1.2 6

Car 4 8.9 8.8 d4 .1 .1 1

Car 5 9.9 10.4 d5  .5 .5 2

Car 6 9.1 9.8 d6  .7 .7 3

Car 7 10.3 11.7 d7  1.4 1.4 7

12

11

10

9

8

7

1 2

Garage

C
o

st

(a) Sample of n  7 Paired Differences of the Repair Cost Estimates at Garages 1 and 2 Repair
(Cost Estimates in Hundreds of Dollars)

DS

0.0

-0.5

-1.0

-1.5

G
1
-
G
2

Test of median = 0.0 versus median < 0.0 

             N for    Wilcoxon            Estimated 

          N   Test   Statistic       P       Median 

G1 - G2   7     7          1.0   0.017      –0.8250 

(b) MINITAB output of the Wilcoxon signed ranks test
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Since .1 is the only positive paired difference, and since the rank associated with this difference

equals 1, we find that T  1. The alternative hypothesis is one-sided, and we are analyzing n 7

paired differences. Therefore, Table 18.3 on the previous page tells us that we can test H0 versus

Ha at the .05, .025, and .01 levels of significance by setting the critical value T0 equal to 4, 2, and

0, respectively. The critical value condition is T  T0. It follows that, since T  1 is less than

or equal to 4 and 2, but is not less than or equal to 0, we can reject H0 in favor of Ha at the .05 and

.025 levels of significance, but not at the .01 level of significance. Therefore, we have strong

evidence that the probability distribution of repair cost estimates at garage 1 is shifted to the left

of the probability distribution of repair cost estimates at garage 2. That is, the repair cost esti-

mates at garage 1 seem to be systematically lower than the repair cost estimates at garage 2. Fig-

ure 18.3(b) presents the MINITAB output of the Wilcoxon signed ranks test for this repair cost

comparison. In general, MINITAB gives T as the “Wilcoxon statistic,” even if T is the

appropriate test statistic. It can be shown that T can be obtained by subtracting T from

n(n 1)/2, where n is the total number of paired differences being analyzed.

Notice that in Example 18.4 the nonparametric Wilcoxon signed ranks test would not allow us

to reject H0 in favor of Ha at the .01 level of significance. On the other hand, the parametric

paired difference t test performed in Example 10.7 (page 414) did allow us to reject H0: m1 m2 0

in favor of Ha: m1 m2 0 at the .01 level of significance. In general, a parametric test is often

more powerful than the analogous nonparametric test. That is, the parametric test often allows us

to reject H0 at smaller values of a. Therefore, if the assumptions for the parametric test are

satisfied—for example, if, when we are using small samples, the sampled populations are

approximately normally distributed—it is preferable to use the parametric test. The advantage

of nonparametric tests is that they can be used without assuming that the sampled popula-

tions have the shapes of any particular probability distributions. As an example, this can be

important when reporting statistical conclusions to U.S. federal agencies. Federal guidelines

specify that, when reporting statistical conclusions, the validity of the assumptions behind the

statistical methods used must be fully justified. If, for instance, there are insufficient data to

justify the assumption that the sampled populations are approximately normally distributed, then

we must use a nonparametric method to make conclusions.

Finally, if the sample size n is at least 25, we can use a large sample approximation of the

Wilcoxon signed ranks test. This is done by making two modifications. First, we replace the test

statistic by a standardized value of the test statistic. This standardized value is cal-

culated by subtracting the mean from the test statistic and then dividing

the resulting difference by the standard deviation . Second, when testing

a one-sided alternative hypothesis, we replace the critical value T0 by the normal point 

When testing a two-sided alternative hypothesis, we replace T0 by  za兾2.

 za.

1n(n  1)(2n  1)兾24

(T   or T  )n(n  1)兾4

(T   or T  )

BI

Exercises for Section 18.3
CONCEPTS

18.14 Explain the circumstances in which we use the Wilcoxon signed ranks test.

18.15 Identify the parametric test corresponding to the Wilcoxon signed ranks test. What assumption is

needed for the validity of the parametric test (and not needed for the Wilcoxon signed ranks test)?

METHODS AND APPLICATIONS

18.16 Recall that in Exercise 10.31 (page 416) we compared 30-year and 15-year fixed rate mortgage

loans for a number of Willamette Valley lending institutions. The results obtained are shown in

Table 18.4. Use the Wilcoxon signed ranks test and the following MINITAB output to determine

whether, for Willamette Valley lending institutions, the distribution of 30-year rates is shifted

to the right or left of the distribution of 15-year rates. Use a .01. Hint: As discussed in 

Example 18.4, MINITAB gives T as the Wilcoxon statistic. Find T by subtracting T from

n(n 1)兾2, where n 9. Mortgage99

Test of median = 0.0 versus median not = 0.0  

                N for    Wilcoxon           Estimated 

             N   Test   Statistic       P      Median

30Yr – 15Yr  9      9        45.0   0.009      0.2355 

DS



18.3 The Wilcoxon Signed Ranks Test 817

18.17 A consumer advocacy group is concerned about the ability of tax preparation firms to correctly

prepare complex returns. To test the performance of tax preparers in two different tax preparation

firms—Quick Tax and Discount Tax—the group designed ten tax cases for families with gross

annual incomes between $100,000 and $200,000. In a “tax-off” competition, the advocacy group

randomly assigned pairs of preparers from the two firms to the ten cases and asked each preparer to

compute the tax liability for his or her assigned case. The preparers’ returns were collected, and the

group computed the difference between each preparer’s computed tax and the actual tax that should

have been computed. The data below consist of the resulting two sets of tax computation errors, one

for preparers from Quick Tax and the other for preparers from Discount Tax. Fully interpret the

following MINITAB output of a Wilcoxon signed ranks test analysis of these data. TaxErrDS

T A B L E 1 8 . 4 1999 Mortgage Loan Interest Rates for

Nine Randomly Selected Willamette Valley

Lending Institutions Mortgage99DS

Annual Percentage Rate
Lending Institution 30-Year 15-Year Difference

American Mortgage N.W. Inc. 6.715 6.599 0.116

City and Country Mortgage 6.648 6.367 0.281

Commercial Bank 6.740 6.550 0.190

Landmark Mortgage Co. 6.597 6.362 0.235

Liberty Mortgage, Inc. 6.425 6.162 0.263

MaPS Credit Union 6.880 6.583 0.297

Mortgage Brokers, Inc. 6.900 6.800 0.100

Mortgage First Corp. 6.675 6.394 0.281

Silver Eagle Mortgage 6.790 6.540 0.250

Source: 1999 Mortgage Loan Interest Rates via www.salemhomeplace.com/
pages/finance, January 4, 1999.

T A B L E 1 8 . 5 Pretest and Posttest Leadership 

Scores LeaderDS

Manager Pretest Score Posttest Score Difference

1 35 54  19

2 27 43  16

3 51 53  2

4 38 50  12

5 32 42  10

6 44 58  14

7 33 35  2

8 26 39  13

9 40 47  7

10 50 48 2

11 36 41  5

12 31 37  6

Tax Quick Tax Discount Tax
Case Errors Errors Difference

1 857 156 701

2 920 200 720

3 1,090 202 888

4 1,594 390 1,204

5 1,820 526 1,294

6 1,943 749 1,194

7 1,987 911 1,076

8 2,008 920 1,088

9 2,083 2,145  62

10 2,439 2,602  163

2000

1000

0

E
rr

o
r

Discount Quick

Firm

1000

500

0

Q
-D

Test of median = 0.0 versus median not = 0.0 

     N   N for Test   Wilcoxon Statistic      P  Estimated Median

Q-D 10           10               52.0    0.014             898.0 

18.18 A human resources director wishes to assess the benefits of sending a company’s managers to an

innovative management course. Twelve of the company’s managers are randomly selected to

attend the course, and a psychologist interviews each participating manager before and after

taking the course. Based on these interviews, the psychologist rates the manager’s leadership

ability on a 1-to-100 scale. The pretest and posttest leadership scores for each of the 12 managers

are given in Table 18.5. Leader

a Let D1 be the distribution of leadership scores before taking the course, and let D2 be the

distribution of leadership scores after taking the course. Carry out the Wilcoxon signed ranks

test to test whether D1 and D2 are identical (that is, the course has no effect on leadership

scores) versus the alternative that D2 is shifted to the right or left of D1 (that is, the course

affects leadership scores). Use a .05.

b Carry out the Wilcoxon signed ranks test to determine whether D2 is shifted to the right of D1.

Use a .05. What do you conclude?

18.19 Recall that in Exercise 10.32 (page 417) we compared preexposure and postexposure attitude

scores for an advertising study by using a paired difference t test. The data obtained and related

Excel add-in (MegaStat) output are shown in Table 18.6 on the next page. Use the Wilcoxon

signed ranks test and the MegaStat output to determine whether the distributions of preexposure

and postexposure attitude scores are different. Use a .05. AdStudyDS

DS



18.4 Comparing Several Populations Using 
the Kruskal–Wallis H Test 

In this section we present the Kruskal–Wallis H test, a nonparametric technique for comparing

the locations of three or more populations. This test requires no assumptions about the population

probability distributions and assumes we use independent samples chosen randomly.

In general, suppose we wish to use the Kruskal–Wallis H test to compare the locations of

p populations by using p independent samples of observations randomly selected from these

populations. We first rank all of the observations in the p samples from smallest to largest. 

If ni denotes the number of observations in the ith sample, we are ranking a total of n (n1 

n2 
. . . np) observations. Furthermore, we assign tied observations the average of the consec-

utive ranks that would otherwise be assigned to the tied observations. Next, we calculate the sum

of the ranks of the observations in each sample. Letting Ti denote the rank sum for the ith sam-

ple, we obtain the rank sums T1, T2, . . . , Tp. For example, consider the gasoline mileage case in

Chapter 11, and suppose that North American Oil wishes to use the p 3 independent samples

of gasoline mileages to compare the locations of the populations of all gasoline mileages that

could be obtained by using gasoline types A, B, and C. The gasoline mileage data are repeated in

Table 18.7, along with the ranking (given in parentheses) of each observation in each sample. If

we sum the ranks in each sample, we find that T1 37.5, T2 63, and T3 19.5. Note that,

although the box plots in Table 18.7 do not indicate any serious violations of the normality or

equal variances assumptions, the samples are quite small, and thus we cannot be sure that these

assumptions approximately hold. Therefore, it is reasonable to compare gasoline types A, B, and

C by using the Kruskal–Wallis H test.

818 Chapter 18 Nonparametric Methods

Wilcoxon Signed Rank Test

variables: Pre. Attitudes(A1) - Post. Attitudes(A2)

0 sum of positive ranks

45 sum of negative ranks

9 n

22.50 expected value

7.89 standard deviation

 2.85 z, corrected for ties

.0043 p-value (two-tailed)

T A B L E 1 8 . 6 Preexposure and Postexposure Attitude Scores for an Advertising Study

AdStudyDS

Preexposure Postexposure Attitude
Subject Attitudes (A1) Attitudes (A2) Change (di)

1 50 53  3

2 25 27  2

3 30 38  8

4 50 55  5

5 60 61  1

6 80 85  5

7 45 45 0

8 30 31  1

9 65 72  7

10 70 78  8

Source: Attitude Scores from W.R. Dillon, et al., ESSENTIALS OF MARKETING
RESEARCH, p. 435. Copyright © 1993. Reprinted by permission of
McGraw-Hill Companies, Inc.

The Kruskal–Wallis H Test

is greater than the point based on p 1 degrees

of freedom. Here, for this test to be valid, there

should be five or more observations in each sample.

Furthermore, the number of ties should be small rel-

ative to the total number of observations. Values of

are given in Table A.17 (page 875).xa

2

xa

2

Consider testing the null hypothesis H0 that the p

populations under consideration are identical

versus the alternative hypothesis Ha that at least two

populations differ in location (that is, are shifted

either to the left or to the right of one another). We

can reject H0 in favor of Ha at level of significance a

if the Kruskal–Wallis H statistic

H  
12

n(n  1)a

p

i 1

T i
2

ni

 3(n  1)

Compare
the loca-

tions of three or
more distributions
using a Kruskal–
Wallis test for
independent 
samples.
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18.4 Comparing Several Populations Using the Kruskal–Wallis H Test 819

In the gasoline mileage case, based on degrees of freedom is 5.99147 (see

Table A.17). Furthermore, since  the Kruskal–Wallis H statistic is

Since , we can reject H0 at the .05 level of significance. Therefore,

we have strong evidence that at least two of the three populations of gasoline mileages differ in

location. Figure 18.4 presents the MINITAB output of the Kruskal–Wallis H test in this gasoline

mileage case.

To conclude this section, we note that, if the Kruskal–Wallis H test leads us to conclude that the

p populations differ in location, there are various procedures for comparing pairs of populations.A

simple procedure is to use the Wilcoxon rank sum test to compare pairs of populations. For exam-

ple, if we use this test to make separate, two-sided comparisons of (1) gasoline types A and B,

(2) gasoline types A and C, and (3) gasoline types B and C, and if we seta equal to .05 for each com-

parison, we find that the mileages given by gasoline type B differ systematically from the mileages

given by gasoline types A and C. Examining the mileages in Table 18.7, we would estimate that

gasoline type B gives the highest mileages. One problem, however, with using the Wilcoxon rank

sum test to make pairwise comparisons is that it is difficult to know how to set a for each compar-

ison. Therefore, some practitioners prefer to make simultaneous pairwise comparisons (such as

given by the Tukey simultaneous confidence intervals discussed in Chapter 11). Gibbons (1985)

discusses a nonparametric approach for making simultaneous pairwise comparisons.

H  9.555  x
2
.05  5.99147

  
12

240
B1,406.25

5
 

3,969

5
 

380.25

5
R  48  9.555

 H  
12

15(15  1)
B (37.5)2

5
 

(63)2

5
 

(19.5)2

5
R  3(15  1)

n  n1  n2  n3  15,

p  1  2x
2
.05

T A B L E 1 8 . 7 The Gasoline Mileage Samples and Rank Sums GasMile2DS

F I G U R E 1 8 . 4 MINITAB Output of the Kruskal–Wallis H Test in the Gasoline Mileage Case

38

37

36

35

34

33

M
il

e
a
g

e

A B C

Gas Type

Gasoline Gasoline Gasoline
Type A Type B Type C

34.0 (3.5) 35.3 (9) 33.3 (2)

35.0 (8) 36.5 (13) 34.0 (3.5)

34.3 (5) 36.4 (12) 34.7 (6)

35.5 (10) 37.0 (14) 33.0 (1)

35.8 (11) 37.6 (15) 34.9 (7)

T1 37.5 T2 63 T3 19.5

Kruskal-Wallis Test on Mileage 

Type        N     Median     Ave Rank         Z

A           5      35.00          7.5     –0.31 

B 5 36.50 12.6 2.82

C           5      34.00          3.9     –2.51 

Overall    15                     8.0Overall    15                     8.0

H = 9.56    DF = 2    P = 0.008 

H = 9.57    DF = 2    P = 0.008  (adjusted for ties)

Exercises for Section 18.4
CONCEPTS

18.20 Explain the circumstances in which we use the Kruskal–Wallis H test.

18.21 Identify the parametric test corresponding to the Kruskal–Wallis H test.

18.22 What are the assumptions needed for the validity of the parametric test identified in 

Exercise 18.21 that are not needed for the Kruskal–Wallis H test?

BI
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METHODS AND APPLICATIONS

In each of Exercises 18.23 through 18.26, use the given independent samples to perform the Kruskal–Wallis

H test of the null hypothesis H0 that the corresponding populations are identical versus the alternative

hypothesis Ha that at least two populations differ in location. Note that we analyzed each of these data sets

using the one-way ANOVA F test in the exercises of Chapter 11.

18.23 Use the Kruskal–Wallis H test to compare display panels A, B, and C using the data in Table 18.8.

Use a .05. Display3

18.24 Use the Kruskal–Wallis H test to compare bottle designs A, B, and C using the data in Table 18.9.

Use a .01. BottleDes

18.25 Use the Kruskal–Wallis H test and the MINITAB output in Figure 18.5 to compare the bottom

(B), middle (M), and top (T ) display heights using the data in Table 18.10. Use a .05. Then,

repeat the analysis if the first sales value for the middle display height is found to be incorrect and

must be removed from the data set. BakeSale

18.26 Use the Kruskal–Wallis H test to compare golf ball brands Alpha, Best, Century, and Divot using the

data in Table 18.11. Use a .01 and the Excel add-in (MegaStat) output on the right side of

Table 18.11. GolfBall

18.5 Spearman’s Rank Correlation Coefficient 
In Section 13.6 (page 551) we showed how to test the significance of a population correlation

coefficient. This test is based on the assumption that the population of all possible combinations of

values of x and y has a bivariate normal probability distribution. If we fear that this assumption

DS

DS

DS

DS
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T A B L E 1 8 . 8 Display Panel Study Data (Time, in

Seconds, Required to Stabilize Air

Traffic Emergency Condition)

Display3DS

Display Panel
A B C

21 24 40

27 21 36

24 18 35

26 19 32

25 20 37

T A B L E 1 8 . 9 Bottle Design Study Data (Sales 

during a 24-Hour Period)

BottleDesDS

Bottle Design
A B C

16 33 23

18 31 27

19 37 21

17 29 28

13 34 25

T A B L E 1 8 . 1 0 Bakery Sales Study Data 

(Sales in Cases) BakeSaleDS

Shelf Display Height
Bottom (B) Middle (M) Top (T )

58.2 73.0 52.4

53.7 78.1 49.7

55.8 75.4 50.9

55.7 76.2 54.0

52.5 78.4 52.1

58.9 82.1 49.9

F I G U R E 1 8 . 5 MINITAB Output of the 

Kruskal–Wallis H Test for the 

Bakery Sales Data

T A B L E 1 8 . 1 1 Golf Ball Durability Test Results GolfBallDS

Brand
Alpha Best Century Divot

281 270 218 364

220 334 244 302

274 307 225 325

242 290 273 337

251 331 249 355

Kruskal–Wallis Test

Median n Avg. Rank 13.834 H

251.00 5 6.80 Alpha 3 d.f.

307.00 5 13.40 Best .0031 p-value

244.00 5 4.80 Century

337.00 5 17.00 Divot

277.50 20 Total

Kruskal-Wallis Test on Bakery Sales 

Display   N    Median    Ave Rank        Z

Bottom    6     55.75         9.2    -0.19 

Middle    6     77.15        15.5     3.37 

Top  -3.186 51.50 3.8

lll 18 9.5Overa

H = 14.36    DF = 2    P = 0.001 

Measure
and test the

association between
two variables by
using Spearman’s
rank correlation
coefficient.
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18.5 Spearman’s Rank Correlation Coefficient 821

is badly violated, we can use a nonparametric approach. One such approach is Spearman’s rank

correlation coefficient, which is denoted rs.

To illustrate, suppose that Electronics World, a chain of stores that sells audio and video

equipment, has gathered the data in Table 18.12. The company wishes to study the relationship

between store sales volume in July of last year (y, measured in thousands of dollars) and the

number of households in the store’s area (x, measured in thousands). Spearman’s rank correlation

coefficient is found by first ranking the values of x and y separately (ties are treated by averaging

the tied ranks). To calculate rs, we use the formula given in Section 13.5 (page 550) for r and

replace the x and y values in that formula by their ranks. If there are no ties in the ranks, this

formula can be calculated by the simple equation

where di is the difference between the x-rank and the y-rank for the ith observation (if there are

few ties in the ranks, this formula is approximately valid). For example, Table 18.12 gives the

ranks of x and y, the difference between the ranks, and the squared difference for each of the

n 15 stores in the Electronics World example. Since the sum of the squared differences is 32,

we calculate rs to be

Equivalently, if we have MINITAB (1) find the ranks of the x (household) values (which we call

the HRanks) and the ranks of the y (sales) values (which we call the SRanks) and (2) use the for-

mula given in Section 13.5 (page 550) for r to calculate the correlation coefficient between the

HRanks and SRanks, we obtain the following output:

This large positive value of rs says that there is a strong positive rank correlation between the

numbers of households and sales volumes in the sample.

In general, let rs denote the population rank correlation coefficient—the rank correlation

coefficient for the population of all possible (x, y) values. We can test the significance of rs by

using Spearman’s rank correlation test.

Pearson correlation of HRank and SRank = 0.943

rs  1  
6(32)

15(225  1)
 .9429

rs  1  
6兺di

2

n(n2
 1)

T A B L E 1 8 . 1 2 Electronics World Sales Volume Data and Ranks for 15 Stores

ElectronicsDS

Number of Sales
Households, Volume, Difference,

Store x y x-Rank y-Rank d d 2

1 161 157.27 6 7  1 1

2 99 93.28 1 1 0 0

3 135 136.81 5 5 0 0

4 120 123.79 4 3 1 1

5 164 153.51 7 6 1 1

6 221 241.74 13 14  1 1

7 179 201.54 8 10  2 4

8 204 206.71 9 11  2 4

9 214 229.78 12 13  1 1

10 101 135.22 2 4  2 4

11 231 224.71 14 12 2 4

12 206 195.29 11 8 3 9

13 248 242.16 15 15 0 0

14 107 115.21 3 2 1 1

15 205 197.82 10 9 1 1

兺d i2  32



A portion of Table A.18 is reproduced here as Table 18.13. To illustrate using this table, sup-

pose in the Electronics World example that we wish to test H0: rs 0 versus Ha: rs 0 by setting

a .05. Since there are n 15 stores, Table 18.13 tells us that we use the critical value

r.05 .441. Since rs .9429 is greater than this critical value, we can reject H0: rs 0 in favor of

Ha: rs 0 by setting a .05. Therefore, we have strong evidence that in July of last year the

sales volume of an Electronics World store was positively correlated with the number of house-

holds in the store’s area.

To illustrate testing a two-sided alternative hypothesis, consider Table 18.14. This table pre-

sents the rankings of n 12 midsize cars given by two automobile magazines. Here each maga-

zine has ranked the cars from 1 (best) to 12 (worst) on the basis of overall ride. Since the two

magazines sometimes have differing views, we cannot theorize about whether their rankings

would be positively or negatively correlated. Therefore, we will test H0: rs 0 versus Ha: rs 0.

The summary box tells us that to perform this test at level of significance a, we use the critical

value r
a兾2. To look up r

a兾2 in Table A.18 (or Table 18.13), we replace the symbol a by the symbol

a兾2. For example, consider setting a .05. Then, since a兾2 .025, we look in Table 18.13 for

the value .025. Since there are n 12 cars, we find that r.025 .591. Spearman’s rank correlation

coefficient for the car ranking data can be calculated to be .8951. Since rs .8951 is greater than

r.025 .591, we reject H0 at the .05 level of significance. Therefore, we conclude that the midsize

car ride rankings given by the two magazines are correlated. Furthermore, since rs .8951, we

estimate that these rankings are positively correlated.

To conclude this section, we make two comments. First, the car ranking example illustrates

that Spearman’s rank correlation coefficient and test can be used when the raw measurements of

the x and/or y variables are themselves ranks. Ranks are measurements of an ordinal variable,
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Spearman’s Rank Correlation Test

Let rs denote Spearman’s rank correlation coefficient. Then, we can test H0: rs  0 versus a particular

alternative hypothesis at level of significance a by using the appropriate critical value rule.

Critical Value Rule:

Alternative Hypothesis Reject H0 if

Ha: rs  0 rs  r
a

Ha: rs  0 rs   r
a

Ha: rs  0 冟 rs 冟  r
a兾2

Table A.18 (page 876) gives the critical values r
a
,  r

a
, and r

a兾2 for sample sizes from 5 to 30. Note that for this

test to be valid the number of ties encountered in ranking the observations should be small relative to the

number of observations.

T A B L E 1 8 . 1 3 Critical Values for Spearman’s Rank

Correlation Coefficient

n A .05 A .025 A .01 A .005

10 .564 .648 .745 .794

11 .523 .623 .736 .818

12 .497 .591 .703 .780

13 .475 .566 .673 .745

14 .457 .545 .646 .716

15 .441 .525 .623 .689

16 .425 .507 .601 .666

17 .412 .490 .582 .645

18 .399 .476 .564 .625

19 .388 .462 .549 .608

20 .377 .450 .534 .591

T A B L E 1 8 . 1 4 Rankings of 12 Midsize Cars by 

Two Automobile Magazines

CarRankDS

Magazine 1 Magazine 2
Car Ranking Ranking

1 5 7

2 1 1

3 4 5

4 7 4

5 6 6

6 8 10

7 9 8

8 12 11

9 2 3

10 3 2

11 10 12

12 11 9

BI

BI
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and Spearman’s nonparametric approach applies to ordinal variables. Second, it can be shown

that if the sample size n is at least 10, then we can carry out an approximation to Spearman’s rank

correlation test by replacing rs by the t statistic

and by replacing the critical values r
a
, ⫺r

a
, and r

a兾2 by the t points t
a
, ⫺t

a
, and t

a兾2 (with n⫺ 2

degrees of freedom). Since Table A.18 (page 876) gives r
a

points for sample sizes up to n⫽ 30,

this approximate procedure is particularly useful if the sample size exceeds 30. In this case, we

can use the z points z
a
, ⫺z

a
, and z

a兾2 in place of the corresponding t points.

t ⫽
rs1n ⫺ 2

21 ⫺ r
2
s

Exercises for Section 18.5
CONCEPTS

18.27 Explain the circumstances in which we use Spearman’s rank correlation coefficient.

18.28 Write the formula that we use to compute Spearman’s rank correlation coefficient when

a There are no (or few) ties in the ranks of the x and y values.

b There are many ties in the ranks of the x and y values.

METHODS AND APPLICATIONS

18.29 A sales manager ranks 10 people at the end of their training on the basis of their sales potential.

A year later, the number of units sold by each person is determined. The following data and

MegaStat output are obtained. Note that the manager’s ranking of 1 is “best.” SalesRank

Person 1 2 3 4 5 6 7 8 9 10

Manager’s Ranking, x 7 4 2 6 1 10 3 5 9 8

Units Sold, y 770 630 820 580 720 440 690 810 560 470

DS

MgrRank, x UnitSold, y

MgrRank, x 1.000 ⫾.632 critical value .05 (two-tail)

UnitSold, y ⫺.721 1.000 ⫾.765 critical value .01 (two-tail)

10 sample size

a Find rs on the Excel add-in (MegaStat) output and use Table 18.13 to find the critical value for

testing H0: rs⫽ 0 versus Ha: rs� 0 at the .05 level of significance. Do we reject H0?

b The MegaStat output gives approximate critical values for a⫽ .05 and a ⫽ .01. Do these

approximate critical values, which are based on the t distribution, differ by much from the

exact critical values in Table 18.13 (recall that n ⫽ 10)?

18.30 Use the following MINITAB output to find rs, and then test H0: rs⫽ 0 versus Ha: rs⬎ 0 for the

service time data below. CopyServ

Copiers Serviced, x 4 2 5 7 1 3 4 5 2 4 6

Minutes Required, y 109 58 138 189 37 82 103 134 68 112 154

18.31 Compute rs and test H0: rs⫽ 0 versus Ha: rs⬎ 0 for the direct labor cost data below. DirLabDS

Pearson correlation of CRank and MRank = 0.986 

DS

Batch Size, x 5 62 35 12 83 14 46 52 23 100 41 75

Direct Labor Cost, y 71 663 381 138 861 145 493 548 251 1,024 435 772

Chapter Summary

The validity of many of the inference procedures presented in this

book requires that various assumptions be met. Often, for in-

stance, a normality assumption is required. In this chapter we

have learned that, when the needed assumptions are not met, we

must employ a nonparametric method. Such a method does not

require any assumptions about the shape(s) of the distribution(s)

of the sampled population(s).

We first presented the sign test, which is a hypothesis test

about a population median. This test is useful when we have taken

a sample from a population that may not be normally distributed.

We next presented two nonparametric tests for comparing the lo-

cations of two populations. The first such test, the Wilcoxon rank

sum test, is appropriate when an independent samples experi-

ment has been carried out. The second, the Wilcoxon signed
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ranks test, is appropriate when a paired difference experiment

has been carried out. Both of these tests can be used without

assuming that the sampled populations have the shapes of

any particular probability distributions. We then discussed the

Kruskal–Wallis H test, which is a nonparametric test for com-

paring the locations of several populations by using independent

samples. This test, which employs the chi-square distribution, can

be used when the assumptions for one-way analysis of variance

do not hold. Finally, we presented a nonparametric approach for

testing the significance of a population correlation coefficient.

Here we saw how to compute Spearman’s rank correlation

coefficient, and we discussed how to use this quantity to test the

significance of the population correlation coefficient.

Glossary of Terms

Kruskal–Wallis H test: A nonparametric test for comparing the

locations of three or more populations by using independent

random samples. (page 818)

nonparametric test: A hypothesis test that requires no assump-

tions about the distribution(s) of the sampled population(s).

(page 804)

sign test: A hypothesis test about a population median that

requires no assumptions about the sampled population.

(page 804)

Spearman’s rank correlation coefficient: A correlation coeffi-

cient computed using the ranks of the observed values of two

variables x and y. (page 821)

Wilcoxon rank sum test: A nonparametric test for comparing

the locations of two populations when an independent samples

experiment has been carried out. (page 809)

Wilcoxon signed ranks test: A nonparametric test for compar-

ing the locations of two populations when a paired difference

experiment has been carried out. (page 814)

Important Formulas and Tests

Sign test for a population median: page 806

Large sample sign test: page 806

Wilcoxon rank sum test: page 809

Wilcoxon rank sum test (large sample 

approximation): pages 811–812

Kruskal–Wallis H statistic: page 818

Kruskal–Wallis H test: page 818

Wilcoxon signed ranks test: page 814

Wilcoxon signed ranks test (large sample 

approximation): page 816

Spearman’s rank correlation coefficient: page 821

Spearman’s rank correlation test: page 822

Supplementary Exercises

18.32 Again consider the price comparison situation in which weekly expenses were compared at two

chains—Miller’s and Albert’s. Recall that independent random samples at the two chains yielded

the following weekly expenses: ShopExp

Since the sample sizes are small, there might be reason to doubt that the populations of expenses

at the two chains are normally distributed. Therefore, use a Wilcoxon rank sum test to determine

whether expenses at Miller’s and at Albert’s differ. Use a  .05.

18.33 A drug company wishes to compare the effects of three different drugs (X, Y, and Z ) that are

being developed to reduce cholesterol levels. Each drug is administered to six patients at the

recommended dosage for six months. At the end of this period the reduction in cholesterol level

is recorded for each patient. The results are given in Table 18.15. Assuming that the three samples

are independent, use a nonparametric test to see whether the effects of the three drugs differ. Use

a  .05. CholRed

18.34 In an article published in The Journal News (Hamilton, Ohio) on February 21, 1993, Lew

Sichelman (United Features Syndication) wrote the following:

Despite a relatively weak market, housing prices moved slightly higher last year.

Table 18.16 gives the average 1991 and 1992 prices for new and used homes (in thousands of

dollars) for six randomly selected U.S. housing markets. Use a nonparametric test to attempt

to show that housing prices increased from 1991 to 1992. Use a  .05 and explain your

conclusion. HomePriceDS

DS

Miller’s

$119.25 $121.32 $122.34 $120.14 $122.19

$123.71 $121.72 $122.42 $123.63 $122.44

Albert’s

$111.99 $114.88 $115.11 $117.02 $116.89

$116.62 $115.38 $114.40 $113.91 $111.87

DS
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18.35 During 2000 a company implemented a number of policies aimed at reducing the ages of 

its customers’ accounts. In order to assess the effectiveness of these measures, the company

randomly selects 10 customer accounts. The average age of each account is determined for 

each of the years 1999 and 2000. These data are given in Table 18.17. Use a nonparametric 

technique to attempt to show that average account ages have decreased from 1999 to 2000. 

Use a  .05. AcctAge

18.36 The following data concern the divorce rate (y) per 1,000 women and the percentage of the

female population in the labor force (x): DivorceDS

DS

Drug
X Y Z

22 40 15

31 35 9

19 47 14

27 41 11

25 39 21

18 33 5

Housing Market 1991 Average Price 1992 Average Price

Minneapolis, Minn. $134.2 $126.3

St. Louis, Mo. 125.4 159.2

Columbus, Ohio 127.7 126.6

Baltimore, Md. 164.6 166.0

Pittsburgh, Pa. 95.8 110.1

Seattle, Wash. 168.3 179.2

Source: 1991 & 1992 Average House Prices from L. Sichelman, “Housing Prices See Slight
Rise through 1992,” The Journal News, 2/21/93. Copyright © 1993. Reprinted by permission.

Average Age of Account Average Age of Account
Account in 1999 (Days) in 2000 (Days)

1 35 27

2 24 19

3 47 40

4 28 30

5 41 33

6 33 25

7 35 31

8 51 29

9 18 15

10 28 21

T A B L E 1 8 . 1 7 Average Account Ages in 1999 and 2000 for 10 Randomly Selected 

Accounts AcctAgeDS

T A B L E 1 8 . 1 5 Reduction of Cholesterol

Levels Using Three Drugs

CholRedDS

T A B L E 1 8 . 1 6 1991 and 1992 Average Prices for New and Used

Homes (in Thousands of Dollars) for Six Randomly

Selected Housing Markets

HomePriceDS

Year 1890 1900 1910 1920 1930 1940 1950 1960 1970

Divorce Rate, y 3.0 4.1 4.7 8.0 7.5 8.8 10.3 9.2 14.9

% of Females in
Labor Force, x* 18.9 20.6 25.4 23.7 24.8 27.4 31.4 34.8 42.6

*15 years old and over 1890–1930; 14 and over 1940–1960; 16 and over thereafter.

Source: U.S. Department of Commerce, Bureau of the Census, Bicentennial Statistics, Washington, D.C., 1976.

Use a nonparametric technique to attempt to show that x and y are positively correlated. Use

a  .05.

18.37 A loan officer wishes to compare the interest rates being charged for 48-month fixed-rate auto

loans and 48-month variable-rate auto loans. Two independent, random samples of auto loan

rates are selected. A sample of eight 48-month fixed-rate auto loans had the following loan 

rates: AutoLoan

8.29% 7.75% 7.50% 7.99% 7.75% 7.99% 9.40% 8.00%

while a sample of five 48-month variable-rate auto loans had loan rates as follows:

7.59% 6.75% 6.99% 6.50% 7.00%

Perform a nonparametric test to determine whether loan rates for 48-month fixed-rate auto loans

differ from loan rates for 48-month variable-rate auto loans. Use a .05. Explain your conclusion.

DS
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Appendix 18.1 ■ Nonparametric Methods Using MegaStat
The instructions in this section begin by describing the entry of data into an Excel worksheet. Alternatively, the data
may be downloaded from this book’s website. The appropriate data file name is given at the top of each instruc-
tion block. Please refer to Appendix 1.1 for further information about entering data, saving data, and printing re-
sults in Excel. Please refer to Appendix 1.2 for more information about using MegaStat.

18.38 A large bank wishes to limit the median debt-to-equity ratio for its portfolio of commercial loans

to 1.5. The bank randomly selects 15 of its commercial loan accounts. Audits result in the

following debt-to-equity ratios: DebtEq

1.31 1.05 1.45 1.21 1.19

1.78 1.37 1.41 1.22 1.11

1.46 1.33 1.29 1.32 1.65

Can it be concluded that the median debt-to-equity ratio is less than 1.5 at the .05 level of

significance? Explain.

DS

Did labor force participation rates (LFPR) for women
increase between 1968 and 1972? The Data and 
Story Library (DASL) contains LFPR figures for 1968 and
1972, for each of 19 cities. Go to the DASL website
(http://lib.stat.cmu.edu/DASL/) and retrieve the Women
in the Labor Force data set (http://lib.stat.cmu.edu/DASL/
Datafiles/LaborForce.html). Produce appropriate graph-
ical (histogram, stem-and-leaf, box plot) and numerical
summaries of the LFPR data and conduct the fol-
lowing nonparametric statistical analyses (data sets:
LaborFrc.xlsx, LaborFrc.mtw):

a Do the data provide sufficient evidence to conclude
that the LFPR for women increased between 1968
and 1972? Conduct a nonparametric, two-sample,

independent samples Wilcoxon rank sum test at the
0.01 level of significance. Clearly state the hypotheses
and your conclusion. Report the p-value (observed
level of significance) for your test.

b Consider, as an alternative to the foregoing inde-
pendent sample analysis, a paired sample proce-
dure, the nonparametric Wilcoxon signed ranks test.
Test once more the hypothesis of part a, this time
using the Wilcoxon signed ranks test applied to the
differences in LFPRs [1972 1968]. Again, clearly
state your conclusion and p-value.

c Between the two tests of parts a and b, which is the
more appropriate for the current data situation?
Why?

Sign test for the median in Figure 18.1(d) on page
805 (data file: CompDisc.xlsx):

• Enter the compact disc data from Figure 18.1(a)
on page 805 into column A with the label 
LifeTime in cell A1.

• Select Add-Ins : MegaStat : Nonparametric
Tests : Sign Test.

• In the Sign Test dialog box, use the autoexpand
feature to enter the range A1 : A21 into the
“Input range” window.

• Enter the hypothesized median (here equal to
6000) into the “Hypothesized value” window.

• Select the desired alternative (in this case
“greater than”) from the drop-down menu in
the Alternative box.

• Click OK in the Sign Test dialog box.

18.39 Internet Exercise LaborFrcDS
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Wilcoxon (also known as Mann–Whitney) rank
sum test for independent samples in Exercise 18.12
on page 813 (data file: Catalyst.xlsx):

• Enter the data for Catalyst XA-100 into col-
umn A with label XA-100 in cell A1, and enter
the data for Catalyst ZB-200 into column B
with label ZB-200 in cell B1.

• Select Add-Ins : MegaStat : Nonparametric
Tests : Wilcoxon–Mann/Whitney Test.

• In the “Wilcoxon–Mann/Whitney Test” dialog
box, click in the Group 1 window to make it
active and use the autoexpand feature to
enter the range A1 : A6 into the Group 1
window.

• Click in the Group 2 window to make it active,
and use the autoexpand feature to enter the
range B1 : B6 into the Group 2 window.

• Select the desired alternative (in this case “not
equal”) from the drop-down menu in the 
Alternative box.

• Place a checkmark in the “Correct for ties” 
checkbox.

• Click OK in the “Wilcoxon–Mann/Whitney Test”
dialog box.

Wilcoxon signed ranks test for paired differences
in Table 18.6 on page 818 (data file: AdStudy.xlsx):

• Enter the advertising study data in Table 18.6.
Enter the preexposure scores in column A with
label PreAttitude, and enter the postexposure
scores in column B with label PostAttitude. 

• Select Add-Ins : MegaStat : Nonparametric 
Tests : Wilcoxon Signed-Rank Test.

• In the “Wilcoxon Signed Ranks Test” dialog
box, click in the Group 1 window to make it
active, and use the autoexpand feature to
enter the range A1 : A11 into the Group 1
window.

• Click in the Group 2 window to make it active,
and use the autoexpand feature to enter the
range B1 : B11 into the Group 2 window.

• Select the desired alternative (in this case “not
equal”) from the drop-down menu in the
Alternative box.

• Place a checkmark in the “Correct for ties” 
checkbox.

• Click OK in the “Wilcoxon Signed Ranks Test” 
dialog box.
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Kruskal–Wallis H test for comparing several popu-
lations in Table 18.11 on page 820 (data file:
GolfBall.xlsx):

• Enter the golf ball durability data into columns
A, B, C, and D as shown in the screen with
labels Alpha, Best, Century, and Divot. 

• Select Add-Ins : MegaStat : Nonparametric 
Tests : Kruskal Wallis Test.

• In the “Kruskal–Wallis Test” dialog box, enter
(by dragging with the mouse) the range A1:D6
into the “Input range” window. Each column
in the selected range will be considered by
MegaStat to be a group to be compared to the
other groups. 

• Place a checkmark in the “Correct for ties” 
checkbox.

• Click OK in the “Kruskal–Wallis Test” dialog
box.

Spearman’s rank correlation coefficient in Exer-
cise 18.29 on page 823 (data file: SalesRank.xlsx):

• Enter the sales data in Exercise 18.29 into 
columns A and B. Enter the manager’s rankings
into column A with label “MgrRank, x” in cell A1,
and enter the units sold into column B with label
“UnitsSold, y” in cell B1.

• Select Add-Ins : MegaStat : Nonparametric Tests :
Spearman Coefficient of Rank Correlation.

• In the “Spearman Coefficient of Rank 
Correlation” dialog box, enter (by dragging with
the mouse) the range A1 : B11 into the “Input
range” window. Here, each column in the
selected range will be considered by MegaStat 
to be a separate variable.

• Place a checkmark in the “Correct for ties” 
checkbox.

• Click OK in the “Spearman Coefficient of Rank
Correlation” dialog box.
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Appendix 18.2 ■ Nonparametric Methods Using MINITAB
The instruction blocks in this section each begin by describing the entry of data into the MINITAB data window.
Alternatively, the data may be downloaded from this book’s website. The appropriate data file name is given at the
top of each instruction block. Please refer to Appendix 1.3 for further information about entering data, saving data,
and printing results when using MINITAB.

Sign test for the median in Figure 18.1(c) on page 805
(data file: CompDisc.MTW):

• Enter the compact disc data from Figure 18.1(a)
on page 805 into column C1 with variable name
LifeTime.

• Select Stat : Nonparametrics : 1-Sample Sign.

• In the 1-Sample Sign dialog box, enter LifeTime
into the Variables window.

• Select “Test median,” and enter the number
6000 into the Test median window.

• Click on the “Alternative” arrow button, and
select “greater than” from the pull-down
menu.

• Click OK in the 1-Sample Sign dialog box to
obtain the sign test results in the Session
window.

Wilcoxon (also known as Mann–Whitney) rank sum
test for two independent samples in Figure 18.2(b)
on page 810 (data file: Court.MTW):

• Enter the litigation data from Figure 18.2(a)
on page 810 into two columns—Coos County
data in column C1 with variable name Coos
and Lane County data in column C2 with 
variable name Lane.

• Select Stat : Nonparametrics : Mann–Whitney.

• In the Mann–Whitney dialog box, enter Coos
into the First Sample window and enter Lane
into the Second Sample window.

• Type 95 in the Confidence level window.

• Click on the “Alternative” arrow button and
select “less than” from the pull-down menu.

• Click OK in the Mann–Whitney dialog box to
obtain test results in the Session window.
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Wilcoxon signed ranks test for paired differences in
Figure 18.3(b) on page 815 (data file: Repair.MTW):

• Enter the garage repair data from Figure 18.3(a)
on page 815 into two columns—garage 1 cost
estimates in column C1 with variable name
Garage1 and garage 2 cost estimates in 
column C2 with variable name Garage2.

• Select Calc : Calculator.

• In the Calculator dialog box, enter G1   G2
into the “Store result in variable” window.

• Enter Garage1   Garage2 into the Expression
window.

• In the Calculator dialog box, click OK to store
the repair cost differences in column G1   G2.

• Select Stat : Nonparametrics : 1-Sample
Wilcoxon.

• In the 1-Sample Wilcoxon dialog box, enter
‘G1   G2’ into the Variables window by 
selecting G1   G2 from the variables list.

• In the 1-Sample Wilcoxon dialog box, select
“Test median” and enter the number 0.0 into
the Test median window.

• Click on the “Alternative” arrow button, and
select “less than” from the pull-down menu.

• Click OK in the 1-Sample Wilcoxon dialog 
box to obtain the test results in the Session
window.

Kruskal–Wallis H test for comparing several
populations in Figure 18.4 on page 819 (data file:
GasMile2.MTW):

• Enter the gas mileage data from Table 18.7
(page 819) into two columns—gas mileages in
column C1 with variable name Mileage and
gasoline type (A, B, or C) in column C2 with
variable name Type.

• Select Stat : Nonparametrics : Kruskal–Wallis.

• In the Kruskal–Wallis dialog box, enter Mileage
into the Response window and enter Type into
the Factor window.

• Click OK in the Kruskal–Wallis dialog box to
obtain test results in the Session window.
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Spearman’s rank correlation coefficient in Sec-
tion 18.5 on page 820 (data file: Electronics.MTW):

• Enter the electronics sales data from Table 18.12
(page 821) into two columns—number of
households in column C1 with variable name
Households and sales volumes in column C2
with variable name Sales.

• Select Data : Rank.

• In the Rank dialog box, enter Households into
the “Rank data in” window and enter HRank
into the “Store ranks in” window.

• Click OK in the Rank dialog box to obtain
column C3 with variable name HRank 
containing ranks for the Households 
observations.

• Select Data : Rank.

• In the Rank dialog box, enter Sales into the
“Rank data in” window and enter SRank into
the “Store ranks in” window.

• Click OK in the Rank dialog box to obtain
column C4 with variable name SRank 
containing ranks for the Sales observations.

• Select Stat : Basic Statistics : Correlation.

• In the Correlation dialog box, enter HRank and
SRank into the Variables window.

• Click on “Display p-values” to uncheck this
option (or leave it checked, if desired).

• Click OK in the Correlation dialog box to obtain
the rank correlation coefficient in the Session
window.



C
H

A
P

T
E

R
 1

9

19.1 Introduction to Decision Theory

19.2 Decision Making Using Posterior Probabilities

19.3 Introduction to Utility Theory

Decision
Theory

Chapter Outline

After mastering the material in this chapter, you will be able to:

LO2 Make decisions using posterior analysis 
and assess the value of sample information.

LO3 Make decisions using utility theory.

Learning Objectives

LO1 Make decisions under uncertainty and
under risk and assess the value of perfect
information.



very day businesses and the people who

run them face a myriad of decisions. For

instance, a manufacturer might need to

decide where to locate a new factory and might also

need to decide how large the new facility should be.

Or, an investor might decide where to invest money

from among several possible investment choices. In

this chapter we study some probabilistic methods

that can help a decision maker to make intelligent

decisions. In Section 19.1 we introduce decision

theory. We discuss the elements of a decision

problem, and we present strategies for making

decisions when we face various levels of uncertainty.

We also show how to construct a decision tree, which

is a diagram that can help us analyze a decision

problem, and we show how the concept of expected

value can help us make decisions. In Section 19.2 we

show how to use sample information to help make

decisions, and we demonstrate how to assess the

worth of sample information in order to decide

whether the sample information should be obtained.

We conclude this chapter with Section 19.3, which

introduces using utility theory to help make

decisions.

Many of this chapter’s concepts are presented in

the context of

C
the company uses decision theory to decide

whether to drill based on the various possible 

survey results. In addition, decision theory is 

employed to determine whether the seismic 

experiment should be carried out.

The Oil Drilling Case: An oil company uses 

decision theory to help decide whether to 

drill for oil on a particular site. The company

can perform a seismic experiment at the site to 

obtain information about the site’s potential, and

E

19.1 Introduction to Decision Theory 
Suppose that a real estate developer is proposing the development of a condominium complex on

an exclusive parcel of lakefront property. The developer wishes to choose between three possible

options—building a large complex, building a medium-sized complex, and building a small

complex. The profitability of each option depends on the level of demand for condominium units

after the complex has been built. For simplicity, the developer considers only two possible levels

of demand—high or low; the developer must choose whether to build a large, medium, or small

complex based on her beliefs about whether demand for condominium units will be high or low.

The real estate developer’s situation requires a decision. Decision theory is a general approach

that helps decision makers make intelligent choices. A decision theory problem typically involves

the following elements:

1 States of nature: a set of potential future conditions that affects the results of the decision.

For instance, the level of demand (high or low) for condominium units will affect profits

after the developer chooses to build a large, medium, or small complex. Thus, we have two

states of nature—high demand and low demand.

2 Alternatives: several alternative actions for the decision maker to choose from. For example,

the real estate developer can choose between building a large, medium, or small condominium

complex. Therefore, the developer has three alternatives—large, medium, and small.

3 Payoffs: a payoff for each alternative under each potential state of nature. The payoffs are

often summarized in a payoff table. For instance, Table 19.1 gives a payoff table for the

condominium complex situation. This table gives the profit1 for each alternative under the

different states of nature. For example, the payoff table tells us that, if the developer builds

Make deci-
sions under

uncertainty and
under risk and
assess the value of
perfect information.

LO1

1Here profits are really present values representing current dollar values of expected future income minus costs.

T A B L E 1 9 . 1 A Payoff Table for the Condominium Complex Situation CondoDS

States of Nature
Alternatives Low Demand High Demand

Small complex $8 million $8 million

Medium complex $5 million $15 million

Large complex  $11 million $22 million



a large complex and if demand for units turns out to be high, a profit of $22 million will be

realized. However, if the developer builds a large complex and if demand for units turns out

to be low, a loss of $11 million will be suffered.

Once the states of nature have been identified, the alternatives have been listed, and the pay-

offs have been determined, we evaluate the alternatives by using a decision criterion. How this

is done depends on the degree of uncertainty associated with the states of nature. Here there are

three possibilities:

1 Certainty: we know for certain which state of nature will actually occur.

2 Uncertainty: we have no information about the likelihoods of the various states of nature.

3 Risk: the likelihood (probability) of each state of nature can be estimated.

Decision making under certainty In the unlikely event that we know for certain which

state of nature will actually occur, we simply choose the alternative that gives the best payoff for

that state of nature. For instance, in the condominium complex situation, if we know that demand

for units will be high, then the payoff table (see Table 19.1) tells us that the best alternative is to

build a large complex and that this choice will yield a profit of $22 million. On the other hand, if

we know that demand for units will be low, then the payoff table tells us that the best alternative

is to build a small complex and that this choice will yield a profit of $8 million.

Of course, we rarely (if ever) know for certain which state of nature will actually occur. How-

ever, analyzing the payoff table in this way often provides insight into the nature of the problem.

For instance, examining the payoff table tells us that, if we know that demand for units will be

low, then building either a small complex or a medium complex will be far superior to building a

large complex (which would yield an $11 million loss).

Decision making under uncertainty This is the exact opposite of certainty. Here we have

no information about how likely the different states of nature are. That is, we have no idea how

to assign probabilities to the different states of nature.
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In such a case, several approaches are possible; we will discuss two commonly used methods.

The first is called the maximin criterion.

Maximin: Find the worst possible payoff for each alternative, and then choose the alternative

that yields the maximum worst possible payoff.

For instance, to apply the maximin criterion to the condominium complex situation, we proceed

as follows (see Table 19.1):

1 If a small complex is built, the worst possible payoff is $8 million.

2 If a medium complex is built, the worst possible payoff is $5 million.

3 If a large complex is built, the worst possible payoff is  $11 million.

Since the maximum of these worst possible payoffs is $8 million, the developer should choose to

build a small complex.

The maximin criterion is a pessimistic approach because it considers the worst possible pay-

off for each alternative. When an alternative is chosen using the maximin criterion, the actual

payoff obtained may be higher than the maximum worst possible payoff. However, using the

maximin criterion assures a “guaranteed minimum” payoff.

A second approach is called the maximax criterion.

Maximax: Find the best possible payoff for each alternative, and then choose the alternative that

yields the maximum best possible payoff.

To apply the maximax criterion to the condominium complex situation, we proceed as follows

(see Table 19.1):

1 If a small complex is built, the best possible payoff is $8 million.

2 If a medium complex is built, the best possible payoff is $15 million.

3 If a large complex is built, the best possible payoff is $22 million.

Since the maximum of these best possible payoffs is $22 million, the developer should choose to

build a large complex.

The maximax criterion is an optimistic approach because we always choose the alternative

that yields the highest possible payoff. This is a “go for broke” strategy, and the actual payoff

obtained may be far less than the highest possible payoff. For example, in the condominium com-

plex situation, if a large complex is built and demand for units turns out to be low, an $11 million

loss will be suffered (instead of a $22 million profit).

Decision making under risk In this case we can estimate the probability of occurrence for

each state of nature. Thus, we have a situation in which we have more information about the

states of nature than in the case of uncertainty and less information than in the case of certainty.

Here a commonly used approach is to use the expected monetary value criterion. This involves

computing the expected monetary payoff for each alternative and choosing the alternative with

the largest expected payoff.

The expected value criterion can be employed by using prior probabilities. As an example, sup-

pose that in the condominium complex situation the developer assigns prior probabilities of .7 and

.3 to high and low demands, respectively, as shown in the decision tree digram of Figure 19.1. We

find the expected monetary value for each alternative by multiplying the probability of occurrence

for each state of nature by the payoff associated with the state of nature and by summing these prod-

ucts. Referring to the payoff table in Table 19.1, the expected monetary values are as follows:

Small complex:   Expected value  .3($8 million)  .7($8 million)  $8 million

Medium complex:   Expected value   .3($5 million)   .7($15 million)   $12 million

Large complex:   Expected value   .3( $11 million)   .7($22 million)   $12.1 million

Choosing the alternative with the highest expected monetary value, the developer would choose

to build a large complex.

Remember that the expected payoff is not necessarily equal to the actual payoff that will be re-

alized. Rather, the expected payoff is the long-run average payoff that would be realized if many

identical decisions were made. For instance, the expected monetary payoff of $12.1 million for a

large complex is the average payoff that would be obtained if many large condominium com-

plexes were built. Thus, the expected monetary value criterion is best used when many similar

decisions will be made.
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F I G U R E 1 9 . 2 A Decision Tree with Sequential Decisions

Using a decision tree It is often convenient to depict the alternatives, states of nature, payoffs,

and probabilities (in the case of risk) in the form of a decision tree or tree diagram. The diagram

is made up of nodes and branches. We use square nodes to denote decision points and circular

nodes to denote chance events. The branches emanating from a decision point represent alterna-

tives, and the branches emanating from a circular node represent the possible states of nature. As

we have seen, Figure 19.1 presents a decision tree for the condominium complex situation (in the

case of risk as described previously). Notice that the payoffs are shown at the rightmost end of each

branch and that the probabilities associated with the various states of nature are given in parenthe-

ses corresponding to each branch emanating from a chance node. The expected monetary values

for the alternatives are shown below the chance nodes. The double slashes placed through the

small complex and medium complex branches indicate that these alternatives would not be chosen

(because of their lower expected payoffs) and that the large complex alternative would be selected.

A decision tree is particularly useful when a problem involves a sequence of decisions. For

instance, in the condominium complex situation, if demand turns out to be small, it might be pos-

sible to improve payoffs by selling the condominiums at lower prices. Figure 19.2 shows a deci-

sion tree in which, after a decision to build a small, medium, or large condominium complex is

made, the developer can choose to either keep the same prices or charge lower prices for condo-

minium units. In order to analyze the decision tree, we start with the last (rightmost) decision to

be made. For each decision we choose the alternative that gives the highest payoff. For instance,

if the developer builds a large complex and demand turns out to be low, the developer should

lower prices (as indicated by the double slash through the alternative of same prices). If decisions

are followed by chance events, we choose the alternative that gives the highest expected mone-

tary value. For example, again looking at Figure 19.2, we see that a medium complex should now

be built because of its highest expected monetary value ($14.1 million). This is indicated by the

double slashes drawn through the small and large complex alternatives. Looking at the entire

decision tree in Figure 19.2, we see that the developer should build a medium complex and

should sell condominium units at lower prices if demand turns out to be low.
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Sometimes it is possible to determine exactly which state of nature will occur in the future.

For example, in the condominium complex situation, the level of demand for units might depend

on whether a new resort casino is built in the area. While the developer may have prior probabil-

ities concerning whether the casino will be built, it might be feasible to postpone a decision about

the size of the condominium complex until a final decision about the resort casino has been made.

If we can find out exactly which state of nature will occur, we say we have obtained perfect

information. There is usually a cost involved in obtaining this information (if it can be obtained

at all). For instance, we might have to acquire an option on the lakefront property on which the

condominium complex is to be built in order to postpone a decision about the size of the com-

plex. Or perfect information might be acquired by conducting some sort of research that must be

paid for. A question that arises here is whether it is worth the cost to obtain perfect information.

We can answer this question by computing the expected value of perfect information, which

we denote as the EVPI. The EVPI is defined as follows:

EVPI  expected payoff under certainty  expected payoff under risk

For instance, if we consider the condominium complex situation depicted in the decision tree of

Figure 19.1 on page 834, we found that the expected payoff under risk is $12.1 million (which is

the expected payoff associated with building a large complex). To find the expected payoff under

certainty, we find the highest payoff under each state of nature. Referring to Table 19.1, we see that

if demand is low, the highest payoff is $8 million (when we build a small complex); we see that if

demand is high, the highest payoff is $22 million (when we build a large complex). Since the

prior probabilities of high and low demand are, respectively, .7 and .3, the expected payoff under

certainty is .7($22 million)  .3($8 million)  $17.8 million. Therefore, the expected value of

perfect information is $17.8 million  $12.1 million  $5.7 million. This is the maximum

amount of money that the developer should be willing to pay to obtain perfect information. That

is, the land option should be purchased if it costs $5.7 million or less. Then, if the casino is not

built (and demand is low), a small condominium complex should be built; if the casino is built

(and demand is high), a large condominium complex should be built. On the other hand, if the

land option costs more than $5.7 million, the developer should choose the alternative having the

highest expected payoff (which would mean building a large complex—see Figure 19.1).
Finally, another approach to dealing with risk involves assigning what we call utilities to mon-

etary values. These utilities reflect the decision maker’s attitude toward risk: that is, does the de-

cision maker avoid risk or is he or she a risk taker? Here the decision maker chooses the alternative

that maximizes expected utility. The reader interested in this approach is referred to Section 19.3.

Exercises for Section 19.1
CONCEPTS

19.1 Explain the differences between (a) decision making under certainty, (b) decision making under

uncertainty, and (c) decision making under risk.

19.2 Explain how to use the (a) maximin criterion, (b) maximax criterion, and (c) expected monetary

value criterion.

19.3 Explain how to find the expected value of perfect information.

METHODS AND APPLICATIONS

Exercises 19.4 through 19.9 refer to an example in the book Production/Operations Management by

William J. Stevenson. The example involves a capacity-planning problem in which a company must choose

to build a small, medium, or large production facility. The payoff obtained will depend on whether future

demand is low, moderate, or high, and the payoffs are as given in the following table: CapPlan

Possible Future Demand
Alternatives Low Moderate High

Small facility $10* $10 $10

Medium facility 7 12 12

Large facility  4 2 16

*Present value in $ millions.

Source: W. J. Stevenson, Production/Operations Management, 5th ed. (Burr Ridge, IL: Richard D. Irwin, 1996), p. 73.

DS



19.4 Find the best alternative (and the resulting payoff) in the given payoff table if it is known with

certainty that demand will be

a Low. b Medium. c High. CapPlan

19.5 Given the payoff table, find the alternative that would be chosen using the maximin criterion.

CapPlan

19.6 Given the payoff table, find the alternative that would be chosen using the maximax criterion.

CapPlan

19.7 Suppose that the company assigns prior probabilities of .3, .5, and .2 to low, moderate, and high

demands, respectively. CapPlan

a Find the expected monetary value for each alternative (small, medium, and large).

b What is the best alternative if we use the expected monetary value criterion?

19.8 Construct a decision tree for the information in the payoff table assuming that the prior

probabilities of low, moderate, and high demands are, respectively, .3, .5, and .2. CapPlanDS
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*Net present value in millions.

Source: Decision tree from W. J. Stevenson, Production/Operations Management, 6/e, p. 228, and problem from p. 73 © 1999
McGraw-Hill Companies, Inc.
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19.9 For the information in the payoff table find

a The expected payoff under certainty.

b The expected value of perfect information, EVPI. CapPlan

19.10 A firm wishes to choose the location for a new factory. Profits obtained will depend on whether a

new railroad spur is constructed to serve the town in which the new factory will be located. The

following payoff table summarizes the relevant information: FactLoc

New Railroad No New Railroad
Alternatives Spur Built Spur

Location A $1* $14

Location B 2 10

Location C 4 6

*Profits in $ millions.

Determine the location that should be chosen if the firm uses

a The maximin criterion.

b The maximax criterion.

19.11 Refer to the information given in Exercise 19.10. Using the probabilities of .60 for a new 

railroad spur and .40 for no new railroad spur FactLoc

a Compute the expected monetary value for each location.

b Find the location that should be selected using the expected monetary value criterion.

c Compute the EVPI, expected value of perfect information.

19.12 Construct a decision tree for the information given in Exercises 19.10 and 19.11. FactLoc

19.13 Figure 19.3 on the previous page gives a decision tree presented in the book Production/Opera-

tions Management by William J. Stevenson. Use this tree diagram to do the following:

a Find the expected monetary value for each of the alternatives (subcontract, expand, and build).

b Determine the alternative that should be selected in order to maximize the expected 

monetary value.

19.2 Decision Making Using Posterior Probabilities 
We have seen that the expected monetary value criterion tells us to choose the alternative having

the highest expected payoff. In Section 19.1 we computed expected payoffs by using prior prob-

abilities. When we use the expected monetary value criterion to choose the best alternative based

on expected values computed using prior probabilities, we call this prior decision analysis.

Often, however, sample information can be obtained to help us make decisions. In such a case,

we compute expected values by using posterior probabilities, and we call the analysis posterior

decision analysis. In the following example we demonstrate how to carry out posterior analysis.

DS

DS

DS

DS

Make deci-
sions using

posterior analysis
and assess the 
value of sample
information.

LO2

EXAMPLE 19.1 The Oil Drilling Case

Recall from Example 4.18 (pages 183–184) that an oil company wishes to decide whether to drill

for oil on a particular site, and recall that the company has assigned prior probabilities .7, .2, and .1

to the states of nature S1  no oil, S2  some oil, and S3  much oil, respectively. Figure 19.4 on

the next page gives a decision tree and payoff table for a prior analysis of the oil drilling situa-

tion. Here, using the prior probabilities, the expected monetary value associated with drilling is

.7( $700,000)   .2($500,000)   .1($2,000,000)    $190,000

while the expected monetary value associated with not drilling is

.7(0)   .2(0)   .1(0)  0

Therefore, prior analysis tells us that the oil company should not drill.

Next, remember that the oil company can obtain more information about the drilling site

by performing a seismic experiment with three possible readings—low, medium, and high.

The accuracy of the seismic experiment is expressed by the conditional probabilities in part (a)

of Figure 19.5 on page 841. For instance, as explained in Example 4.18, P(high  none)  .04,

P(high  some)  .02, and P(high  much)  .96. Also, recall that we can revise the prior

C



probabilities P(none)  .7, P(some)  .2, and P(much)  .1 to posterior probabilities by using

Bayes’ Theorem. For example, in Example 4.18 we calculated

P(high)   P(none   high)   P(some   high)   P(much   high)

 P(none)P(high  none)   P(some)P(high  some)   P(much)P(high  much)

  (.7)(.04)   (.2)(.02)   (.1)(.96)   .128

Then Bayes’ theorem says that

Similarly, we can compute P(some  high) and P(much  high) as follows.

These calculations are summarized in the probability revision table in Figure 19.5(b). This table

also shows that

P(high)   P(none   high)   P(some   high)   P(much   high)

  .028   .004   .096   .128

Part (c) of Figure 19.5 gives a probability revision table for calculating the probability of a

medium reading and the posterior probabilities of no oil, some oil, and much oil given a medium

reading, while part (d) of Figure 19.5 gives a probability revision table for calculating the prob-

ability of a low reading and the posterior probabilities of no oil, some oil, and much oil given a

low reading. We find that P(medium)   .226 and that P(low)   .646.

Figure 19.6 on page 842 presents a decision tree for a posterior analysis of the oil drilling

problem. The leftmost decision node represents the decision of whether to conduct the seismic

experiment. The upper branch (no seismic survey) contains a second decision node representing

the alternatives in our decision problem (that is, drill or do not drill). At the ends of the “drill” and

“do not drill” branches, we have chance nodes that branch into the three states of nature—no oil

(none), some oil (some), and much oil (much). The appropriate payoff is placed at the rightmost

end of each branch, and since this uppermost branch corresponds to “no seismic survey,” the

probabilities in parentheses for the states of nature are the prior probabilities. The expected pay-

off associated with drilling (which we found to be  $190,000) is shown at the chance node for

the “drill” branch, and the expected payoff associated with not drilling (which we found to be $0)

is shown at the chance node for the “do not drill” branch.
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P(S1   none)   .7

P(low | none)   .91

P(high | none)   .04

P(medium | none)   .05

P(low | some)   .04

P(high | some)   .02

P(medium | some)   .94

P(low | much)   .01

P(high | much)   .96

P(medium | much)   .03

P(S2   some)   .2

P(S3   much)   .1

F I G U R E 1 9 . 5 A Tree Diagram and Probability Revision Tables for Bayes’ Theorem in the Oil 

Drilling Example

(a) A tree diagram illustrating the prior and conditional probabilities

(b) A probability revision table for calculating the probability of a high reading and the posterior probabilities of no oil (S1), some oil
(S2), and much oil (S3) given a high reading

Sj P(Sj) P(high  Sj) P(Sj  high)  P(Sj)P(high  Sj) P(Sj  high)  P(Sj  high)/P(high)

S1  none P(none)   .7 P(high  none)   .04 P(none   high)   .7(.04)   .028 P(none  high)   .028 .128   .21875

S2  some P(some)   .2 P(high  some)   .02 P(some   high)   .2(.02)   .004 P(some  high)   .004 .128   .03125

S3  much P(much)   .1 P(high  much)   .96 P(much   high)   .1(.96)  .096 P(much  high)   .096 .128   .75

Total 1 P(high)   .028   .004   .096   .128 1

(c) A probability revision table for calculating the probability of a medium reading and the posterior probabilities of no oil (S1), some
oil (S2), and much oil (S3) given a medium reading

P(Sj  medium)  P(Sj  medium) 
Sj P(Sj) P(medium  Sj) P(Sj)P(medium  Sj) P(Sj  medium)/P(medium)

S1  none P(none)   .7 P(medium  none)   .05 P(none   medium)   .7(.05)   .035 P(none  medium)  .035 .226  .15487

S2  some P(some)   .2 P(medium  some)   .94 P(some   medium)   .2(.94)   .188 P(some  medium)  .188 .226  .83186

S3  much P(much)   .1 P(medium  much)   .03 P(much   medium)   .1(.03)   .003 P(much  medium) .003 .226  .01327

Total 1 P(medium)   .035   .188   .003   .226 1

(d) A probability revision table for calculating the probability of a low reading and the posterior probabilities of no oil (S1), some oil
(S2) and much oil (S3) given a low reading

Sj P(Sj) P(low  Sj) P(Sj low) P(Sj)P(low  Sj) P(Sj  low) P(Sj low)/P(low)

S1  none P(none)  .7 P(low  none)   .91 P(none   low)   .7(.91)   .637 P(none  low)  .637 .646   .98607

S2  some P(some)  .2 P(low  some)   .04 P(some   low)   .2(.04)   .008 P(some  low)  .008 .646   .01238

S3  much P(much)  .1 P(low  much)   .01 P(much   low)   .1(.01)   .001 P(much  low)  .001 .646   .00155

Total 1 P(low)   .637   .008   .001   .646 1

The lower branch of the decision tree (seismic survey) has an extra chance node that

branches into the three possible outcomes of the seismic experiment—low, medium, and high.

The probabilities of these outcomes are shown on their respective branches. From the low,

medium, and high branches, the tree branches into alternatives (drill and do not drill) and

from alternatives into states of nature (none, some, and much). However, the probabilities in

parentheses written beside the none, some, and much branches are the posterior probabilities

that we computed in the probability revision tables in Figure 19.5. This is because advancing



to the end of a particular branch in the lower part of the decision tree is conditional; that is, it

depends on obtaining a particular experimental result (low, medium, or high).

We can now use the decision tree to determine the alternative (drill or do not drill) that should

be selected given that the seismic experiment has been performed and has resulted in a particular

outcome. First, suppose that the seismic experiment results in a high reading. Looking at the
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branch of the decision tree corresponding to a high reading, the expected monetary values asso-

ciated with the “drill” and “do not drill” alternatives are

Drill: .21875( $700,000)   .03125($500,000)   .75($2,000,000)   $1,362,500

Do not drill: .21875(0)   .03125(0)   .75(0)   $0

These expected monetary values are placed on the decision tree corresponding to the “drill”

and “do not drill” alternatives. They tell us that, if the seismic experiment results in a high

reading, then the company should drill and the expected payoff will be $1,362,500. The dou-

ble slash placed through the “do not drill” branch (at the very bottom of the decision tree)

blocks off that branch and indicates that the company should drill if a high reading is

obtained.

Next, suppose that the seismic experiment results in a medium reading. Looking at the branch

corresponding to a medium reading, the expected monetary values are

Drill: .15487( $700,000)   .83186($500,000)   .01327($2,000,000)   $334,061

Do not drill: .15487($0)   .83186($0)   .01327($0)   $0

Therefore, if the seismic experiment results in a medium reading, the oil company should drill,

and the expected payoff will be $334,061.

Finally, suppose that the seismic experiment results in a low reading. Looking at the branch

corresponding to a low reading, the expected monetary values are

Drill: .98607( $700,000)   .01238($500,000)   .00155($2,000,000)    $680,959

Do not drill: .98607($0)   .01238($0)   .00155($0)   $0

Therefore, if the seismic experiment results in a low reading, the oil company should not drill on

the site.

We can summarize the results of our posterior analysis as follows:

Outcome of Seismic Probability of
Experiment Outcome Decision Expected Payoff

High .128 Drill $1,362,500

Medium .226 Drill $334,061

Low .646 Do not drill $0

If we carry out the seismic experiment, we now know what action should be taken for each

possible outcome (low, medium, or high). However, there is a cost involved when we conduct

the seismic experiment. If, for instance, it costs $100,000 to perform the seismic experiment,

we need to investigate whether it is worth it to perform the experiment. This will depend on the

expected worth of the information provided by the experiment. Naturally, we must decide

whether the experiment is worth it before our posterior analysis is actually done. Therefore, when

we assess the worth of the sample information, we say that we are performing a preposterior

analysis.

In order to assess the worth of the sample information, we compute the expected payoff of

sampling. To calculate this result, we find the expected payoff and the probability of each sample

outcome (that is, at each possible outcome of the seismic experiment). Looking at the decision

tree in Figure 19.6, we find the following:

Experimental Outcome Expected Payoff Probability

Low $0 .646

Medium $334,061 .226

High $1,362,500 .128

Therefore, the expected payoff of sampling, which is denoted EPS, is

EPS   .646($0)   .226($334,061)   .128($1,362,500)   $249,898

To find the worth of the sample information, we compare the expected payoff of sampling to

the expected payoff of no sampling, which is denoted EPNS. The EPNS is the expected pay-

off of the alternative that we would choose by using the expected monetary value criterion with



the prior probabilities. Recalling that we summarized our prior analysis in the tree diagram of

Figure 19.4, we found that (based on the prior probabilities) we should choose not to drill and

that the expected payoff of this action is $0. Therefore, EPNS  $0.

We compare the EPS and the EPNS by computing the expected value of sample informa-

tion, which is denoted EVSI and is defined to be the expected payoff of sampling minus the

expected payoff of no sampling. Therefore,

EVSI  EPS   EPNS   $249,898   $0   $249,898

The EVSI is the expected gain from conducting the seismic experiment, and the oil company

should pay no more than this amount to carry out the seismic experiment. If the experiment costs

$100,000, then it is worth the expense to conduct the experiment. Moreover, the difference

between the EVSI and the cost of sampling is called the expected net gain of sampling, which

is denoted ENGS. Here

ENGS   EVSI   $100,000   $249,898   $100,000   $149,898

As long as the ENGS is greater than $0, it is worthwhile to carry out the seismic experiment. That

is, the oil company should carry out the seismic experiment before it chooses whether or not to

drill. Then, as discussed earlier, our posterior analysis says that if the experiment gives a medium

or high reading, the oil company should drill, and if the experiment gives a low reading, the oil

company should not drill.
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Exercises for Section 19.2
CONCEPTS

19.14 Explain what is meant by each of the following and describe the purpose of each:

a Prior analysis. b Posterior analysis. c Preposterior analysis.

19.15 Define and interpret each of the following:

a Expected payoff of sampling, EPS. c Expected value of sample information, EVSI.

b Expected payoff of no sampling, EPNS. d Expected net gain of sampling, ENGS.

METHODS AND APPLICATIONS

Exercises 19.16 through 19.21 refer to the following situation.

In the book Making Hard Decisions: An Introduction to Decision Analysis (2nd ed.), Robert T. Clemen

presents an example in which an investor wishes to choose between investing money in (1) a high-risk

stock, (2) a low-risk stock, or (3) a savings account. The payoffs received from the two stocks will depend

on the behavior of the stock market—that is, whether the market goes up, stays the same, or goes down

over the investment period. In addition, in order to obtain more information about the market behavior

that might be anticipated during the investment period, the investor can hire an economist as a consultant

who will predict the future market behavior. The results of the consultation will be one of the following

three possibilities: (1) “economist says up,” (2) “economist says flat” (the same), or (3) “economist says

down.” The conditional probabilities that express the ability of the economist to accurately forecast

market behavior are given in the following table: InvDec

True Market State
Economist’s Prediction Up Flat Down

“Economist says up” .80 .15 .20

“Economist says flat” .10 .70 .20

“Economist says down” .10 .15 .60

For instance, using this table we see that P(“economist says up”   market up)  .80. Figure 19.7 gives an

incomplete decision tree for the investor’s situation. Notice that this decision tree gives all relevant pay-

offs and also gives the prior probabilities of up, flat, and down, which are, respectively, 0.5, 0.3, and 0.2.

Using the information provided here, and any needed information on the decision tree of Figure 19.7, do

the following:

DS
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19.16 Identify and list each of the following for the investor’s decision problem: InvDec

a The investor’s alternative actions.

b The states of nature.

c The possible results of sampling (that is, of information gathering).

19.17 Write out the payoff table for the investor’s decision problem. InvDec

19.18 Carry out a prior analysis of the investor’s decision problem. That is, determine the invest-

ment choice that should be made and find the expected monetary value of that choice 

assuming that the investor does not consult the economist about future stock market 

behavior. InvDecDS

DS

DS

High-risk
stock

High-risk stock

Low-risk stock

Savings account

High-risk stock

Low-risk stock

Savings account

High-risk stock

Low-risk stock

Savings account

Low-risk

stock

Market Activity

Market Activity

Up (0.5)

Flat (0.3)

Down (0.2)

Up (0.5)

Flat (0.3)

Down (0.2)

Savings account

Consult
economist

Economist's
Forecast

Up (?)

Flat (?)

Down (?)

Up (?)

Flat (?)

Down (?)

Up (?)

Flat (?)

Down (?)

Up (?)

Flat (?)

Down (?)

Up (?)

Flat (?)

Down (?)

Up (?)

Flat (?)

Down (?)

Economist says
”market up“
(?)

Economist says
”market down“
(?)

Economist says

”market flat“
(?)

1,500

100

 1,000

1,000

200

500

 100

1,500

100

 1,000

1,000

200

 100

1,500

500

100

 1,000

1,000

200

 100

1,500

100

 1,000

1,000

200

 100

500

500

F I G U R E 1 9 . 7 An Incomplete Decision Tree for the Investor’s Decision Problem of Exercises

19.16 through 19.21

Source: From Making Hard Decisions: An Introduction to Decision Analysis, 2nd ed., by R. T. Clemen, © 1996. Reprinted with
permission of Brooks/Cole, an imprint of the Wadsworth Group, a division of Thomson Learning. Fax 800-730-2215. P. 443



19.19 Set up probability revision tables to InvDec

a Find the probability that the “economist says up” and find the posterior probabilities of market

up, market flat, and market down given that the “economist says up.”

b Find the probability that the “economist says flat,” and find the posterior probabilities of

market up, market flat, and market down given that the “economist says flat.”

c Find the probability that the “economist says down,” and find the posterior probabilities of

market up, market flat, and market down given that the “economist says down.”

d Reproduce the decision tree of Figure 19.7 and insert the probabilities you found in parts a, b,

and c in their appropriate locations.

19.20 Carry out a posterior analysis of the investor’s decision problem. That is, determine the

investment choice that should be made and find the expected monetary value of that choice

assuming InvDec

a The economist says “market up.”

b The economist says “market flat.”

c The economist says “market down.”

19.21 Carry out a preposterior analysis of the investor’s decision problem by finding InvDec

a The expected monetary value associated with consulting the economist; that is, find 

the EPS.

b The expected monetary value associated with not consulting the economist; that is, find the

EPNS.

c The expected value of sample information, EVSI.

d The maximum amount the investor should be willing to pay for the economist’s consulting

advice.

Exercises 19.22 through 19.28 refer to the following situation.

A firm designs and manufactures automatic electronic control devices that are installed at customers’

plant sites. The control devices are shipped by truck to customers’ sites; while in transit, the devices

sometimes get out of alignment. More specifically, a device has a prior probability of .10 of getting out

of alignment during shipment. When a control device is delivered to the customer’s plant site, the cus-

tomer can install the device. If the customer installs the device, and if the device is in alignment, the

manufacturer of the control device will realize a profit of $15,000. If the customer installs the device, and

if the device is out of alignment, the manufacturer must dismantle, realign, and reinstall the device

for the customer. This procedure costs $3,000, and therefore the manufacturer will realize a profit of

$12,000. As an alternative to customer installation, the manufacturer can send two engineers to the cus-

tomer’s plant site to check the alignment of the control device, to realign the device if necessary before

installation, and to supervise the installation. Since it is less costly to realign the device before it is

installed, sending the engineers costs $500. Therefore, if the engineers are sent to assist with the instal-

lation, the manufacturer realizes a profit of $14,500 (this is true whether or not the engineers must

realign the device at the site).

Before a control device is installed, a piece of test equipment can be used by the customer to check

the device’s alignment. The test equipment has two readings, “in” or “out” of alignment. Given that

the control device is in alignment, there is a .8 probability that the test equipment will read “in.”

Given that the control device is out of alignment, there is a .9 probability that the test equipment will

read “out.”

19.22 Identify and list each of the following for the control device situation: 

a The firm’s alternative actions.

b The states of nature.

c The possible results of sampling (that is, of information gathering).

19.23 Write out the payoff table for the control device situation.

19.24 Construct a decision tree for a prior analysis of the control device situation. Then determine

whether the engineers should be sent, assuming that the piece of test equipment is not employed

to check the device’s alignment. Also find the expected monetary value associated with the best

alternative action.

19.25 Set up probability revision tables to

a Find the probability that the test equipment “reads in,” and find the posterior probabilities of

in alignment and out of alignment given that the test equipment “reads in.”

b Find the probability that the test equipment “reads out,” and find the posterior probabilities of

in alignment and out of alignment given that the test equipment “reads out.”

19.26 Construct a decision tree for a posterior and preposterior analysis of the control device

situation.

DS

DS

DS
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19.27 Carry out a posterior analysis of the control device problem. That is, decide whether the

engineers should be sent, and find the expected monetary value associated with either sending or

not sending (depending on which is best) the engineers assuming

a The test equipment “reads in.”

b The test equipment “reads out.”

19.28 Carry out a preposterior analysis of the control device problem by finding

a The expected monetary value associated with using the test equipment; that is, find the EPS.

b The expected monetary value associated with not using the test equipment; that is, find the

EPNS.

c The expected value of sample information, EVSI.

d The maximum amount that should be paid for using the test equipment.

19.3 Introduction to Utility Theory 
Suppose that a decision maker is trying to decide whether to invest in one of two opportunities—

Investment 1 or Investment 2—or not to invest in either of these opportunities. As shown in

Table 19.2(a), (b), and (c) on the next page, the expected profits associated with Investment 1,

Investment 2, and no investment are $32,000, $28,000, and $0. Thus, if the decision maker uses

expected profit as a decision criterion, and decides to choose no more than one investment, the de-

cision maker should choose Investment 1. However, as discussed earlier, the expected profit for

an investment is the long-run average profit that would be realized if many identical investments

could be made. If the decision maker will make only a limited number of investments (perhaps

because of limited capital), he or she will not realize the expected profit. For example, a single

undertaking of Investment 1 will result in either a profit of $50,000, a profit of $10,000, or a loss

of $20,000. Some decision makers might prefer a single undertaking of Investment 2, because the

potential loss is only $10,000. Other decision makers might be unwilling to risk $10,000 and

would choose no investment.

There is a way to combine the various profits, probabilities, and the decision maker’s individ-

ual attitude toward risk to make a decision that is best for the decision maker. The method is based

on a theory of utility discussed by J. Von Neumann and O. Morgenstern in Theory of Games and

Economic Behavior (Princeton University Press, Princeton, N. J., 1st ed., 1944, 2nd ed., 1947).

This theory says that if a decision maker agrees with certain assumptions about rational behavior

(we will not discuss the assumptions here), then the decision maker should replace the profits in

the various investments by utilities and choose the investment that gives the highest expected

utility. To find the utility of a particular profit, we first arrange the profits from largest to small-

est. The utility of the largest profit is 1 and the utility of the smallest profit is 0. The utility of any

particular intermediate profit is the probability, call it u, such that the decision maker is indiffer-

ent between (1) getting the particular intermediate profit with certainty and (2) playing a lottery

(or game) in which the probability is u of getting the highest profit and the probability is 1  u of

getting the smallest profit. Table 19.2(d) arranges the profits in Table 19.2(a), (b), and (c) in

increasing order and gives a specific decision maker’s utility for each profit. The utility of .95 for

$40,000 means that the decision maker is indifferent between (1) getting $40,000 with certainty

and (2) playing a lottery in which the probability is .95 of getting $50,000 and the probability is

.05 of losing $20,000. The utilities for the other profits are interpreted similarly. Table 19.2(f),

(g), and (h) show the investments with profits replaced by utilities. Since Investment 2 has the

highest expected utility, the decision maker should choose Investment 2.

Table 19.2(e) shows a plot of the specific decision maker’s utilities versus the profits. The

curve connecting the plot points is the utility curve for the decision maker. This curve is an

example of a risk averter’s curve. In general, a risk averter’s curve portrays a rapid increase in

utility for initial amounts of money followed by a gradual leveling off for larger amounts of

money. This curve is appropriate for many individuals or businesses because the marginal value

of each additional dollar is not as great once a large amount of money has been earned. A risk

averter’s curve is shown on the page margin, as are a risk seeker’s curve and a risk neutral’s

curve. The risk seeker’s curve represents an individual who is willing to take large risks to have

the opportunity to make large profits. The risk neutral curve represents an individual for whom

each additional dollar has the same value. It can be shown that this individual should choose the

investment having the highest expected profit.

Utility

Dollar amount

A risk averter’s curve:

Make deci-
sions using

utility theory.

LO3

Utility

Dollar amount

A risk seeker’s curve:

Utility

Dollar amount

A risk neutral’s curve:
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Exercises for Section 19.3
CONCEPTS

19.29 What is a utility?

19.30 What is a risk averter? A risk seeker? A risk neutral?

METHODS AND APPLICATIONS

19.31 Suppose that a decision maker has the opportunity to invest in an oil well drilling operation that

has a .3 chance of yielding a profit of $1,000,000, a .4 chance of yielding a profit of $400,000,

and a .3 chance of yielding a profit of  $100,000. Also, suppose that the decision maker’s

utilities for $400,000 and $0 are .9 and .7. Explain the meanings of these utilities.

19.32 Consider Exercise 19.31. Find the expected utility of the oil well drilling operation. Find the

expected utility of not investing. What should the decision maker do if he/she wishes to

maximize expected utility?

Chapter Summary

In Section 19.1 we presented an introduction to decision theory.

We saw that a decision problem involves states of nature,

alternatives, payoffs, and decision criteria, and we considered

three degrees of uncertainty—certainty, uncertainty, and risk. In

the case of certainty, we know which state of nature will actually

occur. Here we simply choose the alternative that gives the best

payoff. In the case of uncertainty, we have no information about

the likelihood of the different states of nature. Here we discussed

two commonly used decision criteria—the maximin criterion

and the maximax criterion. In the case of risk, we are able to

estimate the probability of occurrence for each state of nature. In

this case we learned how to use the expected monetary value

criterion. We also learned how to construct a decision tree in

Section 19.1, and we saw how to use such a tree to analyze a deci-

sion problem. In Section 19.2 we learned how to make decisions

by using posterior probabilities. We explained how to perform a

posterior analysis to determine the best alternative for each of

several sampling results. Then we showed how to carry out a pre-

posterior analysis, which allows us to assess the worth of sample

information. In particular, we saw how to obtain the expected

value of sample information. This quantity is the expected gain

from sampling, which tells us the maximum amount we should be

willing to pay for sample information. We concluded this chapter

with Section 19.3, which introduced using utility theory to help

make decisions.

(a) Investment 1 Profits

Profit Probability

$50,000 .7

$10,000 .1

 $20,000 .2

Expected profit  50,000(.7)  10,000(.1)  
( 20,000)(.2)  32,000

(d) Utilities

Profit Utility

$50,000 1

$40,000 .95

$30,000 .90

$10,000 .75

$0 .60

 $10,000 .45

 $20,000 0(b) Investment 2 Profits

Profit Probability

$40,000 .6

$30,000 .2

 $10,000 .2

Expected profit  40,000(.6)  30,000(.2)  
( 10,000)(.2)  28,000

(c) No Investment Profit

Profit Probability

$0 1

Expected profit  0(1)  0

(h) No Investment Utility

Utility Probability

.60 1

Expected utility  .60(1)  .60

(g) Investment 2 Utilities

Utility Probability

.95 .6

.90 .2

.45 .2

Expected utility  .95(.6)  .90(.2)  
.45(.2)  .84

(e) A Utility Curve 

(f) Investment 1 Utilities

Utility Probability

1 .7

.75 .1

0 .2

Expected utility  1(.7)  .75(.1)  
0(.2)  .775

.1

.5

1

 20 0

0

50

Utility

Profit (in units of $1,000)

T A B L E 1 9 . 2 Three Possible Investments and Their Expected Utilities
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Glossary of Terms

alternatives: Several alternative actions for a decision maker to

choose from. (page 833)

certainty: When we know for certain which state of nature will

actually occur. (page 834)

decision criterion: A rule used to make a decision. (page 834)

decision theory: An approach that helps decision makers to

make intelligent choices. (page 833)

decision tree: A diagram consisting of nodes and branches that

depicts the information for a decision problem. (pages 835, 836)

expected monetary value criterion: A decision criterion in

which one computes the expected monetary payoff for each alter-

native and then chooses the alternative yielding the largest

expected payoff. (page 835)

expected net gain of sampling: The difference between the

expected value of sample information and the cost of sampling. 

If this quantity is positive, it is worth it to perform sampling.

(page 844)

expected value of perfect information: The difference between

the expected payoff under certainty and the expected payoff

under risk. (page 837)

expected value of sample information: The difference between

the expected payoff of sampling and the expected payoff of no

sampling. This measures the expected gain from sampling.

(page 844)

maximax criterion: A decision criterion in which one finds the

best possible payoff for each alternative and then chooses the

alternative that yields the maximum best possible payoff. (page 835)

maximin criterion: A decision criterion in which one finds the

worst possible payoff for each alternative and then chooses the

alternative that yields the maximum worst possible payoff.

(page 835)

payoff table: A tabular summary of the payoffs in a decision

problem. (page 833)

perfect information: Information that tells us exactly which

state of nature will occur. (page 837)

posterior decision analysis: Using a decision criterion based on

posterior probabilities to choose the best alternative in a decision

problem. (page 839)

preposterior analysis: When we assess the worth of sample

information before performing a posterior decision analysis.

(page 843)

prior decision analysis: Using a decision criterion based on

prior probabilities to choose the best alternative in a decision

problem. (page 839)

risk: When the likelihood (probability) of each state of nature

can be estimated. (page 834)

states of nature: A set of potential future conditions that will

affect the results of a decision. (page 833)

uncertainty: When we have no information about the likeli-

hoods of the various states of nature. (page 834)

utility: A measure of monetary value based on an individual’s

attitude toward risk. (pages 847–848)

Important Formulas

Probability revision table: page 840

Maximin criterion: page 835

Maximax criterion: page 835

Expected monetary value criterion: page 835

Decision tree: pages 835, 836

Expected value of perfect information: page 837

Expected payoff of sampling: page 843

Expected payoff of no sampling: page 843

Expected value of sample information: page 844

Expected net gain of sampling: page 844

Expected utility: page 847

Supplementary Exercises

19.33 In the book Making Hard Decisions: An Introduction to Decision Analysis, Robert T. Clemen

presents a decision tree for a research and development decision (note that payoffs are given in

millions of dollars, which is denoted by M). Based on this decision tree (shown in Figure 19.8 on

the next page), answer the following:

a Should development of the research project be continued or stopped? Justify your answer by

using relevant calculations, and explain your reasoning.

b If development is continued and if a patent is awarded, should the new technology be

licensed, or should the company develop production and marketing to sell the product

directly? Justify your answer by using relevant calculations and explain your reasoning.

19.34 In the book Production/Operations Management, William J. Stevenson presents a decision tree

concerning a firm’s decision about the size of a production facility. This decision tree is given in

Figure 19.9 on the next page (payoffs are given in millions of dollars). Use the decision tree to

determine which alternative (build small or build large) should be chosen in order to maximize

the expected monetary payoff. What is the expected monetary payoff associated with the best

alternative?



19.35 Consider the decision tree in Figure 19.9 and the situation described in Exercise 19.34. Suppose

that a marketing research study can be done to obtain more information about whether demand

will be high or low. The marketing research study will result in one of two outcomes: “favorable”

(indicating that demand will be high) or “unfavorable” (indicating that demand will be low). The

accuracy of marketing research studies like the one to be carried out can be expressed by the

conditional probabilities in the following table:

True Demand
Study Outcome High Low

Favorable .9 .2

Unfavorable .1 .8

For instance, P(favorable  high)  .9 and P(unfavorable  low)  .8. Given the prior probabilities

and payoffs in Figure 19.9, do the following:

850 Chapter 19 Decision Theory

Continue
development

Stop development

Patent
awarded
p   0.7

No patent
p   0.3

License
technology

$23M

 $2M

$0

$43M

$21M

$3M

Demand high
p   0.25

Develop production
and marketing to sell
product directly

Demand medium
p   0.55

Demand low
p   0.20

F I G U R E 1 9 . 8 A Decision Tree for a Research and Development Decision for Exercise 19.33

Source: A Decision Tree from Making Hard Decisions: An Introduction to Decision Analysis, 2nd Edition by R. T. Clemen, 
© 1996. Reprinted with permission of Brooks/Cole, a division of Thomson Learning. Fax 800-730-2215. P. 77

Build
 sm

all

Build large

Low demand (.4
)

High demand (.6)

Low demand (.4
)

High demand (.6)

$40

$40

$50

$55

 $10

$50

$70

Do nothing

Do nothing

Overtime

Expand

Reduce prices

F I G U R E 1 9 . 9 A Decision Tree for a Production Facility Decision for Exercises 19.34 and 19.35

Source: Decision tree from W. J. Stevenson, Production/Operations Management, 6/e, p. 70, © 1999 McGraw-Hill 
Companies, Inc.
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a Carry out a posterior analysis. Find the best alternative (build small or build large) for each

possible study result (favorable or unfavorable), and find the associated expected payoffs.

b Carry out a preposterior analysis. Determine the maximum amount that should be paid for the

marketing research study.

19.36 THE OIL DRILLING CASE DrillTst

Again consider the oil drilling case that was described in Example 19.1. Recall that the oil com-

pany wishes to decide whether to drill and that the prior probabilities of no oil, some oil, and

much oil are P(none)  .7, P(some)  .2, and P(much)  .1. Suppose that, instead of performing

the seismic survey to obtain more information about the site, the oil company can perform a

cheaper magnetic experiment having two possible results: a high reading and a low reading. The

past performance of the magnetic experiment can be summarized as follows:

Magnetic State of Nature
Experiment Result None Some Much

Low reading .8 .4 .1

High reading .2 .6 .9

Here, for example, P(low  none)  .8 and P(high  some)  .6. Recalling that the payoffs

associated with no oil, some oil, and much oil are  $700,000, $500,000, and $2,000,000,

respectively, do the following:

a Draw a decision tree for this decision problem.

b Carry out a posterior analysis. Find the best alternative (drill or do not drill) for each possible

result of the magnetic experiment (low or high), and find the associated expected payoffs.

c Carry out a preposterior analysis. Determine the maximum amount that should be paid for the

magnetic experiment.

19.37 In an exercise in the book Production/Operations Management, 5th ed. (1996),William ThmPark

J. Stevenson considers a theme park whose lease is about to expire. The theme park’s management

wishes to decide whether to renew its lease for another 10 years or relocate near the site of a new

motel complex. The town planning board is debating whether to approve the motel complex. A

consultant estimates the payoffs of the theme park’s alternatives under each state of nature as

shown in the following payoff table:

Theme Park Options Motel Approved Motel Rejected

Renew lease $500,000 $4,000,000

Relocate $5,000,000 $100,000

a What alternative should the theme park choose if it uses the maximax criterion? What is the

resulting payoff of this choice?

b What alternative should the theme park choose if it uses the maximin criterion? What is the

resulting payoff of this choice?

19.38 Again consider the situation described in Exercise 19.37, and suppose that management believes

there is a .35 probability that the motel complex will be approved.

a Draw a decision tree for the theme park’s decision problem.

b Which alternative should be chosen if the theme park uses the maximum expected monetary

value criterion? What is the expected monetary payoff for this choice?

c Suppose that management is offered the option of a temporary lease while the planning board

decides whether to approve the motel complex. If the lease costs $100,000, should the theme

park’s management sign the lease? Justify your answer.

DS

DS
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T A B L E A . 1 A Binomial Probability Table:

Binomial Probabilities (n between 2 and 6)

n  2 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .9025 .8100 .7225 .6400 .5625 .4900 .4225 .3600 .3025 .2500 2

1 .0950 .1800 .2550 .3200 .3750 .4200 .4550 .4800 .4950 .5000 1

2 .0025 .0100 .0225 .0400 .0625 .0900 .1225 .1600 .2025 .2500 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑

n  3 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .8574 .7290 .6141 .5120 .4219 .3430 .2746 .2160 .1664 .1250 3

1 .1354 .2430 .3251 .3840 .4219 .4410 .4436 .4320 .4084 .3750 2

2 .0071 .0270 .0574 .0960 .1406 .1890 .2389 .2880 .3341 .3750 1

3 .0001 .0010 .0034 .0080 .0156 .0270 .0429 .0640 .0911 .1250 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑

n  4 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .8145 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915 .0625 4

1 .1715 .2916 .3685 .4096 .4219 .4116 .3845 .3456 .2995 .2500 3

2 .0135 .0486 .0975 .1536 .2109 .2646 .3105 .3456 .3675 .3750 2

3 .0005 .0036 .0115 .0256 .0469 .0756 .1115 .1536 .2005 .2500 1

4 .0000 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑

n  5 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .7738 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0313 5

1 .2036 .3281 .3915 .4096 .3955 .3602 .3124 .2592 .2059 .1563 4

2 .0214 .0729 .1382 .2048 .2637 .3087 .3364 .3456 .3369 .3125 3

3 .0011 .0081 .0244 .0512 .0879 .1323 .1811 .2304 .2757 .3125 2

4 .0000 .0005 .0022 .0064 .0146 .0284 .0488 .0768 .1128 .1563 1

5 .0000 .0000 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0313 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑

n  6 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .7351 .5314 .3771 .2621 .1780 .1176 .0754 .0467 .0277 .0156 6

1 .2321 .3543 .3993 .3932 .3560 .3025 .2437 .1866 .1359 .0938 5

2 .0305 .0984 .1762 .2458 .2966 .3241 .3280 .3110 .2780 .2344 4

3 .0021 .0146 .0415 .0819 .1318 .1852 .2355 .2765 .3032 .3125 3

4 .0001 .0012 .0055 .0154 .0330 .0595 .0951 .1382 .1861 .2344 2

5 .0000 .0001 .0004 .0015 .0044 .0102 .0205 .0369 .0609 .0938 1

6 .0000 .0000 .0000 .0001 .0002 .0007 .0018 .0041 .0083 .0156 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑

(table continued)
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T A B L E A . 1 (continued)

Binomial Probabilities (n between 7 and 10)

n  7 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .6983 .4783 .3206 .2097 .1335 .0824 .0490 .0280 .0152 .0078 7

1 .2573 .3720 .3960 .3670 .3115 .2471 .1848 .1306 .0872 .0547 6

2 .0406 .1240 .2097 .2753 .3115 .3177 .2985 .2613 .2140 .1641 5

3 .0036 .0230 .0617 .1147 .1730 .2269 .2679 .2903 .2918 .2734 4

4 .0002 .0026 .0109 .0287 .0577 .0972 .1442 .1935 .2388 .2734 3

5 .0000 .0002 .0012 .0043 .0115 .0250 .0466 .0774 .1172 .1641 2

6 .0000 .0000 .0001 .0004 .0013 .0036 .0084 .0172 .0320 .0547 1

7 .0000 .0000 .0000 .0000 .0001 .0002 .0006 .0016 .0037 .0078 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑

n  8 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .6634 .4305 .2725 .1678 .1001 .0576 .0319 .0168 .0084 .0039 8

1 .2793 .3826 .3847 .3355 .2670 .1977 .1373 .0896 .0548 .0313 7

2 .0515 .1488 .2376 .2936 .3115 .2965 .2587 .2090 .1569 .1094 6

3 .0054 .0331 .0839 .1468 .2076 .2541 .2786 .2787 .2568 .2188 5

4 .0004 .0046 .0185 .0459 .0865 .1361 .1875 .2322 .2627 .2734 4

5 .0000 .0004 .0026 .0092 .0231 .0467 .0808 .1239 .1719 .2188 3

6 .0000 .0000 .0002 .0011 .0038 .0100 .0217 .0413 .0703 .1094 2

7 .0000 .0000 .0000 .0001 .0004 .0012 .0033 .0079 .0164 .0313 1

8 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑

n  9 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .6302 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046 .0020 9

1 .2985 .3874 .3679 .3020 .2253 .1556 .1004 .0605 .0339 .0176 8

2 .0629 .1722 .2597 .3020 .3003 .2668 .2162 .1612 .1110 .0703 7

3 .0077 .0446 .1069 .1762 .2336 .2668 .2716 .2508 .2119 .1641 6

4 .0006 .0074 .0283 .0661 .1168 .1715 .2194 .2508 .2600 .2461 5

5 .0000 .0008 .0050 .0165 .0389 .0735 .1181 .1672 .2128 .2461 4

6 .0000 .0001 .0006 .0028 .0087 .0210 .0424 .0743 .1160 .1641 3

7 .0000 .0000 .0000 .0003 .0012 .0039 .0098 .0212 .0407 .0703 2

8 .0000 .0000 .0000 .0000 .0001 .0004 .0013 .0035 .0083 .0176 1

9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0008 .0020 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑

n  10 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .5987 .3487 .1969 .1074 .0563 .0282 .0135 .0060 .0025 .0010 10

1 .3151 .3874 .3474 .2684 .1877 .1211 .0725 .0403 .0207 .0098 9

2 .0746 .1937 .2759 .3020 .2816 .2335 .1757 .1209 .0763 .0439 8

3 .0105 .0574 .1298 .2013 .2503 .2668 .2522 .2150 .1665 .1172 7

4 .0010 .0112 .0401 .0881 .1460 .2001 .2377 .2508 .2384 .2051 6

5 .0001 .0015 .0085 .0264 .0584 .1029 .1536 .2007 .2340 .2461 5

6 .0000 .0001 .0012 .0055 .0162 .0368 .0689 .1115 .1596 .2051 4

7 .0000 .0000 .0001 .0008 .0031 .0090 .0212 .0425 .0746 .1172 3

8 .0000 .0000 .0000 .0001 .0004 .0014 .0043 .0106 .0229 .0439 2

9 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0016 .0042 .0098 1

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑
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T A B L E A . 1 (continued)

Binomial Probabilities (n equal to 12, 14, and 15)

n  12 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .5404 .2824 .1422 .0687 .0317 .0138 .0057 .0022 .0008 .0002 12

1 .3413 .3766 .3012 .2062 .1267 .0712 .0368 .0174 .0075 .0029 11

2 .0988 .2301 .2924 .2835 .2323 .1678 .1088 .0639 .0339 .0161 10

3 .0173 .0852 .1720 .2362 .2581 .2397 .1954 .1419 .0923 .0537 9

4 .0021 .0213 .0683 .1329 .1936 .2311 .2367 .2128 .1700 .1208 8

5 .0002 .0038 .0193 .0532 .1032 .1585 .2039 .2270 .2225 .1934 7

6 .0000 .0005 .0040 .0155 .0401 .0792 .1281 .1766 .2124 .2256 6

7 .0000 .0000 .0006 .0033 .0115 .0291 .0591 .1009 .1489 .1934 5

8 .0000 .0000 .0001 .0005 .0024 .0078 .0199 .0420 .0762 .1208 4

9 .0000 .0000 .0000 .0001 .0004 .0015 .0048 .0125 .0277 .0537 3

10 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0025 .0068 .0161 2

11 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0029 1

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑

n  14 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .4877 .2288 .1028 .0440 .0178 .0068 .0024 .0008 .0002 .0001 14

1 .3593 .3559 .2539 .1539 .0832 .0407 .0181 .0073 .0027 .0009 13

2 .1229 .2570 .2912 .2501 .1802 .1134 .0634 .0317 .0141 .0056 12

3 .0259 .1142 .2056 .2501 .2402 .1943 .1366 .0845 .0462 .0222 11

4 .0037 .0349 .0998 .1720 .2202 .2290 .2022 .1549 .1040 .0611 10

5 .0004 .0078 .0352 .0860 .1468 .1963 .2178 .2066 .1701 .1222 9

6 .0000 .0013 .0093 .0322 .0734 .1262 .1759 .2066 .2088 .1833 8

7 .0000 .0002 .0019 .0092 .0280 .0618 .1082 .1574 .1952 .2095 7

8 .0000 .0000 .0003 .0020 .0082 .0232 .0510 .0918 .1398 .1833 6

9 .0000 .0000 .0000 .0003 .0018 .0066 .0183 .0408 .0762 .1222 5

10 .0000 .0000 .0000 .0000 .0003 .0014 .0049 .0136 .0312 .0611 4

11 .0000 .0000 .0000 .0000 .0000 .0002 .0010 .0033 .0093 .0222 3

12 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0019 .0056 2

13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0009 1

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑

n  15 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .4633 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001 .0000 15

1 .3658 .3432 .2312 .1319 .0668 .0305 .0126 .0047 .0016 .0005 14

2 .1348 .2669 .2856 .2309 .1559 .0916 .0476 .0219 .0090 .0032 13

3 .0307 .1285 .2184 .2501 .2252 .1700 .1110 .0634 .0318 .0139 12

4 .0049 .0428 .1156 .1876 .2252 .2186 .1792 .1268 .0780 .0417 11

5 .0006 .0105 .0449 .1032 .1651 .2061 .2123 .1859 .1404 .0916 10

6 .0000 .0019 .0132 .0430 .0917 .1472 .1906 .2066 .1914 .1527 9

7 .0000 .0003 .0030 .0138 .0393 .0811 .1319 .1771 .2013 .1964 8

8 .0000 .0000 .0005 .0035 .0131 .0348 .0710 .1181 .1647 .1964 7

9 .0000 .0000 .0001 .0007 .0034 .0116 .0298 .0612 .1048 .1527 6

10 .0000 .0000 .0000 .0001 .0007 .0030 .0096 .0245 .0515 .0916 5

11 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0074 .0191 .0417 4

12 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052 .0139 3

13 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0032 2

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 1

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑

(table continued)
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T A B L E A . 1 (continued)

Binomial Probabilities (n equal to 16 and 18)

n  16 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .4401 .1853 .0743 .0281 .0100 .0033 .0010 .0003 .0001 .0000 16

1 .3706 .3294 .2097 .1126 .0535 .0228 .0087 .0030 .0009 .0002 15

2 .1463 .2745 .2775 .2111 .1336 .0732 .0353 .0150 .0056 .0018 14

3 .0359 .1423 .2285 .2463 .2079 .1465 .0888 .0468 .0215 .0085 13

4 .0061 .0514 .1311 .2001 .2252 .2040 .1553 .1014 .0572 .0278 12

5 .0008 .0137 .0555 .1201 .1802 .2099 .2008 .1623 .1123 .0667 11

6 .0001 .0028 .0180 .0550 .1101 .1649 .1982 .1983 .1684 .1222 10

7 .0000 .0004 .0045 .0197 .0524 .1010 .1524 .1889 .1969 .1746 9

8 .0000 .0001 .0009 .0055 .0197 .0487 .0923 .1417 .1812 .1964 8

9 .0000 .0000 .0001 .0012 .0058 .0185 .0442 .0840 .1318 .1746 7

10 .0000 .0000 .0000 .0002 .0014 .0056 .0167 .0392 .0755 .1222 6

11 .0000 .0000 .0000 .0000 .0002 .0013 .0049 .0142 .0337 .0667 5

12 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0040 .0115 .0278 4

13 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0029 .0085 3

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0018 2

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 1

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑

n  18 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .3972 .1501 .0536 .0180 .0056 .0016 .0004 .0001 .0000 .0000 18

1 .3763 .3002 .1704 .0811 .0338 .0126 .0042 .0012 .0003 .0001 17

2 .1683 .2835 .2556 .1723 .0958 .0458 .0190 .0069 .0022 .0006 16

3 .0473 .1680 .2406 .2297 .1704 .1046 .0547 .0246 .0095 .0031 15

4 .0093 .0700 .1592 .2153 .2130 .1681 .1104 .0614 .0291 .0117 14

5 .0014 .0218 .0787 .1507 .1988 .2017 .1664 .1146 .0666 .0327 13

6 .0002 .0052 .0301 .0816 .1436 .1873 .1941 .1655 .1181 .0708 12

7 .0000 .0010 .0091 .0350 .0820 .1376 .1792 .1892 .1657 .1214 11

8 .0000 .0002 .0022 .0120 .0376 .0811 .1327 .1734 .1864 .1669 10

9 .0000 .0000 .0004 .0033 .0139 .0386 .0794 .1284 .1694 .1855 9

10 .0000 .0000 .0001 .0008 .0042 .0149 .0385 .0771 .1248 .1669 8

11 .0000 .0000 .0000 .0001 .0010 .0046 .0151 .0374 .0742 .1214 7

12 .0000 .0000 .0000 .0000 .0002 .0012 .0047 .0145 .0354 .0708 6

13 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0045 .0134 .0327 5

14 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0039 .0117 4

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0009 .0031 3

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006 2

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 1

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑
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T A B L E A . 1 (concluded)

Binomial Probabilities (n equal to 20)

n  20 p

x↓ .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

0 .3585 .1216 .0388 .0115 .0032 .0008 .0002 .0000 .0000 .0000 20

1 .3774 .2702 .1368 .0576 .0211 .0068 .0020 .0005 .0001 .0000 19

2 .1887 .2852 .2293 .1369 .0669 .0278 .0100 .0031 .0008 .0002 18

3 .0596 .1901 .2428 .2054 .1339 .0716 .0323 .0123 .0040 .0011 17

4 .0133 .0898 .1821 .2182 .1897 .1304 .0738 .0350 .0139 .0046 16

5 .0022 .0319 .1028 .1746 .2023 .1789 .1272 .0746 .0365 .0148 15

6 .0003 .0089 .0454 .1091 .1686 .1916 .1712 .1244 .0746 .0370 14

7 .0000 .0020 .0160 .0545 .1124 .1643 .1844 .1659 .1221 .0739 13

8 .0000 .0004 .0046 .0222 .0609 .1144 .1614 .1797 .1623 .1201 12

9 .0000 .0001 .0011 .0074 .0271 .0654 .1158 .1597 .1771 .1602 11

10 .0000 .0000 .0002 .0020 .0099 .0308 .0686 .1171 .1593 .1762 10

11 .0000 .0000 .0000 .0005 .0030 .0120 .0336 .0710 .1185 .1602 9

12 .0000 .0000 .0000 .0001 .0008 .0039 .0136 .0355 .0727 .1201 8

13 .0000 .0000 .0000 .0000 .0002 .0010 .0045 .0146 .0366 .0739 7

14 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0049 .0150 .0370 6

15 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0049 .0148 5

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0046 4

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011 3

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 2

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50 x↑

Source: Binomial Probability Table from STATISTICAL THINKING FOR MANAGERS, 3rd Edition by D. K. Hildebrand & L. Ott, © 1991.

Reprinted with permission of South-Western, a division of Thomson Learning, www.thomsonrights.com. Fax 800 730-2215.

T A B L E A . 2 A Poisson Probability Table 

Poisson Probabilities (M between .1 and 2.0)

M

x .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

0 .9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066 .3679

1 .0905 .1637 .2222 .2681 .3033 .3293 .3476 .3595 .3659 .3679

2 .0045 .0164 .0333 .0536 .0758 .0988 .1217 .1438 .1647 .1839

3 .0002 .0011 .0033 .0072 .0126 .0198 .0284 .0383 .0494 .0613

4 .0000 .0001 .0003 .0007 .0016 .0030 .0050 .0077 .0111 .0153

5 .0000 .0000 .0000 .0001 .0002 .0004 .0007 .0012 .0020 .0031

6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0005

M

x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 .3329 .3012 .2725 .2466 .2231 .2019 .1827 .1653 .1496 .1353

1 .3662 .3614 .3543 .3452 .3347 .3230 .3106 .2975 .2842 .2707

2 .2014 .2169 .2303 .2417 .2510 .2584 .2640 .2678 .2700 .2707

3 .0738 .0867 .0998 .1128 .1255 .1378 .1496 .1607 .1710 .1804

4 .0203 .0260 .0324 .0395 .0471 .0551 .0636 .0723 .0812 .0902

5 .0045 .0062 .0084 .0111 .0141 .0176 .0216 .0260 .0309 .0361

6 .0008 .0012 .0018 .0026 .0035 .0047 .0061 .0078 .0098 .0120

7 .0001 .0002 .0003 .0005 .0008 .0011 .0015 .0020 .0027 .0034

8 .0000 .0000 .0001 .0001 .0001 .0002 .0003 .0005 .0006 .0009

(table continued)
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T A B L E A . 2 (continued) 

Poisson Probabilities (M between 2.1 and 5.0)

M

x 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 .1225 .1108 .1003 .0907 .0821 .0743 .0672 .0608 .0550 .0498

1 .2572 .2438 .2306 .2177 .2052 .1931 .1815 .1703 .1596 .1494

2 .2700 .2681 .2652 .2613 .2565 .2510 .2450 .2384 .2314 .2240

3 .1890 .1966 .2033 .2090 .2138 .2176 .2205 .2225 .2237 .2240

4 .0992 .1082 .1169 .1254 .1336 .1414 .1488 .1557 .1622 .1680

5 .0417 .0476 .0538 .0602 .0668 .0735 .0804 .0872 .0940 .1008

6 .0146 .0174 .0206 .0241 .0278 .0319 .0362 .0407 .0455 .0504

7 .0044 .0055 .0068 .0083 .0099 .0118 .0139 .0163 .0188 .0216

8 .0011 .0015 .0019 .0025 .0031 .0038 .0047 .0057 .0068 .0081

9 .0003 .0004 .0005 .0007 .0009 .0011 .0014 .0018 .0022 .0027

10 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0005 .0006 .0008

11 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0002

M

x 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 .0450 .0408 .0369 .0334 .0302 .0273 .0247 .0224 .0202 .0183

1 .1397 .1304 .1217 .1135 .1057 .0984 .0915 .0850 .0789 .0733

2 .2165 .2087 .2008 .1929 .1850 .1771 .1692 .1615 .1539 .1465

3 .2237 .2226 .2209 .2186 .2158 .2125 .2087 .2046 .2001 .1954

4 .1733 .1781 .1823 .1858 .1888 .1912 .1931 .1944 .1951 .1954

5 .1075 .1140 .1203 .1264 .1322 .1377 .1429 .1477 .1522 .1563

6 .0555 .0608 .0662 .0716 .0771 .0826 .0881 .0936 .0989 .1042

7 .0246 .0278 .0312 .0348 .0385 .0425 .0466 .0508 .0551 .0595

8 .0095 .0111 .0129 .0148 .0169 .0191 .0215 .0241 .0269 .0298

9 .0033 .0040 .0047 .0056 .0066 .0076 .0089 .0102 .0116 .0132

10 .0010 .0013 .0016 .0019 .0023 .0028 .0033 .0039 .0045 .0053

11 .0003 .0004 .0005 .0006 .0007 .0009 .0011 .0013 .0016 .0019

12 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005 .0006

13 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002

M

x 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

0 .0166 .0150 .0136 .0123 .0111 .0101 .0091 .0082 .0074 .0067

1 .0679 .0630 .0583 .0540 .0500 .0462 .0427 .0395 .0365 .0337

2 .1393 .1323 .1254 .1188 .1125 .1063 .1005 .0948 .0894 .0842

3 .1904 .1852 .1798 .1743 .1687 .1631 .1574 .1517 .1460 .1404

4 .1951 .1944 .1933 .1917 .1898 .1875 .1849 .1820 .1789 .1755

5 .1600 .1633 .1662 .1687 .1708 .1725 .1738 .1747 .1753 .1755

6 .1093 .1143 .1191 .1237 .1281 .1323 .1362 .1398 .1432 .1462

7 .0640 .0686 .0732 .0778 .0824 .0869 .0914 .0959 .1002 .1044

8 .0328 .0360 .0393 .0428 .0463 .0500 .0537 .0575 .0614 .0653

9 .0150 .0168 .0188 .0209 .0232 .0255 .0281 .0307 .0334 .0363

10 .0061 .0071 .0081 .0092 .0104 .0118 .0132 .0147 .0164 .0181

11 .0023 .0027 .0032 .0037 .0043 .0049 .0056 .0064 .0073 .0082

12 .0008 .0009 .0011 .0013 .0016 .0019 .0022 .0026 .0030 .0034

13 .0002 .0003 .0004 .0005 .0006 .0007 .0008 .0009 .0011 .0013

14 .0001 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005

15 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0002
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T A B L E A . 2 (concluded) 

Poisson Probabilities (M between 5.5 and 20.0)

M

x 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

0 .0041 .0025 .0015 .0009 .0006 .0003 .0002 .0001 .0001 .0000

1 .0225 .0149 .0098 .0064 .0041 .0027 .0017 .0011 .0007 .0005

2 .0618 .0446 .0318 .0223 .0156 .0107 .0074 .0050 .0034 .0023

3 .1133 .0892 .0688 .0521 .0389 .0286 .0208 .0150 .0107 .0076

4 .1558 .1339 .1118 .0912 .0729 .0573 .0443 .0337 .0254 .0189

5 .1714 .1606 .1454 .1277 .1094 .0916 .0752 .0607 .0483 .0378

6 .1571 .1606 .1575 .1490 .1367 .1221 .1066 .0911 .0764 .0631

7 .1234 .1377 .1462 .1490 .1465 .1396 .1294 .1171 .1037 .0901

8 .0849 .1033 .1188 .1304 .1373 .1396 .1375 .1318 .1232 .1126

9 .0519 .0688 .0858 .1014 .1144 .1241 .1299 .1318 .1300 .1251

10 .0285 .0413 .0558 .0710 .0858 .0993 .1104 .1186 .1235 .1251

11 .0143 .0225 .0330 .0452 .0585 .0722 .0853 .0970 .1067 .1137

12 .0065 .0113 .0179 .0263 .0366 .0481 .0604 .0728 .0844 .0948

13 .0028 .0052 .0089 .0142 .0211 .0296 .0395 .0504 .0617 .0729

14 .0011 .0022 .0041 .0071 .0113 .0169 .0240 .0324 .0419 .0521

15 .0004 .0009 .0018 .0033 .0057 .0090 .0136 .0194 .0265 .0347

16 .0001 .0003 .0007 .0014 .0026 .0045 .0072 .0109 .0157 .0217

17 .0000 .0001 .0003 .0006 .0012 .0021 .0036 .0058 .0088 .0128

18 .0000 .0000 .0001 .0002 .0005 .0009 .0017 .0029 .0046 .0071

19 .0000 .0000 .0000 .0001 .0002 .0004 .0008 .0014 .0023 .0037

20 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0006 .0011 .0019

21 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0003 .0005 .0009

22 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0004

23 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

M

x 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0

0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

1 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

2 .0010 .0004 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0000

3 .0037 .0018 .0008 .0004 .0002 .0001 .0000 .0000 .0000 .0000

4 .0102 .0053 .0027 .0013 .0006 .0003 .0001 .0001 .0000 .0000

5 .0224 .0127 .0070 .0037 .0019 .0010 .0005 .0002 .0001 .0001

6 .0411 .0255 .0152 .0087 .0048 .0026 .0014 .0007 .0004 .0002

7 .0646 .0437 .0281 .0174 .0104 .0060 .0034 .0019 .0010 .0005

8 .0888 .0655 .0457 .0304 .0194 .0120 .0072 .0042 .0024 .0013

9 .1085 .0874 .0661 .0473 .0324 .0213 .0135 .0083 .0050 .0029

10 .1194 .1048 .0859 .0663 .0486 .0341 .0230 .0150 .0095 .0058

11 .1194 .1144 .1015 .0844 .0663 .0496 .0355 .0245 .0164 .0106

12 .1094 .1144 .1099 .0984 .0829 .0661 .0504 .0368 .0259 .0176

13 .0926 .1056 .1099 .1060 .0956 .0814 .0658 .0509 .0378 .0271

14 .0728 .0905 .1021 .1060 .1024 .0930 .0800 .0655 .0514 .0387

15 .0534 .0724 .0885 .0989 .1024 .0992 .0906 .0786 .0650 .0516

16 .0367 .0543 .0719 .0866 .0960 .0992 .0963 .0884 .0772 .0646

17 .0237 .0383 .0550 .0713 .0847 .0934 .0963 .0936 .0863 .0760

18 .0145 .0255 .0397 .0554 .0706 .0830 .0909 .0936 .0911 .0844

19 .0084 .0161 .0272 .0409 .0557 .0699 .0814 .0887 .0911 .0888

20 .0046 .0097 .0177 .0286 .0418 .0559 .0692 .0798 .0866 .0888

21 .0024 .0055 .0109 .0191 .0299 .0426 .0560 .0684 .0783 .0846

22 .0012 .0030 .0065 .0121 .0204 .0310 .0433 .0560 .0676 .0769

23 .0006 .0016 .0037 .0074 .0133 .0216 .0320 .0438 .0559 .0669

24 .0003 .0008 .0020 .0043 .0083 .0144 .0226 .0328 .0442 .0557

25 .0001 .0004 .0010 .0024 .0050 .0092 .0154 .0237 .0336 .0446

26 .0000 .0002 .0005 .0013 .0029 .0057 .0101 .0164 .0246 .0343

27 .0000 .0001 .0002 .0007 .0016 .0034 .0063 .0109 .0173 .0254

28 .0000 .0000 .0001 .0003 .0009 .0019 .0038 .0070 .0117 .0181

29 .0000 .0000 .0001 .0002 .0004 .0011 .0023 .0044 .0077 .0125

30 .0000 .0000 .0000 .0001 .0002 .0006 .0013 .0026 .0049 .0083

31 .0000 .0000 .0000 .0000 .0001 .0003 .0007 .0015 .0030 .0054

32 .0000 .0000 .0000 .0000 .0001 .0001 .0004 .0009 .0018 .0034

33 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0005 .0010 .0020

Source: Computed by D. K. Hildebrand. Found in D. K. Hildebrand and L. Ott, Statistical Thinking for Managers, 3rd ed.

(Boston, MA: PWS-KENT Publishing Company, 1991).
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

 3.9 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003

 3.8 0.00007 0.00007 0.00007 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00005

 3.7 0.00011 0.00010 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008

 3.6 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011

 3.5 0.00023 0.00022 0.00022 0.00021 0.00020 0.00019 0.00019 0.00018 0.00017 0.00017

 3.4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024

 3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035

 3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050

 3.1 0.00097 0.00094 0.00090 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071

 3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00103 0.00100

 2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

 2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

 2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

 2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

 2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

 2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

 2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

 2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

 2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

 2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

 1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

 1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

 1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

 1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

 1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

 1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

 1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

 1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

 1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

 1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

 0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

 0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

 0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

 0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2482 0.2451

 0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

 0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

 0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

 0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

 0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

 0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0z

T A B L E A . 3 Cumulative Areas under the Standard Normal Curve
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T A B L E A . 3 Cumulative Areas under the Standard Normal Curve (continued)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7518 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99897 0.99900

3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929

3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950

3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965

3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976

3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983

3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989

3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992

3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995

3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997

0 z
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T A B L E A . 4 A t Table: Values of t
A

for df  1 through 48

df t.100 t.05 t.025 t.01 t.005 t.001 t.0005

1 3.078 6.314 12.706 31.821 63.657 318.309 636.619

2 1.886 2.920 4.303 6.965 9.925 22.327 31.599

3 1.638 2.353 3.182 4.541 5.841 10.215 12.924

4 1.533 2.132 2.776 3.747 4.604 7.173 8.610

5 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 1.440 1.943 2.447 3.143 3.707 5.208 5.959

7 1.415 1.895 2.365 2.998 3.499 4.785 5.408

8 1.397 1.860 2.306 2.896 3.355 4.501 5.041

9 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587

11 1.363 1.796 2.201 2.718 3.106 4.025 4.437

12 1.356 1.782 2.179 2.681 3.055 3.930 4.318

13 1.350 1.771 2.160 2.650 3.012 3.852 4.221

14 1.345 1.761 2.145 2.624 2.977 3.787 4.140

15 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 1.337 1.746 2.120 2.583 2.921 3.686 4.015

17 1.333 1.740 2.110 2.567 2.898 3.646 3.965

18 1.330 1.734 2.101 2.552 2.878 3.610 3.922

19 1.328 1.729 2.093 2.539 2.861 3.579 3.883

20 1.325 1.725 2.086 2.528 2.845 3.552 3.850

21 1.323 1.721 2.080 2.518 2.831 3.527 3.819

22 1.321 1.717 2.074 2.508 2.819 3.505 3.792

23 1.319 1.714 2.069 2.500 2.807 3.485 3.768

24 1.318 1.711 2.064 2.492 2.797 3.467 3.745

25 1.316 1.708 2.060 2.485 2.787 3.450 3.725

26 1.315 1.706 2.056 2.479 2.779 3.435 3.707

27 1.314 1.703 2.052 2.473 2.771 3.421 3.690

28 1.313 1.701 2.048 2.467 2.763 3.408 3.674

29 1.311 1.699 2.045 2.462 2.756 3.396 3.659

30 1.310 1.697 2.042 2.457 2.750 3.385 3.646

31 1.309 1.696 2.040 2.453 2.744 3.375 3.633

32 1.309 1.694 2.037 2.449 2.738 3.365 3.622

33 1.308 1.692 2.035 2.445 2.733 3.356 3.611

34 1.307 1.691 2.032 2.441 2.728 3.348 3.601

35 1.306 1.690 2.030 2.438 2.724 3.340 3.591

36 1.306 1.688 2.028 2.434 2.719 3.333 3.582

37 1.305 1.687 2.026 2.431 2.715 3.326 3.574

38 1.304 1.686 2.024 2.429 2.712 3.319 3.566

39 1.304 1.685 2.023 2.426 2.708 3.313 3.558

40 1.303 1.684 2.021 2.423 2.704 3.307 3.551

41 1.303 1.683 2.020 2.421 2.701 3.301 3.544

42 1.302 1.682 2.018 2.418 2.698 3.296 3.538

43 1.302 1.681 2.017 2.416 2.695 3.291 3.532

44 1.301 1.680 2.015 2.414 2.692 3.286 3.526

45 1.301 1.679 2.014 2.412 2.690 3.281 3.520

46 1.300 1.679 2.013 2.410 2.687 3.277 3.515

47 1.300 1.678 2.012 2.408 2.685 3.273 3.510

48 1.299 1.677 2.011 2.407 2.682 3.269 3.505

0 t
␣

␣
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T A B L E A . 4 (concluded)

A t Table: Values of t
A

for df  49 through 100, 120, and  

df t.100 t.05 t.025 t.01 t.005 t.001 t.0005

49 1.299 1.677 2.010 2.405 2.680 3.265 3.500

50 1.299 1.676 2.009 2.403 2.678 3.261 3.496

51 1.298 1.675 2.008 2.402 2.676 3.258 3.492

52 1.298 1.675 2.007 2.400 2.674 3.255 3.488

53 1.298 1.674 2.006 2.399 2.672 3.251 3.484

54 1.297 1.674 2.005 2.397 2.670 3.248 3.480

55 1.297 1.673 2.004 2.396 2.668 3.245 3.476

56 1.297 1.673 2.003 2.395 2.667 3.242 3.473

57 1.297 1.672 2.002 2.394 2.665 3.239 3.470

58 1.296 1.672 2.002 2.392 2.663 3.237 3.466

59 1.296 1.671 2.001 2.391 2.662 3.234 3.463

60 1.296 1.671 2.000 2.390 2.660 3.232 3.460

61 1.296 1.670 2.000 2.389 2.659 3.229 3.457

62 1.295 1.670 1.999 2.388 2.657 3.227 3.454

63 1.295 1.669 1.998 2.387 2.656 3.225 3.452

64 1.295 1.669 1.998 2.386 2.655 3.223 3.449

65 1.295 1.669 1.997 2.385 2.654 3.220 3.447

66 1.295 1.668 1.997 2.384 2.652 3.218 3.444

67 1.294 1.668 1.996 2.383 2.651 3.216 3.442

68 1.294 1.668 1.995 2.382 2.650 3.214 3.439

69 1.294 1.667 1.995 2.382 2.649 3.213 3.437

70 1.294 1.667 1.994 2.381 2.648 3.211 3.435

71 1.294 1.667 1.994 2.380 2.647 3.209 3.433

72 1.293 1.666 1.993 2.379 2.646 3.207 3.431

73 1.293 1.666 1.993 2.379 2.645 3.206 3.429

74 1.293 1.666 1.993 2.378 2.644 3.204 3.427

75 1.293 1.665 1.992 2.377 2.643 3.202 3.425

76 1.293 1.665 1.992 2.376 2.642 3.201 3.423

77 1.293 1.665 1.991 2.376 2.641 3.199 3.421

78 1.292 1.665 1.991 2.375 2.640 3.198 3.420

79 1.292 1.664 1.990 2.374 2.640 3.197 3.418

80 1.292 1.664 1.990 2.374 2.639 3.195 3.416

81 1.292 1.664 1.990 2.373 2.638 3.194 3.415

82 1.292 1.664 1.989 2.373 2.637 3.193 3.413

83 1.292 1.663 1.989 2.372 2.636 3.191 3.412

84 1.292 1.663 1.989 2.372 2.636 3.190 3.410

85 1.292 1.663 1.988 2.371 2.635 3.189 3.409

86 1.291 1.663 1.988 2.370 2.634 3.188 3.407

87 1.291 1.663 1.988 2.370 2.634 3.187 3.406

88 1.291 1.662 1.987 2.369 2.633 3.185 3.405

89 1.291 1.662 1.987 2.369 2.632 3.184 3.403

90 1.291 1.662 1.987 2.368 2.632 3.183 3.402

91 1.291 1.662 1.986 2.368 2.631 3.182 3.401

92 1.291 1.662 1.986 2.368 2.630 3.181 3.399

93 1.291 1.661 1.986 2.367 2.630 3.180 3.398

94 1.291 1.661 1.986 2.367 2.629 3.179 3.397

95 1.291 1.661 1.985 2.366 2.629 3.178 3.396

96 1.290 1.661 1.985 2.366 2.628 3.177 3.395

97 1.290 1.661 1.985 2.365 2.627 3.176 3.394

98 1.290 1.661 1.984 2.365 2.627 3.175 3.393

99 1.290 1.660 1.984 2.365 2.626 3.175 3.392

100 1.290 1.660 1.984 2.364 2.626 3.174 3.390

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373

 1.282 1.645 1.960 2.326 2.576 3.090 3.291

Source: Provided by J. B. Orris using Excel.
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866 Appendix A Statistical Tables
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Chart for Chart for Moving
Individuals (x) Ranges (MR)

Size of
Moving R E2 D3 D4

2 2.660 — 3.267

3 1.772 — 2.574

4 1.457 — 2.282

5 1.290 — 2.114

6 1.184 — 2.004

7 1.109 0.076 1.924

8 1.054 0.136 1.864

9 1.010 0.184 1.816

10 0.975 0.223 1.777

T A B L E A . 1 4 Control Chart Constants for x (Individuals) and Moving R Charts

T A B L E A . 1 5 A Wilcoxon Rank Sum Table: Values of T
L

and T
U

3 4 5 6 7 8 9 10

T
L

T
U

T
L

T
U

T
L

T
U

T
L

T
U

T
L

T
U

T
L

T
U

T
L

T
U

T
L

T
U

3 5 16 6 18 6 21 7 23 7 26 8 28 8 31 9 33

4 6 18 11 25 12 28 12 32 13 35 14 38 15 41 16 44

5 6 21 12 28 18 37 19 41 20 45 21 49 22 53 24 56

6 7 23 12 32 19 41 26 52 28 56 29 61 31 65 32 70

7 7 26 13 35 20 45 28 56 37 68 39 73 41 78 43 83

8 8 28 14 38 21 49 29 61 39 73 49 87 51 93 54 98

9 8 31 15 41 22 53 31 65 41 78 51 93 63 108 66 114

10 9 33 16 44 24 56 32 70 43 83 54 98 66 114 79 131

n1

n2

3 4 5 6 7 8 9 10

T
L

T
U

T
L

T
U

T
L

T
U

T
L

T
U

T
L

T
U

T
L

T
U

T
L

T
U

T
L

T
U

3 6 15 7 17 7 20 8 22 9 24 9 27 10 29 11 31

4 7 17 12 24 13 27 14 30 15 33 16 36 17 39 18 42

5 7 20 13 27 19 36 20 40 22 43 24 46 25 50 26 54

6 8 22 14 30 20 40 28 50 30 54 32 58 33 63 35 67

7 9 24 15 33 22 43 30 54 39 66 41 71 43 76 46 80

8 9 27 16 36 24 46 32 58 41 71 52 84 54 90 57 95

9 10 29 17 39 25 50 33 63 43 76 54 90 66 105 69 111

10 11 31 18 42 26 54 35 67 46 80 57 95 69 111 83 127

Source: F. Wilcoxon and R. A. Wilcox, “Some Rapid Approximate Statistical Procedures” (New York: American Cyanamid Company, 1964), pp. 20–23.

Reproduced with the permission of American Cyanamid Company.

n1

n2

(b) A ⴝ .05 One-Sided; A ⴝ .10 Two-Sided

(a) A ⴝ .025 One-Sided; A ⴝ .05 Two-Sided
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T A B L E A . 1 6 A Wilcoxon Signed Ranks Table: Values of T0

One-Sided Two-Sided n   5 n   6 n   7 n   8 n   9 n   10

a   .05 a   .10 1 2 4 6 8 11

a   .025 a   .05 1 2 4 6 8

a   .01 a   .02 0 2 3 5

a   .005 a   .01 0 2 3

n   11 n   12 n   13 n   14 n   15 n   16

a   .05 a   .10 14 17 21 26 30 36

a   .025 a   .05 11 14 17 21 25 30

a   .01 a   .02 7 10 13 16 20 24

a   .005 a   .01 5 7 10 13 16 19

n   17 n   18 n   19 n   20 n   21 n   22

a   .05 a   .10 41 47 54 60 68 75

a   .025 a   .05 35 40 46 52 59 66

a   .01 a   .02 28 33 38 43 49 56

a   .005 a   .01 23 28 32 37 43 49

n   23 n   24 n   25 n   26 n   27 n   28

a   .05 a   .10 83 92 101 110 120 130

a   .025 a   .05 73 81 90 98 107 117

a   .01 a   .02 62 69 77 85 93 102

a   .005 a   .01 55 61 68 76 84 92

n   29 n   30 n   31 n   32 n   33 n   34

a   .05 a   .10 141 152 163 175 188 201

a   .025 a   .05 127 137 148 159 171 183

a   .01 a   .02 111 120 130 141 151 162

a   .005 a   .01 100 109 118 128 138 149

n   35 n   36 n   37 n   38 n   39

a   .05 a   .10 214 228 242 256 271

a   .025 a   .05 195 208 222 235 250

a   .01 a   .02 174 186 198 211 224

a   .005 a   .01 160 171 183 195 208

n   40 n   41 n   42 n   43 n   44 n   45

a   .05 a   .10 287 303 319 336 353 371

a   .025 a   .05 264 279 295 311 327 344

a   .01 a   .02 238 252 267 281 297 313

a   .005 a   .01 221 234 248 262 277 292

n   46 n   47 n   48 n   49 n   50

a   .05 a   .10 389 408 427 446 466

a   .025 a   .05 361 379 397 415 434

a   .01 a   .02 329 345 362 380 398

a   .005 a   .01 307 323 339 356 373

Source: F. Wilcoxon and R. A. Wilcox, “Some Rapid Approximate Statistical Procedures” (New York: American Cyanamid Company, 1964), p. 28. Reproduced

with the permission of American Cyanamid Company.
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876 Appendix A Statistical Tables

T A B L E A . 1 8 Critical Values for Spearman’s Rank Correlation Coefficient

n A   .05 A   .025 A   .01 A   .005 n A   .05 A   .025 A   .01 A   .005

5 .900 — — — 18 .399 .476 .564 .625
6 .829 .886 .943 — 19 .388 .462 .549 .608
7 .714 .786 .893 — 20 .377 .450 .534 .591
8 .643 .738 .833 .881 21 .368 .438 .521 .576
9 .600 .683 .783 .833 22 .359 .428 .508 .562

10 .564 .648 .745 .794 23 .351 .418 .496 .549
11 .523 .623 .736 .818 24 .343 .409 .485 .537
12 .497 .591 .703 .780 25 .336 .400 .475 .526
13 .475 .566 .673 .745 26 .329 .392 .465 .515
14 .457 .545 .646 .716 27 .323 .385 .456 .505
15 .441 .525 .623 .689 28 .317 .377 .448 .496
16 .425 .507 .601 .666 29 .311 .370 .440 .487
17 .412 .490 .582 .645 30 .305 .364 .432 .478

Source: E. G. Olds, “Distribution of Sums of Squares of Rank Differences for Small Samples,” Annals of Mathematical Statistics,

1938, 9. Reproduced with the permission of the editor, Annals of Mathematical Statistics.

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517

0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549

0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852

0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830

1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545

1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633

1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857

2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916

2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974

2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981

2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

Source: A. Hald, Statistical Tables and Formulas (New York: Wiley, 1952), abridged from Table 1. Reproduced by permission 

of the publisher.

T A B L E A . 1 9 A Table of Areas under the Standard Normal Curve

0 z
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Appendix B: Properties of the Mean and the Variance of
a Random Variable, and the Covariance

Suppose a company that manufactures TV sets has a fixed production cost of $2 million per year.

The gross profit for each TV set sold, which is the price minus the unit variable production cost,

is $50. Historical sales records indicate that the number of TV sets sold per year, x, is a random

variable with a mean of m
x
 100,000 and a standard deviation of s

x
 10,000. Let y denote the

company’s annual profit from selling the TV set. Since this profit equals the gross profit associ-

ated with selling x TV sets, which is 50x, minus the fixed cost of $2,000,000, it follows that

y    2,000,000   50x

In order to find the mean, variance, and standard deviation of y, we can use the following result:

If x is a random variable and a and b are fixed numbers, then

and  s2
(a bx)  b

2
s

2
x m(a bx)  a  bmx

Let x1, x2, . . . , xn be n random variables. Then:

1 m(x1 x2         xn)   mx1
  mx2

         mxn

2 If x1, x2, . . . , xn are statistically independent (that is, the value taken by any one of these random

variables is in no way associated with the value taken by any other of these random variables), then

s
2
(x1 x2         xn)   s

2
x1

  s
2
x2

         s
2
xn

In the TV set manufacturing example, we have seen that the company’s annual profit is

y    2,000,000   50x

We have also seen that m
x
  100,000 and s

x
  10,000. Therefore,

and

Chebyshev’s Theorem tells us that the probability is at least 3兾4 that the annual profit from

selling the TV set will be between m
y
  2s

y
  $2,000,000 and m

y
  2s

y
  $4,000,000.

We next consider a result concerning the mean and variance of a sum of random variables.

 sy  2s2
y  1250,000,000,000  500,000

 s2
y  s

2
( 2,000,000 50x)  (50)2

s
2
x  2,500(10,000)2

 250,000,000,000

  3,000,000

 my  m( 2,000,000 50x)   2,000,000  50mx   2,000,000  50(100,000)

For example, the time to set up a new production system in a particular company is denoted

by the random variable y and is the sum of the following three random variables:

1 x1, the time to purchase the production equipment and have it delivered, which has mean

m
x1

 30 days and standard deviation s
x1

 3 days.

2 x2, the time to assemble the equipment, which has mean m
x2

 20 days and standard

deviation s
x2

 2 days.

3 x3, the time to train the factory workers to use the equipment, which has mean m
x3

 14 days

and standard deviation s
x3

  2 days.

It follows that

Furthermore, although we cannot train the factory workers until we assemble the equip-

ment, and although we cannot assemble the equipment until the equipment is purchased and

delivered, it is reasonable that the times to do these tasks (x1, x2, and x3) are statistically

my  m(x1 x2 x3)  mx1
 mx2

 mx3
 30  20  14  64 days
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independent. Therefore,

and

Chebyshev’s Theorem tells us that the probability is at least 3 4 that the time to set up the

production system will be between my  2sy  55.75 days and my  2sy  72.25 days.

To conclude this appendix, we note that sometimes random variables are not independent,

and we can measure their dependence by using the covariance. For example, below we present

(1) the probability distribution of x, the yearly proportional return for stock A, (2) the probability

distribution of y, the yearly proportional return for stock B, and (3) the joint probability

distribution of (x, y), the joint yearly proportional returns for stocks A and B [note that we have

obtained the data below from Pfaffenberger and Patterson (1987)].

 sy  2s
2
y  117  4.1231 (days)

s
2
y  s

2
(x1 x2 x3)  s

2
x1

 s
2
x2

 s
2
x3

 (3)2
 (2)2

 (2)2
 9  4  4  17

x p(x) y p( y)

 0.10 0.400  0.15 0.300

0.05 0.125  0.05 0.200

0.15 0.100 0.12 0.150

0.38 0.375 0.46 0.350

sy  .2610sx  .2131

s
2
y  .0681s

2
x  .0454

my  .124mx  .124

Joint Distribution of (x, y)
Stock B Stock A Return, x
Return, y  0.10 0.05 0.15 0.38

 0.15 0.025 0.025 0.025 0.225

 0.05 0.075 0.025 0.025 0.075

0.12 0.050 0.025 0.025 0.050

0.46 0.250 0.050 0.025 0.025

To explain the joint probability distribution, note that the probability of .250 enclosed in the rec-

tangle is the probability that in a given year the return for stock A will be  .10 and the return

for stock B will be .46. The probability of .225 enclosed in the oval is the probability that in a

given year the return for stock A will be .38 and the return for stock B will be  .15. Intuitively,

these two rather large probabilities say that (1) a negative return x for stock A tends to be asso-

ciated with a highly positive return y for stock B, and (2) a highly positive return x for stock A

tends to be associated with a negative return y for stock B. To further measure the association

between x and y, we can calculate the covariance between x and y. To do this, we calculate

(x  mx)(y  my)  (x  .124)(y  .124) for each combination of values of x and y. Then, we

multiply each (x  mx)(y  my) value by the probability p(x, y) of the (x, y) combination of val-

ues and add up the quantities that we obtain. The resulting number is the covariance, denoted

S
2
xy

. For example, for the combination of values x   .10 and y  .46, we calculate

(x  mx)(y  my) p(x, y)  ( .10  .124)(.46  .124)(.250)   .0188

Doing this for all combinations of (x, y) values and adding up the resulting quantities, we find that

the covariance is  .0318. In general, a negative covariance says that as x increases, y tends to

decrease in a linear fashion. A positive covariance says that as x increases, y tends to increase in

a linear fashion.

The covariance helps us in this situation to understand the importance of investment diversi-

fication. If we invest all of our money in stock A, we have seen that mx  .124 and sx  .2131. If

we invest all of our money in stock B, we have seen that my  .124 and sy  .2610. If we invest

half of our money in stock A and half of our money in stock B, the return for the portfolio is

P  .5x   .5y. The expected value of the portfolio return is

To find the variance of the portfolio return, we must use a new rule. In general, if x and y have a

nonzero covariance , and a and b are constants, then

Therefore

  (.5)2(.0454)  (.5)2(.0681)  2(.5)(.5)( .0318)  .012475

 s2
P  s

2
(.5x .5y)  (.5)2

s
2
x  (.5)2

s
2
y  2(.5)(.5)s2

xy

s
2
(ax by)  a2

s
2
x  b2

s
2
y  2abs2

xy

s
2
xy

mP  m(.5x .5y)  m.5x  m.5y  .5mx  .5my  .5(.124)  .5(.124)  .124
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B.1 The gross profit (price minus unit variable cost) for each computer sold by a company is $500. The

company’s fixed cost is $5,000,000 per year. The number of computers sold per year is a random

variable having mean 15,000 and standard deviation 2,000. Let y denote the company’s annual

profit. Find my and sy. Then, use Chebyshev’s Theorem to find an interval containing at least 

75 percent of the annual profits that might be obtained.

B.2 A product is manufactured on three different assembly lines that operate independently. The mean

and standard deviation of the hourly production (in units produced) for each assembly line are as

follows: (1) for assembly line 1, m1   35 and s1  4; (2) for assembly line 2, m2  25 and s2  2;

(3) for assembly line 3, m3   40 and s3   4. Let T denote the total hourly production on all three

assembly lines.

a Find mT and sT.

b Assuming that total hourly production is normally distributed, find an interval that contains

99.73 percent of the possible hourly production totals.

c Each unit of the product requires two 3 4" bolts for assembly. Use your result of part b to

estimate the hourly supply of bolts needed in order to be very certain that the assembly lines

will not run short of bolts during the hour.

B.3 Let x be the yearly proportional return for stock C, and let y be the yearly proportional return for

stock D. If mx  .11, my  .09, sx  .17, sy  .17, and s2
xy  .0412, find the mean and standard

deviation of  the portfolio return P   .5x   .5y. Discuss the risk of the portfolio.

B.4 Below we give what is called a joint probability table for two utility bonds where the random

variable x represents the percentage return for bond 1 and the random variable y represents the

percentage return for bond 2.

Exercises for Appendix B

and

Note that, since mP  .124 equals mx  .124 and my  .124, the portfolio has the same expected

return as either stock A or B. However, since sP  .1117 is less than sx  .2131 and sy  .2610,

the portfolio is a less risky investment. In other words, diversification can reduce risk. Note,

however, that the reason that sP is less than sx and sy is that s2
xy   .0318 is negative. Intu-

itively, this says that the two stocks tend to balance each other’s returns. However, if the covari-

ance between the returns of two stocks is positive, sP can be larger than sx and/or sy. The reader

will demonstrate this in Exercise D.3.

Finally, note that a measure of linear association between x and y that is unitless and always

between  1 and 1 is the correlation coefficient, denoted r. We define r to be s 2
xy divided by

(sx)(sy). For the stock return example, r equals ( .0318) ((.2131)(.2610))   .5717.

 sP  1.012475  .1117

x

y 8 9 10 11 12 p(y)

8 .03 .04 .03 .00 .00 .10

9 .04 .06 .06 .04 .00 .20

10 .02 .08 .20 .08 .02 .40

11 .00 .04 .06 .06 .04 .20

12 .00 .00 .03 .04 .03 .10

p(x) .09 .22 .38 .22 .09

Source: David K. Hildebrand and Lyman Ott, Statistical Thinking for Managers, 

2nd edition (Boston, Ma: Duxbury Press, 1987), p. 101.

In this table, probabilities associated with values of x are given in the row labeled p(x) and probabili-

ties associated with values of y are given in the column labeled p(y). For example, P(x  9)  .22

and P(y  11)  .20. The entries inside the body of the table are joint probabilities—for instance,

the probability that x equals 9 and y equals 10 is .08. Use the table to do the following:

a Calculate mx, sx, my, and sy.

b Calculate the covariance between x and y.

c Calculate the variance and standard deviation of a portfolio in which 50 percent of the money

is used to buy bond 1 and 50 percent is used to buy bond 2. That is, find and , where

P  .5x  .5y. How does the portfolio’s risk compare to the risk associated with investing only

in bond 1? Only in bond 2?

sPs
2
P

s2
xy,
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Appendix C: Derivations of the Mean and Variance
of x– and p̂

Derivation of the mean and the variance of the sample mean Before we randomly

select the sample values x1, x2, . . . , xn from a population having mean m and variance s2, we note

that, for i 1, 2, . . . , n, the ith sample value xi is a random variable that can potentially be any

of the values in the population. Moreover, it can be proven (and is intuitive) that

1 The mean (or expected value) of xi, denoted mxi
, is m, the mean of the population from

which xi will be randomly selected.

2 The variance of xi, denoted s2
xi
, is s2, the variance of the population from which xi will be

randomly selected.

That is, for i  1, 2, . . . , n

mxi
 m (or, equivalently, mx1

 mx2
     mxn

  m)

and
s

2
xi
 s

2 (or, equivalently, s2
x1
 s

2
x2
     s

2
xn
 s

2)

In Appendix B we studied properties of the mean and the variance of a random variable. We sum-

marize these properties for later reference as follows:

Property 1: If b is a fixed number, mbx bmx

Property 2: If b is a fixed number, s2
bx b2

s
2
x

Property 3: m(x1 x2         xn)  mx1
 mx2

     mxn

Property 4: If x1, x2, . . . , xn are statistically independent, s2
(x1 x2         xn)  

s
2
x1
 s

2
x2
     s

2
xn

We now use these properties to prove that if we randomly select the sample of values x1, x2, . . . ,

xn from an infinite population having meanm and variances2, and if we consider the sample mean

 xi n, then  m and .

The first proof is as follows and is valid even if the population is not infinitely large:

(see Property 1)

(see Property 3)

The second proof is as follows:

(see Property 2)

(see Property 4)

 
1

n2 (s2
 s

2
  

 
 

 
   s

2)  
ns2

n2  
s

2

n

 
1

n2 (s2
x1
 s

2
x2
        s

2
xn

)

 
1

n2 s2
(x1 x2     xn)

  1

n 
2

 s2

 a
n

i 1
xi s

2
x  s

2

 a
n

i 1
xi n 

  
1

n
 (m  m         m)  

nm

n
 m

  
1

n
 (mx1

 mx2
        mxn

)

  
1

n
 m(x1 x2     xn)

  
1

n
 m a

n

i 1
xi 

 mx  m a
n

i 1
xi n 

sx
2
 s

2 nmxa

n

i 1

x
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Note that we can use Property 4 because x1, x2, . . . , xn are independent random variables. The

reason that x1, x2, . . . , xn are independent is that we are drawing these sample values from an

infinite population. When we select a sample from an infinite population, a population value

obtained on one selection can also be obtained on any other selection. This is because, since the

population is infinite, there are an infinite number of repetitions of each population value. There-

fore, since a value obtained on one selection is not precluded from being obtained on any other

selection, the selections and thus x1, x2, . . . , xn are statistically independent. Furthermore, this

statistical independence approximately holds if the population size is much larger than (say,

at least 20 times as large as) the sample size. Therefore, in this case it is approximately true that

 s
2 n.

Derivation of the mean and the variance of the sample proportion We next assume

that we randomly select a sample of n units from an infinite population, and we assume that a pro-

portion p of all the units in the population fall into a particular category. Each population unit that

falls into the category is 1 unit that falls into the category, and each population unit that does not

fall into the category is 0 units that fall into the category. Therefore, the population can be con-

sidered a population of 1s and 0s. Furthermore, the mean and the variance of the population are

the mean and the variance of the random variable, xi, that describes the value (0 or 1) of the ith

unit randomly selected from the population. Since a proportion p of the population values are 1,

the probability that xi will equal 1 is p, and the probability that xi will equal 0 is 1   p. That is,

the probability distribution of xi is 

xi p(xi)

Therefore,

This says that the mean, m, and the variance, s2, of the population of 1s and 0s are p and 

p(1   p). Furthermore, the mean of the sample randomly selected from this population is

where we have previously referred to as the sample proportion. To summarize, if we randomly

select a sample of n values x1, x2, . . . , xn from an infinite population that contains a proportion p

of 1s and a proportion 1   p of 0s, then

m p s
2
 p(1 p) and

Therefore, the previously proven result implies (substituting p̂ for and p for m) that

mp̂ p. Furthermore, the previously proven result  s
2 n implies (substituting p̂ for and

p(1  p) for s2) that sp̂
2
 p(1 p) n. It follows that we have derived the mean and the variance

of the sample proportion.

xsx
2

xmx  m

x  p̂

p̂

  p̂

  the proportion of units in the sample that fall into the category

  the proportion of 1s in the sample

  
the total number of 1s in the sample

the total number of units in the sample

 x  
x1  x2         xn

n

  p   p(1  p)

 mxi
 0(1  p)  (1)p    and    s2

xi  (0  p)2(1  p)  (1  p)2p

0

1

    1  p

p

s
2
x



Chapter 1

1.3 Cross-sectional; time series

1.5 $398,000

1.7 Calculator sales tend to increase over

time

1.13 Between .4 and 11.6 minutes; 60%

1.17 Ordinal; nominative; ordinal;

nominative; ordinal; nominative

1.19 Between 152 and 170 

Chapter 2

2.5 a. 144

b. 36

2.7 a. Relative 

Pizza Chain Frequency Frequency

Domino’s 5 .20

Godfather’s 3 .12

Little 

Caesar’s 2 .08

Papa John’s 9 .36

Pizza Hut 6 .24

25 1.00

2.21 a. Between 40 and 46.

b. Slightly skewed with a tail to the left.

2.23 a. Between 48 and 53.

b. Symmetrical

2.29 Although most growth rates are 

 61%, 7 of the companies have growth

rates of 70% or higher.

2.37 The distribution has a tail to the right.

2.39 That was a highly unusual year for

Maris.

2.41 b. Slightly skewed with tail to left.

c. No. 19 of 65 customers (29.2%) had

scores below 42.

2.45 a. 17

b. 14

c. Those who prefer Rola seem to have

purchased it while those who prefer

Koka have not tended to purchase

Rola.

2.47 a. 22

b. 4

c. Those who prefer Rola appear to

consume more Cola.

2.49 b. 1st row: 79.7%, 20.3%, 100%

2nd row: 65.8%, 34.2%, 100%

c. 1st column: 50.2%, 49.8%, 100%

2nd column: 33.0%, 67.0%, 100%

d. Viewers concerned with violence

are more likely to say quality has

declined.

2.51 The more generous a person is, the less

likely they are to leave without tipping.

2.57 There is a positive linear relationship

between home size and price.

2.59 To respond to competition from

satellite TV. As satellite rates increased,

cable rates could increase and still

remain competitive.

2.61 Consumers tend to give better taste

ratings to the restaurants they prefer.

2.65 a. No.

b. Yes, strong trend.

c. The line graph is better because it

makes the growth apparent, but it

exaggerates the trend.

d. No.

2.67 The most frequent manufacturing

quality rating is average (20 out of 37).

Only Lexus received best rating.

2.69 All three regions have about 20% of

their automobiles receiving ratings of

better or higher. About average is the

most frequent rating for all three

regions. The US has the lowest

percentage in the worst category.

2.71 See answer to 2.69.

2.73 Although the Pacific Rim and European

regions have higher percentages of cars

receiving better or best design ratings,

they also have higher percentages of

cars receiving the worst ratings. US

cars consistently receive average

ratings.

2.75 a. k  6.

d. Skewed with a tail to the left.

2.77 26%. Probably.

2.79 The distribution is skewed with a tail to

the right.

2.81 The distribution is skewed with a tail to

the right.

2.83 The distribution has a tail to the right

with one outlying value.

2.85 a. Heights: 12, 4.8, 3.8, 4.4, .84

2.87 The vertical scale has been broken,

exaggerating the Chevy advantage.

Chapter 3

3.3 a. 9.6, 10, 10

b. 103.33, 100, 90

3.5 a. Yes, 

b. There is a slight

skewness to the left.

3.7 a. Yes, 

b. median They are close

because the distribution is nearly

symmetric.

3.9 Slight skewness to left; US is lowest.

 50.650.

x  50.575  50.

x  median  43.

x  42.954  42

3.11 Skewed to right; US is highest.

3.13 Skewed to right. US is above mean and

median.

3.15 a. Skewed right.

b. About 33%; about 50%.

3.19 range  10; s2
 11.6; s  3.4059

3.21 a. Revenue: 20.2; 44.6641; 6.6831

Profit: 29,079; 54692275.3; 

7395.42

b. z-scores:  .176; 2.886;  1.046;

 .161;  .590;  .166;  .140;

 .214;  .187;  .207

3.23 a. The rule is appropriate.

b. [48.9312, 52.2188]; 

[47.2875, 53.8626]; 

[45.6436, 55.5064]

c. Yes

d. 67.5%, 95%, 100%

Yes

3.25 a. Somewhat reasonable

b. [40.3076, 45.5924]; 

[37.6652, 48.2348]; 

[35.0228, 50.8772]

c. Yes

d. 63%, 98.46%, 100%; Yes

3.27 a. [ 72.99, 94.85], [ 5.72, 31.72],

[ 47.87, 116.77]

c. 383.9, 72, 119.4

RS Internet Age is most risky;

Franklin Income A is least risky

3.31 a. 192 c. 141 e. 132

b. 152 d. 171 f. 30

3.33 30 year rates higher; variability

similar; Average of differences is .444

3.35 a. All categories

b. Most: strategic quality planning;

quality and operational results.

Least: Info. and analysis; human

3.39 a. Strong positive linear association

between x and y.

b.

3.43 a. Weighted mean

b. Unweighted mean

3.45 a. 4.6 lb.

b. 3.8289

3.47 a. 51.5; 81.61; 9.0338

3.51 .4142

3.53 a. 0.39436

b. $2139

3.57 a. about 65%

b. about 425 UKL.

3.59 a. 151.24%

b. Pools might be installed in homes

that are larger and nicer than

ordinary.

 10.72%

 13.56%

ŷ  134.4751

Appendix D

Answers to Most 
Odd-Numbered Exercises
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Chapter 4

4.3 b1. AA

b2. AA, BB, CC

b3. AB, AC, BA, BC, CA, CB

b4. AA, AB, AC, BA, CA

b5. AA, AB, BA, BB

c. 1兾9, 1兾3, 2兾3, 5兾9, 4兾9

4.5 b1. PPPN, PPNP, PNPP, NPPP

b2. Outcomes with ⱕ2 P’s (11)

b3. Outcomes with ⱖ1 P (15)

b4. PPPP, NNNN

c. 1兾4, 11兾16, 15兾16, 1兾8

4.7 .15

4.11 a1. .25

a2. .40

a3. .10

c1. .55

c2. .45

c3. .45

4.13 a. 5兾8

b. 21兾40

c. 19兾40

d. 3兾8

e. 31兾40

4.15 a. .205

b. .698

c. .606

d. .303

4.19 a. .6

b. .4

c. Dependent

4.21 .55

4.23 .1692

4.25 .31

4.27 b. .40

c. Yes, P(FRAUD冷FIRE)⫽ P(FRAUD)

4.29 a. .874

b. .996

c. .004

4.31 a. .10

b. .059, .068, .049, .037

c. .0256

d. .0151, .0174, .0125, .0095

e. .0801

4.33 a. .0295

b. .9705

c. Probably not

4.37 .0976; .6098; .2927

4.39 a. .0892

b. No. Too many paying customers

would lose credit.

4.41 .2466; .6164; .1370

4.49 .001

4.51 1兾56

4.53 1兾9; 1兾9; 4兾9

4.55 .04; .56; .26; .32

4.57 .9029

4.59 .9436

4.61 .721

4.63 .362

4.65 .502

4.67 Slight dependence

4.69 a. .2075

b. .25

c. .105

d. .42

e. Yes since P(bonus) ⬍

P(bonus 兩training)

4.71 a. 1, .96, .75, .75

b. .2169, .3123, .2530, .0723, .0361

c. .09, .1084, .83

c. p ⫽ 1兾35

d. .000040019

5.33 a. , 

b.

5.35 a. .7852

b. .2148

c. .1912

d. .0087

5.37 a. Approximately zero 

b. Rate of comas unusually high.

5.41 a. 0

b. .0714

c. .4286

d. .4286

e. .0714

f. .9286

g. .5

h. .9286

5.43 a. .1273

b. .8727

5.45

5.47 a. x p(x)

0 4兾9

1 4兾9

2 1兾9

b. p(x) ⫽ .49; .42; .09

c. p(x) ⫽ .54; .42; .04

5.49 a. x p(x)

⫺2 25兾55

⫺1 16兾55

0 9兾55

1 4兾55

2 1兾55

c. ⫺1.091

d. 1.064; 1.032

5.51 b. 87,000

c. 75%

d. [46,454, 127,546]; 95%

5.53 a. .7373

b1. .01733

b2. .42067

b3. .61291

b4. .02361

c. No. The probability is very small.

5.55 a. .2231

b. .9344

c. .9913

d. .0025

5.57 .0025. Claim is probably not true.

5.59 .0037. Business failures are probably

increasing.

5.61 .3328. The claim seems reasonable.

Chapter 6

6.7 h ⫽ 1兾125

6.9 a. 3, 3, 1.73205

b. [1.268, 4.732], .57733

6.11 a. f (x) ⫽ 1兾20 for 120 ⱕ x ⱕ 140

c. .5

d. .25

6.13 c ⫽ 1兾6

6.15 a. 4.5

b. 1.0, .57733

6.23 a. ⫺1, one s below m

b. ⫺3, three s below m

冢450

14 冣冢50

1 冣
冢500

15 冣
⫹

冢450

15 冣冢50

0 冣
冢500

15 冣
 L  .5490

[⫺2.242, 6.242], .9955

[⫺.828, 4.828], .9473

sx ⫽ 1.414mx ⫽ 2, s2
x ⫽ 2

4.73 a. 0

b. P(A) ⭈ P(B) ⬎ 0

c. No: P(A 兩 B) ⫽ 0 but P(A) ⬎ 0

4.75 .3077

4.77 a. .1860

b. Yes since P(schizophrenia) ⬍

P(schizophrenia 兩 atrophy)

c. .625

d. Yes

e. .833

Chapter 5

5.3 a. Discrete

b. Discrete

c. Continuous

d. Discrete

e. Discrete

f. Continuous

g. Continuous

5.5 p(x) ⱖ 0, each x

5.9 a. .8, .4

b. 1.15, .90967

c. 1.6, 2.1071

5.11 a. .667, .444, .667, [⫺.667, 2.001],

[⫺1.334, 2.668] 

b. 1.5, .75, .866, [⫺.232, 3.232], 

[⫺1.098, 4.098] 

c. 2, 1, 1, [0, 4], [⫺1, 5]

5.13 b. $500

5.15 a. x p(x)

$400 .995

⫺$49,600 .005

b. $150

c. $1,250

5.17 ⫺$4.20

5.19 a. p(x) ⫽ .1099, .0879, .3077, 

.2967, .1978

b. 3.38

5.23 a.

c. .1323

d. .9692

e. .8369

f. .0308

g. .1631

h.

i.

5.25 a.

b1. .4509

b2. .9873

b3. .5491

b4. .1837

b5. .0022

c. No, P(x ⱕ 9) is very small

5.27 a1. .0625

a2. .3125

b1. .4119

b2. .2517

b3. .0059

c. No, P(x ⬍ 5) is very small

5.29 a. .9996, .0004

b. .4845, .5155

15!

x! (15 ⫺ x)!
(.9)x(.1)15⫺x

p(x) ⫽

[⫺.54939, 3.54939], .9692

sx ⫽ 1.024695

mx ⫽ 1.5, s2
x ⫽ 1.05,

x ⫽ 0, 1, 2, 3, 4, 5

5!

x! (5⫺ x)!
(.3)x(.7)5⫺x

p(x) ⫽

a
all x

p(x) ⫽ 1
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c. 0, equals m

d. 2, two s above m

e. 4, four s above m

6.25 a. 2.33 d.  2.33

b. 1.645 e.  1.645

c. 2.05 f.  1.28

6.27 a. 696 f. 335.5

b. 664.5 g. 696

c. 304 h. 700

d. 283 i. 300

e. 717

6.29 a1. .9830

a2. .0033

a3. .0456

b. 947

6.31 a. .0013

b. Claim probably not true

6.33 .0424

6.35 a. 10%, 90%,  13.968

b.  1.402, 26.202

6.37 a. [m 2.33s]

b. [46.745, 54.405]

6.39 a. A: .3085

B: .4013

B is investigated more often

b. A: .8413

B: .6915

A is investigated more often

c. B

d. Investigate if cost variance 

exceeds $5,000 

.5987

6.41 m  700, s  100

6.43 Both np and n(1  p)  5

6.45 a. np  80 and n(1  p)  120 

both  5

b1. .0558

b2. .9875

b3. .0125

b4. .0025

b5. .0015

6.47 a1. np  200 and n(1  p)  800

both  5

a2. 200, 12.6491

a3. Less than .001

b. No

6.49 a. Less than .001

b. No

6.55 a. 3e 3x for x 0

c. .9502

d. .4226

e. .0025

f. 1 3, 1 9, 1 3

g. .9502

6.57 a. (2 3)e (2 3)x for x 0

c1. .8647

c2. .2498

c3. .0695

c4. .2835

6.59 a1. .1353

a2. .2325

a3. .2212

b. Probably not, probability is .2212

6.61 That the data come from a normal

population.

6.65 .0062

6.67 a. .8944

b. 73

6.69 a. .8944

b. .7967

c. .6911

6.71 298

8.15 1.363, 2.201, 4.025

1.440, 2.447, 5.208

8.17 a. [3.442, 8.558]

b. Can be 95% confident, cannot be

99% confident

8.19 a. [6.832, 7.968]

b. Yes, 95% interval is below 8.

8.21 a. [786.609, 835.391]

b. Yes, 95% interval is above 750

8.23 [4.969, 5.951]; Yes

8.29 a. n  262

b. n  452

8.31 a. n  47

b. n  328

8.33 n  54

8.35 a. p  .5

b. p  .3

c. p  .8

8.37 Part a. [.304, .496],

[.286, .514],

[.274, .526]

Part b. [.066, .134],

[.060, .140],

[.055, .145]

Part c. [.841, .959],

[.830, .970],

[.823, .977]

Part d. [.464, .736],

[.439, .761],

[.422, .778]

8.39 a. [.473, .610]

b. No, the interval extends below .5.

8.41 a. [.3804, .4596], no

b. [.5701, .6299], yes

c. 95% margin of error is .03

8.43 a. [.611, .729]

b. Yes, interval above .6

8.45 [.264, .344]

Yes, 95% interval exceeds .20.

8.47 a.

b.

c. Yes

8.49 Using p  .73754 and z.005  2.576,

n  1429.13 (or n  1430)

8.53 a. [$514.399, $549.601]

b. $5,559,932

[$5,375,983.95, $5,743,880.05]

c. Claim is very doubtful

8.55 a. 2,954, [2,723, 3,185]

Yes, interval above 2,500

b. No, interval extends below 3,000

8.57 a. n  204

b. n  371

8.61 68.26%: [48.9312, 52.2188]

95.44%: [47.2874, 53.8626]

99.73%: [45.6436, 55.5064]

95% CI: [50.0492, 51.1008]

8.63 68.26%: [40.3076, 45.5924]

95.44%: [37.6652, 48.2348]

99.73%: [35.0228, 50.8772]

95% CI: [42.2952, 43.6048]

8.65 a. [.2635, .3473]

b. Yes; yes

c. n  968

8.67 2,301.28; [737.60, 3,864.96]

8.69 a. $19,316,814; [$16,541,476,

$22,092,152]

b. $22,092,152

8.71 a. [25.1562, 27.2838]

b. Yes, not much more than 25

8.73 fa: [7.685%, 7.975%];

differs from 8.31%

p̂  .3054,

p̂  .054, [.034, .074]

p̂  .02, [.0077, .0323]

6.73 .9306

6.77 2 3

6.79 a. .0062

b. .6915

c. 3.3275%

6.81 .7745

Chapter 7

7.3 Coca-Cola; Coca-Cola Enterprises;

Reynolds American; Pepsi Bottling

Group; Sara Lee

7.5 5:47

7.9 a. 10, .16, .4

b. 500, .0025, .05

c. 3, .0025, .05

d. 100, .000625, .025

7.11 a. Normally distributed 

No, sample size is large ( 30) 

b.

c. .0228

d. .1093

7.13 30, 40, 50, 50, 60, 70

7.15 2 3

7.17 a. Normal distribution because n  30

b. 6, .247

c. .0143

d. 1.43%, conclude 

7.19 a. .2206

b. .0027

c. Yes

7.25 a. .5, .001, .0316

b. .1, .0009, .03

c. .8, .0004, .02

d. .98, .0000196, .004427

7.27 a. Approximately normal

b. .9, .03

7.29 a. .0089

b. Yes

7.31 a. .0122

b. Yes.

7.33 No; yes.

7.35 a. .0294

b. Yes.

7.41 lung cancer status; age, sex, 

occupation, number of cigarettes;

observational. 

7.43 selection bias, errors of observation,

recording error (among others).

7.47 a. .9953

b. .8414

c. .5222

d. No; no.

7.49 a. .0062

7.51 11.63; [ 26.76, 19.76]

Chapter 8

8.5 It becomes shorter.

8.7 a. [50.064, 51.086]; [49.967, 51.183].

b. Yes. All values in the interval 

exceed 50.

c. No. Some values in the interval are

below 50.

8.9 a. [42.31, 43.59]; [42.19, 43.71]

b. Yes. All values in the interval exceed

42.

c. Yes. All values exceed 42.

8.11 a. [76.132, 89.068]

b. [85.748, 100.252]

c. Mean audit delay for public 

owner-controlled companies 

appears to be shorter

m  6

mx  20, sx  .5
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dlcs: [9.108%, 17.732%]; does not

differ from 11.71%

dms: [9.788%, 20.272%]; does not

differ from 13.64%

dscs: [16.327%, 28.693%]; differs from

14.93%

8.75 [.61025, .66975]

8.77 a. [.796, .856]

b. Yes, interval is above .75

Chapter 9

9.3 a. H0: m  42 versus Ha: m  42

b. Type I: decide m 42 when it isn’t.

Type II: decide m 42 when it isn’t.

9.5 a. H0: m  3 versus Ha: m 3 

b. Type I: decide m 3 when it is 3 .

Type II: decide m 3 when it

doesn’t

9.7 a. H0: m  60 versus Ha: m  60 

b. Type I: shut down unnecessarily

Type II: fail to shut down when

water is too warm.

c. .05 to reduce b and avoid severe

penalties occurring with Type II errors.

9.11 a.  2.0

b. Fail to reject H0

c. .023

d. Can reject H0 at a  .10 and .05; fail

to reject H0 at a  .01 and .001.

e. Strong

9.13 a. H0: m  42 versus Ha: m  42

b. z  2.91. Since this exceeds the

critical values 1.28, 1.645, and 2.33,

can reject H0 at a  .1, .05, and .01.

Fail to reject H0 at a  .001

c. p-value .002. Same conclusion as

part (b)

d. Very strong

9.15 a. H0: m  60 versus Ha: m  60

b. z  2.41; p-value  .008. Since 

z  1.645 and p-value .05, reject

H0 and shut down

9.17 z  3.09 and p-value  .001. Since 

z  1.645 and p-value .05, shut down

the plant.

9.19 a. H0: m  16 versus Ha: m 16

b. z  3.00, p-value  .003, critical

values  2.575, [16.007, 16.093],

reject H0 and decide to readjust;

z   2.40, p-value  .016,  2.575,

[15.917, 16.003], fail to reject H0 so

don’t readjust,

z  1.20, p-value  .230,  2.575, 

[15.977, 16.063], fail to reject H0 so

don’t readjust;

z   3.60, p-value  .000,  2.575,

[15.897, 15.983], reject H0 and

decide to readjust

9.23 t  2.33; reject H0 at .10 and .05 but

not at .01 or .001.

9.25 H0: m  8 versus Ha: m  8; 

t    2.26   1.761. Reject H0 and

decide the mean alert time with the new

panel is less than 8 seconds.

9.27 a. H0: m   3.5 versus Ha: m 3.5

b. t  3.62; reject H0 at a  .10, .05,

and .01 but not .001. There is very

strong evidence.

d. Since the p-value is very low, we can

be very confident m  3.5.

9.29 a. H0: m   6 versus Ha: m 6

b. t   2.18    t.05

 

 

 

10.9 a. [ .05, .31]

b. No

c. H0: m1  m2  0 versus Ha: m1  

m2  0

d. z  1.41. Do not reject H0; there is

insufficient evidence to claim

association.

10.11 a. H0: m1  m2  0 versus Ha: m1  

m2  0

b. z  5.06. Reject H0 and decide the

means differ.

c. p-value .00003. Reject H0 at each

level of a; extremely strong evidence.

d. [.44, 1.36]

10.17 t  3.39; reject H0 at a  .10, .05, .01

but not .001; very strong evidence.

10.19 Assuming unequal variances in all three

problems: for  10.16 the interval is

[23.503, 36.497] and we can be 95%

confident. For 10.17, t  3.39 with 

11 d.f.; reject H0 at a  .10, .05, .01 but

not .001; very strong. For 10.18, t  

3.39 with 11 d.f.; reject H0 at a  .10,

.05, .01 but not .001; very strong

10.21 a. H0: m1  m2  0 versus Ha: m1  

m2  0

b. t  1.97; reject H0 at .10 and .05 but

not .01 or .001; strong evidence.

c. [ 12.01, 412.01]. A’s mean could be

anywhere from $12.01 lower to

$412.01 higher than B’s.

10.23 a. H0: m1  m2  0 versus Ha: m1  

m2  0

b. Reject H0 at a  .10, .05 but not .01

or .001; strong evidence

c. [$1.10, $100.90]

10.29 a. [100.141, 106.859]; yes. [98.723,

108.277]; no

b. t  2.32; reject H0 at a  .05 but not

.01; strong

c. t   4.31; reject H0 at a  .05, .01;

extremely strong.

10.31 a. H0: md  0 versus Ha: md  0

b. t  9.22; reject H0 at each level of a;

extremely strong.

c. p-value  .000; reject H0 at each a;

extremely strong.

d. [.1678, .2796]; 30 year loan rates are

between .1678% and .2796% higher

10.33 a. t 6.18; decide there is a difference.

b. A 95% confidence interval is [2.01,

4.49], so we can estimate the

minimum to be 2.01 and the

maximum to be 4.49.

10.35 a. H0: md   0 versus Ha: md  0 

b. t  3.89; 

reject H0 at all a except .001; yes

c. p-value  .006; reject H0 at all 

a except .001; very strong 

evidence 

10.39 z  10.14; reject H0 at each value of

a; extremely strong evidence

10.41 a. H0: p1  p2  0 versus 

Ha: p1  p2  0

b. z  3.63; reject H0 at each value of a

c. H0: p1  p2  .05 versus

Ha: p1  p2  .05

z  1.99 and 

p-value .0233; strong evidence

d. [.0509, .1711]; yes

10.43 p-value .004; very strong evidence

[ .057,  .011];  .057

so reject H0 and decide m 6. 

p-value .0158

9.31 H0: m   4 versus Ha: m 4

t  4.78; reject H0 at all a’s; estimate 

m   4

9.33 Since t   4.97 and p-value .000,

there is extremely strong evidence that

m 18.8

9.37 a. H0: p   .5 versus Ha: p  .5

b. z  1.19. Do not reject H0 at any a.

There is little evidence.

9.39 a. H0: p   .18 versus Ha: p  .18

b. z 1.84; p-value .0329. Reject H0 at

a .10 and .05; do not reject H0 at

a .01, .001. There is strong evidence.

c. Possibly.

9.41 H0: p   .73 versus Ha: p .73

z    .80 and p-value  .4238 provide

insufficient evidence to reject H0 at any a.

9.47 a. .9279; .8315; .6772; .4840; .2946;

.1492; .0618; .0207; .0055; .00118

b. No. Must increase n.

c. The power increases.

9.49 246

9.55 X2
  6.72   13.8484. Reject H0.

9.57 X2
  6.72   9.88623. Reject H0.

9.59 a. H0: m  25 versus Ha: m  25

b. t   2.63. Reject H0 at all a’s except

.001.

c. Since p-value  .0057, reject H0 at all

a’s except .001.

d. Very strong evidence.

9.61 a. t  2.50. Reject H0 at a  .10, .05,

.01 but not .001; very strong.

b. t  1.11. Do not reject H0 at any a. 

9.63 a. Reject H0 at a  .10 and .05 but not

at .01 or .001.

b. Strong evidence

9.65 a. FA: H0: m  8.31% vs Ha: m

8.31%; DLC:H0: m  11.71% vs 

Ha: m 11.71%; DMC: H0: m  

13.64% vs Ha: m 13.64%; 

DSC: H0: m  14.93% vs Ha:

m 14.93%

b. FA: t  6.66. Reject H0. DLC: t 

.80. Do not reject H0. DMC: t .53.

Do not reject H0. DSC: t  2.46.

Reject H0. Conclude current means

differ for FA and DSC.

9.67 There is some evidence.

9.69 a. t 4.92. Reject H0 at every a. There

is extremely strong evidence the

current mean is higher.

b. Yes. Extra expenses erode

fundholders’ account values.

Chapter 10

10.1 a. less d. greater

b. equal e. greater

c. less f. not equal

10.5 a. [4.02, 5.98] Yes.

b. z  10. Reject H0 and decide 

m1  m2.

c. p-value .0228. Reject H0 at a  

.10, .05, but not .01 or .001

10.7 a. [ 20.12,  .68]. Yes, by between .68

and 20.12 days.

c. z   2.10. Decide m1  m2.

d. p-value .0179. Reject H0 at a  

.10, .05 but not .01 or .001; strong

evidence
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10.45 a. z  3.72; reject H0: p1  p2  0 

at a  .001; [.029, .091]; 

largest: .091; smallest: .029

b. z   4.435; reject H0: p1  p2  0

at a .001; [ .079, .201]; 

largest: .079; smallest: .201

10.49 a. 2.96

b. 4.68

c. 3.16

d. 8.81

10.51 a. F  3.24; do not reject

b. F  3.24; do not reject

10.53 a. F  2.06; do not reject H0

b. Yes

10.55 a. H0: mT  mB  0 versus

Ha: mT  mB  0

t  1.54; cannot reject H0 at any

values of a; little or no evidence

b. [ .09, .73]

10.57 a. H0: md  0 versus Ha: md  0 

b. t  10.00; reject H0 at all levels of a

c. p-value  .000; reject H0 at all levels

of a; extremely strong evidence

10.59 a. t  8.251; reject

H0: mO  mJVC  0 at a  .001

b. [$32.69, $55.31]; probably

c. t  2.627; reject 

H0: mO  mJVC  30 at a  .05

Chapter 11 (Answers to several 

Even-Numbered Exercises also given)

11.1 Factor  independent variables in a

designed experiment 

treatments  values of a factor (or

combination of factors) 

experimental units  entities to which

treatments are assigned 

response variable  the dependent

variable (or variable of interest)

11.3 Response: time to stabilize emergency

condition

Factor: display panel 

Treatments: panels A, B, C

Experimental units: air traffic

controllers

11.5 Constant variance, normality,

independence

11.7 To determine which treatment means

differ and to estimate how large the

differences are.

11.9 a. F  184.57, p-value .000; 

reject H0 and decide shelf height

affects sales.

b. Point estimate of mM  mB is 21.4;

[17.681, 25.119], mT  mB :  4.3;

[ 8.019,  .581], mT  mM :  25.7;

[ 29.419,  21.981].

c. mM  mB : [18.35, 24.45]

d. mB : [53.65, 57.96]

mM : [75.04, 79.36]

mT : [49.34, 53.66]

11.11 a. F  43.36, p-value .000; 

reject H0; designs affect sales

b. B  A: [11.56, 20.84] 

C  A: [3.56, 12.84] 

C  B: [ 12.64,  3.36]

c. B  A: [12.41, 19.99] 

C  A: [4.41, 11.99] 

C  B: [ 11.79,  4.21]

d. mA: [13.92, 19.28]

mB: [30.12, 35.48]

mC: [22.12, 27.48]

2  3: [ 10.83,  4.57]

2  4: [8.07, 14.33]

3  4: [15.77, 22.03]

f. Panel B. No, there is no 

interaction.

g. [6.37, 12.63]

11.27 a. Plot suggests interaction exists.

F  24.73 and p-value  .001;

reject H0; conclude interaction

exists. Cannot test separately.

b. House design C and foreman 1;

[17.72, 19.88]

11.29 F  40.79 and p-value  .0001; 

reject H0; drug effects differ.

All pairwise differences significant with

a  .05 

Y X: [9.18, 21.82]

Z  X: [ 17.52,  4.88]

Z  Y: [ 33.02,  20.38]

mY: [34.73, 43.67]

All intervals are 95%.

11.31 Loan officer effects differ

( p-value .0001)

Evaluation method effects differ 

(p-value  .0001)

D  B: [ 4.25,  3.25]

F  B: [ 3.25,  2.25]

D  F: [ 1.50,  .50]

4  1: [ 4.58,  3.42]

3  1: [ 3.58,  2.42]

2  1: [ 1.91,  .75]

4  2: [ 3.25,  2.09]

3  2: [ 2.25,  1.09]

4  3: [ 1.58,  .42]

11.33 F(int) .09; do not reject H0; conclude

no interaction.

F(1) 3.31; reject H0, degree of

attendance effects significant.

F(2) .23; do not reject H0;

prior information effects not

significant.

11.35 F(int) 0.19 and p-value  .9019; do

not reject H0; conclude no interaction

F(1) 48.63 and p-value  .000;

reject H0. Fertilizer type effects differ.

F(2) 78.90 and p-value  .000;

reject H0. Wheat type effects differ. 

Using Tukey comparisons: 

Fertilizer types A and B differ with 

a  .01 

Wheat types M and N, M and O,

M and P, O and P each differ with 

a  .01.

Chapter 12

12.7 a. Each Ei  5

b. x2
 300.605; reject H0

12.9 a. x2
 137.14; reject H0

b. Differences between brand

preferences

12.11 a1. [  , 10.185]

a2. [10.185, 14.147]

a3. [14.147, 18.108]

a4. [18.108, 22.069]

a5. [22.069, 26.030]

a6. [26.030,  ]

b. 1.5, 9, 22, 22, 9, 1.5

c. Can use x2 test

e. 1, 9, 30, 15, 8, 2

x2
 5.581

f. Fail to reject; normal

11.12 F  16.42; p-value .001;

reject H0; brands differ

11.13 Divot  Alpha: [38.41, 127.59]

Divot  Century: [50.21, 139.39]

Divot  Best: [ 14.39, 74.79]

Century  Alpha: [ 56.39, 32.79]

Century  Best: [ 109.19,  20.01]

Best  Alpha: [8.21, 97.39]

Best and Divot appear to be most

durable

Divot: [313.26, 359.94]

Best: [283.06, 329.74]

Alpha: [230.26, 276.94]

Century: [218.46, 265.14]

11.15 When differences between

experimental units may be concealing

any true differences between the

treatments.

11.17 a. F  36.23; p-value .000; 

reject H0; sales methods differ

b. F  12.87; p-value .007; reject

H0; salesman effects differ

c. Method 1  Method 2: 

[ 2.30, 2.96]

Method 1  Method 3: 

[2.37, 7.63]

Method 1  Method 4: 

[3.70, 8.96]

Method 2  Method 3: 

[2.04, 7.30]

Method 2  Method 4: 

[3.37, 8.63]

Method 3  Method 4: 

[ 1.30, 3.96]

Methods 1 and 2

11.19 a. F  441.75 and p-value  .000;

reject H0; keyboard brand effects

differ.

b. F  107.69 and p-value  .000;

reject H0; specialist effects differ.

c. A B: [8.55, 11.45]

A C: [12.05, 14.95]

B  C: [2.05, 4.95]

Keyboard A

11.21 a. F  5.78 and p-value  .0115; reject

H0; soft drink brands affect sales.

b. Coke Classic New Coke: 

[7.99, 68.01]

Coke Classic  Pepsi: 

[ .71, 59.31]

New Coke Pepsi: 

[ 38.71, 21.31]

c. Yes, mean sales of Coke Classic

were significantly higher than those

for New Coke.

11.22 A combination of a level of factor 1 and

a level of factor 2.

11.23 See Figure 11.11 on page 467 in the text.

11.25 a. Plot suggests little interaction. 

F  .66 and p-value  .681; do not

reject H0. Conclude no interaction.

b. F  26.49 and p-value  .000;

reject H0; display panel effects differ.

c. F  100.80 and p-value  .000;

reject H0; emergency condition

effects differ.

d. A B: [.49, 5.91] 

A C: [ 6.81,  1.39] 

B  C: [ 10.01,  4.59]

e. 1  2: [ 10.43,  4.17]

1  3: [ 18.13,  11.87]

1  4: [.77, 7.03]
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12.13 Fail to reject H0; normal

12.17 a. 40%

60%

20% 80%

b. 16% 24%

40% 60%

80% 30%

4% 56%

6.67%  93.33%

20% 70%

c. x2
 16.667; reject H0

d. Yes 

12.19 a. 24.24%

22.73%

53.03%

51.515% 48.485%

b. For Heavy Yes cell: cell: 18.18%;

row: 75%;column: 35.29%

c. x2
 6.86; fail to reject H0

d. Possibly; can reject H0 at a  .05

12.21 a. x2
 16.384; reject H0

b. [ .216,  .072]

12.23 x2
 65.91; reject H0:

[.270, .376]

12.25 b. x2
 20.941; reject H0

c. Dependent

12.27 x2
 71.48; reject H0

Chapter 13

13.3 a. b0   15.84; b1    .1279 

b0 is the estimated mean fuel

consumption when the temperature is

0 F. b1 is the estimated change in

mean fuel consumption corresponding

to a 1 increase in temperature.

c. 10.724 MMcF in each case.

13.5 a. b0   11.4641; b1   24.6022

b0 is the estimated mean length of a

service call when 0 copiers are

serviced (not practical!) while b1 is

the estimated change in mean length

of a call when 1 more copier must be

serviced.

b. 109.87 minutes in each case

13.7 b. b0 is the estimated mean direct labor

cost when the batch size is 0 (not

practical!) while b1 is the estimated

mean change in labor cost when the

batch size increases by one unit.

c. ŷ  18.488  10.146x

d. 627.248 or $62,724.80 in each case.

13.11 s2
 .428; s  .654

13.13 21.3002; 4.6152

13.15 74.6762; 8.6415

13.17 27.8530; 5.2776

13.21 a. b0  14.816; b1  5.7066

b. SSE 1.438; s  .5363

c. sb1
 .3953; t  14.44

d. t  2.571; reject H0. Yes, there is

strong evidence that b1 0.

e. t  4.032; reject H0. Yes, there is

very strong evidence that b1 0.

f. p-value .000. Can reject 

H0 at all a’s. Extremely strong

evidence.

g. [4.6903, 6.7229]

h. [4.1128, 7.3004]

i. sb0
 1.235; t  12.00

j. p-value .000. Can reject H0 at all

a’s. There is extremely strong

evidence that b0 0. 

 

 

d. p-value  .000.  Can reject H0 at all

levels of a. There is extremely

strong evidence of a regression

relationship.

13.53 a. F  106.30

b. F  4.20. Reject H0; significant

relationship at a .05

c. F  7.64. Reject H0; significant

relationship at a .01

d. p-value  .000. Can reject H0 at all

levels of a. There is extremely

strong evidence of a regression

relationship.

13.55 a. F  58.43

b. F  5.32. Reject H0; significant

relationship at a .05.

c. F  11.26. Reject H0; significant

relationship at a .01

d. p-value  .000.  Can reject H0 at all

levels of a. There is extremely

strong evidence of a regression

relationship.

13.59 Approximate horizontal band

appearance. No violations indicated.

13.61 No violations indicated.

13.63 Cyclical plot

13.65 The assumption of constant variance

13.67 a. b1    6.4424. For each unit

increase in width difference, we

estimate the mean accident rate will

fall by 6.44.

b. p-value  .000. There is extremely

strong evidence that b1 0.

c. r2
 .984. 98.4% of the variability in

the accident rate is explained by

width difference.

13.69 a. 0-ring failure seems to be associated

with lower temperatures.

b. x   31 is outside the experimental

region.

13.71 a. t  4.5967 and F  21.1299 have 

p-values of .0002. There is extremely

strong evidence of a relationship. 

b. b1  35.2877; [19.2204, 51.3550]

Chapter 14

14.3 a. b1    .0900; b2  .0825

b. 10.334 in each case.

14.5 a. b1    2.3577; b2  1.6122; 

b3   .5012

b. ŷ  8.4111

14.7 s2, s

14.11 1. SSE   73.6; s2
 10.5; 

s  3.24164

2. Total variation   7447.5; SSE  

73.6; Explained variation   7374.0
3. R2

 99.0%;
–
R2
 98.7%

4. F(model)  350.87

5. 350.87  F.05  4.74. Decide at

least one of b1, b2 is not 0.

6. 350.87  F.01  9.55

7. p-value  .000. The model is

significant at each level of a.

14.13 1. SSE   1,798,712.2; s2
 149,892.7;

s  387.1598

2. Total variation   464,126,601.6; 

SSE   1,798,712.2; 

Explained variation   462,327,889.4

3. R2
 99.61%; 

–
R2
 99.52%

4. F(model)  1028.1309

5. 1028.1309  F.05  3.49. Decide at

least one of b1, b2, b3 is not 0.

 

k. SSxx  1.84069; sb0
 1.235, 

sb1
 .3953

13.23 a. b0  7.81409; b1  2.6652

b. SSE 2.806; s  .316561

c. sb1
 .2585; t  10.31

d. t  2.048; reject H0. Yes, there is

strong evidence that b1 0.

e. t  2.763; reject H0. Yes, there is

very strong evidence that b1 0

f. p-value .000. Can reject H0 at all

a’s. There is extremely strong

evidence that b1 0.

g. [2.1358, 3.1946]

h. [1.9510, 3.3794]

i. sb0
 .07988; t  97.82

j. p-value .000. Can reject H0 at all

a’s. There is extremely strong

evidence that b0 0.

k. SSxx  1.49967; sb0
 .07988; 

sb1
 .2585 

13.25 a. b0  48.02; b1  5.7003

b. SSE  896.8; s  10.5880

c. sb1
 .7457; t  7.64

d. t  2.306; reject H0. Yes, there is

strong evidence that b1 0.

e. t  3.355; reject H0. Yes, there is

very strong evidence that b1 0.

f. p-value .000. Can reject H0 at all

a’s. There is extremely strong

evidence that b1 0.

g. [3.9807, 7.4199]

h. [3.1985, 8.2021]

i. sb0
 14.41; t  3.33

j. p-value .010. Can reject H0 at a  

.10, .05 but not at .01 or .001. There

is strong evidence that b0 0

k. SSxx 201.6; sb0
 14.41; sb1

 .7457 

13.27 a. b1  1.2731. We estimate that for

every increase of one unit in mean

taste, mean preference will increase

by 1.2731 

b. [.9885, 1.5577]. We are 95%

confident b1 is in this interval.

13.31 a. 33.362; [32.813, 33.911]

b. 33.362; [31.878, 34.846]

c. .15773

13.33 a. 8.0806; [7.9479, 8.2133]

b. 8.0806; [7.4187, 8.7425]

c. .041902

d. [7.9016, 8.2596]; [7.1878, 8.9734]

e. (i) 8.4804; [8.3604, 8.6004]

(ii) 8.4804; [7.8209, 9.1398]

(iii) .034267

(iv) [8.3185, 8.6423]; [7.5909,

9.3699]

13.35 a. 162.03; [154.04, 170.02]

b. 162.03; [136.34, 187.72]

c. The second.

13.39 Explained variation 59.942; r2
 .977;

r .988

13.41 Explained variation 10.653; r2
 .792;

r .890

13.43 Explained variation 6550.7, r2
 .880;

r .938

13.47 Reject H0: r  0 at all four values of a

13.49 t-test for significance of b1

13.51 a. F  208.39

b. F  6.61. Reject H0 and conclude

there is a significant relationship at 

a  .05

c. F  16.26. Reject H0 and conclude

significant relationship at a .01
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6. 1028.1309  F.01  5.95
7. p-value  .000. The model is

significant at each level of  .
14.17 1. b0  29.347, sb0

 4.891, t  6.00;
b1  5.6128, sb1

 .2285, t  24.56;
b2  3.8344, sb2

 .4332, t  8.85
2. Reject H0

and conclude at 
Reject H0

and conclude at 
Reject H0

and conclude at 
Both x1 and x2 are significantly
related to y at .

3. As in part 2, all 3 t statistics exceed
the critical value 3.499, so conclude
b0, b1, and b2 all differ from 0 at
  .01. Both x1 and x2 are
significantly related to y.

4. b0: p-value  .001. Can reject H0 at
every  except .001.
b1: p-value  .000. Can reject H0 at 
every  .
b2: p-value  .000. Can reject H0 at 
every  .
There is extremely strong evidence
that x1 and x2 are related to y.

5. b0: [17.780, 40.914]
b1: [5.072, 6.153]
b2: [2.810, 4.860]

6. b0: [12.233, 46.461]
b1: [4.813, 6.412]
b2: [2.319, 5.350]

14.19. 1. b0  1946.8020, sb0
 504.1819, 

t  3.8613;
b1  .0386, sb1

 .0130, t  2.9579;
b2 1.0394, sb2

 .0676, t 15.3857;
b3   413.7578, sb3

 98.5983, 
t   4.1964

2. b0: t  3.8613  2.179. Reject H0

at   .05
b1: t  2.9579  2.179. Reject H0

at   .05
b2: t  15.3857  2.179. Reject H0

at   .05
b3: t   4.1964   2.179. Reject
H0 at   .05
x1, x2, and x3 are significantly related
to y at   .05. 

3. b0: t  3.8613  3.055. Reject H0

at   .01.
b1: t  2.9579  3.055. Cannot
reject H0 at   .01
b2: t  15.3857  3.055. Reject H0

at   .01
b3: t   4.1964   3.055. Reject
H0 at   .01
x2 and x3 are significantly related to y
at   .01.

4. b0: p-value  .0023. Can reject H0

at every  except .001
b1: p-value  .0120. Can reject H0

at   .10 and .05 but not at .01 or
.001.
b2: p-value .000. Can reject H0 at
every  .
b3: p-value  .0012. Can reject H0

at every  except .001.
Evidence is extremely strong for x2,
very strong for x3 and strong for x1.

5. b0: [848.1896, 3045.4144]
b1: [.0103, .0669]

a  .05

a  .05b2  0
b2:  t  8.85  2.365.

a  .05b1  0
b1:  t  24.56  2.365;

a  .05b0  0
b0:  t  6.00  2.365.

house will be between $166,367 and
$176,078.

15.5 a. The plots suggest quadratic
relationships between y and x1

and between y and x2.
b. 1. 35.0261; [34.4997, 35.5525]

2. 35.0261; [33.5954, 36.4568]
15.7 The  relationship between y and one

independent variable depends on the
value of the other independent variable.

15.9 a. When x1  13, ŷ  108.93328. 
When x1  22, ŷ  156.73012

b. When x1  13, ŷ  129.75562. 
When x1  22, ŷ  183.74788

c. As x1 increases, the mean of y
increases at a faster rate when x2 is
higher.

15.11 odds  p{success} p{failure}; 
odds ratio for xj change in odds
corresponding to a one unit change in xj.

15.13 a. Male: p{hired}  .628; 
Female: p{hired}  .0062

b. 271.429. The odds of being hired
increase tremendously for males.
Yes, since there is strong evidence
that b3  0.

15.15 We consider p-values corresponding to
potential independent variables; SSE;
–
R2; and Cp.

15.17 This model has a small Cp statistic 
(Cp  1.606  p   1  3), the second
best values of s and 

–
R2, and has 

p-values  .05 for both independent
variables.

15.21 Removing hospital 14 causes Cook’s D
for hospital 17 to drop from 5.033 to
1.317. Removing hospital 14 causes
Cook’s D for hospital 16 to rise from
.897 to 1.384.

15.25 b. 483.09; [401.22, 581.67]
c. 1.29. We expect about 29% growth

in the number of stores each year.
15.27 a. Yes, there is an approximate

horizontal band appearance.
b. ŷ  175.05; [150.03, 200.06];

[93.13, 256.97]; 200.06 
15.31 d  1.62  dU,.05  1.57; conclude

there is not positive autocorrelation.
15.33 a. Yes

b. ŷ  $1239.70;  [1167.32, 1312.08];
[878.68, 1600.72]; yes.

15.35 Removing hospital 17 from the data set
would change the point prediction
substantially. 

Chapter 16

16.1 See pages 698–699 in text.
16.3 See page 700 in text.
16.5 a. Plot shows linear growth.

b. ŷ  290.089  8.667(21)  472.1
16.7 Square root (y.5

t ), quartic root (y.25
t ), or

logarithmic transformation (lnyt).
16.9 ŷ133  439.703; [389.915, 495.848]
16.11 See pages 710–711 in text.
16.13 See pages 712–713 in text.
16.15 linear trend.
16.17 666.6, 881.6, 482.1, 299.9.
16.19 a. 15.01, 40.54, 56.82, 22.02

b. [12.21, 17.81]; [37.69, 43.39];
[53.90, 59.74]; [19.04, 25.00] 

16.23 S26  356.12

b2: [.8921, 1.1867]
b3: [ 628.6035,  198.9121]

6. b0: [406.5263, 3487.0777]
b1: [ .0011, .0783]
b2: [.8329, 1.2459]
b3: [ 714.9756,  112.5400]

14.23 a. 172.28; [168.56, 175.99]
b. 172.28; [163.76, 180.80]
c. [166.79, 177.77]; [159.68, 184.88]

14.25 [14,906.24, 16,886.26] Unusually high
14.29 a. Parallel linear plots with different

intercepts.
b. b2  mean difference between

adoption times of stock and mutual
companies of the same size.

c. |t2|  5.5208; p-value  .001. Reject
H0 at both a values. Significant
difference between company types.
[4.9770, 11.1339]

d. Slopes equal; no interaction.
14.31 b. F  184.57; p-value  .001; reject

H0. Display heights affect sales.
c. 21.4; [18.35, 24.45];  tM  14.93.

Reject H0: bM 0. Middle and bottom
heights yield different mean sales.
 4.3; [ 7.35,  1.25];  tT  3.00.
Reject H0: bT  0. Top and bottom
heights yield different mean sales.
Estimate of bM  bT is 25.7.

d. 77.2; [75.04, 79.36]; [71.486,
82.914]

e. [22.65, 28.75];  t  17.94,
p-value .001. Reject H0: bM 0.
Middle and top heights yield
different mean sales.

14.33 a. No interaction between expenditure
and campaign type.

b. 8.61178; [8.27089, 8.95266];
slightly longer.

14.35 k  g  number of parameters set
equal to 0 in H0.
n   (k  1)  degrees of freedom
for SSEC.

14.37 F  9.228  F.01  4.31. Reject H0 at
a  .05 and .01.

14.41 a. Appears linear. Normality
assumption is appropriate.

b. Residual plots have horizontal band
appearance.

14.43 There may still be positive
autocorrelation, but the pattern is less
pronounced than in the simple linear
regression model.

14.45 The positive coefficient on x2 (rooms)
and the negative coefficient on x3

(bedrooms) indicate that the seller should
expect higher prices for houses of a fixed
size where the open space is carved into
more rooms that are not bedrooms.

14.47 a. Yes
b. That the error terms have a normal
distribution. Since the plot looks linear,
the assumption seems valid.

Chapter 15

15.3 a. Price appears to be a linear function
of size but a quadratic function of x.

b. Yes. The p-values corresponding to
b1, b2, and b3 are all  .006.

c. 171.222; [166.367, 176.078]. We are
95% confident that the price of the
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16.25 When the level and trend of the time
series are changing slowly over time.

16.27 l2   .2(211)  .8(204.283  7.7102) 
 211.795
b2   .2(211.794   204.283)  
.8(7.7102)  7.6704
ŷ27  l24  3b24  393.670  
3(7.5447)  416.304 

16.29 ŷ21  475.916; [427.380, 524.453]
16.33 Method A: MAD  3; MSD  9.

Method B: MAD  2.67; MSD  12.67
16.37 a. Year 1990 1991 1992 1993

Index 100 87.90 88.31 91.59

Year 1994 1995 1996
Index 96.68 92.85 91.69

b. Sales dropped 8.41% between 1990
and 1993. They dropped 8.31%
between 1990 and 1996.

16.39 a. Year 1990 1991 1992 1993
Index 100 99.16 99.53 100.22

Year 1994 1995 1996
Index 99.44 100.25 107.19

b. Year 1990 1991 1992 1993
Index 100 99.06 99.44 100.16

Year 1994 1995 1996
Index 99.58 99.24 106.99

16.41 a. ŷ31  .1776  .4071(3.80)  
.7837(3.90)  .9934(6.80)  
.0435(31)  3.805  10.577

b. The model using independent
variables time, advertising expendi-
ture, and S2 through S13 has significant
t statistics and Cp 15.7   15.

Chapter 17

17.9 a.

b.
d.

17.11 b.

d. Yes, R chart in control 
e. chart out of control; pressing

machine not being properly adjusted
f.
g. 10.6985,

9.7465,
Center lineR .825,
UCLR 1.7440,
no LCLR

h. Yes, both charts now in control
17.13 b. 15.8,

19.3389,
12.2611

CLR 6.1333,
UCLR 12.9658, 
No LCLR; yes

d. No, chart out of control
e. No, both charts remain in control

after die change
f. Yes, chart badly out of control after

die repair
x

x

 

 

 LCLx

 UCLx

 CLx

 

 

 LCLx

 UCLx

R  .825 10.2225,Center linex

x

no LCLR

UCLR  1.7758,
Center lineR  .84,
LCLx  9.5473,
UCLx  10.5167,
Center linex  10.032,
no LCLR

UCLR  8.7516,
LCLx  2.1218;
UCLx  9.0782,
x  5.6, R  3.4;
R  2, 4, 4, 2, 5;
x  5, 7, 6, 3, 7;

Chapter 18

18.3 a. S 4; p-value .375;
do not reject H0

b. S 5; p-value .031;
reject H0

18.5 a. p-value .0059; reject H0

18.7 a. S1 4, S2 5, S 5
b. p-value 1.0; do not reject H0 at

any a; conclude no difference
18.11 T1 120.5; do not reject

H0; no difference
18.13 Differences exist
18.17 T 3; reject H0 at a .02
18.19 T 0; reject H0; 

conclude scores differ
18.23 Reject H0; panels differ
18.25 H 14.36; reject H0; display 

heights differ
18.29 a. rs  .721

.648; yes
b. No

18.31 rs 1.0; reject H0

18.33 H 14.36
p-value .001
Drugs differ

18.35 T 1.0
p-value .004; decreased

18.37 T1 75
p-value .0066
Loan rates differ

Chapter 19

19.5 Small facility
19.7 a. $10 million, 

$10.5 million, $3 million
b. Medium facility

19.9 a. $12.2 million
b. $1.7 million

19.11 a. A: 6.2, B: 5.2, C: 4.8
b. Location A
c. $1.8 million

19.13 a. Subcontract: $1.23
Expand: $1.57 
Build: $1.35 

b. Expand
19.19 a. .485, .8247, .0928, .0825

b. .300, .1667, .700, .1333
c. .215, .2325, .2093, .5581

19.21 a. 822
b. 580
c. 242
d. 242

19.25 a. .73, .9863, .0137
b. .27, .6667, .3333

19.27 a. Do not send, $14,958.90
b. Send, $14,500 

19.33 a. Should be continued since 
EMV (continue)  $15.5

b. Should be licensed since 
EMV (develop)  $22.9  $23.

19.35 a. P(F)  .62, P(H|F)  .871, 
P(L|F)  .129; P(U)  .38, 
P(H|U)  .158, P(L|U)  .842
If favorable, build large.
If unfavorable, also build large.

b. EVSI  0. Don’t pay for advice.
19.37 a. Relocate; $5,000,000

b. Renew lease; $500,000

 

 

 

 

 

 

 

 

 

 

  

 

 

   

 

  

  

17.15 a. 841.45,
845.2116,
837.6884,

CLR 5.16,
UCLR 11.78,
no LCLR; yes, both charts out of control

c. 841.40,
844.96,
837.84,

CLR 4.88,
UCLR 11.14, 
no LCLR

d. R chart in control; yes, can use chart
e. No, chart out of control; 

process mean is changing
f. 840.46,

844.29,
836.63,

CLR 5.25,
UCLR 11.98,
no LCLR

g. Yes, all within control limits

17.21 a. Run 8 points below CL;
Run 12 points above CL

b. Two points above UCL
c. No evidence
d. 2 of 3 points in zone A or beyond

17.23 Up A–B: 843.96
Up B–C: 842.70
Low B–C: 840.20
Low A–B: 838.94
Up A–B: 9.57
Up B–C: 7.37
Low B–C: 2.95
Low A–B: .75

17.29 a. [12.4644, 19.4188]
b. Max 19.4188 minutes; 

min 12.4644 minutes
c. Yes, max time less than 20 minutes
d. 20 min: 3.50 sigma; 

30 min: 12.13 sigma

17.31 a. [.6518, 1.0416]
b. 1.0416 lb.
c. No; weights might be as low as

.6518 lb.
d. .0681 or 6.81%

17.33 a. [50.9189, 54.2561]
b. Can be reduced by .4189 lb.;

.4189(1,000,000)($2) $837,800

17.35 .8736
17.39 UCL .19, LCL .01
17.41 a. UCL .6217,

LCL .4323
b. In control, no

assignable causes
17.43 a. UCL .0853,

LCL .0187
b. UCL .057,

LCL .005; yes
17.51 a. 5.35,

3.51
b. UCLR 3.38
c. In control

17.53 a. 5.08,
3.92

UCLR 2.135
b. Yes, in control
c. [3.20, 5.80]
d. Yes, capable
e. 3.45, .45

 

 LCLx

 UCLx

 

 LCLx

 UCLx

 

 

 

 

 

 

  

 

 

 

 LCLx

 UCLx

 CLx

x

x
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numerical descriptive statistics, 149–151

ogives, 89

Poisson probabilities, 230

random number generation, 306

runs plot, 26–27

sample correlation coefficient, 151

scatter plots, 91

simple linear regression analysis, 577–578

stem-and-leaf display, 90

tabular and graphical methods, 88–91

time series analysis, 740–741

two-sample hypothesis testing, 437–438

Meier, Heidi Hylton, 506, 507

Mendenhall, W., 891

Mendenhall, William, 296, 652, 891

Merrington, M., 427, 864, 865, 866, 867

Mild outliers, 123–124, 141

Milliken and Company, 748

Minimum-variance unbiased point estimate,

288–289, 302

MINITAB applications

analysis of variance, 451, 484–487

backward elimination, 661

bar charts, 37, 92–93

binomial probabilities, 214, 231

box-and-whiskers display, 124, 152

chi-square tests, 513–515

confidence intervals, 322–323, 348–349

contingency tables, 498–499

control charts, 800–801

crosstabulation tables, 98

distance values, 603

dot plots, 97

double exponential smoothing, 721–722, 723

Durbin-Watson statistic, 679–680

experimental design, 484–487

exponential smoothing, 719

frequency histograms, 46, 95–96

frequency polygons, 96

getting started, 27–33

hypothesis testing, 369, 394–395

least squares line, 152

least squares point estimates, 584

logistic regression, 650

model building, 692–695

multiple linear regression, 632–633

multiplicative decomposition, 714

nonparametric methods, 829–831

normal distribution, 272–273

normal plot, 560

numerical descriptive statistics, 151–153

ogives, 97

pie charts, 94

Poisson distribution, 220, 231

random number generation, 306

randomized block ANOVA, 460, 485

regression analysis, 609–610

runs plots, 29–30

sample correlation coefficient, 153

sample covariance, 153

sampling distribution of sample mean,

286–288, 307

scatter plots, 99

simple linear regression analysis, 535, 579

stem-and-leaf display, 57–58, 98

stepwise regression, 660, 661

tabular and graphical methods, 92–99

time series analysis, 742–743

two-sample hypothesis testing, 439–441

two-way ANOVA, 469, 470, 486

Winters’ method, 725–727

Mode, 104–107, 141

Model building

comparing models, 655–659

iterative selection procedure, 659–661

multicollinearity, 652–655

Moore, David S., 492, 502, 813, 891

Morgenstern, O., 847, 891

Morris, Michael H., 891

Motorola, Inc., 748, 783

Mound-shaped distributions, 47, 116–117, 141

Moving averages, 709–710, 735

MSD; see Mean squared deviation

MSE; see Error mean square

MST; see Treatment mean square

Multicollinearity, 652–655, 682

Multinomial experiments, 489–490, 506

Multiple choice questions, 297–298

Multiple coefficient of determination, 593–594

Multiple correlation coefficient, 593–594

Multiple regression model, 563,

581–587, 624

assumptions, 591–592

confidence intervals, 600, 601–603

Durbin-Watson test, 681

interaction, 642–647

least squares point estimates, 583–585

mean square error, 592–593

multiple coefficient of determination, 593–594

multiple correlation coefficient, 593–594

overall F test, 595–596

partial F test, 618–621

point estimation, 585–586

point prediction, 586

prediction interval, 601–603

regression parameters, 582–583, 586

residual analysis, 621–622

significance of independent variable, 597–600

standard error, 592–593

Multiplication rule

general, 173

for independent events, 175

Multiplicative decomposition, 702, 708–714

Multiplicative Winters’ method, 722–727

Multistage cluster sampling, 296–297

Murphree, Emily S., 890

Mutually exclusive events, 167–169, 188

Myers, Dale H., 128

N

Nachtsheim, C., 473, 613, 891

Natural tolerance limits, 777–778, 795

Neff, Robert, 890

Negative autocorrelation, 562–563, 568, 680

Negative correlation, 131–132

Neter, J., 473, 613, 891

Nominative variables, 14, 15, 16

Nonconforming units (defective), 785, 795

Nonparametric methods, 15, 323, 371, 804

advantages, 816

definition, 824

Kruskal-Wallis H test, 454, 818–819

sign test, 804–807

Spearman’s rank correlation coefficient, 552,

820–823

Wilcoxon rank sum test, 408, 808–812

Wilcoxon signed ranks test, 415, 814–816

Nonresponse, 300, 302

Normal curve, 113–114, 141

areas under, 239–245

cumulative areas under, 240–245

left-hand tail area, 243–244, 250–251

points on horizontal axis, 248–252

properties, 238–239

right-hand tail area, 242, 243, 248–250

standard, areas under, 860–861, 876

Normal distribution, 113–114

approximation of binomial distribution, 256–259

goodness of fit test, 493–495

Normal probability distribution, 238, 246, 267;

see also Probability distributions

Normal probability plot, 267, 560

constructing, 263–264, 266

definition, 568

interpreting, 264–266

Normal table, 239, 876

cumulative, 240–245, 860–861

tolerance intervals, 252

Normality assumption

chi-square goodness of fit test, 493–495

multiple linear regression, 592

residual analysis, 560

simple linear regression model, 530–531

Not equal to alternative hypothesis, 362–364, 387

Null hypothesis, 351–353, 387; see also

Hypothesis testing

Nunnally, Bennie H., Jr., 336, 423, 891

O

Observational studies, 6, 16

Observations, 7, 443

errors, 300–301, 302

influential, 665–666, 668–671

O’Connell, Richard T., 747, 890

O’Connor, Catherine, 418

Odds ratio, 651

Ogives, 50, 73

Olds, E. G., 876

Olmsted, Dan, 279, 891

One-sided alternative hypothesis, 353, 357–364, 387

One-way ANOVA, 446–454

assumptions, 447

between-treatment variability, 448–449

definition, 478

estimation, 452

pairwise comparisons, 452–453
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testing for significant differences between

treatment means, 447–450

within-treatment variability, 448, 449

Open-ended questions, 297–298

Oppenheim, Alan, 747, 768, 771, 772, 774, 776, 777,

789, 790, 891

Oppenheim, Rosa, 747, 768, 771, 772, 774, 776, 777,

789, 790, 891

Ordinal variables, 14, 16, 803, 822–823

Orris, J. B., 23, 863

Ott, L., 663, 664n, 857, 859

Ott, Lyman, 296, 879, 891

Outer fences, 123, 124, 141

Outliers

dealing with, 668–671

definition, 73, 123, 682

detecting, 55, 59, 123–124, 665–666

mild and extreme, 123–124

Overall F test, 595–596

Ozanne, M. R., 295n

P

p charts, 785–788, 795

Paasche index, 733

Paired differences experiment, 411–415, 432, 814

Pairwise comparisons, 452–454

Parabola, 635

Parameters

binomial distribution, 215

Poisson distribution, 221

population, 101, 141

regression, 520–521, 582–583, 586

Pareto, Vilfredo, 38

Pareto charts, 38–39, 73

Pareto principle, 38

Partial F test, 618–621

Pattern analysis, 772–775, 795

Payoff table, 833–834, 849

Pearson, E. S., 319

Pearson, Michael A., 506, 507

Percent bar charts, 37

Percent frequencies, 36, 45

cumulative, 50

Percent frequency distributions, 36, 44, 73

Percent frequency histograms, 45

Percentage points, 332–333

Percentiles, 120–122, 141; see also Quartiles

Pereira, Arun, 389, 433, 891

Perfect information, 837, 849

Perry, E. S., 76

Petersen, Donald, 747

Phone surveys, 298–299

Pie charts, 37, 38, 73

Pilkington, G. B., II, 569

Plane of means, 582, 585

Plath, D. Anthony, 336, 423, 891

Point estimates, 101, 141; see also Least squares

point estimates

minimum-variance unbiased, 288–289

randomized block design, 461

two-way ANOVA, 472

unbiased, 282, 288–289

Poisson distribution, 217–221

definition, 225

mean, variance, and standard deviation, 221

Poisson probability table, 218–219, 857–859

Poisson random variable, 217–218, 221, 225

Pooled estimates, 403

Population correlation coefficient, 132, 552

Population covariance, 132

Population mean, 101, 141

comparing using independent samples, variances

known, 397–400

comparing using independent samples, variances

unknown, 403–408

confidence intervals, finite population, 337–338

confidence intervals, known standard deviation,

309–315, 325–328

confidence intervals, unknown standard deviation,

318–323

grouped data, 137

point estimate, 102–103

t tests, 368–371

z tests, 357–365

Population median

large sample sign test, 806

sign test, 804–807

Population parameters, 101, 141

Population proportion

comparing using large, independent samples,

419–422

confidence intervals, 329–333

confidence intervals, finite population, 338–339

z tests, 373–376

Population rank correlation coefficient, 821

Population standard deviation, 111–112, 141

Population total, 336–337, 343

Population variance, 111–112, 141

comparing with independent samples, 425–431

grouped data, 137

statistical inference, 385–386

Populations, 7–8

comparing, 397

definition, 7, 16

finite, 11, 336–339

infinite, 11

Positive autocorrelation, 561–562, 568, 678–680

Positive correlation, 131–132

Posterior decision analysis, 839–844, 849

Posterior probability, 182–184, 188, 839–844, 849

Power, of statistical test, 381, 387

PPI; see Producer Price Index

Prediction interval, 540–543, 601–603

Preliminary samples, 327

Preposterior analysis, 843, 849

Price indexes, 731–734

Prior decision analysis, 839, 849

Prior probability, 182, 188, 835

Probability, 155–157

classical, 156

conditional, 171–173, 176–179

of event, 159–162, 188

subjective, 156–157

Probability curves, 233–234

Probability density function, 233

Probability distributions; see also Binomial

distribution; Normal distribution

continuous, 233–234

of discrete random variable, 196–204, 225

uniform, 235–237

Probability revision table, 840–841

Probability rules, 164

addition rule, 167, 168, 169

multiplication rule, 173, 175

rule of complements, 164

Probability sampling, 278

Processes; see also Statistical process control

capability, 751, 778

capability studies, 777–783

causes of variation, 749–751, 777

definition, 11, 16

performance graphs, 755–756

sampling, 751–756

variation, 749–751

Procter & Gamble Company, 747

Producer Price Index (PPI), 733, 734

Proportion; see Population proportion;

Sample proportion

pth percentile, 120–121

p-value (probability value), 358–360, 362, 364, 368,

376, 387

Q

Quadratic regression model, 635–640

Qualitative data, graphical summaries; see Bar charts;

Pie charts

Qualitative variables, 4

definition, 16

dummy variables, 606–613

measurement scales, 14–15

Quality

Baldrige National Quality Awards, 747–748, 783

definitions, 745–746

ISO 9000 standard, 748–749

Pareto principle, 38

sigma level capability, 781–783

total quality management, 747

Quality control; see also Statistical process control

history, 746–747

inspection approach, 749

in Japan, 746, 747, 749

Quality of conformance, 745, 795

Quality of design, 745, 795

Quality of performance, 745, 795

Quantitative data, graphical summaries; see

Frequency distributions; Histograms

Quantitative variables, 4, 14

definition, 16

Quantity index, 731

Quartic root transformation, 672

Quartiles, 121–122

Queueing theory, 261, 267

R

R charts, 756–764

analyzing, 764–767

center line, 759

constants, 872, 873

control limits, 759

definition, 795

pattern analysis, 772–775

Ramaswamy, Kannan, 891

Random number table, 8, 276–277, 302

Random samples, 8–10, 275–278, 302

Random selections, 275

Random variables, 195; see also Discrete

random variables

binomial, 209

continuous, 195–196, 233

covariance, 878–879

definition, 225

hypergeometric, 223

mean, 877–878

variance, 877–878

Randomized block design, 454, 457–462, 478

confidence intervals, 461

point estimates, 461

Ranges, 110–111

definition, 141

interquartile, 123

Ranking, 14, 803

Ranks, 822–823

Rare event approach, 213

Ratio variables, 14, 16

Rational subgroups, 752–753, 767, 795

Rebalancing, 78

Recording errors, 300

Regression analysis, 517; see also Multiple regression

model; Simple linear regression model

analysis of covariance, 454

comparing models, 655–659

quadratic model, 635–640

Regression assumptions, 530–531

Regression model, 517, 518

Regression parameters, 520–521, 582–583, 586

Regression residuals, 557; see also Residuals

Reinmuth, J., 891

Rejection points, 363; see also Critical value rule

Relative frequencies

cumulative, 50

definition, 36, 44, 45

long-run, 156

Relative frequency distributions, 36, 44, 73

Relative frequency histograms, 45

Replication, 444, 478
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Research hypothesis; see Alternative

(research) hypothesis

Residual analysis

assumption of correct functional form, 560, 561

constant variance assumption, 559, 561

independence assumption, 561–563

multiple regression model, 621–622

normality assumption, 560

simple linear regression model, 557–563

Residual plots, 557, 568

Residuals

definition, 568

deleted, 667, 671

regression, 557

studentized, 667, 671

studentized deleted, 667–668, 671

sum of squared, 522, 567–568, 583

Response bias, 300–301, 302

Response rates, 298–299, 302

Response variables, 6, 16, 443, 478

Right-hand tail area, 242, 243, 248–250

Ringold, D. J., 76

Riordan, Edward A., 330, 890

Risk, 834, 835, 849

Risk averter’s curve, 847

Risk neutral’s curve, 847

Risk seeker’s curve, 847

Ritz Carlton Hotels, 748

Romig, Harold G., 746

Roosevelt, Franklin D., 278

Row percentages, 63

Rule of complements, 164

Runs, 774, 795

Runs plots, 4, 16, 68

S

Sample block means, 458

Sample correlation coefficient, 131–132

Sample covariance, 129–131

Sample frames, 296, 297, 299–300, 302

Sample mean, 102

definition, 141

derivations of mean and variance, 880–881

grouped data, 135–136

Sample proportion

derivations of mean and variance, 881

sampling distribution, 292–293

Sample sizes, 102

for confidence interval for population proportion,

331–333

for confidence interval for sample mean, 325–328

definition, 141

reducing error probabilities, 382

Sample space outcomes, 157–158, 162–163, 188

Sample spaces, 157, 188

Sample standard deviation, 112–113, 141

Sample statistic, 101–102

definition, 141

sampling distribution, 288–289

Sample treatment means, 458

Sample variance, 112–113, 136–137, 141

Samples

cluster, 296–297

definition, 7, 16

preliminary, 327

random, 8–10, 275–278

sizes, 298

stratified random, 295–296

systematic, 297

voluntary response, 278, 300

Sampling

acceptance, 746

convenience, 278

judgment, 278

probability, 278

processes, 751–756

with replacement, 275, 302

without replacement, 223–224, 275–276, 302

undercoverage, 300

Sampling designs, 295–297

Sampling distribution comparing population means,

398, 432

Sampling distribution comparing population

proportions, 419–422, 432

Sampling distribution comparing population

variances, 426, 432

Sampling distribution of sample mean, 279–286, 302

Central Limit Theorem, 286–288

unbiasedness and minimum-variance estimates,

288–289

Sampling distribution of sample proportion,

292–293, 302

Sampling distribution of sample statistic,

288–289, 302

Sampling error, 299, 302

Scanner panels, 496

Scatter plots, 67–68, 73–74, 517

Schaeffer, R. L., 296, 891

Schargel, Franklin P., 794

Scheffe, Henry, 870

Scherkenbach, William, 747, 891

Seasonal variation, 697, 700–702, 708, 735

Second quartile, 121–122

Seigel, James C., 795, 891

Selection bias, 300, 302

Shewhart, Walter, 746–747

Shift parameter, 635

Shiskin, Julius, 714

Sichelman, Lew, 334, 824, 825, 891

Siegel, Andrew F., 891

Sigma level capability, 781–783, 795

Sign test, 804–807, 824

Silk, Alvin J., 317, 891

Sills, Jonathan, 110

Simonoff, Jeffrey S., 5

Simple coefficient of determination, 546–549

definition, 568

Simple correlation coefficient, 549–550, 568

Simple exponential smoothing, 715–719

Simple index, 731

Simple linear regression model, 517–521

assumptions, 530–531

confidence intervals, 536, 540–543

definition, 568

distance value, 541

Durbin-Watson test, 678–681

F test, 552–554

least squares point estimates, 521–526

mean square error, 531–532

point estimation, 526

point prediction, 526

prediction interval, 540–543

regression parameters, 520–521

residual analysis, 557–563

significance of slope, 533–535

significance of y-intercept, 536

simple coefficient of determination, 546–549

simple correlation coefficient, 549–550

standard error, 531–532

Simpson, O. J., 184

Sincich, Terry, 652

Six sigma capability, 781–783

Six sigma companies, 783

Six sigma philosophy, 783

Skewed to left, 47, 74, 105–106

Skewed to right, 47, 74, 105

Skewness, Empirical Rule and, 116–117

Slope, 132

Slope, of simple linear regression model,

519, 520–521

confidence interval, 536

definition, 568

least squares point estimates, 522

significance, 533–535

Smith, H., 891

Smith, Ken G., 891

Smoothing constant, 716, 736

Smoothing equation, 716, 718

Solomon, I, 479

SPC; see Statistical process control

Spearman’s rank correlation coefficient, 552,

820–823, 824, 876

Spotts, Harlan E., 335, 423, 891

SQC; see Statistical quality control

Square root transformation, 672

Squared forecast errors, 730

SSB; see Block sum of squares

SSE; see Error sum of squares

SST; see Treatment sum of squares

SSTO; see Total sum of squares

Stamper, Joseph C., 605

Standard deviation

binomial random variable, 215

normal distribution, 238

Poisson random variable, 221

population, 111–112

of random variable, 202–204, 225

sample, 112–113

Standard error, 531–532, 541, 592–593, 603

Standard error of the estimate, 322, 343,

533, 598

Standard normal curve, areas under, 860–861, 876;

see also Normal curve

Standard normal distribution, 240, 267

Standardized normal quantile value, 263–264

Standardized value; see z-scores

States of nature, 833, 849

Statistical acceptance sampling, 746

Statistical inference

definition, 8, 16

generalizing, 155

for population variance, 385–386

rare event approach, 213

Statistical process control (SPC); see also

Control charts

causes of variation, 749–751

definition, 795

objectives, 749, 750

Statistical quality control (SQC), 746

Statistical significance, 358

Statistics, 3

Stem-and-leaf displays, 56–57

back-to-back, 58–59

constructing, 57–58

definition, 74

symmetrical, 57

Stems, 56

Stepwise regression, 659–660

Stevens, Doug L., 8

Stevenson, William J., 837, 838, 849, 850,

851, 891

Stone, Thomas H., 890

Straight-line relationships; see Linear relationships

Strata, 295–296, 302

Stratified random samples, 295–296, 302

Studentized deleted residuals, 667–668, 671

Studentized range, percentage points of, 868–870

Studentized residuals, 667, 671

Subgroups, 752–753, 767, 795

Subjective probability, 156–157, 188

Sum of squared residuals (errors), 522,

567–568, 583

Sums of squares, 448

Surveys, 6

definition, 16

errors, 299–301

mail, 299

margins of error, 332–333

nonresponse, 300

personal interviews, 299

phone, 298–299

pilot, 298

questions, 297–298, 301

response rates, 298–299

sample sizes, 298

sampling designs, 295–297

Web-based, 299

Symmetrical distributions, 47, 74, 105, 106

Systematic samples, 297, 302
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T

t distribution, 318–320, 343, 368

t points, 318–320, 343

t table, 318–320, 343, 862–863

t tests, 368–371

Taguchi, Genichi, 749

Taguchi methods, 749

Target population, 299–300, 302

Taylor, R. K., 476

Test statistic, 354, 388

Therrien, Lois, 890

Third quartile, 121, 141

Thomas, Anisya S., 891

Thompson, C. M., 427, 864, 865, 866, 867, 875

3M, 748

Time series data

autocorrelation, 561–562

components, 697–698, 708

definition, 16, 568, 697, 736

regression assumptions, 531

runs plots, 4, 5

Time series forecasting

advanced models, 704–706

error comparisons, 729–730

exponential smoothing, 715–719

index numbers, 730–734

multiplicative decomposition, 708–714

seasonal components, 700–702

trend components, 698–700

Time series plots, 4, 5, 16; see also Runs plots

Tolerance intervals

compared to confidence intervals, 341–342

definition, 114, 141

Empirical Rule and, 114–116, 239

finding with normal table, 252

Total quality management (TQM), 747, 795

Total sum of squares (SSTO), 449, 459, 468

Total variation, 547–548, 568, 655

TQM; see Total quality management

Transformation of dependent variable, 671–675

Travel Industry of America, 6

Treatment mean, 478

Treatment mean square (MST), 450

Treatment sum of squares (SST), 448–449, 459

Treatments, 443–444, 478

Tree diagrams; see Decision trees

Trends, 697, 698–700, 708, 736

Trial control limits, 760

Tukey formula, 452–453

Two-factor factorial experiment, 467–471, 478

Two-sided alternative hypothesis, 353, 382–383, 388

Two-way ANOVA, 465–473

confidence intervals, 472

definition, 478

point estimates, 472

Two-way ANOVA table, 469

Two-way cross-classification table; see

Contingency table

Type I errors, 354–355, 357, 388

Type II errors, 354–355, 376–383, 388

U

UCL; see Upper control limit

Unbiased point estimate, 282, 288–289, 302

Uncertainty, 834–835, 849

Undercoverage, 300, 302

Unexplained variation, 547–548,

568, 655

Unger, L., 9n

Uniform distribution, 235–237, 267

Union, of events, 167

Union of Japanese Scientists and Engineers

(JUSE), 747

U.S. Bureau of Labor Statistics, 730, 733

U.S. Bureau of the Census, 5, 17, 714

U.S. Commerce Department, 747

U.S. Department of Energy, 11

U.S. War Department, 746

Univariate time series models, 736

Upper control limit (UCL), 756, 759

Utilities, 837, 847, 849

Utility curve, 847

Utility theory, 847

V

Values of variables, 4

Variables, 3, 4, 16; see also Dependent variables;

Independent variables; Qualitative

variables; Quantitative variables;

Random variables

Variables, relationships between

crosstabulation tables, 61–64

interaction, 642–647

linear, 67, 129

scatter plots, 67–68

Variables control charts, 756, 795

Variance; see also Analysis of variance (ANOVA);

Population variance

binomial random variable, 215

normal distribution, 238

Poisson random variable, 221

of random variable, 202–203, 225,

877–878

sample, 112–113, 136–137

of sample mean, 880–881

of sample proportion, 881

Variance inflation factors (VIF), 653–655

Variation

coefficient of, 117–118

explained, 547–548, 568, 655

measures of, 110–118

in processes, 749–751

total, 547–548, 568, 655

unexplained, 547–548, 568, 655

Venn diagrams, 164

Vertical bar charts, 37

VIF; see Variance inflation factors

Voluntary response samples, 278

Voluntary response surveys, 300

Von Neumann, J., 847, 891

W

Wainer, Howard, 72

Walters, Rockney G., 345, 890

Walton, Mary, 747, 891

Wasserman, W., 473, 613, 891

Watson, G. S., 871, 872

Weight of evidence, 360

Weighted aggregate price index,

732–733

Weighted mean, 134–135, 141

Weinberger, Marc G., 335, 423, 891

Western Electric, 746, 773

Westinghouse Electric Corporation, 748

Wheelwright, S. C., 566, 682, 714

Whiskers, 123, 124

Wilcox, R. A., 873, 874

Wilcoxon, F., 873, 874

Wilcoxon rank sum table, 873

Wilcoxon rank sum test, 408,

808–812, 824

Wilcoxon signed ranks table, 874

Wilcoxon signed ranks test, 415,

814–816, 824

Willingham, John J., 343, 890

Winters’ method, 722–727

Within-treatment variability, 448, 449

Woodruff, Robert B., 605

Woods, D. L., 569

Wright, Thomas A., 401, 891

X

x-bar charts, 756–764, 795

analyzing, 764–767

center line, 759

constants, 872, 873

control limits, 759

pattern analysis, 772–775

Xerox Corporation, 748

Y

y intercept, 132

y intercept, of simple linear regression model,

519, 520

definition, 568

least squares point estimates, 522

significance, 536

Z

z
a

point, 248–249, 267

—z
a

point, 250–251, 267

z tests

about population mean, 357–365

about population proportion, 373–376

z values, 240, 248, 267; see also

Normal table

z-scores, 117, 141
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Case Index
A

AccuRatings Case, 155, 161–162, 163, 169,

171, 176–179, 181, 200–201, 207

Advertising Media Case, 397, 419, 420, 422

Air Conditioner Sales Case, 703

Air Traffic Control Case, 324, 328, 372

B

Bank Customer Waiting Time Case, 13–14, 52,

108, 119, 279, 290–291, 316, 325,

342, 356, 366, 372, 399, 400, 497

Bike Sales Case, 700–701

Bonner Frozen Foods Case, 643–644

C

Calculator Sales Case, 697, 699

Camshaft Case, 745, 795–798

Car Mileage Case, 3, 11–12, 56–58, 102–103,

112–113, 114–116, 195–196, 233,

245–246, 247, 277, 279–281,

283–284, 309, 311–312, 327–328,

341–342, 493–494

Catalyst Comparison Case, 397, 403–404,

405–406, 428–429, 430–431, 813

Cell Phone Case, 3, 8–9, 107, 276–277

Cheese Spread Case, 233, 258–259, 293, 309,

329–330, 351, 373, 374–375

Cigarette Advertisement Case, 76, 345, 389

Client Satisfaction Case, 35, 498–501,

502–503

Cod Catch Case, 698–699, 716–717, 718,

719–720

Coffee Temperature Case, 16, 233, 248

Commercial Response Case, 443, 445, 457

D

Debt-to-Equity Ratio Case, 321, 351, 368–369

Defective Cardboard Box Case, 443,

457–458, 462

Direct Labor Cost Case, 529, 533, 538, 546,

551, 555

Disk Brake Case, 344, 367

E

Electronic Article Surveillance Case, 375–376

F

Fast-Food Restaurant Rating Case, 69, 540

Florida Pool Home Case, 144–145,

614–615, 627

Fresh Detergent Case, 528–529, 533, 538, 545,

551, 555, 564, 589–590, 597, 601,

604, 616–618, 621, 638–640, 641,

645–647, 681, 683–684

Fuel Consumption Case, 68, 133–134,

526–527, 532, 537, 544, 551, 554,

564, 587, 600–601, 603

G

Game Show Case, 290

Gasoline Additive Case, 636–638

Gasoline Mileage Case, 443, 444–445, 446,

450–451, 453–454

H

Hole Location Case, 745, 753–754,

759–760, 762–764, 765, 775,

778–781

Hospital Labor Needs Case, 590–591, 597,

601, 604, 623, 662–664

Hot Chocolate Temperature Case, 745,

754–755, 765–767, 778

Household Income Case, 105–106

I

International Business Travel Expense Case,

144, 346

Investment Case, 142–144, 268,

345–346, 390

Investor Satisfaction Case, 61–64

L

Lumber Production Case, 703, 720

M

Marketing Ethics Case, 330–331, 334,

376–377

Marketing Research Case, 3, 9–10, 51, 106,

277, 322

Microwave Oven Preference Case, 490–491

O

Oil Drilling Case, 183–184, 833,

839–844, 851

Oxford Home Builder Case, 626

P

Payment Time Case, 35, 42–45, 106–107, 113,

288, 309, 315, 351, 352

Q

QHIC Case, 517, 555–558, 635, 672–675,

685–686

R

Real Estate Sales Price Case, 68, 529–530,

533, 538, 546, 551, 555, 587–589,

596–597, 601, 603–604, 641,

647–648

Repair Cost Comparison Case, 397, 411–412,

413, 414–415, 815–816

S

Sales Territory Performance Case, 581,

604–606, 635, 656–658

Service Time Case, 134, 527–528, 532, 538,

545, 551, 552, 555, 564, 565–566

Shelf Display Case, 443, 445, 455, 465–467,

472–473, 615–616

Starting Salary Case, 527, 532, 537, 544, 551,

552, 555

Stock Return Case, 304

T

Tasty Cola Case, 708–714

Tasty Sub Shop Case, 517–520, 523–526, 532,

534–535, 536, 542–543, 548, 550,

552, 553–554, 581–586, 595–596,

599, 600, 601–602, 623

Trash Bag Case, 14, 53, 60, 108–109, 119,

254–255, 303–304, 316, 325, 342,

351, 352

Traveler’s Rest Case, 697, 704–705, 728

U

Unequal Variances Service Time Case, 567,

677–678

United Kingdom Insurance Case, 144,

304–305, 346, 390

V

Valentine’s Day Chocolate Case, 351, 353,

381–382

VALIC Case, 125–126

Video Game Satisfaction Rating Case, 13, 52,

61, 108, 119, 278–279, 291, 316, 325,

342, 356, 366, 372, 507–508

W

Watch Sales Case, 703, 728
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